

# GROUNDWATER SURVEY <br> OF THE <br> PLYMOUTH AREA <br> PICTOU COUNTY NOVA SCOTIA 

by:
Heather J. Cross and Theresa A.Rushton

## ACKNOWLEDGEMENTS

INTRODUCTION ..... 1
FIELD WORK ..... 1
LOCATION AND PHYSIOGRAPHY ..... 1
CLIMATE ..... 2
GEOLOGY
Bedrock ..... 2
Surficial ..... 4
Glacial History ..... 5
GROUNDWATER FLOW ..... 5
GROUNDWATER QUALITY
Salt7
Fluoride Origin ..... 9
Heal th Implications ..... 12
Economic Implications ..... 12
TESTHOLE RESULTS
Surficial ..... 13
Bedrock ..... 14
CONCLUSIONS ..... 15
RECOMMENDATIONS ..... 15
BIBLIOGRAPHY ..... 17
FIGURES
APPENDICES

## LIST OF FIGURES

1. Topographic location map, 1:50,000
2. Sample locations, Park area
3. Sample locations, general area
4. Bedrock geology
5. Bedrock surface elevations
6. Surficial geology
7. Depth to bedrock
8. Water table elevation, Park area
9. Piezometric levels, general area
10. Chloride as related to well depth
11. $\mathrm{Na} / \mathrm{Cl}$ ratio as related to $\mathrm{Na} /$ Ca ratio
12. Chloride values, Park area
13. Chloride values, general area
14. Fluoride as related to well depth
15. Fluoride as related to chloride
16. Fluoride as related to alkalinity
17. Fluoride as related to calcium
18. Trilinear plot of groundwater chemical composition
19. Cross section
20. Water level fluctuations in festholes, January to July 1976

## LIST OF APPENDICES

1. Summary table of well data
2. Groundwater chemical analyses
3. Summary logs of wells dilled on the Stellarton Inverval,N.S.D.O.E. and N.S.D.M.
4. Summary logs of backhoe testpits, N.S.D.O.E.
5. Summary of N.S.Dent. of Highways Borehole Records
6. Summary of N.S. Dept . of Mines Borehole records
7. Letter from Dr. R.M. Brown
8. Letter from Mr.C.E.Tupper

## ACKNOWLEDGEMENTS

We would like to express thanks to the many homeowners in the area for their interest and co-operation in the sampling program. Without their assistance this study would not have been possible.

We would also like to thank Mr.E.D.Stewart of E.D. Stewart Well Drilling and Mr. Wayne Chisolm of G.W.Reid Well Drilling for their interest and assistance in locating some of the well log information.

We also appreciate the time and effort of Mr. D. Hirtle of the N.S. Department of the Environment for the droughting of the figures.

## INTRODUCTION

Due to the number of complaints of poor water quality in the Plymouth Park area, a survey was carried out in June and July 1975 to determine the extent and cause of the problem, and possible solutions to the problem. Specifically, the complaints were of salt, iron, manganese and hydrogen sulfide. FIELD WORK

In June 1975, well logs were located, and preliminary samples analyzed in the field for alkalinity, hardness and chloride. In July 1975, 38 samples were collected for complete chemical analysis. Surficial mapping was carried out, using exposures in road cuts, ditches, and stream banks.

Due to high fluoride and chloride values in some of the first 38 samples, the following work was carried out in September 1975: 1) 29 wells were resampled for fluoride, 2) 18 additional samples were taken for complete chemical analysis, and 3) 14 samples were taken for isotope analyses. The latter analyses, for tritium and deuterium, were run by Dr.R.M.Brown of Atomic Energy of Canada Ltd., Chalk River, Onfario.

The locations of the wells and chemical analyses are shown in figures 2 and 3. The well data and field chemical data is summarized in Appendix 1. Lab chemical analyses are summarized in Appendix 2.

In October and December 1975, 31 backhoe testpits and 2 drilled testholes were logged in the area (Figure 3 and Appendices 3 and 4).

## LOCATION AND PHYSIOGRAPHY

The Plymouth area is located on the east side of the East River near Stellarton (Figure 1) and lies in the Carboniferous Lowlands region of Nova

Scotia. Land elevations in the study area range from sea level to 300 feet. The study area lies within the drainage basin of the East River.

CLIMATE
Based on 20 years of record, the average total precipitation is $40.70^{\prime \prime}$ annually, with $32.96^{\prime \prime}$ as rain and $77.40^{\prime \prime}$ as snow. The maximum precipitation was $55.32^{\prime \prime}$ (1964), the minimum was $26.6^{\prime \prime}$ (1965). Total runoff accounts for about $2 / 3$ of the precipitation.

The mean annual daily temperature is $43.4^{\circ} \mathrm{F}$, with a mean daily maximum of $52.3^{\circ} \mathrm{F}$.

The average number of frost free days is 112 , with a range of 89 to 135 days. The average length of the growing season is 135 days.

## GEOLOGY

Bedrock (Figure 4)
The northern part of the study area is underlain by gray, red and mottled shale, sandstone and conglomerate, and minor coal of the Stellarton Series of Pennsylvanian age.

Exposures along the East River in the Plymouth area consist of alternating hard red sandstone, gray siltstone, and shale. The bedding strikes northwestsoutheast and dips northeast at 13 to $25^{\circ}$. Major joint sets strike parallel to the bedding and dip northeast and southwest, generally at an angle greaier than $50^{\circ}$. There is also a prominent set striking perpendicular to the bedding and dipping from 65 to $90^{\circ}$.

In the southern part of the area (near Ferrona Junction), there is hard red and gray sandstone of the Windsor Group of Mississippian age. The bedding
strikes almost north-south and dips about $50^{\circ}$ west. There is a faulted contact with limestone just south of this area.

The main structural elements in the area are the Plymouth and South Faults, and a northeast striking anticline axis. Two small faults parallel the Plymouth Fault.

Elevations of the bedrock surface from well log data (Figure 5) indicate a steep dropoff in a westerly direction towards the East River. In the Park, the bedrock elevation is about 25 feet below sea level.

The following description, from the southern to northern part of Figure 4, is summarized from Bell (1940) and Fletcher (1892).

Windsor material outcrops upstream of the South Fault, consisting of reddish, flinty, slaty or prismatic sandstones and argillites with veins of quartz and ankerite. A diorite dyke cuts across the Windsor in this section. This sequence is succeeded upstream by blue-grey limestone. One outcrop of Windsor material, just east of the Plymouth-Churchville Road, consists of jointed sandstone with quartz crystals coating the faces. Conglomerate occurs on Moc Gregors Mountain and in the Churchville area.

The South Fault, trending N75E, separates Windsor and Canso strata. The Stellarton Series are downthrown several thousand feet against the older rocks in the area east of the East River.

The Canso-Pictou strata contact on the East River north of McKay Brook is marked by a thin basal gray conglomerate of the Skinner Brook Member, which lies unconformably on brownish-red sandstone of the Canso Group. The basal conglomerate is overlain by brownish red sandstone, then gray, flaggy, rippled
sandstone to $420^{\prime}$ above the contact, then $15^{\prime}$ of blackish grey and brown mudstone and grey argillaceous shale. This sequence, representing 4800 feet downstream from McKay Brook, strikes essentially parallel to the river and dips eastward. The rocks then swing into an anticline. The higher beds consist of brownishwred sandstone and siltstone and a thin red conglomerate. The rocks are then concealed for 1600 feet, in which the Plymouth Fault occurs (downthrown on the north side). This fault accounts for the loss of several thousand feet of strata belonging to Division 1 of the Stellarton Series. There is also a minor fault 500 feet south of this, trending S76E and with a downthrow on the northern side.

Between the pumping station and Plymouth Bridge, 520 feet of the Plymouth Member is exposed - a brownish red siltstone and fine argillaceous sandstone, some gray mottled. In the coarser beds, green slate or argillite from Ordovician rocks is present. The lower part of this section to the bridge contains a few bands of blackish-gray slickensided mudstone. A small fault at the bridge strikes S65E, with a downthrow on the north side. North of the fault are exposed brownish red and mottled red and gray siltstone overlain by gray argillaceous siltstone and a thin calcareous bed.

## Surficial (Figure 6)

The surficial deposits consist mainly of sandy and clayey glacial tills, and sands and gravels. The visible thicknesses in the field are indicated in Figure 6. The thicknesses from well logs are shown in Figure 7. Generally, the till thicknesses exceed 10 feet, and reach almost 100 feet in several places. Dept. of Highways boreholes (Appendix 5) and observations of outcrops in the East

River (Figure 6) indicate that the stratified sands and gravels along the river are generally less than 10 feet thick.

Thirty-one backhoe testpits were dug to determine the type and thickness of surficial materials. The locations of these holes are shown on Figure 3, and summaries of the logs in Appendix 4.

## Glacial History

Work in the Northumberland Strait by Kranck (1972) has shown that preglacial drainage off the East River trends northeast along Cape George. After deglaciation, sea level was lowered by 300 feet. The Strait was inundated at about 11,800 B.P. Off the East River, there are two terrances, at $45-55$ meters to the northeast, and 18-23 meters to the north. The terraces were formed during the last postglacial transgression of the sea. The shallowest (youngest) terrace has been dated at 5000-5500 years B.P. The present average rise in sea level in this area is more than 25 centimeters/ 100 years. Hence in the East River area, sea level has risen gradually from the Pleistocene to the present and there should be no residual saline groundwater due to higher sec levels from this time period.

## GROUNDWATER FLOW

The water table elevation in the Park (Figure 8) indicates a northwesterly flow of groundwater in the surficial material towards the East River. The regional contours (Figure 9) also indicate a general northwesterly flow in the bedrock, following the bedrock and surface topography. The main recharge area is MacGragor Mountain, the main discharge area the East River. A local recharge area (piezometric elevation $5^{\prime}$ ) occurs just east of the Park, with a
discharge area to the southeast and northwest. A local discharge area also occurs along the old River Road.

The water levels in dug wells are generally higher than those in adjacent drilled wells where information is available, indicating a vertical component of flow from the surficial materials to the bedrock.

Evidence of groundwater discharge is also provided in the many seepages (Figure 6). Some of these, especially those in the Ferrona Junction area, were flowing at $1 / 2$ to 1 gpm . The seepages marked on Figure 6 were present after about $11 / 2$ months of no rain and hence should represent perennial discharge. Unfortunately the iron concentrations were high enough to cause a bright orange precipitate of iron oxide or hydroxide and hence these springs would not be suitable for a domestic water supply.

Wells with high yields, i.e. greater than 5 gpm , appear to be related to faults and to Windsor Group materials (Figure 4). Several wells in Windsor conglomerate yield $10-40 \mathrm{gpm}$.

Water level fluctuations in the two N.S.D.O.E. fest holes were monitored monthly from January to July 1976 (Figure 20). If it is assumed that the two wells are analagous to piezometers, then the results suggest that the interval area of the river is a groundwater discharge area during most of the year when water levels are relatively high, but converts to a recharge area during the groundwater recession in summer. Further monitoring is required to substantiate this.

## GROUNDWATER QUALITY

The field results and complete chemical analyses (Appendices 1 and 2)
indicate a fairly serious problem in the area, with respect to chloride, iron, manganese and fluortde (Table 1).

## TABLE 1

## Field data:

| $\mathrm{Cl}>50 \mathrm{mg} / 1$ | $37 / 118$ | $31.4 \%$ |
| :--- | :---: | ---: |
| $\mathrm{Cl}>250 \mathrm{mg} / 1$ | $12 / 118$ | $10.2 \%$ |
| Reporfedsulphide odor $5 / 118$ | $4.2 \%$ |  |
| Hardness $/ 120 \mathrm{mg} / 1$ | $40 / 118$ | $34.0 \%$ |

Complete Analyses:
$\mathrm{Cl}>250 \mathrm{mg} / 1$
$\mathrm{Fe}>0.3 \mathrm{mg} / 1$
$\mathrm{Mn}>0.05 \mathrm{mg} / \mathrm{l}$
$F>1.2 \mathrm{mg} / 1$

| DUG WELLS |  |  |
| :---: | :---: | :---: |
| No. | $\%$ |  |
| $3 / 17$ | 17.6 |  |
| $5 / 17$ | 29.4 |  |
| $11 / 17$ | 64.7 |  |
| 0 | 0 |  |


| DRILLED | WELLS | TOTAL |
| :---: | :---: | :---: |
| No. | $\%$ | No. $\%$ |
| $11 / 40$ | 27.5 | $14 / 5724.6$ |
| $13 / 40$ | 32.5 | $18 / 5731.6$ |
| $25 / 40$ | 62.5 | $36 / 5763.2$ |
| $16 / 40$ | 40.0 | $16 / 5728.1$ |

Salt
The values of chloride are shown in Figures 12 and 13. There is essentially no relationship between Cl and well depth (Figure 10); however, it is noteworthy that all drilled wells (except the two circled) with greater than $100 \mathrm{mg} / 1$ Cl are from the localized area of the Park. The well waters have also undergone a considerable amount of ion exchange and natural water softening, as indicated by Figure 11. A trilinear plot (Figure 18) indicates that most drilled well waters in the study area are of the $\mathrm{Na}-\mathrm{HCO}_{3}$ or $\mathrm{Na}-\mathrm{Cl}$ type. Most drilled wells in the Park area contain $\mathrm{Na-Cl}$ type waters.

The natural softening of water usually occurs in shales and other sediments originally laid down under marine conditions or affected by marine incursion after deposition. At this time, a large number of Na ions are adsorbed on ion exchange sites. When fresh water recharge occurs, generally with Ca-rich waters, the Ca is preferentially adsorbed and the Na is released, resulting in high $\mathrm{Na} / \mathrm{Cl}$ and $\mathrm{Na} / \mathrm{Ca}$ ratios. The drilled wells outside the park show this relationship (Figure 11). The drilled wells in the Park show high $\mathrm{Na} / \mathrm{Ca}$ ratios, but low $\mathrm{Na} / \mathrm{Cl}$ ratios due to the Na and Cl , respectively, contributed from salt ( NaCl ). Some possible reasons for this are: 1) regional groundwater discharge; 2) the bedrock surface here forms a depression and may contain residual or incompletely flushed saline brines; 3) the Plymouth Fault to the south and the small fault to the north of the Park may have acted as barriers to groundwater flow and caused entrapment of meteoric waters in a stagnant condition; 4) incomplete flushing of original saline pore water. The latter is unlikely in view of the isotope results to be discussed later. The most reasonable explanation is slow flushing due to the large number of shale beds, some of which are reported as sticky and clay-like; such beds may act as barriers and also as membranes.

One well high in sulphate (index no. 65) is likely affected by gypsum of the Windsor Group.

Most dug wells are of the $\mathrm{Ca}-\mathrm{HCO}_{3}$ or $\mathrm{Ca}-\mathrm{Cl}$ type. High values of chloride in these wells appear to be related to road salt.

## Fluoride

Fluoride values were found to exceed the suggested limit of $1.2 \mathrm{mg} / \mathrm{I}$ in sixteen wells.

## Origin

The main possible sources of Fluoride are: 1) from sea water during the original deposition of a marine bed which has not been completely flushed out, 2) volcanic emanations, 3) weathering or solution of fluoride-bearing minerals such as fluorite, apatite, tourmaline, topaz, vesuvianite, lepidolite, phlogopite, and glauconite (LaMoreaux, 1948).

Fluoride levels up to $3.4 \mathrm{mg} / 1$ have been found in Alabama (LaMoreaux, 1948 and Carlston, 1942) to have the following relationships: 1) fluoride more than $1 \mathrm{mg} /$ / found exclusively in deep wells, 2) high fluoride is found in soft groundwaters (less than $60 \mathrm{mg} / 1$ total hardness) high in $\mathrm{HCO}_{3}$. A direct correlation exists between fluoride and $\mathrm{HCO}_{3}, 3$ ) high fluoride is correlated with phosphatic material, pyrite, lignite and abundant glauconite. Pyrite in association with organic material could be expected to decompose and produce $\mathrm{H}_{2} \mathrm{SO}_{4}$, which in furn could attack the more insoluble fluoridebearing minerals (LaMoreaux, 1948). Glauconite alone was not found to produce high fluoride levels, but was the chief base exchange agent causing natural water softening; 4) high fluoride was found in deeper wells in discharge areas, hence the fluoride concentration may be related to depth of formation and distance to outcrop, and hence to the extent of groundwater circulation and length of contact time.

In Florida, Toler (1967) found apatite group minerals in phosphatic sediments to produce groundwaters high in fluoride.

Handa (1975) found that well waters high in fluoride were: 1) associated with low Ca , which he attributed to the low solubility of fluorite, 2) associated with high $\mathrm{HCO}_{3}$ and sometimes $\mathrm{NO}_{3}$, 3) often saturated with respect to calcite and fluorite.

In the Plymouth study area, high fluoride values were found to be assoc-iated with: 1) deeper wells (Figure 14), 2) high chloride (Figure 15), 3) high $\mathrm{HCO}_{3}$ (Figure 16) and soft waters, 4) often higher values of $\mathrm{NO}_{3}$ and $\mathrm{PO}_{4}$ than wells with lower fluoride values (Appendix 2), and 5) a groundwater discharge area, possibly regional. Three wells were found to be satur-m ated with respect to fluorite (Figure 17), and most were also found to be saturated with calcite and fluoraparite (as computed by program WATEQF). This supports a primary mineral source for the fluoride. Also, the strong positive correlation between fluoride and hydroxyl concentrations and pH indicates that fluoride is not simply exchanging for hydroxyl on clay mineral sites.

Most dug wells in the study area contained less than $0.5 \mathrm{mg} / \mathrm{l}$ fluoride, as found by Handa (1975), due either to absence of fluoride-bearing minerals in the overburden or rapid groundwater circulation.

The fluoride source in the Plymouth area could possibly be correlated with pyrite and lignite, since coal seams and coal shale are common. Unfortunately no cores were available to check for phosphatic or tuffaceous layers in the
bedrock. The latter occurrence is a possibility, since high fluoride values in the Moncton area are thought to be associated with a volcanic ash unit in the Pictou Group which has been identified in a few deep wells (Dyck et al, 1976). The natural water softening could be a result of natural base exchange, as explained earlier, or a shale membrane mechanism. The latter works on a reverse osmosis principle, whereby shales or clay layers act as sieves or membranes, with a driving force provided by hydrodynamic or permeability gradients. According to White (1965) and vanEverdingen (1968), the low pressure side of the membrane generally has a higher $\mathrm{Nc} / \mathrm{Ca}$ ratio, higher fluoride, $\mathrm{pH}>7$, and low Cl as compared to the high pressure or input side. This hypothesis fits the chemistry of the high fluoride waters in the study area with the exception of the high Cl values (Figure 15), which may be the result of such factors as stagnation in bedrock depressions, proximity to Windsor bedrock and proximity to fault zones. As shown by Figure 19, the driving force could be a combination of regional hydroynamic pressure and permeability gradients produced by alternating shales and sandstone. Figure 19 also suggests the presence of an old channel deposit of the East River in the vicinity of well 45this may contain materials of high permeability and hence create a low fluid pressure area.

- To ensure that entrapped sea water from pre-Pleistocene times or recent salt water intrusion was not causing the salt, Dr. R.M.Brown kindly carried out tritium and deuterium analyses on selected samples. The results (Appendix 7) indicate that all wells deeper than 75 feet contain water more than 20 years old. This supports the idea of sfagnant groundwater associaied with a regional
flow system, or incomplete flushing of saline water associated with nearby Windsor rocks or faults. The possibility of a bedrock knoll (Figure 19) as suggested from water well logs could account for the stagnation and membrane filtration effects; however, depth to bedrock from the well log data is not conclusive because of the soft shales present, which make it difficult in some cases to ascertain the bedrock-overburden contact.


## Health Implications

Fluoride values in municipal water supplies in Nova Scotia are maintained at about $1.2 \mathrm{mg} / 1$, the amount theoretically required for strong teeth in children. Excessive amounts of fluoride may cause mottling of tooth enamel and may have toxic effects on the bone structure of the body. The use of such water generally affects children less than 8 years old whose permanent teeth have not yet formed. The mottling is a permanent effect.

As a followup to our sampling, N.S.Dept. of Public Health resampled wells with more than $1.2 \mathrm{mg} / 1$ fluoride. The values agreed with the previous sampling to within $0.2 \mathrm{mg} / 1$. A dental survey was then carried out, but fortunately no serious fluorosis problems were found as a result of fluoride in the well water (Appendix 8).

Economic Implications
Dyck et al (1976) found that a band of high values of fluoride, uranium, helium, radon, alkalinity and conductivity exists along the Northumberland Strait from the New Glasgow area, N.S.to Cape Tormentine, N.B. in the Pictou Group bedrock. They suggest that this may be analagous to a "roll
front", of the type that has produced economic uranium ore deposits in the United States. Circulating groundwaters are presently leaching the deposits. A uranium anomaly has been found in the Plymouth area (G.S.C.Open File 340), possibly due to stagnation of groundwater in this area.

## TESTHOLE RESULTS

## Surficial

Backhoe testpits were dug to determine the type of surficial materials, and if there were any sand and gravel deposits suitable for a screened well or infiltration gallery along the East River. Appendix 4 summarizes the logs.

The pits indicated a fairly consistent pattern from top to bottom of silt or till, stratified sand, gravel and boulders, and clay or bedrock. The top sands and silts in many cases represent recent alluvium deposited on the flood plain of the East River. The stratified materials are generally only 2 to 5 feet thick except at P12, which is at a higher elevation. The sands and gravels on the interval area are likely a central bar deposit, built up due to change in river slope just upstream and to rising sea level. Above the 20 foot contour, the slope is about $15^{\circ}$, but increases to $20^{\circ}$ between 20 and 10 feet due to bedrock control. From 10 to 5 feet, the slope decreases to $12^{\circ}$, resulting in a critical slope on the border befween meandering and braiding. The meander length-channel width relationship indicates a disequilibrium, with increase in channel width or decrease in meander length being desirable. The small gravel terrace in the vicinity of P12 is likely an outwash remnant.

The lower clay layer is of two types: 1) a hard compact clay containing angular gravel and a few rounded pebbles, and 2) a soft plastic clay with minor thin lamince of silt and fine sand, and containing minor organic material. The former is likely a glacial till, while the latter likely represents a quiet depositional environment that might exist in an old cutoff channel or swale on the flood plain.

The sand and gravel in several of the pits contained appreciable quantities of groundwater; however, this only occurred just near the gravel-clay contact and represents perched water. The saturated thickness was less than I foot, and the sand and gravel would likely not be saturated on a perennial basis.

## Bedrock

Logs of the two N.S.D.O.E. and the N.S.D.M. holes on the interval are contained in Appendix 3. The location of the N.S.D.M. hole is not certain but it is thought to be from 200-400 feet north of INT-1-75. The depths to bedrock in the three holes are 70,39 and 24 feet. The sand and gravel may be saturafed in the lower 5 feet for most of the year, however the groundwater is perched on clay and gravelly clay, hence there is no apparent extensive buried channel network. The yields of the two N.S.D.O.E. holes were $5-8 \mathrm{gpm}$ and $1-2 \mathrm{gpm}$ from the section of the hole below 20 feet. The quality of this water is poor (Appendix 2), with high values of salt, iron and manganese. It is passible that a shallow drilled well screened from 15-25 feet could supply more than one home; however, the yield would likely not be sufficient to serve the needs of the Park area.

## CONCLUSIONS

The results of the study indicate a fairly serious problem of water quality in drilled wells in the Park area and the area east of the Park to the Churchville Road. Many dug wells in the Park either have problems of surface water contamination, as indicated by salt, or experience water shortages in summer.

The main problems of salt and fluoride in the drilled wells are likely due to slow flushing or stagnation of meteoric water. The iron, manganese, and hydrogen sulphide problems are likely related to coal and other organic matter in the subsurface.

Test hole results indicate that the sands and gravels in the area are generally too thin or the saturated thickness insufficient to provide an alternate water supply for the area. The groundwater is perched somewhat by the underlying clay, and hence drains rapidly, i.e. storage is small. The potential for high capacity bedrock wells could exist southeast of the Park area in association with faults and Windsor conglomerate. The water quality from these wells is generally good also, although slightly excessive iron and manganese values may occur.

## RECOMMENDATIONS

We would recommend that an alternate water supply be obtained for the area of the Park and east of it to the Churchville Road. About $50-60$ homes are involved. We would suggest the following options:

1) serve the area from either the New Glasgow or Stellarton systems
2) consider a well field in the bedrock in the MacGregor Mountain area. This
option would involve a test drilling and pump testing program. If groundwater of sufficient quantity and acceptable quality were obtained, then a pipeline of at least a mile would be involved.

In both cases, water and sewer lines would have to be installed.
From an academic viewpoint, there are interesting projects which could stem from this work, such as:

1) a detailed analysis of some of the well waters in the Park area for uranium. The Geological Survey of Canada sampling for uranium suggests an anomaly in the Plymouth area.
2) diamond drilling to obtain cores for petrologic study, to determine the overall mineral composition, and the minerals providing the fluoride source and base exchange mechanism.
3) coring might help to establish if any fault zones are present at depth through which mineralized groundwaters from the Windsor Group could enter the Pictou Group rocks in the area.
4) installation of piezometer nests to determine accurately the regional groundwater flow pattern.

## BIBLIOGRAPHY

Bell, W.A., 1940, The Pictou coalfield, Nova Scotia: Can. Geol. Survey, Memoir 222.

Carlston, C.W.,1942, Fluoride in the groundwater of the Cretaceous area of Alabama: Geol. Surv. Alabama, Bull. 52.

Dyck, W., Chatterjee, A.K., Gemmell, D.E. and Murricane, K., 1976, Well water trace element reconnaissance, Eastern Maritime Canada, presented at the regional meeting of the Association of Exploration Geochemists, Fredericton, N.B., April 1976.

Fletcher, H., 1892, Report on geological surveys and explorations in the counties of Pictou and Colchester, N.S.: Can. Geol.Surv. Ann.Rept., vol.V, pt.P, 193p.

Handa, B.K., 1975, Geochemistry and genesis of fluoride-containing ground waters in India: Ground Water, vol. 13, no. 3, May-June.

Hem, J.D., 1970, Study and interpretation of the chemical characteristics of natural waters: U.S. Geol. Surv. Water Supply Paper 1473.

Kranck, K., 1972, Geomorphological development and post-Pleistocene sea level changes, Northumberland Strait, Maritime Provinces: Can. J.Earth Sci, vol.9, no.7, July, pp.835-844.

LaMoreaux, P.E., 1948, Fluoride in the ground water of the Tertiary area of Alabama: Geol. Surv. Alabama Bull. 59.

Toler, L.G., 1967, Fluoride in water in the Alafia and Peace River Basins, Florida: Fla. Geol. Surv. Rept. of Invest. 46.

Unesco, 1975, Studies and reports in hydrology no. 7 - Ground water studies, Chapt. 10 - Nuclear techniques in ground water hydrology.

Van Everdingen, R.O., 1968, Mobility of main ion species in reverse osmosis and the modification of subsurface brines: Can.J. Earth Sci., vol. 5, p. 1253.

White, D.E., 1965, Saline waters of sedimentary rocks, in Amer. Assoc. of Petroleum Geologists Memoir 4 - Fluids in subsurface environments, pp. 342-366.

FIGURES


SCALE 1:50.000 ECHELE


CONTOUP INTGRVAL 50 FEET
Envation in Feet abous Mean Son Level

Finure 1. Location mad.


Figure 2. Sample locations, Park area.


TABLE OF FORMATIONS TO ACCOMPANY FIGURE 4

## CARBONIFEROUS

PENNSYLVANIAN

STELLARTON SERIES<br>Grey, red and mottled shale and sandstone, conglomerate, coal seams<br>CUMBERLAND SERIES Brownish-red sandstone and shale, grey sandstone, red and grey conglomerate, 8a, New Glasgow Formation: conglomerate<br>CANSO SERIES<br>Brownish-red sandstone and shale, grey sandstone and shale, limestone conglomerate<br>MISSISSIPPIAN

WINDSOR SERIES

6
Red shale, sandstone, conglomerate, limestone, gypsum; ba, basic lava

## SILURIAN

ARISAIG SERIES
Grey shale and sandstone, calcareous shale and sandstone





Figure 8. Water table elevations, Park area.



Figure 10. Chloride as related to well depth.



Figure 12. Chloride values, Park area.



Figure 14. Fluoride as related to well depth.



Figure 16. Fluoride as related to alkalinity.






APPENDICES

|  |  |  |  |  |  | Water | REPOR- |  |  | FiELO ANA | Alyses |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { INDEX } \\ \text { No. } \end{gathered}$ | OWNER | TYPE WEL WEL | $\begin{aligned} & \text { WELL } \\ & \text { OEPTH } \\ & \text { FEET } \end{aligned}$ | $\left\lvert\, \begin{array}{\|c\|c\|c\|} \substack{\text { GNGOTH} \\ \text { FEET }} \end{array}\right.$ | Diam- | $\left.\begin{array}{\|c\|c\|c\|} \hline \text { EEEET } \\ \text { RELOWNO } \end{array} \right\rvert\,$ | $\begin{aligned} & \text { TED } \\ & \text { YELD } \\ & \text { GPM } \end{aligned}$ | GEOLOEIC LOG |  | $\begin{gathered} \text { Choride } \\ \mathrm{mg} / 1 \end{gathered}$ | $\begin{aligned} & \text { Totad } \\ & \text { hardess } \\ & \text { motas } \\ & \text { Cocos } \end{aligned}$ | $\begin{array}{\|c\|c\|} \hline \text { Tempe } \\ \text { roture } \\ \text { ofe } \end{array}$ | CONSTRUCTION | REFORTED QUALITY PROBLEMS |
| 1. | David Mckay | Ous | 9.25 |  | 2.5 | 5.6 |  |  | 85 | 60 | 119 |  | Crocked, unseated, no opion. Wooden cover | Ory occosionally |
| 2. | Williom Mallioy | difled |  |  |  |  |  |  | 40 | 35 | 60 |  |  |  |
| 3. | Albert Mckioy | Dug | 10.5 |  | 1.5 | 6.9 |  |  | 15 | 35 | 40 |  | Crocked, unsected, no apron | Woter hard |
| 4. | Helen Mckenzie | Dova | 11.2 |  | 2.0 | 7.6 |  |  | 5 | 15 | 20 |  | Cricked to 1.1 ff , above g:ound, no apion |  |
| 5. | c. Urathort | Dilled | 147 | 20.3 |  | 10.0 | 11.5-2 | Podrock conglomerate, soft of Finish | 192 | 1120 | $13^{\prime}$ | 53 |  | andicar |
| 6. | c. Urqhart | Dug | 9.7 |  | 1.75 | 0.9 |  |  | 12 | 95 | 40 |  | Crocked to 0.75 ft . obove ground iran cover |  |
| 7. | Allon Mckoy | Oug | 8.25 |  | 2.5 | 5.9 |  |  | 10 | 115 | 69 | $\infty$ | Clocked 103 feet above ground |  |
| d. | Koy MocQuarrie | Drilled |  |  |  |  |  |  | 190 | 145 | 10 |  |  | sulfur ador, solf, iron, sediment and corrosich |
| 9. | Rusell Penderson: | Ous | 12-14 |  |  |  |  |  | 30 | 4.5 | 85 |  |  | Tup somple due to heovy cover. Bored well on property not used due to from problems. |
| 10. | Henry Heighton | Oug | 26 |  | 2.75 | 7.75 |  | 0-26 sand, cloy, grovel \& large boulders | 30 | 25 | 50 |  | Crocked to 1.9 ft. obove ground cument apion |  |
| 11. | R.Cuminghar | Spring |  |  |  |  |  |  | 48 | 240 | 300 | 68 |  | Posside suface funoff from neightour's wink dicuin |
| 12. | Rolond Natin | Dus | 10 |  | 2.3 | 4.7 |  |  | 70 | 35 | 80 |  | Crocked Located 15 fi, from and i-2 2 . bulow road level. | pessible surface turioff ond oil contaminpalists. |
| 13 | Fioino shyno | Dug | 12.5 |  | 2.0 | 8.75 |  |  | 50 | 45 | 100 |  | Crocked to ground leve! | Locoted 20 ft . and 1 fl . downslope from noud |
| 14. | John Callis | Otilica | 213 |  | 4" |  |  |  | 403 | 246 | 10 | 51 |  | Drilted by Dept of Nighways since dug mall hed roads salt. Drllled well hos sullem cudor. |
| is. | Iohn Cillis | Dug | 13.9 |  | 2.0 | 7.25 |  |  | 20 | 25 | 80 | 49 | Crocked io 1.3 tr. above grownd, no apron |  |
| 16. | Gordsan frosetr | Diflied | 260 | $\infty$ |  | ${ }^{43}$ | 3.5 | 0-85 mixed clay and gravel $85-200$ soff cooglamerate with bancs of red shales | 585 | 750 | 18 |  | Well latec seaned out and gravel pocked from 122-260 ft. Flow reduced to $11 / 2 \mathrm{gmm}$. |  |
| 17. | Gordon Fraser | Dus | 8.2 |  | 2.5 | 3.4 |  |  | 175 | 10 | 180 |  |  | Well in bosement |
| 18. | Debicurn | Oug | 21.3 |  | 2.0 | 11.3 |  |  | 100 | 42 | 157 | $4{ }^{4}$ | Crocked to $0,8 \mathrm{f}$, obove ground | Locoted 4 ff . from and level with road. |
| 19. | G. Frower | Oug | 19 |  | 2.0 | 4.0 |  |  | 195 | 10 | 130 |  |  | Hocoted in bosement and used iou dinking. |
| * | 3coth Mcemonald | Oug | 22.5 |  | 2.0 | 11.0 |  |  | 128 | 24 | 144 | 58 | Crocked to ground lievel |  |
| 21. | Mcs. Glen | $00_{3}$ | 4.0 |  | 3.0 |  |  |  | 120 | 165 | 34) |  | Crocked to 2,0 ft above baste munt lowet |  |


|  |  |  |  |  |  |  | REPOR- |  |  | FIELD ANA | ALYSES |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { InDEX } \\ & \text { No. } \end{aligned}$ | OWNER | TYPE OF WeLL | WELL OEPTH FEET |  | diam- |  | $\begin{aligned} & \text { TED } \\ & \text { YELD } \\ & \text { GPM } \end{aligned}$ | GEOLOBIC LOG |  | $\begin{gathered} \text { chiorice } \\ \mathrm{mg} / \lambda \end{gathered}$ | $\left\lvert\, \begin{gathered} \text { Total } \\ \text { noriness } \\ \text { rot } \\ \text { mas } \\ \operatorname{cocos} \end{gathered}\right.$ |  | CONSTRUCTION | feprateo guanty proalems |
| 22. | Hugh Russell | Dug | 7.7 |  | 2.5 | 4.7 |  |  | 40 | 110 | so |  | in besement | Diy oscesiconully |
| 23. | S.Rbbertion | Dug | 24 |  | 3.0 | fow |  |  | 125 | 25 | 40 |  |  |  |
| 24. | Reymond McKay | Dritled | 99 |  | $4 \times$ |  |  |  | 485 | 112 | 8 | $\infty$ |  |  |
| 23. | C.V.Ramsar | Orilled | 143 | 81 | 4. | 38 | 3 | Grovel, then bande of constiome ate, shale, and red sconstione | 357 | 125 | 9 | 56 |  |  |
| 26. | A.Mcmilion | dilled | 150 | 100 |  |  |  | ${ }^{0} 0$ - 60 clay, $60-90$ fine sund Bedrock - fine grained viltstone | 393 | 78 | $s$ | 58 |  | Sedinent |
| 27. | A.memilian | Ous |  |  |  |  |  |  | 120 | 265 | 366 | 67 |  | Yep sample. |
| 28. | L.Urquher | Dus | 18.7 |  | 2.0 | 8.9 |  |  | $\infty$ | 110 | 200 |  | Exiends 0.75 ht. above ground, wooden cover |  |
| 29. | 1. Hroud | Dislled | 24 |  | 3. |  |  |  | 140 | 110 | 260 |  | Difled through on old 3 ft . diameter dug vall |  |
| 30. | E.Kollock | Dus | 14.9 |  | 2.6 | 8.7 |  |  | 20 | 5 | 25 | 50 | crocked to l. ' f t, cbove ground wooden cover |  |
| 31. | E. Kutliock | Oug | 3.78 |  | 1.75 | 2.5 |  |  | 132 | 393 | 318 | 58 | Crocked, no cpron, 3 4. downslope from road | Not used becouse of odour and toste |
| 33. | E. Canam | Dug | 10.78 |  | 1.75 | 6.7 |  |  | 15 | 10 | 30 | 50 | Ciocked to 0.75 ft , above ground, no opron, teel covel |  |
| 33. | G. Navgler | Dilled | 60 |  |  |  |  |  | 360 | 535 | 23 | 56 |  |  |
| 34. | a. Yerior | Dua | 12.3 |  | 2.0 | 7.0 |  | Encountered sand \& gravel wi:m | 10 | 10 | 40 | 50 | Top 2.7 ff , obove ground | Aburidarat woler supply |
| 33. | J. Dxeman | Oug | 14.9 |  | 2.0 | 9.7 |  |  | 10 | 7.5 | 20 | 50 |  | Diy in summer |
| 36. | 1. Ourba | Ous | 16.8. |  | 2.0 | 11.6 |  |  | 70 | 27.5 | 95 | 49 | Crocked to 0.9 ft , above ground no opron, tin cover | Dry in summer |
| $3 \%$ | W. Clark | ous | 15.29 |  | 1.389 | 9.4 |  |  | 90 | 10 | 100 | 50 | Crocked to I I if. above ground no opron | Rust, odour |
| 33. | 3. Allen | Ong | 16.29 |  | 1.5 | 15 |  |  | 200 | 10 | 213 | 50 | Top 1.5 \%t obove ground. Well grovel-packed | Dry occessionally |
| 39. | V. Yyytor | pug | 7.5 |  | 1.5 | 2.9 |  |  | 150 | 35 | 200 | 56 |  | Dry occasionally |
| nis. | H. Conmay | Oug | 14.2 |  | 1.\%5 | 7.7 |  |  | 153 | \$13 | 394 | 52 | Crocked to 2.5 f. above ground, no apton | 40 ff . from and level with rocod - porsible solt conteminotion |
| 41. | J. Toyler | Dug | 13.2 |  | 2.0 | 0.5 |  |  | $\infty$ | 25 | 100 | 52 | Top 0.67 . abave ground |  |
| 42. | S. Stewatt | Ditiled | 123-140 |  |  |  |  |  | 780 | 25.2 | 10 | 56 |  | Sulfur odar, mineral toste |
| 43. | R. ycote | Silled | 175 | 100 | $6^{\prime \prime}$ | 46 | 5 | co- 50 mud s sand, $50-90$ mud, sered \& red shale, $100-175 \mathrm{rad}$ shate | 594 | 1390 | 55 | 56 |  |  |


| $\begin{aligned} & \text { NOEX } \\ & \text { NO. } \end{aligned}$ | OWNER | $\begin{aligned} & \text { TYPE } \\ & \text { OE } \\ & \text { WELL } \end{aligned}$ | $\begin{aligned} & \text { WELL } \\ & \text { OEPTH } \\ & \text { FEETT } \end{aligned}$ | $\begin{aligned} & \text { CASNO } \\ & \hline \text { CNGGT } \\ & \hline \text { REE } \end{aligned}$ | $\begin{aligned} & \text { EIAN- } \\ & \text { ETER } \end{aligned}$ | $\square$ | REPOR <br> TED <br> YELD <br> GPM | geologic log | FIELO AnAiYses |  |  |  | Construction | COMMENTS a reported quality problems |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | Alikhinity mg $1 / 1$ os $\mathrm{CaCO}_{3}$ | Choride mq |  | $\begin{array}{\|c} \text { Tempe } \\ \text { rolure } \\ \hline{ }^{\circ} \mathrm{F} \end{array}$ |  |  |
| 44. | R. Boeht | Drilled | 158 | 105 | 40 | 30 | 2 | 0-8 oubn, 8-16 grovei, $16-45$ sof red sh, 45-62 block coolt sh, 6 ;'85 soft red sh, $85-102$ soff grey s, $102-158 \mathrm{red}$ ih | ${ }^{628}$ | 700 | 23 | $\infty$ |  |  |
| 45. | J. Wodden | pilled | 240 | 119 | く" | $\infty$ | 2 |  sh, 100.200 gray sh, 200-240 ccd sh | 465 | 2670 | 138 | 58 |  | Cossy |
| 46. | 3.Darroch | 10.43 | 14 |  | 2.5 |  |  |  | 50 | 5 | 70 |  | Crocked to 215 , above ground | Filled wifh town water - 1 week before sonepting. |
| 47. | J.Mctoonold | Sus | 16 |  | 1.75 | 5.0 |  |  | 130 | 7.5 | 130 | 57 | Crocked to 2.3!t. above ground |  |
| 68. | W. Frose | Dovg | 19.5 |  | 2.0 | 11.0 |  |  | 70 | 15 | 80 | 48 | Crocked to 65 ft , obove ground |  |
| 49 50. | C.Afwater | ${ }^{\text {Pilled }}$ | 247 | 1000 | $6 "$ |  |  |  | 212 | 14 | $\infty$ | ${ }_{58}$ |  | Previous anolysis, Jan.12/72; hard $165 \mathrm{mg} / 1$, alk $150, \mathrm{Fb} 0.5, \mathrm{Cl} 20$ $\mathrm{SO}_{4} 30, \mathrm{NO}_{3}-\mathrm{N}_{3}$, pH 7.8 |
| 50. | R. Poison | Prilled | 247 | 107 | 6. | 20 | 1 | O- 105 grovel \& bldrs, $105-194$ red ss, 194-245 gray sh, 245-277 red sh | 309 | 9 | 6.3 | 62 |  |  |
| 31. | A. Ross | Dug | 13.6 |  | 2.0 | 10.0 |  |  | 20 | 7.5 | 15 | 49 | Rocked to ground level, wooden cover | Diy in summer. |
| 52. | M. Conway | billed | 123 | 21 | 5 | 18 | 5 | $\begin{aligned} & 0-18 \text { mud } \& \text { bldes, } 18-123 \mathrm{red} \\ & \text { shate } \end{aligned}$ | 165 | 7.5 | 170 | 62 |  |  |
| 53. | R. Morionold | Dillied | 120 | 01 | 5 | 35 | 1 | 0-54 ovbn, 54-120 hoid redss 120 m 130 gray $\mathrm{ss}, 130-160 \mathrm{red} \mathrm{ss}$ | 1\% | 5 | 130 | $\infty$ |  |  |
| 38. | A. Weir | Dilled | 135 | 72 | , | 43 | 3 | 0-30 outh, $30-70$ mud, bldrs, giove $70-90 \mathrm{red} \mathrm{sh}, 90-135 \mathrm{redss}$ | 225 | 7 | 11 | 62 |  | Woter softeneer instolitad. |
| 55. | 6. Rogers | Dig | 12 |  |  |  |  |  | 100 | 7.5 | 120 | 63 | 3-4 tile croch: with cover, in bosemen? |  |
| 56. | C. Ramscor | Oug | 20 |  | 2.5 | 7.0 |  | Clay ond same shole | 30 | 7.5 | 50 |  | Golvontzed crock to 4 jeot obove ground | Well overliows in spring. |
| 37. | B. Nelsen | Dovg | 4 |  | 2.0 |  |  |  | 75 | 13 | 50 |  | Crocked to 0.5 ft , above ground, wooden cover | Two old dilled wells exist - $3560-385 \mathrm{ft}$ hit soit water. |
| 53. | G. Adamson | poy | 14 |  | 2.0 |  |  | Redelay | 81 | 5 | ${ }^{88}$ |  | Covered with cement then sod. Corsideroble grovel oround wall |  |
| 59. | 5. Young | Pug | 10.75 |  | 1.2 | 8.0 |  |  | 35 | 12.5 | 35 | 54 | Crocknd to 1.2 ft , above basement floor. |  |
| no. | H. Doverette |  | 16.25 |  | 2.0 | 8.9 |  | Qu-12 ciay, sond, Wdrre, Grove! vein with water at 12 feet. | 130 | 5 | 143 |  |  |  |
| 41. | 1. Stamert | pug | 14.6 |  | 2.9 | 0.7 |  |  | 50 | 17.5 | 80 | 33 | Crocked to 0.6 ff. obove graind, |  |

## Appendix 1 (continued)

| $\begin{gathered} \text { inoex } \\ \text { No } \end{gathered}$ | OWNER | TYPE OF WELL | $\begin{array}{\|l\|} \text { WELL } \\ \text { ORPTH } \\ \text { FEET } \end{array}$ | $\begin{aligned} & \text { CASING } \\ & \text { ENGGT } \\ & \hline \text { PEET } \end{aligned}$ | DIAM- | $\begin{aligned} & \text { WATER } \\ & \text { LEVEL } \\ & \text { BEELOVNO } \\ & \text { CROUNO } \end{aligned}$ | $\begin{aligned} & \text { REPGOR } \\ & \text { TED } \\ & \text { YELD } \\ & \text { GPM } \end{aligned}$ | geologic log | frelo analyses |  |  |  | CONSTRUCTION | comments a REFORTEO quAlity PROBLEMS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  | Chleride | $\begin{aligned} & \text { Toid } \\ & \text { hadness } \\ & \text { mat } \\ & \operatorname{cocos} \end{aligned}$ | $\begin{gathered} \text { Temper } \\ \text { rature } \\ \bullet E \end{gathered}$ |  |  |
| 52. | R. Jocksen | Pug | 5 |  |  |  |  |  | 50 | 7.5 | 70 | $\infty$ | Spring |  |
| 63. | J.C.Hogaen | prilled | 123 |  |  |  |  |  | 165 | 5 | 135 | 61 |  |  |
| 64. | G. Ganeron | Dug | 11.5 |  | 2.0 | 8.25 |  |  | 35 | 20 | 125 | 55 | Ore cement crock to 0.91 r . poove ground, 1.0 ft . Delow |  |
| 65. | M. Willierrs | Pritled |  |  |  |  |  |  | 139 | 20 | 478 | 52 |  |  |
| 66. | F. Mseclitow | pug | 20.1 |  | 2.0 | 9.2 |  |  | 15 | 5 | 140 | 52 | Crocked to 0.4 ft . abeve ground, waoden cover |  |
| 67. | W. Murphy | billed |  |  |  |  |  |  | 100 | 5 | 95 | 56 |  |  |
| cs. | W. Muply | Pug |  |  |  |  |  |  | 110 | 7.5 | 120 | 53 | Level with yround |  |
| 68. | 1. Detmatic | pilled | 84 | 16 | $4 "$ | 12 | 2 | O-9 overburder, 9.84 red 1 lmestronet | 95 | 10 | 110 | 55 |  |  |
| 70. | H. Suthetlond | pillod |  |  |  |  |  |  | 130 | 15 | 145 | 53 |  | Supplies approximately 13 trailers (Hempock Troiter Emurt). |
| 71 | A. Boudeux | prilled | 100 |  |  |  |  |  | 150 | 5 | 140 | 56 |  |  |
| 72. | S.Mackay | Qug | 9.6 |  | 2.5 | 8.3 |  |  | so | 7.5 | 95 | 53 | Crocked 10 4, 7 fl. obove ground |  |
| 73. | F. MocDonoid | prilled | 183 | 26 | s | 0 | 2 | a 11 mud, 11 - 138 red \& groy shale $134-149$ green shate, $148-155$ red shale, 155-168 pteen thale, 168193 red thate | 110 | 10 | 30 | 63 |  |  |
| 24. | G.Vickers | pilled | 148 | 21 | 5 | 10 | 3 | 0.7 mud \& boulders, $7-148$ red thole | 180 | 5 | 20 | 56 |  |  |
| 75. | C., poutain | pilled | 1100 |  |  |  |  |  | 000 | 19900 | 120 | 59 |  |  |
| 76. | C.Poulain | Pus | 25 |  |  |  |  |  | 100 | 15 | 135 |  |  |  |
| 77. | E.Kellock | pug |  |  |  |  |  |  | $\infty$ | 20 | 140 |  |  | Not used for ditming. |
| 73. | G.Gilli | Pus | 15 |  |  |  |  | Fine grained sand near botram | 105 | 40 | 115 |  | 5 crocks on bed of bruak |  |
| 74. | 0.could | Pus | 11 |  | 2.0 | 0.0 |  |  | 100 | 25 | 100 | 54 | Crocked to 2.3 ff . obove basement floor. |  |
| 80. | W. ..Conwoy | prilled | 36 |  |  |  |  |  | 200 | 14.5 | 30 | 68 | Dilled 16 ft , througha 20 ft . dus well in the basement |  |
| 81. | D. Andersent | Pug |  |  |  |  |  |  | $\infty$ | 62 | 39 | 63 |  |  |
| 82. | A.J. Post | pus | 26 |  | 5.5 | 12.0 |  |  | 252 | 25 | 46 | 52 | Racked to ground, wooden caves, Lrocted be hind born. |  |
| 83. | O. Mhampan | prilled | 78 |  |  |  |  |  | 235 | 35 | 40 | 58 |  |  |
| 84. | Mymouth Schoot | Oug | 14.4 |  | 2 | 8.4 |  |  | 40 | 10 | 60 | 53 |  | Presently uning o 3 co feot drilled well. |
| 34. | \|s.stocfarione | Ous | 16 |  | 2.5 | 5.3 |  |  | 30 | 27.5 | 30 | 55 | Grocked, iran cover |  |

Appendix 1 (continued)


| $\begin{aligned} & \text { moex } \\ & \text { no. } \end{aligned}$ | OWNER | $\begin{aligned} & \text { TYPE } \\ & \text { OF } \\ & \text { WELL } \end{aligned}$ | $\begin{array}{\|} \text { WELL } \\ \text { DePEH } \\ \text { FEET } \end{array}$ | $\begin{aligned} & \text { CASNG } \\ & \text { BNGTH } \\ & \text { FEET } \end{aligned}$ | $\begin{aligned} & \text { OAM- } \\ & \text { ETER } \end{aligned}$ | YATERLEvEEEETBELOWGROUN | $\square$ | 6E0LOOM LOE | FIELO ANALYSSS |  |  |  | CONSTRUCTION | comments a REPGRTED QUALITY PROBLENS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | A.kotinity mighas $\mathrm{CoCO}_{3}$ | $\begin{aligned} & \text { Chioride } \\ & \text { myj } \end{aligned}$ | $\begin{gathered} \text { Total } \\ \text { hordross } \\ \text { rof } 103 \\ c \operatorname{ccos} \end{gathered}$ |  |  |  |
| 199. | Mewillian | Spring | 4.5 |  | 4.5 |  |  | Sond ond grave! | 30 | 35 | 70 | 7 |  | Supplies 65 cattle. |
| 110. | E.McDousid | Dug | 8.75 |  | 2.5 | 0.6 |  |  | 50 | 12.5 | 65 | 70 | Crocked ta 1.25 ft . above ground |  |
| 13. | B.Norris | fritled | 83 | 40 | 5 " | 24 | 4 | 0-10 loose ground, $10-20$ grovel. $20-35$ ctoy, $35-60$ sthle, $60-83$ som distone | 220 | 30 | 0 | $\infty$ |  | Sultur odor. |
| 112. | F. Norris | ditlled | 73 | 30 | 5" | 18 | 4 | 0-25 overturden, $25-73$ shate | 240 | 77 | 70 | 56 |  |  |
| 113. | L.Meisiar | drilled | 200 | 45 | 5" | 24 | 1 | 0-28 overburden, $28-40$ soft gray shate, $40-45$ block shole, $65-200$ groy shale | 432 | 76 | 8.5 | 54 |  |  |
| 114. | dimekenzie | dilled | 50 | ${ }^{23}$ | 5" | 15 | 3 | 0-21 oveturden, 21-50 storee | 370 | so | 7 | ¢ 0 |  |  |
| 115. | P. Kellock | Dovg | 14.7 |  | 2.5 | 10 |  |  | 132 | 80 | 123 | 56 | Galvanized crock to 1.3 f. obove ground. | Oily film on top. |
| 116. | 8.Fulton | Oritlod |  |  |  |  |  |  | 127 | 165 | 196 | 58 |  |  |
| 117. | 11.M00\% | pilled | 136 | ${ }^{21}$ | 4" | 22 | 1.5 | 0-15 overiburden, $15-136$ coal stole | 120 | 5 | 75 | 74 |  |  |
| 119. | p.wikimsan | Ong | 15 |  | 2.5 | 4.5 |  |  | 50 | 7.5 | 50 |  | Galvanized crock to 3.5 f . obove |  |
| 119. | 8.1th, | billow |  | $\infty$ | $4 \times$ | \$0 |  | P213 wown <br>  |  |  |  |  |  | Vigis tou luw. |
|  |  | ${ }^{2}$ | 235 | 150 | 4" | 81 | 1.3 |  mad thatin 8 complamereto |  |  |  |  |  | Sult mento. |
| 120. | s.1taych | 0,tlled | 94 | ${ }^{11}$ | 4* | 12 | $6$ | fon 14 mand $\&$ broutiort, 14-51 wray stinfe, $31-53$ ed thele $68-75$ gray phate, 75 - 90 red shale, $90-94$ gray phate | 73 | $s$ | 71 |  |  |  |
| 121. | 1.Willioms | Oilled | 1250 | 108 | $4^{\prime \prime}$ | ${ }^{21}$ | 1.5 |  | 415 | 4250 | 263 | 56 |  |  |
| 122. | 1. moran | Dillood | 100 | 15 | 4 | 25 | 2.5 | 0-11 overburden, $11-23 \mathrm{cex}$ shate, 23-27 groy stole, 27-90 cool shole, $90-95$ gray shate, $95-100$ cool thale | 250 | 52 | 66 | 65 |  |  |
| 123. | A.Nugen: | Drilled | 100 | 21 | $4^{\prime \prime}$ | 15 | 5 | 0-14 overturden, 14-73 red shole. 73-100 congliomerote | 159 | 39 | 182 | $\infty$ |  |  |
| 124. | E.scrailtan | Difled | 100 | 43 | $5^{\prime \prime}$ | 32 | 30 | $0-18$ mud 8 gravel, $16-25$ broken rock, 75-30 niud \& beotexf reck, 30 100 red sholo | 115 | 5 | 95 | 63 |  |  |
| 125. | , K. Kellock | prilled | 771 | 68 | 5" | 14 | 7 | 0-30 clay a gravel, $30-45$ gravil o poutider, 45-47 wroken tack, 47-17: phard red shole | 132 | 5 | 100 | - |  |  |

Appendix 1 (continued)





INT-1-75 (Dec.9-15, 1975, N.S.Dept. of the Environment testhole)

Total Depth:
Diameter:
Casing:
Water at:
Water level:
Log:

100 feet
8 inches to 20 feet, 6 inches to 100 feet
21 feet 10 inches of $61 / 4$ inch ID casing, to approximately 20 feet below ground.
20 feet $-2.5 \mathrm{gpm} ; 25-30-\geq 5 \mathrm{gpm}$
af finish approximately at ground level
$0-5$ silt \& fine sand
5-20 stratified sand, gravel and boulders
$20-35$ silty to clayey till
$35-45$ fine sand \& gravel
45-75 find sand, silt \& clay
75-80 green grey siltstone \& sandstone
80-100 mainly red brown siltstone \& fine grained sandstone, minor hydro carbon
Bedrock at approximately 75 feet
INT-2-75 (Dec. 15-16, 1975, N.S.Dept. of the Environment testhole)

Total Depth:
Diameter:
Casing:
Water at:
Log:

50 feet
8 inches to 20 feet, 6 inches to 50 feet
22 feet, driven to 21.0 feet below ground
11 feet
$0-6$ silt \& clay
6-15 stratified sand, gravel \& pebbles
15-25 gravel and clay
25-39 mainly clay; possibly thin gravel bed $32-35 \mathrm{ft}$.
39-50 bedrock - alternating, soft \& hard grey shale, minor hydrocarbon
N.S.DEPT. OF MINES testhole (June 9, 1964)

0-1 topsoil
1-4 fine to medium grained sand
4-10 gravel
$10-20$ sand, gravel \& clay (fine sand; fine gravel)
20-24 blue-grey clay
24-50 gray shale
$50-60$ carbonaceous shales. Thin coal bed (1") at 52 feet
60-90 silty shale

SUMMARY LOGS OF BACKHOE TESTPITS,
September 29-Ocrober 1, 1975
$\frac{{ }^{\text {I }} \mathrm{P} 1}{0-2}$ till, silt-fine sand, dry \& compact.
2-9 till, sandy to gravelly
9-12 coarse gravel and silt. Boulder layer af 11 feet
12-13 gravel and boulders
13-14 clay and gravel
14 greyish green, friable siltstone. Water at 13 feet.
"P2
$\overline{0-4}$ sandy till with coarse gravel lenses
$4-6.5$ coarse sand, gravel and boulders. Water
6.5 greenish grey, hard siltstone.
\#P3
$\overline{0-1}$ silt
1-4.3 stratified sand, gravel and boulders. Water at 3.0 feet
4.3-5 gravel

5-7 weathered bedrock (red sandstone)
\#P4
$\overline{0-2}$ sandy till
2-5 sand and gravel. Water
$5-7$ very coarse gravel and boulders
7 bedrock - red sandstone .

## \#P5

$\overline{0-3.5}$ silty to clayey, red brown till
3.5-4 sand, gravel and boulders

4-6 large boulders and clay
$6-6.5$ well rounded pebbles, sand and gravel with minor clay
6.5 Bedrock ?
\#P6
$\overline{0-4}$ silty to clayey till. Gravel lens at 2 feet
4-6 sancly, gravelly till
$6-7$ boulders
7 bedrock - red sandstone
\#p7
$\overline{0-3}$ silt and clay, possibly fill
$3-7$ sand, gravel and boulders. Water at 7 feet
7-8.5 stratified clay and gravel. Clay hard and compact
8.5-9.5 clay with minor gravel.
9.5 bedrock ?
\#P8
$\overline{0-2}$ silt
2-6.5 stratified clay, sand, gravel and pebbles
6.5-7 clay
$7-7.5$ gravel, clay
7.5-8 clay

8-8.5 coarse gravel
8.5-10 hard, compact clay with gravel

10-13.5 hard clay
13.5 possibly bedrock
\#p9
$\overline{0-6.5 \mathrm{silt}}$
6.5-8.5 coarse sand and fine gravel
8.5-11.5 pebbles and sand. Water at 8.5-9 feet
11.5-12 hard clay
\#P10
$\overline{0-4.5}$ coarse gravel and boulders. Water at 1-2 feet
4.5-7.5 hard clay and silt, minor sandy lenses
7.5 Too hard to dig further
\#P11
$\overline{0-4.5}$ sand, silt and clay
4.5-8 sand, gravel and pebbles
$8-15$ sand, gravel and clay
15 either hard clay and boulders or bedrock
\# P 12
0-2 fine sand and silt
2-13 stratified sand, gravel and pebbles
13-16 medium to coarse sand and coarse sand to fine gravel layers.
\# 13
0-3 silt
3-5.5 clayey gravel and boulders
5.5-6 boulders

6-8.5 stratified medium sand and clay

## \# P 14

0-3 clayey gravel and boulders
3-7 coarse gravel and boulders
7-7. 5 boulder layer
7.5-8 clayey gravel

8-10 quicksand, with minor clay layers
10-10.5 soft, laminated clay and silty clay.
\#p 15
$\overline{0-4}$ sandy gravelly till with fine gravel lenses
4-6.3 stratified sand, gravel, pebbles
6.3-10.5 hard green clay and silfy clay
10.5 bedrock or boulders
\#P 16
0-2 sily fill
2-5.5 stratified gravelly sand and pebbles
5.5-7 loose gravel and boulders

7-9 stratified sand, gravel and pebbles
9-11 fine sand and silt
11-15 soft, laminated silt and clay
\#p17A
$\overline{0-2 \text { sandy fill }}$
2-5 stratified sand and silt
5-6 gravel and pebbles, caving due to water inflow
\# P 17B
$\overline{0-7 \text { topsoil }}$
1-4.5 stratified sand, gravel and pebbles
4.5-7.5 gravel and pebbles
7.5-8 silty clay

8-11 clay and silty clay, minor sand and gravel
11-13 hard clay with gravel
13 hard - either bedrock or boulder layer
\#P 18
0-2 sandy silt
2-7 stratified sand, gravel, boulders
7-12.5 laminated silt and clay
12.5 hard layer
\#p 19
$\overline{0-4.5}$ gravel and boulders
4.5-14 laminated fine sand, silt and clay

14 hard layer
\#p 20
$\overline{0-2.5}$ sandy silt
2.5-8 coarse sand, gravel and boulders, crudely stratified

8-15 layered soft clay and silt
\#P 21
$0-5$ stratified sand (fine) and silt
5-6 coarse sand and fine gravel
$6-10$ stratified gravel and boulders
10-11 boulder layer, some sand.
\#p 22
$\overline{0-1.5}$ sandy sili
1.5-4 stratified sand and silt

4-10.5 crudely stratified coarse sand, gravel, and pebbles. Boulder layer at 7 feet.
Water at 10 feet.
10.5-15 clay and clayey silt, soft, laminated

## \#P 23

$\overline{0-3}$ crudely stratified coarse sand, gravel and boulders. Water at 3 feet. 3-8.5 hard clay with gravel.
\#P 24
0-5 silty sand
5-11.3 stratified sand, gravel and silt
11.3-11.5 clay
11.5-14.5 sandy silt
\#P 31
$\overline{0-1.5}$ stratified sand, gravel and boulders
1.5-4 hard clay with gravel

4-6.5 soft clay
6.5 hard layer - possibly bedrock

## \#P 25

$\overline{0.4 .3}$ sandy silt
4.3-5 coarse sand and fine gravel

5-7 layered fine to medium sand and silt
$7-11.5$ gravel and pebbles
11.5 hard layer - boulders or bedrock
\#P 26
$\overline{0-3.5}$ silty sand and pebbles
3.5-7 stratified fine sand and sandy silt

7-11 stratified gravel, pebbles and clayey sand
11-13 hard clay with gravel
13 hard layer

## \#P 27

0-5 silty sand
5-8 stratified sand and gravel
8-10 boulder layers
10-15 laminated soft clay and silt
${ }^{\#}$ P 28
0-4 hard clay with gravel.
\#P 29
$\overline{0-3.5}$ stratified sand, gravel and boulders
3.5-5 laminated soft clay with minor silt
${ }^{4}$ P 30
0-1 clay till
1-3.5 sandy silt
3.5-11.5 clayey grave! and boulders

## ${ }^{\#} \mathrm{H} 1$

0-2 sand and gravel with small cobbles
2-4 brown stiff sandy clay with small stones
4-7 hard brown sandy clay with small stones
7-13.5 hard dark clay with broken shale
13.5-18.5 bedrock - soft dark shale

## \#H 2

0-4 loose brown silty sand with small cobbles
4-7 loose brown silty sand with wood and organic fibres
7-10 hard dark broken slate shale rock
10-12 hard dark brown shale rock
12-17 shale bedrock
${ }^{\text {\#H }} 3$
0-2 sand, gravel and small cobbles
2-4 brown fine sand with small siones
4-6 brown fine sand with stones and broken shale
6-9 hard dark clay with broken shale
9-11 broken soft shale
11-15 hard dark clay with layers of shale
15-30 shale bedrock

0-2 sand, gravel and small cobbles
2-4 brown silty clay with small stones
4-6 stiff brown silty clay with small stones
6-12.5 hard dark clay with layers of broken shale
12.5-18 bedrock - shale
\#H 5
$0-2$ loam with sand and or ganic fibres
2-4 sand with small stones and clay
4-11 brown silty clay with small stones
11-16.5 hard dark clay with layers of shale
16.5-36 bedrock
\#46
0-5 loose brown fill with small cobbles
5-8 stiff brown silty clay with small stones
8-12 loose brown silt with silty clay and small stones
12-17 dark grey clay with small stones and broken rock
17-20 dark grey broken layers of soft shale
20-26 bedrock - black shale
Holes H 1 to H 6 are from the STELLARTON INTERVAL BRIDGE over the East River.

## \#H 7

0-2 boulders and gravel
2-7 clay
7-12 clay and gravel
12-17 clay, gravel and broken shale
17-19 broken shale
19-24 harder shale bedrock
\#H 8
0-4 gravel
4-8 silt
8-13 gravel and some clay
13-18 broken shale and clay
18-27 broken shale
27-33 harder shale bedrock
\#H9
0-9 sand and grave!
9-14 sand, gravel and broken shale
14-19 sand and gravel
1922 sand and broken shale
22-29 broken shale
29-34 harder shale bedrock
\#H 10
0-2 gravel
2-12 sandy clay
12-15 sand, gravel and some clay
15-17 broken shale
17-23 harder shale bedrock

Holes H 7 to H 10 are from the ALBION MINES BRIDGE over the East River.

Holes H 11 to H 20 are from the TRANS CANADA HIGHWAY 104 overpass. The exact locations of the holes is not known.

0-4 coarse gravel in river bed
4-38 soft red sandy clay
38-48 gray shale
\#H 13
0-7 sand and fine gravel
7-21 coarse river gravel
21-39 hard red clay embedded with small stones
39-50 soft gray shale

```
#H14
    0-7 fine sand and silt
    7-9 coarse gravel
    9-30 hard red clay embedded with small stones and boulders
    30-45 soff gray shale
#H15
    0-4 water
    4-12 sand and gravel with small boulders (river bed)
    12-34 soff clay
    34-36 gravel and clay
    36-42 gravel, shale and clay mixed
    42-44 soft shale and clay (fault gouge)
    44-55 shale
#H16
    0-6 soft red sand
    6-16 coarse gravel
    16-31 boulders, clay and gravel
    31-40 soft gray shale
#H17
    0-7 water
    7-10 boulders and gravel
    10-40 soft clay
    40-44 gravel and clay
    44-54 shale
#H 18
    0-9 very fine grained sand
    9-14 gravel and clay
    14-30 shale
#H19
    0-4 very soft clay
    4-11 gravel and clay
    11-30 very soft shale with seams of clay
    30-45 shale
#H20
    0-7 clay
    7-11 gravel
    11-25 soft shale
```

- . NOVA SCOTIA DEPARTMENT OF MINES BOREHOLE RECORDS
\#1019
$\overline{0-2}$ surface
2-4 blue shale
4-17.6 blue shale with limestone stringers
17.6-52 red sandy shale with limestone stringers
\#1020
$\overline{0-3}$ surface
3-30 grey limestone
$30-53$ blue shale with limestone stringers
\#1039
$\overline{0-3}$ surface
3-14.6 gray limestone
14.6-48 grey limestone \& red clay

48-50 fine grained red sandstone
\#1040
$\overline{0-10.6}$ surface
10.6-37 fine grained red sandstone
\#1041
$\overline{0-10}$ surface
10-18 fine grained red sandstone
18-2l grey sandstone with limestone stringers
21-27 fine grained red sandsione
\#1042
$\overline{0-7}$ surface
7-12 limestone with some sandstone bands
12-21 grey \& red sandstone
21-50 red sandstone
\#1043
0-10boulders \& clay
10-15 sand \& boulders
15-22 red sandstone
\#1044
$0-20$ boulders \& clay
20-30 red sandsione with bands of grey clay
\#1045
$\overline{0-20}$ surface
20-40 red sandstone
$\frac{\# 2466}{0-55}$ overburden
55-65 grey shale
65-82 red sandstone
$82-123$ red \& grey shale
123-125 grey shale with some coal
125-230 grey sandstone
230-237 grey sandstone with small conglomerate bands
237-265 red \& grey sandstone
265-277 red \& grey shale
277-288 red sandstone
288-330 red \& grey sandy shale
330-336 black shale with lines of coal
336-368 red \& gray sandy shale
368-371 gray shale with 2 inch asphalt in a calcite stringer
371-378 soft grey shale
\#3108
0-49 overburden
49-59 soft gray shale
59-76 sandy gray shale
76-87 dark shale
87-96.5 black \& brown oil shale
96.5-105 splint \& coal

105-130 black coal, dirty sections
130-131 soft gray shale
131-145 soft gray shale, little coal
145-147.5 cool \& splint
147.5-168.5 soft gray shale
168.6 172.5 coal \& splint
172.5-210 shale

210-317 shale, sandy in places
317-408 gray shale, sandy in places
408-415 oil shale \& coal
415-426 gray \& dark shale
426-441 oil shale \& coal
441-573 gray shale, sandy in places
573-593 fine-grained gray sandstone
593-616 gray shale
616-622 dark shale ( oil shale)
622-649 gray shale
649-653.5 oil shale \& coal

\#3585 20
\#3586

| $\# 3587$ |  |
| :--- | :--- |
| \#3588 |  |
| \#3589 | 20 |
| $\# 3590$ | 22 |
| $\# 3591$ | 15 |

\#3592 20
\#3593
\#3594
\#3595
\#3596
18
\#3597 15
\#3598 15
\#3599 18
\#3600 15
\#3601 18
\#3602 18

$$
{ }^{\#} 4135
$$

0-13 overburden - reddish clay with small rocks \& shale
13-36 dark gray soft, slaty shale
$36-40$ shaly red, firm conglomerate
\#4136
$\overline{0-10}$ overburden- red clay, gravel, red siltstone or shale 10-18.5 red sandy shale
18.5-24 red siltstone

24-41 red shale, somewhar sandy
\#4137
$\overline{0-13}$ overburden - red silt, sand \& clay
13-17 red sandy shale
17-22.5 red siltstone
22.5-25 red sandy shale

25-29 red siltstone
29-41 red sandy shale
\#4138
$\overline{0-13}$ overburden - clay, sand, small rocks
13-36.5 gray \& red sandy shale
\#4139
0-12 overburden - red silt, dark gray clay, \& gravel
12-33 gray sandy shale
\#4140
$\overline{0-10}$ overburden - red clay, gray clay, gravel \& shale 10-32 shale or slate
\#4141
0-10 overburden - gravelly earth \& reddish shale 10-33 shale or slate

$$
\# 4142
$$

$0-10$ overburden - reddish clay \& gravel
10-32 shale or siltstone
\#4143
0-49 overburden - reddish clay \& small rocks
49-72 gray slaty shale, sandy in places; minor red shale
\#4144
$\overline{0-14}$ overburden - gravel, red clay \& soft gray shale 14-32 slaty shale
$\frac{\# 4145}{0-5 \text { overburden - gravel \& sand }}$
5-13 dark gray shale
13-15.5 reddish shaly conglomerate
15.5-29 dark gray shale
\#4146
$\overline{0-10.5}$ overburden - sand, gravel, gray clay \& shale 10.5-15 gray shale
\#4147
0-50 overburden - reddish clay \& small rocks
50-73 red \& gray shale, soft in places and sandy in places
\#4148
$\overline{0-12}$ overburden - red 2 gray sandy clay \& gravel
12-33 reddish shale
\#4149
0-12 overburden - clay \& small rocks
12-37 fractured reddish sandstone
37-62 red \& gray shale, some soft

| \#4713 | \#4721 |
| :---: | :---: |
| 0-21 red clay | $0-19$ red clay |
| 21-35 coal \& black shale | 19-36 coal \& black shale |
| 35-54 gray shale |  |
| 54-55 brown sandstone | \#4722 |
|  | $\overline{0-20}$ red clay |
| \#4714 | 20-36 coal \& shale |
| 0-21 red clay |  |
| 21-35 coal \& black shale | \# 4723 |
|  | $\overline{0-28}$ red clay |
| \#4715 | 28-38 coal \& black shale |
| 0-27 red clay |  |
| 27-37 black coal shale | \#4724 |
|  | 0-28 red clay |
| \# 4716 | 28-34 coal \& black shale |
| 0-27 red clay |  |
| 27-33 coal \& black shale | \#4725 |
|  | 0-28 red clay |
| \#4717 | 28-29 coal \& black shale |
| $\overline{0-29}$ red clay |  |
| 29-35 black coal shale | \#4726 |
|  | 0-28 red clay |
| \#4718 | 28-35 cool \& black shale |
| 0-22 red clay |  |
| 22-35 coal \& black shale |  |
| \#4719 |  |
| $\overline{0-22}$ red clay |  |
| 22-25 coal \& black shale |  |
| \#4720 |  |
| $\overline{0-21 \text { red clay }}$ 21-36 coal \& black shale |  |

## Atomic Energy of Canada Limited

L'Énergie Atomique du Canada, Limitée

Laboratoires nucléaires de Chalk River

Miss Heather cross, Hydrogeologist,
Nova Scotia Department of the Environment, P.O. Box 2017. HALIFAX, Nova Scotia.

Dear Miss Cross:
Tritium and deuterium data for the water samples
Stellarton that you submitted last fall are listed
Tritium and deuterium data for the water samples
from stellarton that you submitted last fall are listed in the attached table.

Chalk River, Ontario.
Canada, K01 1 JO
(613) 584-3311 (via Deep River) (613) $687-5581$ (via Pembroke)

11 March, 1976


The tritium concentrations give some idea of the time scale of infiltration. The shallow samples - 16, 14 have tritium contents characteristic of precipitation of the last few years in this region. Samples 19 and 31 show the admixture of some water of the last 20 -year period to older tritium-free water. All samples from below 75 ft . depth have $0 \pm 10$ Tritium Units indicating more than 20 years since any of this water was in the atmosphere. Carbon-14 analyses would be required to say anything more. The negative tritium values result from the statistical distribution of counting data and are to be taken as zero tritium content.

The mean deuterium content of all the ground water samples is - $63.4 \%$ oo with a small standard deviation of $\pm 2.2 \%$. This concentration is quite similar to that of local precipitation of the cool part of the year. There is no significant difference in deuterium content of old and young water. Thus, the isotope data indicate that these saline waters are not entrapped or intruded marine water ( $0 \%$ \% 8 D ) but probably normal recharge water leaching out deposits of marine (or other) salts.

The deuterium content of the East River reflects the presence of more summer precipitation than is present in the ground waters, presumably due to greater surface runoff from summer storms. The water in Pictou harbour must have a relatively small proportion of sea water in view of the similarity of its deuterium and tritium contents to those of the East River. The tritium and deuterium contents of water from the Northumberland Strait differ from those of true sea water $10 \% / 00 \delta \mathrm{D}, 10-15 \mathrm{TU}$ ) because of the influence of continental drainage.

I did not think that ${ }^{18} 0$ values would add to the information obtained from the deuterium results. They would indicate if the present ground waters had undergone significant evaporation before infiltration. However, the low D values, similar to those of local precipitation, indicate that such evaporation is unlikely. Mr. R.E. Jackson looked over the chemical and isotope data briefly when he was here a few weeks ago. You may wish to talk to him about the significance of the chemical data, although he did not have a change to go into them in great detail.

I think these results illustrate the sort of information you can get from isotope measurements. I doubt if further work at this particular site will give more information unless you want to delineate the old and the recent water more closely. I will be glad to have any comments you may have on these results and the significance of my interpretation of them.

Yours sincerely,


RMB/dt
Encl.
R.M. Brown, Environmental Research Branch.




Mr. John F. Jones
Chief, Groundwater Section
Water Planning and Management Division
Department of Environment
Province of Nova Scotia
Dear Mr. Jones:
RE: Flouride in well water
Plymouth area, Pictou County
I am writing with reference to our consultations with respect to the identification of flouride in well water in the Plymouth area of Pictou County last Fall.

As you know, the matter was referred to our Division of Dental Health Services, and since that time the Director of the Division, with the assistance of his staff has been looking into the possible ramifications of the presence of flouride in drinking water, on the basis of on-site visits and investigations.

By way of update the Dental Hygienist has now completed examinations of 77 school children at the Dr. W.A. Macleod School in Riverton. These children, ranging in age from 5 to 12 years of age were found to be essentially free of dental fluorosis. On the basis of a scale ranging from normal through questionable, very mild, moderate, to severe, all except three were considered to be in the normal range. In three instances questionable fluorosis was identified. Individuals in this category could only be identified on the basis of examination by a highly trained examiner. Any relationship to exposure to high concentrations of flouride in these instances is also questionable.

Further attention to this situation will be maintained by the Division of Dental Health Services. Certainly at the present time there would appear to be no cause for concern.

Yours truly,


Health Engineering Services

