

NOVA SCOTIA
GROUNDWATER
OBSERVATION WELL
NETWORK

2010 REPORT

Prepared: August 2010

TABLE OF CONTENTS

			PAGE NO.
EXE	CUTIV	TE SUMMARY	Second S
	00111		111
ACK	NOWL	LEDGMENTS	NO. <
1.0	INTE	PODICTION	1
1.0	1.1		
	1.1	6	
	1.3	Description of the Current Network	
2.0	MET	THODS	8
	2.1		
	2.2		
		2.2.1 Field Methods	
		2.2.2 Data Assessment Methods	12
3.0	RESU	ULTS	14
	3.1	Greenwood (003)	14
	3.2	Fraser Brook (004)	
	3.3	Wilmot (005)	18
	3.4	Murray Siding (007)	20
	3.5	Wolfville (010)	22
	3.6	Truro (014)	25
	3.7	Monastery (028)	27
	3.8	Point Aconi (030)	29
	3.9	Lawrencetown (043)	
	3.10	Durham (045)	
	3.11	Kentville (048)	
	3.12		
	3.13	North Grant (054)	
	3.14	Stillwater (055)	
	3.15	` '	
	3.16	Hayden Lake (059)	
	3.17	Meteghan (060)	
	3.18	Annapolis Royal (062)	
	3.19	Hebron (063)	
	3.20	Margaree (064)	56

	3.21	Ingonish (065)	58
	3.22	Debert (068)	
	3.23	Dalem Lake (069)	
	3.24	Amherst (071)	
	3.25	Kelley River (073)	
	3.26	Atlanta (074)	
	3.27	Sheffield Mills (075)	
	3.28	Fall River (076)	
	3.29	West Northfield (077)	
	3.30	Musquodoboit Harbour (078)	
	3.31	Lewis Lake (079)	
	3.32	Arisaig (080)	80
	3.33	Coldbrook (081)	
	3.34	Long Point (082)	
	3.35	Tatamagouche (083)	
4.0	SUM	MARY & CONCLUSIONS	88
	4.1	Groundwater Levels	88
	4.2	Groundwater Quality	
5.0	REF	ERENCES	95

APPENDICES

APPENDIX A: Well Logs

APPENDIX B: Groundwater Level Graphs APPENDIX C: Groundwater Chemistry Results

APPENDIX D: Groundwater Temperature Graphs

APPENDIX E: Water Level Trend Analyses

APPENDIX F: Well Location Maps and Site Photographs

EXECUTIVE SUMMARY

The Nova Scotia Groundwater Observation Well Network was established in 1965 to monitor groundwater levels across the province. The network currently monitors both groundwater levels and groundwater quality and the results are used to: manage groundwater resources; assess drought conditions; evaluate the impact of human activities on groundwater; and, evaluate long-term groundwater trends. At the beginning of 2009 the network included 31 observation wells. Five additional wells were added during 2009, and one well was dropped, bringing the total number of active wells to 35 by the end of 2009. This report presents the monitoring results collected up to the end of 2009.

The observation wells are monitored with telemetric dataloggers that record water levels and groundwater temperature every hour and transmit the data to a central computer. The number of years of groundwater level data available at each observation well ranges from one to 43 years. Groundwater samples are collected from the wells periodically and tested for a number of parameters, including: general chemistry, metals, pesticides, volatile organic compounds (VOCs), tritium and perchlorate.

The groundwater level monitoring results indicate that seven of the 35 observation wells exhibit statistically significant groundwater level trends, with three having small upward trends and four having small downward trends. The downward trends tend to be larger than the upward trends, however, the size of the trends in all cases is relatively small. The maximum observed water level decline was approximately 1.2 m. Three of the four observation wells with downward trends are located in municipal wellfields and, therefore, groundwater level drops in these wells are expected to have been caused by wellfield pumping.

The groundwater quality monitoring results indicate that seven of the 35 wells exceeded health-based drinking water guidelines. The parameters that exceeded health-based guidelines included: arsenic (at four wells), fluoride (one well), lead (one well), nitrate (one well) and uranium (one well). Elevated levels of arsenic, fluoride and uranium are known to occur in groundwater in certain areas of the province due to their naturally-occurring presence in soil and bedrock. The elevated nitrate levels were observed in a well located in an agricultural area and are expected to be caused

by human activity.

Nineteen of the 35 wells exceeded aesthetic drinking water guidelines, including the following parameters: manganese (at 13 wells), iron (seven wells), chloride (one well), pH (five wells), turbidity (eight wells), colour (one well) and sodium (one well). The majority of these parameters are naturally-occurring water quality problems that are routinely encountered in water wells in Nova Scotia and elsewhere. Chloride was detected above background levels at five wells. It is expected that two of these wells have been impacted by road salt, two have been impacted by sea water intrusion, and one has been impacted by naturally-occurring geologic formation salt.

The water quality results show that none of the observation wells exceeded drinking water guidelines for VOCs or pesticides. However, the VOC toluene was detected at low levels (i.e., 2 ug/L) in three of the observation wells. These wells are located beside roads and, therefore, the presence of toluene may be due to gasoline runoff from roads. No pesticides were detected in any of the observation wells.

Of the 17 observation wells that have been tested for tritium, 13 wells contained either recent water (recharged after 1952) or a mix of recent and old water (recharged before and after 1952). Only four of the seventeen wells tested for tritium contained purely old water (recharged before1952). These results suggest that most of the wells draw water from aquifers are recharged relatively quickly. This is encouraging from a water quantity point of view because the aquifers are being regularly replenished with new water, however, it also indicates that the aquifers are vulnerable to contamination (i.e., contaminants released at the surface will be carried into the aquifer relatively quickly). This emphasizes the importance of source water protection in the province to ensure that groundwater is kept clean.

ACKNOWLEDGMENTS

This report was prepared by staff at Nova Scotia Environment, including: John Drage, Kevin Garroway, Jennifer McDonald, Alan Tattrie and Charlie Williams. Both the report and the operation of the Nova Scotia Groundwater Observation Well Network have benefitted from the valuable input of many dedicated individuals. In particular, we gratefully acknowledge the cooperation of the many property owners with observation wells located on their properties. Their continued participation in the program is vital to the success of the network. In addition, staff from the Groundwater Resources Program at Nova Scotia Department of Natural Resources, including Gavin Kennedy and Danielle Finlayson-Bourque, have made significant contributions to the planning, expansion and operation of the network.

1.0 INTRODUCTION

The Nova Scotia Groundwater Observation Well Network was established in 1965 to monitor groundwater levels across the province. The size of the network has varied over the years, however, at the beginning of 2009 the network included 31 observation wells. Five wells were added to the network during 2009, and one was dropped, bringing the total number of active wells to 35 by the end of 2009. The network is currently operated by Nova Scotia Environment (NSE) and is used for monitoring both groundwater levels and groundwater quality. The monitoring results are used to help manage groundwater resources, assess drought conditions, evaluate the impact of human activities on groundwater and evaluate long-term groundwater trends. This report presents the monitoring results up to the end of 2009.

1.1 Historical Background

When the observation well network was initially established in 1965, it consisted of wells that were installed as part of the International Hydrologic Decade (1965-1974) and as part of regional groundwater resource evaluation studies undertaken in Nova Scotia during the 1960's and 1970's. Most of these wells were constructed specifically for observation purposes or drilled as test holes and then converted to observation wells. During the 1970's and 80's the network continued to expand until it included as many as 40 active wells, but many of these were abandoned in the 1990's. By 2003, the network consisted of 11 active wells.

After 2003, the network began expanding again. Three wells were added between 2003 and 2005, bringing the total number of wells to 14. Ten observation wells were added to the network in 2006, bringing the total number of wells to 24. All of the wells added to the network up to the end of 2006 were existing wells that were once part of the historic network, but were no longer being actively monitored. In 2007, two new observation wells were drilled and one existing inactive observation well was added back into the network. For the two wells drilled in 2007, water level monitoring began in May of 2008. Therefore, the total number of observation wells being monitored by the end of 2007 was 25. In 2008, three new observation wells were drilled and a former provincial park water supply well was converted to an observation well, bringing the total number of wells to 31 by the end of 2008. In 2009, four former provincial park water supply wells were converted to

observation wells and one well was dropped from the network due to damage during site redevelopment and vandalism problems, bringing the total number of active wells to 35 by the end of 2009.

Up until the 1990's, groundwater levels in each well were monitored using mechanical Stevens F Type chart recorders, which recorded water level changes on a paper chart that was retrieved from the field on a monthly or quarterly basis. In the late 1990's the chart recorders began to be replaced with electronic dataloggers and in 2003 an initiative began to equip the entire network with telemetric dataloggers which are capable of transmitting the monitoring results by cell phone to a central computer.

Four reports have been previously published on the network:

- "Groundwater Hydrographs in Nova Scotia 1965-1981" (McIntosh, 1984);
- "Nova Scotia Groundwater Observation Well Network 2007 Report" (NS Environment and Labour, 2007);
- "Nova Scotia Groundwater Observation Well Network 2008 Report" (NS Environment, 2008); and
- "Nova Scotia Groundwater Observation Well Network 2009 Report" (NS Environment, 2009).

In 2006, a web page was launched to provides public access to the network's results. The website can be found at: http://www.gov.ns.ca/nse/groundwater/groundwaternetwork.asp. The webpage is updated with new groundwater level data on a quarterly basis. The majority of the historical hard copy water level data has been digitized and is available in spreadsheet format on the above referenced webpage.

1.2 Activities Completed in 2009

Five wells were added to the network in 2009, including: Murray Siding (007), Arisaig (080), Coldbrook (081), Long Point (082) and Tatamagouche (083). The Murray Siding (007) observation well was previously part of the NS Groundwater Observation Well Network from 1967 to 2001, however, it was no longer being actively monitored. The four other wells referenced above were

former water supply wells in various provincial parks that were no longer in use. Video inspections were completed at each of the four provincial park wells in 2009 when they were added to the network.

One well, Charleston (058), was dropped from the network in 2009 due to damage during site redevelopment and vandalism problems. No water level data had been successfully collected from this observation well since June 2008.

Pumping tests were completed at six observation wells in 2009, including: Sheet Harbour (058), Kelly River (073), Musquodoboit Harbour (078), Arisaig (080), Coldbrook (081) and Long Point (082). The pumping tests were short duration tests (i.e., less than four hours), including steps tests and constant rate tests. The pumping tests were carried out by the NS Department of Natural Resources and the results are reported in "Mineral Resources Branch Report of Activities, 2009" (NS Department of Natural Resources, in progress).

Water quality sampling was carried out at seven observation wells in 2009, including Durham (045), Ingonish (065), Amherst (071), Kelley River (073), Arisaig (080), Coldbrook (081) and Long Point (082). The sample results are provided in Appendix C.

1.3 Description of the Current Network

As of December 31st, 2009 the observation well network consisted of 35 wells. The wells are listed in Table 1.1 and the well locations are shown in Figure 1.1. As shown in Table 1.1, the number of years since monitoring began at each well is variable, but ranges from 1 year to 43 years and can be summarized as follows: wells with more than 40 years of data (5 wells); 30 years (5 wells); 20 years (7 wells); 10 years (7 wells); and less than 10 years (11 wells). Note that these figures do not necessarily reflect the number of years of monitoring data available for each well because there are data gaps in the records.

Currently, all of the observation wells in the network have dataloggers that record water levels and temperature every hour. The majority of wells also have telemetric systems that transmit the data by cell phone to a central computer. Groundwater samples are collected from the wells periodically

and tested for a number of parameters, including general chemistry, metals, pesticides, volatile organic compounds, tritium and perchlorate. The wells are sampled at approximately two to five year intervals to monitor for changes in water quality. Most of the wells in the network have been sampled at least once, however, some wells have not been sampled due to technical limitations (such as old floats associated with former Stevens chart recorders that have become lodged in the well casing).

Note that the observation wells listed in Table 1.1 are named based on the nearest town or water body and the observation well number that is assigned to the well when it is added to the network. For example, "Truro (014)" is located in Truro and its network well ID number is 014. The three digit observation well ID numbers have been in use since the network was developed in 1965. They are unique and are not reused, even when a well is abandoned. Some of the observation wells in this report have been renamed since the initial 1984 network report in order to adhere to a consistent naming protocol. For example, "Truro (014)" was originally named "Truro 421" in the 1984 network report. The "421" was originally included in the well name because it was called "Department of Mines Test Hole 421" at the time of drilling. Because some of the original well names have changed, readers who wish to compare historical results from the 1984 network report with this report should cross-reference wells using the three digit observation well ID number.

Table 1.1: Wells in the NS Groundwater Observation Well Network (as of Dec.31, 2009)

No.	Well Name	Well	County	Year Monitoring	Years Since
		ID#		Started	Monitoring Began
1	Greenwood (003)	003	Kings	1966	43
2	Fraser Brook (004)	004	Colchester	1966	43
3	Wilmot (005)	005	Annapolis	1966	43
4	Murray Siding (007)	007	Colchester	1967	42
5	Wolfville (010)	010	Kings	1969	40
6	Truro (014)	014	Colchester	1971	38
7	Monastery (028)	028	Antigonish	1976	33
8	Point Aconi (030)	030	Cape Breton	1976	33
9	Lawrencetown (043)	043	Halifax	1978	31
10	Durham (045)	045	Pictou	1979	30
11	Kentville (048)	048	Kings	1980	29
12	Sydney (050)	050	Cape Breton	1984	25
13	North Grant (054)	054	Antigonish	1987	22
14	Stillwater (055)	055	Guysborough	1987	22
15	Sheet Harbour (056)	056	Halifax	1987	22
16	Hayden Lake (059)	059	Shelburne	1988	21
17	Meteghan (060)	060	Digby	1987	22
18	Annapolis Royal (062)	062	Digby	1990	19
19	Hebron (063)	063	Yarmouth	1990	19
20	Margaree (064)	064	Inverness	1990	19
21	Ingonish (065)	065	Victoria	1990	13
22	Debert (068)	068	Colchester	1993	16
23	Dalem Lake (069)	069	Victoria	1992	17
24	Amherst (071)	071	Cumberland	1993	16
25	Kelley River (073)	073	Cumberland	2006	3
26	Atlanta (074)	074	Kings	2008	1
27	Sheffield Mills (075)	075	Kings	2008	1
28	Fall River (076)	076	Halifax	2008	1
29	West Northfield (077)	077	Lunenburg	2008	1
30	Musquodoboit Harbour (078)	078	Halifax	2008	1

No.	Well Name	Well	County	Year Monitoring	Years Since
		ID#		Started	Monitoring Began
31	Lewis Lake (079)	079	Halifax	2008	1
32	Arisaig (080)	080	Antigonish	2009	<1
33	Coldbrook (081)	081	Kings	2009	<1
34	Long Point (082)	082	Inverness	2009	<1
35	Tatamagouche (083)	083	Colchester	2009	<1

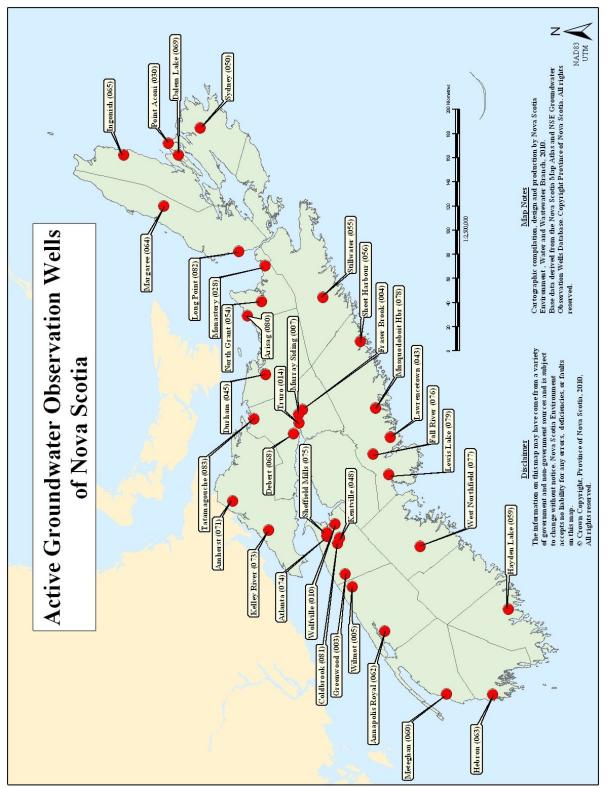


Figure 1.1: Map of Observation Well Locations (as of Dec. 31, 2009)

2.0 METHODS

2.1 Groundwater Level Monitoring

2.1.1 Field Methods

Each observation well in the network is equipped with a pressure transducer, temperature sensor and electronic datalogger that records water levels and water temperature every hour. There is also a second pressure transducer located above the water in each well that monitors atmospheric pressure so the water level measurements can be adjusted for atmospheric pressure changes. The majority of wells are also equipped with telemetric systems that transmit the monitoring data by cell phone to a central computer system once a week.

The wells are visited approximately every six months for field verification of the water level data and to change the telemetric system batteries. Water levels are verified in the field with a manual electronic water level tape.

After the raw water level data is collected, it goes through several adjustments before being added to the spreadsheet database. Data corrections are applied if the field measurement differs from the pressure transducer readings by more than 2.1 cm, which is the reported accuracy of the pressure transducers. If corrections are necessary, they are made by applying a linear adjustment between two field verified water levels. Next, the hourly water level data is averaged to obtain a single average daily water level for each day. Finally, the water level data are converted to a water level elevation (relative to mean sea level) using the elevation of the top of the well casing.

2.1.2 Data Assessment Methods

The water levels at each well were assessed for changes and long-term trends for the entire period on record, up to the end of 2009. The water level assessments were carried out by visual inspection of the water level graphs and statistical tests. The Mann-Kendall trend test (Gilbert, 1987) was used to determine if there was a trend in the water level data (i.e. upward trend, downward trend or no trend). This test is one of the most commonly used statistical methods to evaluate trends in environmental data and has been used in other studies in Nova Scotia to assess groundwater level trends (Rivard et al., in progress). The rate of annual change at each well was determined using the

Sen's slope estimator (Gilbert, 1987), a commonly-used linear slope estimator in environmental statistics.

The results of the statistical trend analyses are presented in Appendix E. Trend analyses were only completed for wells with four or more "usable" years of data. A year was considered usable if groundwater level data were available for at least 75% of the days in the year. A trend for a well was considered "statistically significant" if there was 10 or more "usable" years. Trends were considered "statistically significant" if there was at least an 80% confidence that the trend was real. Note that "statistically significant" means there is statistical evidence that there is a trend present, but it does not necessarily mean the trend is large.

If groundwater level changes or trends were identified, possible reasons for the change or trend were evaluated. Several factors can cause groundwater levels to fluctuate. The most common causes of groundwater level changes in Nova Scotia include: precipitation, seasonal variations, groundwater pumping and tidal effects. Each of these factors is discussed in further detail in the following paragraphs.

Fluctuations Due to Precipitation

Precipitation, such as rainfall or melting snow, will either run off into streams and surface water bodies, be intercepted by vegetation, or seep into the ground. The portion that seeps into the ground is known as groundwater recharge. Groundwater recharge is difficult to measure, however, it has been estimated that recharge rates in Nova Scotia typically range from about 8 to 25% of precipitation. Groundwater recharge causes the groundwater levels in an aquifer to rise, although there is usually a delay between the precipitation event and when the groundwater level rises. The amount of precipitation and groundwater recharge varies throughout the province. Nova Scotia weather stations show the following mean annual total precipitations at selected locations between 1971 and 2000: Greenwood 1127 mm, Halifax 1452 mm, Sydney 1505 mm, and Yarmouth 1274 mm (Environment Canada, 2007).

Long-term trends in precipitation due to climate change can result in corresponding trends in groundwater levels. In cases where observation wells showed a significant groundwater level trend, the nearest climate station data was also evaluated for precipitation trends to assess whether or not climate change could be affecting groundwater levels.

Seasonal Fluctuations

In Nova Scotia, the spring and fall tend to have the highest amounts of precipitation and the summers tend to be drier. This seasonal variation is reflected in groundwater levels in the province's aquifers, which usually have higher water levels in the spring and lower levels in the summer. The lower groundwater levels in the late months of summer are the result of several factors, including: decreased precipitation, increased evaporation and the increased interception of water by vegetation. The typical seasonal variation in groundwater levels in Nova Scotia aquifers is usually less than about three metres.

Season fluctuations in groundwater levels in Nova Scotia can often be observed in the three typical patterns they produce in observation well hydrographs. These usually include two wet seasons (spring and fall) with rising groundwater levels, and a dry season in the summer with declining groundwater levels, as described below:

- 1. Spring Recharge rising groundwater levels between March and May due to spring rainfall and melting snowpack . Maximum groundwater levels usually occur during this period.
- 2. Fall Recharge rising groundwater levels between October and December due to fall precipitation.
- 3. Summer Recession declining groundwater levels beginning in June and reaching minimum levels in September. Winter conditions of snowfall and frost can also limit recharge, resulting in a minor groundwater level recession in February.

Groundwater Pumping

The removal of water from an aquifer, by a well or wellfield, results in the lowering of the water level in the well and the surrounding aquifer. The lowering of groundwater levels as a result of pumping is referred to as drawdown. The amount of drawdown depends on how much is being pumped, the distance from the pumping well, and the characteristics of the aquifer (e.g., transmissivity, storativity, aquifer boundaries). In Nova Scotia, large wellfields in bedrock aquifers have been observed to cause groundwater drawdown in wells as far away as two to three kilometres.

Tidal Fluctuations

Aquifers and wells near the ocean can experience tidal fluctuations. Even though the water in a well may be fresh, the water level may rise and fall with the tide. The amount of water level fluctuation (i.e., amplitude) depends on the distance between the well and the ocean and aquifer properties. There is also a delay (i.e., time lag) between the rise or drop in the tide and the corresponding rise or drop in the well.

2.2 Groundwater Quality Monitoring

2.2.1 Field Methods

The observation wells have been tested for various parameters including: general chemistry, metals, volatile organic compounds (VOC), pesticides, tritium and perchlorate. The general chemistry, metals, VOC and pesticides analyses were carried out at Maxxam Analytics in Bedford, NS; the tritium analyses were carried out at the Environmental Isotope Laboratory, University of Waterloo, Waterloo, ON; and, the perchlorate analyses were carried out by the National Water Research Institute in Burlington, ON.

The groundwater samples were collected using either a disposable bailer or a submersible pump that was cleaned after each sample was collected. Prior to collecting the samples each well was purged by either removing three well volumes, or by purging until electrical conductivity (EC) and temperature (T) have become stable based on the following approach: 1) begin to purge the well; 2) record the EC and T values after purging 0.5 well volumes; 3) repeat EC and T measurements after purging 1 well volume; 4) continue purging and recording EC and T values at 0.5 well volume intervals until EC and T values are within 10% of previous values. If a well was pumped completely dry, purging was considered complete.

The groundwater samples were collected into laboratory supplied bottles, stored in a chilled cooler and delivered to the laboratory within the specified holding times. Samples for general chemistry and metals were filtered in the field using 0.45 micron filters. Samples collected for metals were also preserved in the field using nitric acid.

2.2.2 Data Assessment Methods

The groundwater sample results for general chemistry, metals, VOCs and pesticides were assessed by comparison to the Canadian Drinking Water Quality Guidelines. Tritium and perchlorate results were assessed separately, as described in the paragraphs below. Note that the observation wells in the network are not used for drinking water, however, the drinking water guidelines are the most commonly used guidelines applied to water wells and they provide a useful reference point to judge the general water quality at each well.

Tritium is a short-lived isotope of hydrogen with a half-life of 12.43 years that is commonly used to assess the relative age of groundwater and how vulnerable an aquifer is to contamination (Clark and Fritz, 1997). During the 1950's, hydrogen bomb testing caused tritium levels to become elevated above naturally-occurring background levels in the earth's atmosphere. The elevated tritium levels are picked up by precipitation and carried into aquifers as the precipitation infiltrates in to the ground. Groundwater with tritium levels of less than 1.0 Tritium Units (TU) is considered relatively old, being recharged before hydrogen bomb testing began in 1952. Groundwater with more than 5.0 TU is considered to be predominantly recent water, being recharged after 1952 (Clark and Fritz, 1997). Groundwater with tritium levels between 1.0 and 4.0 TU is considered to be a mix of recent and old water. Groundwater with tritium levels between 4.0 and 5.0 TU is considered to be a mix of mostly recent water with a small measure being old water.

Water wells with tritium levels less than 1.0 TU are considered to be recharged by older water and, therefore, are not as vulnerable to contamination as other wells. Water wells that contain recent water, or a mix of recent and old water, are more vulnerable to contamination because rapid recharge allows contaminants to move relatively quickly from the ground surface into the aquifer. Many of the wells in the observation well network have short casing lengths (i.e., less than seven metres) and long open-hole intervals that allow both shallow and deep groundwater to enter the well and, therefore, it is likely that these wells will contain a mix of recent and old water. This type of well construction is similar to the majority of water wells in Nova Scotia, which have a minimum casing length of 6.1 m, as required by the NS Well Construction Regulations.

Perchlorate is an emerging contaminant that has received significant attention since 1997 when it was found in several water supplies in the United States. It is a compound consisting of one chlorine

and four oxygen atoms that can exist as the solid salt of ammonium, potassium, or other metals, and it readily dissolves in water to produce the perchlorate ion (ClO_4^-) . Perchlorate has been used in products such as rocket fuels, munitions, explosives, fireworks, road flares, fertilizers and air bag inflation systems. It can also occur naturally at low levels in the environment.

Recent sampling has detected the presence of very low levels of perchlorate in some Canadian drinking water sources (Health Canada, 2007). Groundwater samples from the Nova Scotia Observation Well Network were tested for perchlorate in 2004/2005 in order to evaluate the occurrence of perchlorate in Nova Scotia groundwater. There is currently no national drinking water guideline for perchlorate either in Canada or in the United States, however, Health Canada recommends a drinking water guidance value of 6 ug/L. Therefore, the perchlorate results from the observation well network were assessed by comparison to the recommended Health Canada value of 6 ug/L. The perchlorate results are provided in Appendix C in this report and are discussed in further detail in previous annual reports on the Groundwater Observation Well Network (see NSEL, 2007).

In observation wells where elevated chloride levels were detected, an assessment of the possible source of salt was carried out by calculating the bromide (Br) to chloride (Cl) ratio. Wells were considered to have elevated chloride levels if chloride concentrations exceeded typical background levels for groundwater in coastal Nova Scotia (i.e., <50 mg/L). A commonly used guide for distinguishing salt sources in Nova Scotia is to calculate the ratio of Br(mg/L)/Cl(mg/L) x 10,000, and compare the result to the following three ranges:

- 1. Ratio <10 indicates road salt or halite brine;
- 2. Ratio >10 indicates formation brines;
- 3. Ratio = 35 indicates a sea water influence.

3.0 RESULTS

This section presents the monitoring results for each observation well. Please refer to the appendices for well logs, groundwater level graphs, groundwater chemistry tables, groundwater temperature graphs, trend analysis details, well location maps and site photographs.

3.1 Greenwood (003)

Well Description

The Greenwood (003) observation well is located near Greenwood, Kings County. It was constructed in 1966 as part of a regional groundwater resource evaluation project (Trescott, 1968) and was originally named "Nova Scotia Department of Mines Test Hole 88". The well is completed in an overburden aquifer comprised of outwash sand. It is 7.6 m deep and has 6.6 m of casing. The well location and construction information is shown in Table 3.1 and the well log is provided in Appendix A.

Table 3.1: Greenwood (003) Well Construction Information

Well Name	Greenwood (003)
Observation Well ID Number	003
NSE Well Log Number	661225
County	Kings
Nearest Community	Greenwood
UTM - Easting (m)	350680
UTM - Northing (m)	4985498
Year Monitoring Started	1966
Casing Depth (m, bgs)	6.6
Well Depth (m, bgs)	7.6
Elevation - top of casing (m, asl)	24.15
Geologic Unit	Pleistocene Outwash
Aquifer Material	Overburden - sand

Notes: bgs = below ground surface; asl = above sea level

The location of the Greenwood (003) observation well is shown in Figure F.1a, Appendix F. It is situated in a rural area where land use is primarily agricultural or undeveloped. The well is located in a wooded area behind a house (see Figure F.1b), with all other development at least a kilometre away. The nearest water well is a private well located approximately 120 m away.

Monitoring Results - Water Levels

The water level graphs for Greenwood (003) are shown in Figure B.1, Appendix B. This well has been monitored since 1966 and water levels have remained relatively consistent. The average water level elevation in 2009 was approximately 21.92 m above sea level and the annual water level fluctuation is less than 1 m. The average depth to water in this well is approximately 2.2 m below ground surface. There is no visually obvious long-term water level trend and the statistical trend analysis for this well (Appendix E) indicates that there is no statistically significant trend present.

The 2009 water levels were within the normal range for this well during the majority of the year; however, historical high water levels were recorded in March, April, July, August, and October of 2009.

Monitoring Results - Water Chemistry and Temperature

The Greenwood (003) well was not sampled in 2009. Water chemistry results from 2005 and 2008 are presented in Appendix C. The results for both samples indicate that no health-based drinking water guidelines were exceeded; however, both samples exceeded aesthetic drinking water guidelines for pH, turbidity, iron and manganese. The elevated turbidity levels are expected due to the high iron and manganese. Note that the ion balance error reported in the general chemistry analysis exceeds the generally acceptable level of 5% and, therefore, these results should be viewed with caution. VOCs, pesticides and perchlorate were not detected at the Greenwood (003) well. The tritium level in this well was 5.76 TU, indicating that the water in this well is relatively recent (i.e., recharged after 1952).

The average groundwater temperature at the Greenwood (003) well was 7.93 °C, with annual fluctuations between 6.02 and 9.90 °C. A graph of the average daily temperature is presented in Appendix D.

3.2 Fraser Brook (004)

Well Description

The Fraser Brook (004) observation well is located near Lower Harmony, Colchester County. It was constructed in 1966 as part of a water resources study (Hennigar, 1966) that was carried out under the International Hydrologic Decade Program. It was originally named "Test Hole 100" and was one in a series of test wells installed in the Fraser Brook watershed.

The well is completed in siltstone. It is 18.3 m deep and the casing extends to a depth of 9.3 m. Well location and construction information is provided in Table 3.2 and the well log is provided in Appendix A. A 24-hour pump test conducted at this well indicated a transmissivity of 4.8 m²/day and a safe yield of 42 m³/day (6.5 igpm) (McIntosh, 1984).

Table 3.2: Fraser Brook (004) Well Construction Information

Well Name	Fraser Brook (004)
Observation Well ID Number	004
NSE Well Log Number	661226
County	Colchester
Nearest Community	Lower Harmony
UTM - Easting	486889
UTM - Northing	5021100
Year Monitoring Started	1966
Casing Depth (m, bgs)	9.3
Well Depth (m, bgs)	18.3
Elevation - top of casing (m, asl)	109.27
Geologic Unit	Canso Group
Aquifer Material	Bedrock - siltstone

Notes: bgs = below ground surface; asl = above sea level

The location of the Fraser Brook (004) observation well is shown in Figure F.2a, Appendix F. It is situated in a rural area where land use is primarily agricultural or undeveloped. The well was located in a wooded area (see Figure F.2b), however, in 2005 the majority of the trees were removed due to damage sustained during Hurricane Juan in 2003. The nearest water well is a domestic well, located approximately 1,000 m away.

Monitoring Results - Water Levels

The water level graphs for Fraser Brook (004) are shown in Figure B.2, Appendix B. This well has been monitored since 1966. The average water level elevation at this well in 2009 was approximately 105.08 m above sea level with an annual water level fluctuation less than 1 m. The average depth to water in this well is 4.18 m below ground surface. There is no visually obvious long-term water level trend, however, the statistical trend analysis for this well (Appendix E) indicates that there is a very small statistically significant upward trend about 0.4 cm/year. This is equivalent to a total rise of about 0.1 m since monitoring began at this well.

The 2009 water levels generally fluctuated within the typical range for this well; however, water levels exceeded historical highs in March and April.

Monitoring Results - Water Chemistry and Temperature

The Fraser Brook (004) well was not sampled in 2009. Water chemistry results from 2004 and 2008 are presented in Appendix C. The results indicate that arsenic exceeded the drinking water guideline in both water samples. No other parameters exceeded guidelines at this well. VOCs, pesticides and perchlorate were not detected. This well has not been tested for tritium.

Groundwater temperature at the Fraser Brook (004) well were consistent with previous data. The average groundwater temperature was $7.27\,^{\circ}\text{C}$, with annual fluctuations between $6.21\,\text{and}\,8.39\,^{\circ}\text{C}$. A graph of the average daily temperature for this well is presented in Appendix D.

3.3 Wilmot (005)

Well Description

The Wilmot (005) observation well is located in Wilmot, Annapolis County. It was constructed May 1966 as part of a regional groundwater resource evaluation project (Trescott, 1968) and was originally named "Nova Scotia Department of Mines Test Hole 51". The well is completed in an overburden aquifer comprised of outwash gravel. It is 18.3 m deep and the casing depth extends to 6.4 m. The surficial geology of the area was classified as a stream alluvium deposit of the Quaternary Period. The alluvium deposit consisted of several feet of clay overlying fine to coarse gravel.

Table 3.3: Wilmot (005) Well Construction Information

Well Name	Wilmot (005)
Observation Well ID Number	005
NSE Well Log Number	661267
County	Annapolis
Nearest Community	Wilmot
UTM - Easting	340015
UTM - Northing	4979368
Year Monitoring Started	1966
Casing Depth (m, bgs)	6.4
Well Depth (m, bgs)	18.3
Elevation - top of casing (m, asl)	9.0
Geologic Unit	Pleistocene Outwash
Aquifer Material	Overburden - gravel

Notes: bgs = below ground surface; asl = above sea level

Well location and construction information is provided in Table 3.3 and the well log is provided in Appendix A. A 26 hour pumping test conducted at a nearby wellfield situated in a similar geological unit indicated a transmissivity of $621 \text{ m}^2/\text{day}$ and storativity of 1.9×10^{-3} (McIntosh, 1984).

The location of the Wilmot (005) observation well is shown in Figure F.3a, Appendix F. The well

site, shown in Figure F.3b, is located south-west of Wilmot. It is situated in an actively farmed field, 100 m east of Baynard Road. South of the site, is a wooded area extending 75 m to the Annapolis River, where a hydrometric station measures surface water flow as part of the Canada/Nova Scotia Hydrometric Program. The nearest water well is a domestic well located approximately 150 m away.

Monitoring Results - Water Levels

The historical water level graphs for Wilmot (005) are shown in Figure B.3, Appendix B. This well has been monitored since 1966 and there is no visually obvious long-term water level trend. The trend analysis for this well (Appendix E) indicates that there is no statistically significant trend.

The average water level elevation at this well was approximately 6.94 m above sea level and the annual water level fluctuation was about 2 m. The average depth to water in this well was 2.0 m below ground surface.

The 2009 water levels generally fluctuated within the typical range for this well; however, water levels exceeded historical highs in April, October and November.

Monitoring Results - Water Chemistry and Temperature

The Wilmot (005) well was not sampled in 2009. Water chemistry results from 2006 are presented in Appendix C. The results indicate that health-based drinking water guidelines were exceeded for nitrate and aesthetic guidelines were exceeded for turbidity. VOCs were not detected. This well has not been tested for pesticides, perchlorate or tritium.

The average groundwater temperature at this well was 7.98 °C, with annual fluctuations between 5.57 and 10.24 °C. A graph of the average daily temperature at this well is presented in Appendix D.

3.4 Murray Siding (007)

Well Description

The Murray Siding (007) observation well is located off Old Court House Branch Road near the community of Murray Siding, Colchester County. It was constructed August 1967 as part of a regional groundwater resource evaluation project (Hennigar, 1972) and was originally named "Nova Scotia Department of Mines Test Hole 191". The well is completed in a sandstone bedrock aquifer and is 8.5 m deep with 7.9 m of casing. Well location and construction information is provided in Table 3.4 and the well log is provided in Appendix A. This well was used as an observation well for an 80 hour pumping test conducted at a pumping well located approximately 100 m away. The results indicated a transmissivity of 672 m²/day and storativity of 8.7 x 10^{-2} (McIntosh, 1984).

Table 3.4: Murray Siding (007) Well Construction Information

Well Name	Murray Siding (007)
Observation Well ID Number	007
NSE Well Log Number	671074
County	Colchester
Nearest Community	Murray Siding
UTM - Easting	483114
UTM - Northing	5024186
Year Monitoring Started	1967
Casing Depth (m, bgs)	7.9
Well Depth (m, bgs)	8.5
Elevation - top of casing (m, asl)	25.32
Geologic Unit	Wolfville Formation
Aquifer Material	Bedrock - sedimentary

Notes: bgs = below ground surface; asl = above sea level

The location of the Murray Siding (007) observation well is shown in Figure F.4a, Appendix F, and a photograph of the well is shown in Figure F.4b. The well is located in a residential area where the residents obtain their water supplies from domestic drilled wells.

Monitoring Results - Water Levels

The water level graphs for Murray Siding (007) are shown in Figure B.4, Appendix B. This well has been monitored since August 1967 with monitoring through most of 1968 through to1999 and limited data in 2000 and 2001. The Murray Siding well was brought back into the observation well network in December 2009 and water level monitoring resumed in January 2010.

The average water level elevation from 1967 to 2001 was 21.48 m above sea level and the average depth to water was approximately 3.84 m below ground surface. The statistical trend analysis for this well (Appendix E) indicates that there is a statistically significant downward trend of about 2.5 cm/year. This is equivalent to a total drop of about 1 m since monitoring began at this well.

Monitoring Results - Water Chemistry and Temperature

There is currently no water chemistry or temperature data available for the Murray Siding (007) well.

3.5 Wolfville (010)

Well Description

The Wolfville (010) observation well is located in Wolfville, Kings County. It was constructed in December 1968 as part of a regional groundwater resource evaluation project (Trescott, 1969) and was originally named "Nova Scotia Department of Mines Test Hole 398". This well has also been referred to as the "Wolfville 2" observation well. The well is completed in a sandstone aquifer. It is 17.7 m deep and penetrates 7.0 m into the bedrock. The casing depth extends to 22.7 m. Well location and construction information is provided in Table 3.5 and the well log is provided in Appendix A. A 29-day pump test was conducted at this well in 1969. The results indicated a transmissivity of 695 m²/day and storativity of $3x10^{-2}$ (McIntosh, 1984).

Table 3.5: Wolfville (010) Well Construction Information

Well Name	Wolfville (010)
Observation Well ID Number	010
NSE Well Log Number	681252
County	Kings
Nearest Community	Wolfville
UTM - Easting	392093
UTM - Northing	4993838
Year Monitoring Started	1969
Casing Depth (m, bgs)	22.7
Well Depth (m, bgs)	24.1
Elevation - top of casing (m, asl)	5.20
Geologic Unit	Wolfville Formation
Aquifer Material	Bedrock - sandstone

Notes: bgs = below ground surface; asl = above sea level

The location of the Wolfville (010) observation well is shown in Figure F.5a. The well is situated in a small park in the middle of a residential area (see Figure F.5b). Land use in the vicinity of the well is urban. The wellfield for the Town of Wolfville, comprised of two pumping wells, is located approximately 750 m away.

Monitoring Results - Water Levels

The water level graphs for Wolfville (010) are shown in Figure B.5, Appendix B. This well has been monitored since 1969 and water levels appear to have declined slightly over time. From 1970 to 1975, the average water level elevation was approximately 1.1 m above sea level and the annual water level fluctuation was about 2 m. The average water level in 2009 was 0.65 m above sea level, with an annual fluctuation of 1.2 m. The depth to water in this well is approximately 4.55 m below ground surface.

The statistical trend analysis for this well (Appendix E) indicates that there is small downward trend in water levels, equivalent to approximately 2.3 cm/year. The total water level drop since monitoring began at this well is approximately 0.7 m. The reason for this decline has not been confirmed, however, it may be related to pumping at the Town of Wolfville's production wells which are located within 750 m from this well.

The 2009 water levels generally fluctuated within the typical range for this well; however, water levels were at previously observed historical lows during late February and early March then increased to above previously observed historical highs in November and December.

Monitoring Results - Water Chemistry and Temperature

The Wolfville (010) well was not sampled in 2009. Water chemistry results from 2004 and 2008 are presented in Appendix C. The results indicate that no health-based drinking water guidelines were exceeded; however, turbidity, iron and manganese were above aesthetic drinking water guidelines in the 2008 sample. The elevated turbidity levels are expected due to the high iron and manganese. The iron and manganese levels from the 2008 sample have increased by approximately two orders of magnitude compared to the 2004 sample results. The reason for this increase has not been determined. VOCs, pesticides and perchlorate were not detected in this well.

The chloride level in this well was 78 mg/L in 2004 and 87 mg/L in 2008. Although these levels do

not exceed the aesthetic objective of $250 \, \text{mg/L}$, they are elevated above the typical background level for groundwater in coastal Nova Scotia ($<50 \, \text{mg/L}$). For the $2004 \, \text{sample}$ results, the bromide/chloride ratio for this well was <10 (i.e., $0.06 \, \text{mg/L}/78 \, \text{mg/L} \times 10,000 = 7.7$). For the $2008 \, \text{sample}$ results, the bromide/chloride ratio for this well was 9.2. Both of these results indicate that the source of the chloride is road salt. Please see Section $2.2.4 \, \text{for}$ a discussion of how this ratio is used to assess salt sources.

The tritium level in this well was 4.7 TU (+/- 0.4), indicating that the water in this well is either a mix of old and recent water (i.e., recharge occurred before and after 1952) or is recent (i.e., recharged occurred after 1952).

The average groundwater temperature at the Wolfville (010) well was 9.47 °C, with annual fluctuations between 8.17 and 11.11 °C. A graph of the average daily temperature for this well is presented in Appendix D.

3.6 Truro (014)

Well Description

The Truro (014) observation well is located in Truro, Colchester County. It was constructed in November 1970 as part of a regional groundwater resource evaluation project (Hennigar, 1972) and was originally named "Nova Scotia Department of Mines Test Hole 421". It has also been referred to as the "Truro 421" observation well. The well is 91.4 m deep, penetrates 80.8 m into bedrock and the casing depth extends to 18.3 m. It is completed in a sandstone aquifer. Well location and construction information is provided in Table 3.6 and the well log is provided in Appendix A.

Table 3.6: Truro (014) Well Construction Information

Well Name	Truro (014)
Observation Well ID Number	014
NSE Well Log Number	701431
County	Colchester
Nearest Community	Truro
UTM - Easting	476052
UTM - Northing	5023778
Year Monitoring Started	1971
Casing Depth (m, bgs)	18.3
Well Depth (m, bgs)	91.4
Elevation - top of casing (m, asl)	9.83
Geologic Unit	Wolfville Formation
Aquifer Material	Bedrock - sandstone

Notes: bgs = below ground surface; asl = above sea level

The location of the Truro (014) observation well is shown in Figure F.6a, Appendix F, and a site photograph is shown in Figure F.5b. It is situated in an urban area where the surrounding land is predominantly developed. The well is located within the Town of Truro Public Works yard and is adjacent to a golf course, several businesses and residences. The area is serviced by a municipal water supply and there are no other known water wells in the immediate vicinity.

Monitoring Results - Water Levels

The water level graphs for Truro (014) are shown in Figure B.6, Appendix B. This well has been monitored since 1971. The groundwater levels appear to have decreased slightly between 1971 and 1991. There is a data gap between 1991 and 2002 when no monitoring was carried out at this well; however, sometime after 1991 the groundwater levels in this well increased and have remained relatively consistent since 2003 when monitoring began again. The increased water level at this well is believed to be a result of the decommissioning of a municipal water supply well in 1994, which was located within a kilometre of the observation well. The trend analysis for this well (Appendix E) indicates that there is no statistically significant trend present when the entire data record from 1991 to 2009 is considered.

The average water level elevation between 1971 and 1991 ranged from about 6.5 to 7.5 m above sea level and the annual water level fluctuation was about 1.5 m. From 2003 to present, the average water level elevation was 7.9 m above sea level, with an annual water level fluctuation less than 1 m. The depth to water in this well has varied from approximately 2.0 m to 3.5 m below ground surface.

The 2009 water levels generally fluctuated within the typical range that has been observed at this well since 2003; however, the 2009 water levels exceeded the previously observed historical high for March.

Monitoring Results - Water Chemistry and Temperature

The Truro (014) well has not been sampled due to a partial blockage of the casing, caused by an old float device from a Stevens chart recorder that is lodged in the well. Therefore, chemistry data are not available.

The average groundwater temperature at this well was 8.53 °C, with annual fluctuations between approximately 4.32 and 13.60 °C. A graph of the average daily temperature in this well is presented in Appendix D.

3.7 Monastery (028)

Well Description

The Monastery (028) observation well is located near Monastery, Antigonish County. The well was installed in January 1974 as part of a groundwater resource evaluation study (Strait of Canso Natural Environment Committee, 1975) and was originally named "Nova Scotia Department of Mines Test Hole 449". The well is completed in a sandstone aquifer. It is 158 m deep and the casing depth is unknown. Well location and construction information is provided in Table 3.7 and the well log is provided in Appendix A. A 50-hour pumping test was conducted at this well in 1974, indicating a transmissivity of 9.8 m²/day and a 20-year safe yield of 439 m³/day (67 igpm) (McIntosh, 1984).

Table 3.7: Monastery (028) Well Construction Information

Well Name	Monastery (028)
Observation Well ID Number	028
NSE Well Log Number	742420
County	Antigonish
Nearest Community	Monastery
UTM - Easting	606083
UTM - Northing	5052489
Year Monitoring Started	1976
Casing Depth (m, bgs)	NA
Well Depth (m, bgs)	158
Elevation - top of casing (m, asl)	23.12
Geologic Unit	Canso Group
Aquifer Material	Bedrock - sandstone

Notes: bgs = below ground surface; asl = above sea level

The location of the Monastery (028) well is shown in Figure F.7a, Appendix F. It is situated in a rural area where land use is primarily agricultural. The well is located at the end of a hayfield (see Figure F.7b), approximately 1,000 m from the ocean. The nearest water well is a domestic well located approximately 230 m away.

Monitoring Results - Water Levels

The water level graphs for Monastery (028) are shown in Figure B.7, Appendix B. This well has been monitored since 1979 and the average water level elevation has decreased from about 15.5 m (between 1979 and 1987) to approximately 13.5 m in 2006. The annual water level fluctuation also decreased over the same period from about 1.5 m to 1.0 m. However, the water level in this well rebounded to its 1980's elevation after the well was purged during a sampling event in December 2006. The water level then slowly declined again until it rebounded once more during a sampling event in December 2008. It is suspected that the decline in water levels at this well during the 1990's and early 2000's may have been due to a slow decline in well efficiency, perhaps caused by biofouling. The sampling process involves pumping water from the well, which may temporarily rehabilitate the well and allow water levels to rebound. The depth to water in this well has varied from approximately 7.8 m to 9.8 m below ground surface.

The trend analysis for this well (Appendix E) indicates that there is no statistically significant trend present when the entire data record is considered.

The 2009 water levels fluctuated within the typical range that has been observed at this well. The average water level was 14.04 m above sea level with a water level fluctuation of approximately 3 m. In 2009, the average depth to water was 9 m.

Monitoring Results - Water Chemistry and Temperature

The Monastery (028) well was not sampled in 2009. Water chemistry results from 2006 and 2008 are presented in Appendix C. The results indicate that no drinking water guidelines were exceeded in either of the samples. VOCs, pesticides and perchlorate were not detected.

The tritium level in this well was 0.94 TU (+/- 0.17), indicating that the water is relatively old (i.e., recharge occurred before 1952).

The average groundwater temperature at this well was 8.13 °C, with annual fluctuations between 8.07 and 8.21 °C. A graph of the average daily temperature in this well is presented in Appendix D.

3.8 Point Aconi (030)

Well Description

The Point Aconi (030) observation well is located near Point Aconi, Cape Breton County. It was constructed in August 1976 to monitor groundwater levels at the Prince Mine, located about 2 km away. The well is completed in a sandstone aquifer. It is 30.5 m deep, penetrates 26.2 m into the bedrock and the casing depth extends to 12.8 m. Well location and construction information is provided in Table 3.8 and the well log is provided in Appendix A.

The location of the Point Aconi (030) well is shown in Figure F.8a, Appendix F, and a site photograph is shown in Figure F.8b. It is situated in an urban area where the land use is primarily residential. There are several residences located within 300 m of the well, one of which is immediately adjacent to the well. The nearest water well is a domestic well located approximately 18 m away.

Table 3.8: Point Aconi (030) Well Construction Information

Well Name	Point Aconi (030)
Observation Well ID Number	030
NSE Well Log Number	761408
County	Cape Breton
Nearest Community	Point Aconi
UTM - Easting	707986
UTM - Northing	5133152
Year Monitoring Started	1976
Casing Depth (m, bgs)	12.8
Well Depth (m, bgs)	30.5
Elevation - top of casing (m, asl)	29.97
Geologic Unit	Inverness Formation
Aquifer Material	Bedrock - sandstone

Notes: bgs = below ground surface; asl = above sea level

Monitoring Results - Water Levels

The water level graphs for Point Aconi (030) are shown in Figure B.8, Appendix B. This well has been monitored since 1976. The average water level elevation at the Point Aconi (030) well is 27.45 m above sea level and the annual water level fluctuation is about 5 m. The depth to water in this well is approximately 2.5 m below ground surface. There is no visually obvious long-term water level trend and the statistical trend analysis for this well (Appendix E) indicates that there is no statistically significant trend present.

The 2009 water levels fluctuated within the typical historical range for this well; however, water levels dropped below the historical lows in June and August 2009.

Monitoring Results - Water Chemistry and Temperature

The Point Aconi (030) well was sampled in 2005 and 2008. Water chemistry results are presented in Appendix C. The results indicate that no health-based drinking water guidelines were exceeded. Manganese was above the aesthetic drinking water guideline in the 2005 sample but was below the guideline in the 2008 sample. VOCs, pesticides and perchlorate were not detected.

The tritium level in this well was 3.62 TU (+/- 0.34), indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at the Point Aconi (030) was 8.55 °C, with annual fluctuations between 5.96 and 11.25 °C. A graph of the average daily temperature in this well is presented in Appendix D.

3.9 Lawrencetown (043)

Well Description

The Lawrencetown (043) observation well is located near Upper Lawrencetown, Halifax County. It was constructed in March 1977 as part of a saltwater intrusion investigation in the Lawrencetown area (Cross, 1980) and was originally named "Nova Scotia Department of the Environment, Test Hole L3". It has also been referred to as the "Lawrencetown L3" observation well. Three other test wells were drilled near this well (i.e., Lawrencetown L1, L2 and L4) but were decommissioned in August 1994 by sealing the entire length of the wells with alternating layers of bentonite and sand.

Table 3.9: Lawrencetown (043) Well Construction Information

Well Name	Lawrencetown (043)
Observation Well ID Number	043
NSE Well Log Number	771538
County	Halifax
Nearest Community	Upper Lawrencetown
UTM - Easting	464172
UTM - Northing	4947712
Year Monitoring Started	1978
Casing Depth (m, bgs)	44.2
Well Depth (m, bgs)	53
Elevation - top of casing (m, asl)	4.73
Geologic Unit	Goldenville Formation
Aquifer Material	Bedrock - quartzite

Notes: bgs = below ground surface; asl = above sea level

The Lawrencetown (043) well is completed in a fractured bedrock aquifer comprised of quartzite. It is 53.0 m deep, penetrates 49.4 m into the bedrock and the casing depth extends to 44.2 m. Well location and construction information is provided in Table 3.9 and the well log is provided in Appendix A. A 1.5-hour pump test was conducted at this well in 1977 and the results indicated a transmissivity of 2.8 m²/day a safe yield rate of 95 m³/day (14.5 igpm) (McIntosh, 1984).

The location of the Lawrencetown (043) observation well is shown in Figure F.9a, Appendix F. It

is situated in a rural area where land use is primarily residential. The well is located within 100 m of the ocean (see Figure F.9b) and the there are two domestic wells nearby, both located approximately 50 m away.

Monitoring Results - Water Levels

The water level graphs for Lawrencetown (043) are shown in Figure B.9, Appendix B. This well has been monitored since 1978 and a visual inspection of the historical water level graph indicates that water levels has declined by approximately 1.0 m since monitoring began. The decline is expected to be caused by a nearby domestic well (located 50 m away). The statistical trend analysis for this well (Appendix E) indicates that there is no statistically significant trend present; however, previous statistical trend analysis for this well indicated a small downward trend in water levels, equivalent to approximately 2.4 cm/year. This corresponds to a total water level drop of approximately 0.7 m since monitoring began.

The average water level elevation at the Lawrencetown (043) well for the monitoring period 1978-1992 was approximately 3.6 m above sea level and the annual water level fluctuation was about 0.6 m. Between 2002 and 2009, the average water level declined to approximately 2.89 m above sea level, with a 1.26 m average annual fluctuation. During this time period, the average depth to water in this well has varied from 1.61 m to 2.07 m below ground surface and the hourly water level data shows tidal fluctuations of approximately 0.3 m. There is also a daily drawdown and subsequent recovery of approximately 0.8 m at this well, which likely reflects domestic water use patterns associated with a nearby domestic well.

The 2009 water levels fluctuated within the typical historical range for this well; however, water levels dropped below the historical lows in August and November 2009.

Monitoring Results - Water Chemistry and Temperature

The Lawrencetown (043) well was not sampled in 2009. Previous water chemistry results from 2004 and 2008 are presented in Appendix C. The results indicate that arsenic concentrations exceeded the health-based drinking water guideline in both samples. VOCs and pesticides were not detected. Tritium results reported from a previous study (Bottomley, 1983) were non-detect, indicating this water is relatively old (i.e., recharged prior to 1952).

It should also be noted that the chloride level in this well (150 mg/L in 2004 and 180 mg/L in 2008) is elevated above the typical background level for groundwater in coastal Nova Scotia (<50 mg/L), although it is below the aesthetic objective of 250 mg/L. The ocean is less than about 100 m from this well and, therefore, the elevated chloride level is probably due to seawater influence. The bromide/chloride ratio at this well also indicates a seawater influence. The bromide/chloride ratio at this well was 35 (i.e., 0.53 mg/L/150 mg/L x 10,000 = 35). Please see Section 2.2.4 for a discussion of how this ratio is used to assess salt sources.

In 2009 the average groundwater temperature at the Lawrencetown (043) well was 8.42 °C, with annual fluctuations between approximately 6.72 and 10.38 °C. A graph of the average daily temperature in this well is presented in Appendix D.

3.10 Durham (045)

Well Description

The Durham (045) observation well is located near Durham, Pictou County. It was constructed in July 1978 as part of a regional groundwater resource evaluation project (Gibb and McMullin, 1980) and was originally named "Nova Scotia Department of the Environment Test Hole Durham 3". The well is completed in a sandstone and shale aquifer. It is 75.3 m deep, penetrates 69.2 m into the bedrock and the casing depth is unknown. Well location and construction information is provided in Table 3.10 and the well log is provided in Appendix A. A 72-hour pump test was conducted at this well in 1978, indicating a transmissivity of 14 m²/day and storativity of 3.2 x 10⁻⁴ (McIntosh, 1984).

The location of the Durham (045) observation well is shown in Figure F.10a, Appendix F. It is situated in a rural area, where the land use is primarily agricultural. The well is located in a wooded area, about 3 m from the edge of a hayfield. The nearest water well is a domestic well located approximately 500 m away.

Table 3.10: Durham (045) Well Construction Information

Well Name	Durham (045)
Observation Well ID Number	045
NSE Well Log Number	782683
County	Pictou
Nearest Community	Durham
UTM - Easting	516224
UTM - Northing	5052105
Year Monitoring Started	1979
Casing Depth (m, bgs)	NA
Well Depth (m, bgs)	75.3
Elevation - top of casing (m, asl)	14.88
Geologic Unit	Boss Point Formation
Aquifer Material	Bedrock - sandstone/shale

The water level graphs for Durham (045) are shown in Figure B.10, Appendix B. This well has been monitored since 1979. The water levels appear to have risen slightly since monitoring began and the amount of annual water level fluctuation has varied. The trend analysis for this well (Appendix E) indicates that there is a small upward trend, equivalent to about 1.8 cm/year. This is equivalent to a total rise of about 0.7 m since monitoring began at this well.

The average water level elevation at the Durham (045) well is approximately 10.95 m above sea level and the annual water level fluctuation is between 2.0 and 3.0 m. However, from 1979 to 1989 the average water level was approximately 11.0 m, then from 1989 to 2004 average water levels rose slightly, to approximately 11.6 m. Since 2004 the average water levels decreased slightly. The depth to water in this well is approximately 4.0 m below ground surface.

The 2009 water levels fluctuated within the typical historical range for this well; however, water levels declined to previously observed historical lows in March, May, and June 2009.

Monitoring Results - Water Chemistry and Temperature

The Durham (045) well was sampled in 2005 and 2009. Water chemistry results are presented in Appendix C. The results indicate that no drinking water guidelines were exceeded. VOCs, pesticides and perchlorate were not detected.

The tritium level in this well was 2.04 TU, indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average annual groundwater temperature at the Durham (045) well was 7.65 °C, with annual fluctuations between 6.34 and 8.96 °C. A graph of the hourly temperature in this well is presented in Appendix D.

3.11 Kentville (048)

Well Description

The Kentville (048) observation well is located near Kentville, Kings County. The well was constructed in May 1977 as part of a water supply investigation for the Kentville Industrial Park (Callan, 1977) and was previously named the "Kentville Industrial Park" observation well. The well is completed in a sandstone aquifer. It is 106.7 m deep and the casing depth extends to 30.5 m. Well location and construction information is provided in Table 3.11 and the well log is in Appendix A. A 72-hour pump test was conducted at this well in June 1977 and the results indicated a transmissivity of 84 m²/day and a storativity of 3 x 10⁻⁴ (Callan, 1977).

Table 3.11: Kentville (048) Well Construction Information

Well Name	Kentville (048)
Observation Well ID Number	048
NSE Well Log Number	772021
County	Kings
Nearest Community	Kentville
UTM - Easting	377628
UTM - Northing	4992245
Year Monitoring Started	1980
Casing Depth (m, bgs)	30.5
Well Depth (m, bgs)	106.7
Elevation - top of casing (m, asl)	12.79
Geologic Unit	Wolfville Formation
Aquifer Material	Bedrock - sandstone

Notes: bgs = below ground surface; asl = above sea level

The location of the Kentville (048) observation well is shown in Figure F.11a, Appendix F. It is situated in a wooded area (see Figure F.11b) and the surrounding land use includes an industrial park (Annapolis Valley Regional Industrial Park), residential properties and undeveloped land. This well lies within the wellhead protection area for the Town of Kentville wellfield, which includes seven production wells. The wellfield was initially developed in the late 1970's to supply the nearby

industrial park and was expanded to become the primary water supply for the Town of Kentville in 2002. The nearest production well is located approximately 150 m away from the Kentville (048) observation well.

Monitoring Results - Water Levels

The water level graphs for Kentville (048) are shown in Figure B.11, Appendix B. This well has been monitored since 1980 and the water level appears to have dropped slightly since monitoring began. The trend analysis for this well (Appendix E) indicates that there is a small downward trend, equivalent to 0.8 cm/year. The total drop in water level since monitoring began at this well is approximately 0.6 m.

The average water level elevation at the Kentville (048) well has ranged between 6.7 and 7.5 m above sea level and the annual water level fluctuation is approximately 0.7 m. The depth to water in this well is approximately 5.8 m below ground surface.

The 2009 water levels fluctuated within the typical historical range for this well.

Monitoring Results - Water Chemistry and Temperature

The Kentville (048) well was not sampled in 2009. Previous water chemistry results from 2005 and 2007 are presented in Appendix C. In 2005, no drinking water guidelines were exceeded. In 2007, lead exceeded the health-based drinking water guideline, and chloride and iron exceeded the aesthetic drinking water guidelines. No pesticides or VOC's were detected.

The chloride level in this well was at 230 mg/L in 2005, which is elevated above the typical background level for groundwater in coastal Nova Scotia (<50 mg/L). In 2007, the chloride level in this well increased to 270 mg/L, which exceeded the aesthetic objective of 250 mg/L. The well is located approximately 15 km from the ocean and, therefore, the elevated chloride levels are not expected to be caused by sea water. The bromide/chloride ratio at this well indicated the salt source is likely to be road salt. The bromide/chloride ratio at this well was 7.4 (i.e., 0.2 mg/L/270 mg/L x 10,000 = 7.4). Please see Section 2.2.4 for a discussion of how this ratio is used to assess salt sources.

The perchlorate level in this well was 0.05 ug/L, which is below the recommended Health Canada

guidance value of 6 ug/L. The tritium level in this well was 3.8 TU (+/- 0.3), indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at the Kentville (048) well was 6.41 °C, with annual fluctuations between 3.11 and 9.60 °C. A graph of the average daily temperature in this well is presented in Appendix D.

3.12 Sydney (050)

Well Description

The Sydney (050) observation well is located near Sydney, Cape Breton County. It was constructed in 1977 as part of a regional water resource study in the Sydney Coalfield (Baechler, 1986) and has also been referred to as the "Sydney Watershed " observation well. The well is completed in a sandstone aquifer and is 100.6 m deep with a casing depth extending to 6.1 m. Well location and construction information is provided in Table 3.12 and the well log is provided in Appendix A. A 72-hour pump test was conducted at this well in the 1980's and the results indicated a transmissivity of 71 m²/day (Baechler, 1986).

Table 3.12: Sydney (050) Well Construction Information

Well Name	Sydney (050)
Observation Well ID Number	050
NSE Well Log Number	771077
County	Cape Breton
Nearest Community	Sydney
UTM - Easting	720589
UTM - Northing	5106450
Year Monitoring Started	1984
Casing Depth (m, bgs)	6.7
Well Depth (m, bgs)	100.6
Elevation - top of casing (m, asl)	64.10
Geologic Unit	South Bar Formation
Aquifer Material	Bedrock - sandstone

Notes: bgs = below ground surface; asl = above sea level

The location of the Sydney (050) observation well is shown in Figure F.12a, Appendix F. It is situated in a rural area where land use is primarily residential and undeveloped land. The well is located with in the Sydney wellfield, which consists of 11 production wells. The wellfield, which began operating in 1996, pumps an average of 16,000 m³/day and is the largest municipal wellfield in Nova Scotia. The nearest production well is approximately 200 m from the Sydney (050)

observation well.

Monitoring Results - Water Levels

The water level graphs for Sydney (050) are shown in Figure B.12, Appendix B. This well has been monitored since 1984. The water levels appear to have decreased when the Sydney wellfield began pumping in 1996 and then stabilized. The trend analysis for this well (Appendix E) indicates that there is a downward trend, equivalent to approximately 5.8 cm/year. The total drop in water level since monitoring began at this well is approximately 1.2 m.

The average water level elevation at this well from 1984 to 1994 (i.e., before the wellfield began pumping) was approximately 59.9 m above sea level and the annual water level fluctuation varied between 0.7 m and 1.0 m. Between 2004 and 2009 the average water level elevation was approximately 58.67 m above sea level, with an annual water level fluctuation of up to approximately 3 m. The depth to water in this well is between 5.0 and 6.0 m below ground surface.

The 2009 water levels were within the historically observed water level range for this well; however, 2009 water levels declined to previously observed historical lows throughout most of the year, from January through mid June, end of July through August, November and December.

Monitoring Results - Water Chemistry and Temperature

The Sydney (050) well was not sampled in 2009. Previous water chemistry results from 2005 and 2008 are presented in Appendix C. The results indicate that no health-based drinking water guidelines were exceeded; however, manganese was above the aesthetic drinking water guideline in both samples. VOCs, pesticides and perchlorate were not detected.

The tritium level in this well was 4.92 TU (+/- 0.43), indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at the Sydney (050) well was 7.50°C, with annual fluctuations between approximately 5.84 and 9.02 °C. A graph of the average daily temperature in this well is presented in Appendix D.

3.13 North Grant (054)

Well Description

The North Grant (054) observation well is located in Lower North Grant, Antigonish County. This well was constructed in 1987 to expand the NS Groundwater Observation Well Network. The well is completed in slate and is 39.0 m deep and the casing extends to a depth of 13.1 m. Well location and construction information is provided in Table 3.13 and the well log is provided in Appendix A.

The location of the North Grant (054) observation well is shown in Figure F.13a, Appendix F. The well is situated approximately 15 km northwest of the town of Antigonish, and approximately 3.0 m from the side of North Grant Road (see Figure F.13b). It is located approximately 100 m from the Wrights River, and there is a domestic drilled well located within 150 m.

Table 3.13: North Grant (054) Well Construction Information

Well Name	North Grant (054)
Observation Well ID Number	054
NSE Well Log Number	871262
County	Antigonish
Nearest Community	Lower North Grant
UTM - Easting	576403
UTM - Northing	5055139
Year Monitoring Started	1987
Casing Depth (m, bgs)	13.1
Well Depth (m, bgs)	39.0
Elevation - top of casing (m, asl)	21.7
Geologic Unit	Horton Group
Aquifer Material	Bedrock - shale/slate

The water level graphs for North Grant (054) are shown in Figure B.13, Appendix B. This well has been monitored since 1987, however, there is a gap in the monitoring data between 1997 and 2006. Water levels at this well appear to have declined since 1997. From 1987 to 1997, the average water level elevation was approximately 19.8 m above sea level and the annual water level fluctuation was about 0.9 m. The average water level elevation for the period between April 2006 and 2009 was slightly lower, at 19.43 m above sea level, and the average annual water level fluctuation for this period was approximately 0.85 m. The depth to water in this well in 2009 was approximately 2.26 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

The 2009 water levels were within the typical historical range for this well, with levels in January, May, June, August, November, and December reaching historical lows.

Monitoring Results - Water Chemistry and Temperature

The North Grant (054) well was not sampled in 2009. Water chemistry results from 2006 and 2008 are presented in Appendix C. The results indicate that no drinking water guidelines were exceeded in 2006; however, the 2008 sample exceeded health-based guidelines for arsenic and aesthetic guidelines for turbidity and iron. VOCs and pesticides were not detected.

The tritium level in this well was 1.95 TU (+/- 0.22), indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at this well was 7.84 °C, with annual fluctuations between approximately 6.62 and 9.38 °C. A graph of the average daily temperature at this well is presented in Appendix D.

3.14 Stillwater (055)

Well Description

The Stillwater (055) observation well is located in Stillwater, Guysborough County. This well was constructed in 1987 to expand the NS Groundwater Observation Well Network. It is completed in fractured bedrock comprised of greywacke. The well is 36.0 m deep and the casing extends to 13.4 m depth. Well location and construction information are provided in Table 3.14 and the well log is provided in Appendix A.

The location of the Stillwater (055) observation well is shown in Figure F.14, Appendix F. The well is located in a wooded area off Route #7 on Department of Natural Resources' property adjacent to a gravel road leading to a rifle range. The nearest water well is a domestic drilled well located within 250 m. The St. Mary's River is approximately 750 m away, and the well is located 2 km from an Environment Canada Hydrometric Station on St. Mary's River.

Table 3.14: Stillwater (055) Well Construction Information

Well Name	Stillwater (055)
Observation Well ID Number	055
NSE Well Log Number	871263
County	Guysborough
Nearest Community	Stillwater
UTM - Easting	579938
UTM - Northing	5004212
Year Monitoring Started	1987
Casing Depth (m, bgs)	13.4
Well Depth (m, bgs)	36.0
Elevation - top of casing (m, asl)	26.9
Geologic Unit	Goldenville Formation
Aquifer Material	Bedrock - greywacke

The water level graphs for Stillwater (055) are shown in Figure B.14, Appendix B. This well has been monitored since 1987; however, monitoring stopped in the summer of 1995 and did not resume until May 2006. Water levels appear to have remained relatively consistent over time. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

From 1987 to 1995, the average water level elevation at this well was approximately 25.0 m above sea level and the annual water level fluctuation was about 1.1 m. The average water level elevation for the period between May 2006 and 2009 was slightly higher, at 25.11m above sea level, and the annual water level fluctuation for this period was up to 1.4 m. In 2009 the average depth to water in this well was 1.78 m below ground surface.

The 2009 water levels at this well exceeded historical highs in March, April, June, July, October, and November, and then dropped to historical lows in April, May, August, and November.

Monitoring Results - Water Chemistry and Temperature

The Stillwater (055) well was not sampled in 2009. Water chemistry results for 2006 and 2008 are presented in Appendix C. The results indicate that no drinking water guidelines were exceeded in 2006, however, the aesthetic guideline for manganese was exceeded in 2008. One VOC (toluene) was measured at the detection limit of 1 ug/L in 2006 but it was not detected in 2008. No pesticides were detected at this well.

The tritium level in this well was 3.82 TU (+/- 0.34), indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at this well was 7.20°C, with annual fluctuations between 4.80 and 9.78 °C. A graph of the average daily temperature in this well is presented in Appendix D.

3.15 Sheet Harbour (056)

Well Description

The Sheet Harbour (056) observation well is located in Sheet Harbour, Halifax County. The well was constructed in 1987 to expand the NS Groundwater Observation Well Network. The well is completed in a bedrock aquifer and is 46.4 m deep with 7.01 m of casing. Well location and construction information is provided in Table 3.15 and the well log is provided in Appendix A.

The location of the Sheet Harbour (056) observation well is shown in Figure F.15a, Appendix F. It is situated in a rural area where the surrounding land is predominantly undeveloped. The well is located in a field, 50 m north of Route #7 (see Figure F.15b). It is located approximately 5.0 m from the East Halfway Brook and there is a domestic drilled well within 35 m of the observation well.

Table 3.15: Sheet Harbour (056) Well Construction Information

Well Name	Sheet Harbour (056)
Observation Well ID Number	056
NSE Well Log Number	871264
County	Halifax
Nearest Community	Sheet Harbour
UTM - Easting	543176
UTM - Northing	4972468
Year Monitoring Started	1987
Casing Depth (m, bgs)	7.01
Well Depth (m, bgs)	46.4
Elevation - top of casing (m, asl)	38.06
Geologic Unit	Goldenville Formation
Aquifer Material	Bedrock - Quartzite

The water level graphs for Sheet Harbour (056) are shown in Figure B.15, Appendix B. Based on a visual inspection of the historical water level graph, the water level at this well appears to have increased over time by approximately 1 m. The average water level elevation at this well was as follows: 35.9 m (1987 to 1993); 36.2 m (1994 to 1999); and 36.9 m (2007 to 2009). The depth to water in this well is currently approximately 1.2 m below ground surface and the average water level fluctuation is 0.6 m. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

The 2009 water levels remained at, or close to, the historical highs for this well throughout most of the year.

Monitoring Results - Water Chemistry and Temperature

The Sheet Harbour (056) well was not sampled in 2009. Previous water chemistry results from 2008 are presented in Appendix C. The results indicate that no health-based drinking water guidelines were exceeded; however, arsenic was detected at 10 ug/L, which is equal to, but does not exceed the drinking water guideline for arsenic. In addition, the aesthetic guideline for manganese was exceeded. No VOCs or pesticides were detected at this well.

The average groundwater temperature at this well was 7.05°C, with annual fluctuations between approximately 3.39 and 9.14 °C. A graph of the average daily temperature in this well is presented in Appendix D.

3.16 Hayden Lake (059)

Well Description

The Hayden Lake (059) observation well is located near East Jordan, Shelburne County. The well was constructed in 1987 to expand the NS Groundwater Observation Well Network. It is completed in fractured bedrock comprised of greywacke. The well is 48.8 m deep and the casing extends to 6.1 m depth. Well location and construction information is provided in Table 3.16 and the well log is provided in Appendix A.

The location of the Hayden Lake (059) observation well is shown in Figure F.16, Appendix F. It is situated in a rural area where the surrounding land is primarily undeveloped. The well is located adjacent to the Hayden Lake Water Treatment Plant, which supplies the Town of Lockeport. The nearest water well is a domestic well located approximately 300 m away.

Table 3.16: Hayden Lake (059) Well Construction Information

Well Name	Hayden Lake (059)
Observation Well ID Number	059
NSE Well Log Number	870189
County	Shelburne
Nearest Community	East Jordan
UTM - Easting	321365
UTM - Northing	4849195
Year Monitoring Started	1988
Casing Depth (m, bgs)	6.1
Well Depth (m, bgs)	48.8
Elevation - top of casing (m, asl)	2.94
Geologic Unit	Goldenville Formation
Aquifer Material	Bedrock - greywacke

The water level graphs for Hayden Lake (059) are shown in Figure B.16, Appendix B. This well has been monitored since 1988 and water levels appear to have risen slightly over time and the amount of annual fluctuation appears to have decreased. The statistical trend analysis for this well (Appendix E) indicates that there is a very small upward trend, equivalent to approximately 0.9 cm/year. This corresponds to a total water level rise of approximately 0.2 m since monitoring began at this well.

The average water level elevation at the Hayden Lake (059) well is approximately 1.46 m above sea level and the annual water level fluctuation is between 1.14 and 1.74 m. The depth to water in this well is approximately 1.48 m below ground surface.

The 2009 water levels were within the historically observed water level range for this well; however, the 2009 water level dropped below historical lows in January, February, April, November and December and exceeded the historical high water level at the end of August.

Monitoring Results - Water Chemistry and Temperature

The Hayden Lake (059) well was not sampled in 2009. Previous water chemistry results from 2005 and 2008 are presented in Appendix C. The results indicate that no health-based drinking water guidelines were exceeded; however, the pH level in the 2008 sample did not meet the aesthetic drinking water guideline.

Note that one VOC (chloroform) was detected below the drinking water guideline in 2005; however, it was not detected in the 2008 sample. Chloroform is produced when chlorine reacts with organic matter and may have been present in this well as a result of chlorine use and storage at the nearby water treatment plant.

Perchlorate was detected at very low levels (0.014 ug/L), but was far below the recommended Health Canada guidance value of 6 ug/L. No pesticides were detected at this well.

The tritium level in this well was 3.4 TU, indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at the Hayden Lake (059) well was $8.50\,^{\circ}$ C, with annual fluctuations between 6.26 and $10.33\,^{\circ}$ C. A graph of the average daily temperature is presented in Appendix D.

3.17 Meteghan (060)

Well Description

The Meteghan (060) observation well is located near the community of Meteghan River, Digby County. The well was constructed in March 1987 to expand the NS Groundwater Observation Well Network. The well is completed in slate aquifer and is 61.0 m deep with 12.19 m of casing. Well location and construction information is provided in Table 3.17 and the well log is provided in Appendix A.

The location of the Meteghan (060) observation well is shown in Figure F.17a, Appendix F. The well is situated on the lawn of a private property (see Figure F.17b), located 100 m south of the Meteghan River. The nearest water well is a domestic dug well approximately 30 m away.

Table 3.17: Meteghan (060) Well Construction Information

Well Name	Meteghan (060)
Observation Well ID Number	060
NSE Well Log Number	870188
County	Digby
Nearest Community	Meteghan River
UTM - Easting	250890
UTM - Northing	4900628
Year Monitoring Started	1987
Casing Depth (m, bgs)	12.19
Well Depth (m, bgs)	61.0
Elevation - top of casing (m, asl)	13.8
Geologic Unit	Halifax Formation
Aquifer Material	Bedrock-slate

The water level graphs for Meteghan (060) are shown in Figure B.17, Appendix B. This well has been monitored since mid December 1987 and water levels appear to have decreased slightly over time (i.e., dropped by 0.3 m). From the end of 1987 until the end of 1992 the average water level elevation was approximately 9.42 m above sea level. From 1993 to the spring of 1999, the average water level elevation was approximately 9.15 m above sea level. The average water level elevation for the period when monitoring resumed in August 2006 to the end 2009 was again lower, at 9.10 m. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well. In 2009, the average depth to water in this well is approximately 4.61 m below ground surface.

The 2009 water levels were within the historical range for this well; however, water levels dropped below historical lows in January, March, November, and December 2009.

Monitoring Results - Water Chemistry and Temperature

The Meteghan (060) well was not sampled in 2009. Previous water chemistry results from 2006 and 2008 are presented in Appendix C. The results indicate that no health-based drinking water guidelines were exceeded; however, aesthetic drinking water guidelines were exceeded for turbidity, iron and manganese in both the 2006 and 2008 samples. The elevated turbidity is expected due to the high iron and manganese levels. VOCs and pesticides were not detected.

The tritium level in this well was 0.46 TU (+/- 0.14), indicating that the water in this well is old water (i.e., recharge occurred before 1952).

The average groundwater temperature at this well was 8.88 °C, with annual fluctuations between approximately 8.14 and 9.78 °C. A graph of the average daily temperature in this well is presented in Appendix D.

3.18 Annapolis Royal (062)

Well Description

The Annapolis Royal (062) observation well is located near Lake La Rose, Annapolis County. The well was constructed in December 1989 to expand the NS Groundwater Observation Well Network. The well is completed in granite and is 62.8 m deep with 24.3 m of casing. Well location and construction information is provided in Table 3.18 and the well log is provided in Appendix A.

The location of the Annapolis Royal (062) observation well is shown in Figure F.18, Appendix F. It is situated in a rural area where the surrounding land is primarily undeveloped. The well is located 500 m from Lake La Rose, the former water supply for the Town of Annapolis Royal. The nearest water well is a domestic well located approximately 1,000 m away.

Table 3.18: Annapolis Royal (062) Well Construction Information

Well Name	Annapolis Royal (062)
Observation Well ID Number	062
NSE Well Log Number	891722
County	Annapolis
Nearest Community	Lake La Rose
UTM - Easting	303029
UTM - Northing	4952588
Year Monitoring Started	1990
Casing Depth (m, bgs)	24.3
Well Depth (m, bgs)	62.8
Elevation - top of casing (m, asl)	121.06
Geologic Unit	Liscomb Complex
Aquifer Material	Bedrock - granite

The water level graphs for Annapolis Royal (062) are shown in Figure B.18, Appendix B. This well has been monitored since 1990 and water levels have remained relatively constant. The average water level elevation at the Annapolis Royal (062) well is 109.86 m above sea level and the annual water level fluctuation is approximately 1 m. The average depth to water in this well in 2009 was 10.78 m below ground surface. There were insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis.

The 2009 water levels were within the historically observed water level range for this well. The 2009 water levels met the previously observed historical highs throughout most of the year, in January, April, May, July, August, September, October, and November.

Monitoring Results - Water Chemistry and Temperature

The Annapolis Royal (062) well was not sampled in 2009. Previous water chemistry results from 2005 and 2007 are presented in Appendix C. The results indicate that no health-based drinking water guidelines were exceeded; however, turbidity (2007) and manganese (2005 and 2007) exceeded the aesthetic drinking water guidelines. One VOC, toluene, was detected at 2 ug/L in 2005 and at 1 ug/L in 2007. These toluene levels are below the aesthetic drinking water guideline of 24 ug/L. This well is located beside a road and, therefore, the toluene, which is a chemical found in gasoline, may be due to runoff from the road. Pesticides and perchlorate were not detected.

The tritium level in this well was measured in 2005 and found to be 0.27 TU, (+/- 0.17), indicating the water in the well is relatively old (i.e., recharge occurred before 1952).

The average groundwater temperature at the Annapolis Royal (062) well was 8.14 °C, with annual fluctuations between 8.04 and 8.19 °C. A graph of the average daily temperature in this well is presented in Appendix D.

3.19 Hebron (063)

Well Description

The Hebron (063) observation well is located near Dayton, Yarmouth County. The well was constructed in 1989 to expand the NS Groundwater Observation Well Network. The well is completed in slate and is 45.7 m deep with 12.2 m of casing. Well location and construction information is provided in Table 3.19 and the well log is provided in Appendix A.

The location of the Hebron (063) observation well is shown in Figure F.19, Appendix F. It is situated in a rural area and the surrounding land use is primarily residential. The well is located approximately 100 m from Lake Milo and 1,000 m from the ocean. The nearest water well is a domestic well located approximately 90 m away.

Table 3.19: Hebron (063) Well Construction Information

Well Name	Hebron (063)
Observation Well ID Number	063
NSE Well Log Number	891721
County	Yarmouth
Nearest Community	Dayton
UTM - Easting	250697
UTM - Northing	4862322
Year Monitoring Started	1990
Casing Depth (m, bgs)	12.2
Well Depth (m, bgs)	45.7
Elevation - top of casing (m, asl)	23.89
Geologic Unit	Whiterock Formation
Aquifer Material	Bedrock - slate

The water level graphs for Hebron (063) are shown in Figure B.19, Appendix B. This well has been monitored since 1990 and water levels have been relatively constant, although there appears to be a slight increase in the average water level (up by about 0.3 m) since the 1990's. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

The average water level elevation at the Hebron (063) well in 2009 was 21.70 m above sea level and the annual water level fluctuation is about 1.23 m. The average depth to water in this well is about 2.2 m below ground surface and the hourly water level data shows tidal fluctuations of approximately 0.05 m.

The 2009 water levels were generally within the historically observed water level range for this well, however, historical highs were exceeded several times throughout 2009, in January, February, March, July, August, October, and December.

Monitoring Results - Water Chemistry and Temperature

The Hebron (063) well was not sampled in 2009. Previous water chemistry results from 2005 and 2008 are presented in Appendix C. The results indicate that no health-based drinking water guidelines were exceeded; however, the aesthetic drinking water guidelines were exceeded for turbidity, iron and manganese. In addition, the low pH in this well did not meet the aesthetic guideline in the 2005 sample and was equal to the guideline in the 2008 sample. The elevated turbidity levels in this well are expected due to the high iron and manganese levels. Note that the ion balance error reported in the general chemistry analysis was 23% in 2005 and 13% in 2008, which exceeds the generally acceptable level of 5% and, therefore, these results should be viewed with caution. VOCs, pesticides and perchlorate were not detected at this well.

The tritium level in this well was 4.6 TU, indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at the Hebron (063) well was 8.84 °C, with annual fluctuations between 6.30 and 11.43 °C. A graph of the average daily temperature in this well is provided in Appendix D.

3.20 Margaree (064)

Well Description

The Margaree (064) observation well is located near the community of Margaree Valley, Inverness County. The well was constructed in January 1990 to expand the NS Groundwater Observation Well Network. The well is completed in a bedrock aquifer and is 45.7 m deep with 12.2 m of casing. Well location and construction information is provided in Table 3.20 and the well log is provided in Appendix A.

The location of the Margaree (064) observation well is shown in Figure F.20a, Appendix F. The well is situated 1.5 km northwest of the town of Margaree Valley. It is located at the end of a field (see Figure F.20b), 25 m from the northeast branch of the Margaree River, where Nova Scotia Environment has a surface water quality station and Environment Canada has a hydrometric station that measures river water levels. The land surrounding the well is used for growing hay.

Table 3.20: Margaree (064) Well Construction Information

Well Name	Margaree (064)
Observation Well ID Number	064
NSE Well Log Number	902524
County	Inverness
Nearest Community	Margaree Valley
UTM - Easting	655717
UTM - Northing	5137031
Year Monitoring Started	1990
Casing Depth (m, bgs)	12.2
Well Depth (m, bgs)	45.7
Elevation - top of casing (m, asl)	46.5
Geologic Unit	Windsor Group
Aquifer Material	Bedrock-conglomerate

The water level graphs for Margaree (064) are shown in Figure B.20, Appendix B. This well has been monitored since 1990 and water levels appear to have remained relatively consistent over time. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

From 1990 until 1998 the average water level elevation was 42.87 m above sea level. The average water level elevation for the period when monitoring resumed in 2006 to the end of 2009 was 42.66 m above sea level, with water level fluctuations of about 1 m. In 2009, the average depth to water in this well was approximately 45 m below ground surface.

The 2009 water levels at this observation well were within the range previously observed, but were near historical lows for most of the year.

Monitoring Results - Water Chemistry and Temperature

The Margaree (064) well was not sampled in 2009. Previous water chemistry results from 2006 and 2008 are presented in Appendix C. The results indicate that no drinking water guidelines were exceeded. VOCs and pesticides were not detected.

The tritium level in this well was 0.41 TU (+/-0.14), indicating that the water in this well is old water (i.e., recharge occurred before 1952).

The average groundwater temperature at this well was 7.80 °C, with annual fluctuations between approximately 6.84 and 9.01 °C. A graph of the average daily temperature in this well is presented in Appendix D.

3.21 Ingonish (065)

Well Description

The Ingonish (065) observation well is located near the community of Ingonish Beach, Victoria County. The well was constructed in December 1989 to expand the NS Groundwater Observation Well Network. The well is completed in a bedrock aquifer and is 45.7 m deep with 12.2 m of casing. Well location and construction information is provided in Table 3.21 and the well log is provided in Appendix A.

The location of the Ingonish (065) observation well is shown in Figure F.21a, Appendix F. The well is situated on the Highlands Links golf course, within the Cape Breton Highlands Park. It is located 1.5 km south of Ingonish Centre and is approximately 30 m north west of Clyde Burn Brook. The well is in a forested area, adjacent to a small storage building (see site photograph in Figure F.21b).

Table 3.21: Ingonish (065) Well Construction Information

Well Name	Ingonish (065)
Observation Well ID Number	065
NSE Well Log Number	892288
County	Victoria
Nearest Community	Ingonish Beach
UTM - Easting	698083
UTM - Northing	5170473
Year Monitoring Started	1990
Casing Depth (m, bgs)	12.2
Well Depth (m, bgs)	45.7
Elevation - top of casing (m, asl)	7.0
Geologic Unit	Early Devonion Granodiorite
Aquifer Material	Bedrock - granodiorite

The water level graphs for Ingonish (065) are shown in Figure B.21, Appendix B. This well has been monitored since November 1990 and water levels appear to have remained relatively consistent over time. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

The average water level elevation at this well in 2009 was 1.94 m above sea level with annual fluctuations up to approximately 2 m. The average depth to water in this well is 4.7 m below ground surface.

The 2009 water levels were generally within the historically observed water level range for this well, although the historical highs were exceeded a few times throughout the year, in April, July, and October. Water levels also declined to historical lows in May and June 2009.

Monitoring Results - Water Chemistry

The Ingonish (065) well was sampled in 2009 and the water chemistry results are presented in Appendix C. The results indicate that health-based no drinking water guidelines were exceeded; however, the results indicate a sodium concentration of 8000 mg/l, which exceeds the aesthetic guideline of 200 mg/l. Note that the ion balance error reported in the general chemistry analysis was 10%, which exceeds the generally acceptable level of 5% and, therefore, these results should be viewed with caution. VOCs and pesticides were not detected.

The average groundwater temperature at this well is approximately 6.55 °C, with annual fluctuations between 5.79 and 6.88 °C. A graph of the average daily temperature in this well is presented in Appendix D.

3.22 Debert (068)

Well Description

The Debert (068) observation well is located near the community of Debert, Colchester County. The well was constructed in August 1983 as a domestic water supply and was added to the NS Observation Well Network in 1993 to expand the network. The well is completed in a bedrock aquifer comprised of conglomerate. It is 46.6 m deep and has 7.9 m of casing. Well location and construction information is provided in Table 3.22 and the well log is provided in Appendix A.

The location of the Debert (068) observation well is shown in Figure F.22, Appendix F. The well is situated within the Debert Industrial Park, north of Highway 104. It is located in a cleared area beside a parking lot.

Table 3.22: Debert (068) Well Construction Information

Well Name	Debert (068)
Observation Well ID Number	068
NSE Well Log Number	832002
County	Colchester
Nearest Community	Debert
UTM - Easting	466921
UTM - Northing	5028483
Year Monitoring Started	1993
Casing Depth (m, bgs)	7.9
Well Depth (m, bgs)	46.6
Elevation - top of casing (m, asl)	28.4
Geologic Unit	Wolfville Formation
Aquifer Material	Bedrock-conglomerate

The water level graphs for Debert (068) are shown in Figure B.22, Appendix B. Monitoring began at this well in 1993; however, there is a gap in monitoring data between 1996 and 2006. The average water level in this well appears to have increased by approximately 1.5 m between 2006 and 2009. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

From June 1993 until June 1995 the average water level elevation was approximately 24.0 m above sea level, with an annual variation of up to approximately 3.2 m. The average water level elevation in 2009 was 25.45 m above sea level, with an annual variation of 3 m. In 2009 the depth to water in this well ranged between 1.4 and 4.4 m below ground surface.

The 2009 water levels at this well remained at the historical high level throughout most of the year, from January to August. The water level dropped to historical lows in September then increased to meet the historical high again in November.

Monitoring Results - Water Chemistry and Temperature

The Debert (068) well has not been sampled and, therefore, water chemistry results are not available. The average groundwater temperature at this well is approximately 8.09 °C, with annual fluctuations between approximately 6.39 and 9.76 °C. A graph of the daily average temperature in this well is presented in Appendix D.

3.23 Dalem Lake (069)

Well Description

The Dalem Lake (069) observation well is located near the community of New Dominion, Victoria County. This well was drilled in 1992 to expand the Groundwater Observation Well Network. The well is completed in a sandstone aquifer and is 61.0 m deep with 12.4 m of casing. Well location and construction information is provided in Table 3.23.

The location of the Dalem Lake (069) observation well is shown in Figure F.23, Appendix F. The well is located approximately 75 m south of the 105 Trans Canada Highway. There are no other wells in the nearby area and the surrounding land has recently been logged.

Table 3.23: Dalem Lake (069) Well Construction Information

Well Name	Dalem Lake (069)
Observation Well ID Number	069
NSE Well Log Number	943326
County	Victoria
Nearest Community	New Dominion
UTM - Easting	698221
UTM - Northing	5124576
Year Monitoring Started	1992
Casing Depth (m, bgs)	12.4
Well Depth (m, bgs)	61.0
Elevation - top of casing (m, asl)	93.8
Geologic Unit	South Bar Formation
Aquifer Material	Bedrock - sandstone

The water level graphs for Dalem Lake (069) are shown in Figure B.23, Appendix B. This well has been monitored since 1992 and water levels have remained relatively consistent. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

The average water level elevation at this well in 2009 was 86.85 m above sea level, with approximately 1 m of annual water level fluctuation. The depth to water in this well in 2009 was approximately 7 m below ground surface.

The 2009 water levels were essentially within the historically observed range for this well. 2009 levels did exceed historical highs several times throughout the year, in March, April, July, October, and December and also declined to historical lows in January, April, May, and June.

Monitoring Results - Water Chemistry and Temperature

The Dalem Lake (069) well was not sampled in 2009. Previous water chemistry results from 2006 and 2008 are presented in Appendix C. The results indicate that no health-based drinking water guidelines were exceeded; however, manganese was above the aesthetic guideline in both the 2006 and the 2008 samples. VOCs and pesticides were not detected.

The tritium level in this well was 3.61 TU (+/- 0.30), indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at this well was 8.10 °C, with annual fluctuations between approximately 6.39 and 9.76 °C. A graph of the average daily temperature in this well is presented in Appendix D.

3.24 Amherst (071)

Well Description

The Amherst (071) observation well is located near the Town of Amherst, Cumberland County. It was drilled in July 1986 as a test well for the Town of Amherst's wellfield and was originally named "Test Hole No. 86-9". The well is completed in a sandstone aquifer and is 116.5 m deep with 5.8 m of casing. Well location and construction information is provided in Table 3.24 and the well log is provided in Appendix A.

The location of the Amherst (071) observation well is shown in Figure F.24, Appendix F. The well is situated in a field approximately 175 m northwest of Route 66 (Tyndal Road). There are two domestic wells within 125 m of this observation well and the Town of Amherst's wellfield is located nearby.

Table 3.24: Amherst (071) Well Construction Information

Well Name	Amherst (071)
Observation Well ID Number	071
NSE Well Log Number	862667
County	Cumberland
Nearest Community	Amherst
UTM - Easting	411279
UTM - Northing	5079213
Year Monitoring Started	1993
Casing Depth (m, bgs)	5.8
Well Depth (m, bgs)	116.5
Elevation - top of casing (m, asl)	17.8
Geologic Unit	Balfron Formation
Aquifer Material	Bedrock - sandstone

The water level graphs for Amherst (071) are shown in Figure B.24, Appendix B. Monitoring began at this well in 1993 and water levels appear to have remained relatively consistent; however, there is no data for the period between 1996 and 2006 and, therefore, the variability of the water level at this well is somewhat uncertain. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

The average water level elevation at this well in 2009 was 15.29 m above sea level, with an annual fluctuation of approximately 1 m. The depth to water in this well is approximately 2.5 m below ground surface.

The 2009 water levels were within the range historically observed for this well. Water levels reached the historical high throughout April, declined to meet the historical low in early June, then increased gradually to reach the historical high again throughout October and November.

Monitoring Results - Water Chemistry and Temperature

The Amherst (071) well was sampled in 2006 and 2009. Water chemistry results are presented in Appendix C. The results indicate that no drinking water guidelines were exceeded. VOCs and pesticides were not detected.

The tritium level in this well was 4.0 TU (+/- 0.32), indicating that the water in this well is either a mix of old and recent water (i.e., recharge occurred before and after 1952) or is recent water (i.e., recharge occurred after 1952).

The average groundwater temperature at this well was 7.34°C, with annual fluctuations between approximately 6.16 and 8.65 °C. A graph of the average daily temperature in this well is presented in Appendix D.

3.25 Kelley River (073)

Well Description

The Kelley River (073) observation well is located near the community of River Herbert, Cumberland County. This well was drilled as part of a hydrogeological investigation of the Kelley River Basin in 1972 (Hennigar, 1974). This well is referred to as "Observation well No.2" In the report entitled "Hydrogeology of the Kelley River IHD Benchmark Basin Cumberland County, NS" (Hennigar, 1974). The well is completed in a sandstone aquifer and is approximately 11.6 m deep with 4.2 m of casing. Well location and construction information is provided in Table 3.25 and the well log is provided in Appendix A.

Table 3.25: Kelley River (073) Well Construction Information

Well Name	Kelley River (073)
Observation Well ID Number	073
NSE Well Log Number	721858
County	Cumberland
Nearest Community	River Herbert
UTM - Easting	386806
UTM - Northing	5049171
Year Monitoring Started	2006
Casing Depth (m, bgs)	4.2
Well Depth (m, bgs)	11.6
Elevation - top of casing (m, asl)	33.1
Geologic Unit	Malagash Formation
Aquifer Material	Bedrock - sandstone

Notes: bgs = below ground surface; asl = above sea level

The location of the Kelley River (073) observation well is shown in Figure F.25, Appendix F. The well is located within the Chignecto Game Sanctuary, 13 km from the Boars Back Ridge Road. It is in a wooded area and is located 18 m from Nova Scotia Environment's surface water quality station and Environment Canada's hydrometric station on Kelley River.

The water level graphs for Kelley River (073) are shown in Figure B.25, Appendix B. This well has been monitored since 2006 and water levels appear to have remained relatively consistent. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

The average water level elevation up to the end of November 2009 was 31.64 m above sea level, with an annual fluctuation of approximately 1m. The average depth to water was 1.5 m below ground surface. The 2009 water levels were consistent with previous water levels observed at this well.

Monitoring Results - Water Chemistry and Temperature

The Kelley River (073) well was not sampled in 2009. Water chemistry results for 2007 are presented in Appendix C. The results indicate that no drinking water guidelines were exceeded. VOCs and pesticides were not detected.

The tritium level in this well was 3.78 TU (+/- 0.32), indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at this well was 6.78 °C, with annual fluctuations between approximately 4.30 and 7.17 °C. A graph of the average daily temperature in this well is presented in Appendix D.

3.26 Atlanta (074)

Well Description

The Atlanta (074) observation well is located near the community of Atlanta, Kings County. The well was constructed in 2007 as part of a aquifer evaluation project completed by Nova Scotia Department of Environment and Labour. The well is completed in a sandstone aquifer and is 53.4 m deep with 36.0 m of casing. Well location and construction information is provided in Table 3.26 and the well log is provided in Appendix A. A 72-hour pumping test conducted at this well in 2007 indicated a transmissivity of 105 m²/day, hydraulic conductivity of 5.7 m/day and a safe yield of 1227 m³/day (188 igpm).

Table 3.26: Atlanta (074) Well Construction Information

Well Name	Atlanta (074)			
Observation Well ID Number	074			
NSE Well Log Number	070613			
County	Kings			
Nearest Community	Atlanta			
UTM - Easting	381956			
UTM - Northing	5000758			
Year Monitoring Started	2008			
Casing Depth (m, bgs)	36.0			
Well Depth (m, bgs)	53.4			
Elevation - top of casing (m, asl)	NA			
Geologic Unit	Blomidon Formation			
Aquifer Material	Bedrock - sandstone			

Notes: bgs = below ground surface; asl = above sea level

The location of the Atlanta (074) observation well is shown in Figure F.26a, Appendix F. The well is located approximately 250 m south of Bains Road and is surrounded by undeveloped land in a wooded area. It is located 150 m from the nearest domestic well and 150 m from the Habitant River.

The water level graphs for Atlanta (074) are shown in Figure B.26, Appendix B. This well has been monitored since May 2008. The average water level elevation up to the end of 2009 was 8.62 m above sea level, with an annual fluctuation of approximately 0.4 m. The average depth to water throughout this period was 2.38 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The Atlanta (074) well was not sampled in 2009. Previous water chemistry results from 2007 are presented in Appendix C. The results indicate that the health-based drinking water guideline was exceeded for uranium. VOCs and pesticides were not detected.

The average groundwater temperature in 2009 was 5.54 °C, with an annual temperature range between 4.58 °C and 6.55 °C. A graph of the average daily temperature in this well is presented in Appendix D.

3.27 Sheffield Mills (075)

Well Description

The Sheffield Mills (075) observation well is located near the community of Sheffield Mills, Kings County. The well was constructed in 2007 as part of a aquifer evaluation project completed by Nova Scotia Department of Environment and Labour. The well is completed in a sandstone aquifer and is 53.4 m deep with 19.2 m of casing. Well location and construction information is provided in Table 3.27 and the well log is provided in Appendix A. A 72-hour pumping test conducted at this well in 2007 indicated a transmissivity of 72.4 m²/day, hydraulic conductivity of 5.7 m/day and a safe yield of 371 m³/day (57 igpm).

Table 3.27: Sheffield Mills (075) Well Construction Information

Well Name	Sheffield Mills (075)			
Observation Well ID Number	075			
NSE Well Log Number	070618			
County	Kings			
Nearest Community	Sheffield Mills			
UTM - Easting	384693			
UTM - Northing	5000590			
Year Monitoring Started	2008			
Casing Depth (m, bgs)	19.2			
Well Depth (m, bgs)	53.4			
Elevation - top of casing (m, asl)	NA			
Geologic Unit	Wolfville Formation			
Aquifer Material	Bedrock - sandstone			

Notes: bgs = below ground surface; asl = above sea level

The location of the Sheffield Mills (075) observation well is shown in Figure F.27a, Appendix F. The well is located south of Highway 221 in an active agricultural field which is used for growing vegetables (see Figure F.27b). It is located 165 m from the Habitant River and there are several houses with domestic wells located within 300 m.

The water level graphs for Sheffield Mills (075) are shown in Figure B.27, Appendix B. This well has been monitored since May 2008. The average water level elevation up to the end of 2009 was 3.40 m above sea level, with an average annual fluctuation of 0.57 m. The average depth to water throughout this period was 5.7 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The Sheffield Mills (075) well was not sampled in 2009. Previous water chemistry results from 2007 are presented in Appendix C. The results indicate that no drinking water guidelines were exceeded. VOCs and pesticides were not detected.

The average groundwater temperature at this well in 2009 was 8.46 °C, with a temperature range between 8.13 °C and 8.98 °C. A graph of the average daily temperature in this well is presented in Appendix D.

3.28 Fall River (076)

Well Description

The Fall River (076) observation well is located in the community of Fall River, Halifax County. The well was constructed in February 2008 by NSE and NSDNR to expand the Groundwater Observation Well Network. The well is completed in a slate aquifer and is 61.0 m deep with 13.1 m of casing. Well location and construction information is provided in Table 3.28 and the well log is provided in Appendix A. A 4-hour constant rate pumping test was conducted at this well in 2008 by NSDNR (Kennedy et al., 2009). The results indicated a transmissivity of 0.07 m²/day, hydraulic conductivity of 1.21 x 10⁻³ m/day and an estimated safe yield of 2.13 m³/day (0.3 igpm).

Table 3.28: Fall River (076) Well Construction Information

Well Name	Fall River (076)			
Observation Well ID Number	076			
NSE Well Log Number	080824			
County	Halifax			
Nearest Community	Fall River			
UTM - Easting	450243			
UTM - Northing	4962226			
Year Monitoring Started	2008			
Casing Depth (m, bgs)	13.1			
Well Depth (m, bgs)	61.0			
Elevation - top of casing (m, asl)	108.67			
Geologic Unit	Halifax Formation			
Aquifer Material	Bedrock - slate			

Notes: bgs = below ground surface; asl = above sea level

The location of the Fall River(076) observation well is shown in Figure F.28a, Appendix F, and a photograph of the well is shown in Figure F.28b. The well is located in a ball field in a subdivision development and is within 100 m of the nearest domestic well.

The water level graphs for Fall River (076) are shown in Figure B.28, Appendix B. This well has been monitored since March 2008. The average water level elevation since monitoring began was 104.47 m above sea level with water level fluctuations up to 5 m. The average depth to water was 4.20 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well. The water levels in 2009 were generally within the range previously recorded in 2008.

Monitoring Results - Water Chemistry and Temperature

The Fall River (076) well was not sampled in 2009. Previous water chemistry results from 2008 are presented in Appendix C. The results indicate that no health-based drinking water guidelines were exceeded, however, three aesthetic drinking water guidelines were exceeded, including pH, iron and manganese. VOCs and pesticides were not detected.

The average groundwater temperature at this well since monitoring began was 8.09 °C, with fluctuations between 7.05 and 9.33 °C. A graph of the average daily temperature in this well is presented in Appendix D.

3.29 West Northfield (077)

Well Description

The West Northfield (077) observation well is located adjacent to the LaHave River in the community of West Northfield, Lunenburg County. The well was constructed in March 2008 by NSE to expand the Groundwater Observation Well Network. The well is completed in a slate aquifer and is 48.8 m deep with 12.8 m of casing. Well location and construction information is provided in Table 3.29 and the well log is provided in Appendix A. A 5-hour pumping test (i.e., step-test) was conducted at this well in 2008 by NSDNR (Kennedy et al., 2009). The results indicated a transmissivity of 0.44 m²/day, hydraulic conductivity of 1.44 X 10⁻² m/day and an estimated safe yield of 10.53 m³/day (1.6 igpm).

Table 3.29: West Northfield (077) Well Construction Information

Well Name	West Northfield (077)		
Observation Well ID Number	077		
NSE Well Log Number	080132		
County	Lunenburg		
Nearest Community	West Northfield		
UTM - Easting	373416		
UTM - Northing	4922807		
Year Monitoring Started	2008		
Casing Depth (m, bgs)	12.8		
Well Depth (m, bgs)	48.8		
Elevation - top of casing (m, asl)	50.84		
Geologic Unit	Halifax Formation		
Aquifer Material	Bedrock - slate		

Notes: bgs = below ground surface; asl = above sea level

The location of the West Northfield (077) observation well is shown in Figure F.29a, Appendix F, and a photograph of the well is shown in Figure F.29b. The well is located adjacent to the LaHave River (within 50 m of the river) beside a bridge that crosses the LaHave. It is located within 100 m from the nearest domestic well. Note that surface water flow data is also collected at this location

of the LaHave River as part of the Canada/Nova Scotia Hydrometric Program.

Monitoring Results - Water Levels

The water level graphs for Fall River (077) are shown in Figure B.29, Appendix B. This well has been monitored since May 2008. The average water level elevation since monitoring began was 49.63 m above sea level, with fluctuations of approximately 1 m. The average depth to water was 1.2 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The West Northfield (077) well was not sampled in 2009. Previous water chemistry results from 2008 are presented in Appendix C. The results indicate that no health-based drinking water guidelines were exceeded, however, the aesthetic drinking water guideline for manganese was exceeded. VOCs and pesticides were not detected.

The average groundwater temperature in 2009 was 8.10 °C, with fluctuations between approximately 7.30 and 8.63°C. A graph of the average daily temperature in this well is presented in Appendix D.

3.30 Musquodoboit Harbour (078)

Well Description

The Musquodoboit Harbour (078) observation well is located adjacent to the Musquodoboit River in the community of Musquodoboit Harbour, Halifax County. The well was constructed in March 2008 by NSE and NSDNR to expand the Groundwater Observation Well Network. The well is completed in a slate aquifer and is 61.0 m deep with 27.1 m of casing.

Well location and construction information is provided in Table 3.30 and the well log is provided in Appendix A. A 1.5-hour constant rate pumping test was conducted at this well in 2008 by NSDNR (Kennedy et al., 2009). The results indicated a transmissivity of 0.010 m²/day, hydraulic conductivity of 1.5 X 10⁻⁴ m/day and an estimated safe yield of 0.31 m³/day (0.05 igpm). Note that this well is completed in bedrock, however, there is a sand and gravel layer that is approximately 25 m thick which overlies the bedrock at this location. During drilling, it was estimated that the yield of this overlying sand and gravel aquifer was approximately 1,300 m³/day (200 igpm).

Table 3.30: Musquodoboit Harbour (078) Well Construction Information

Well Name	Musquodoboit Harbour (078)		
Observation Well ID Number	078		
NSE Well Log Number	080861		
County	Halifax		
Nearest Community	Musquodoboit Harbour		
UTM - Easting	488125		
UTM - Northing	4959880		
Year Monitoring Started	2008		
Casing Depth (m, bgs)	27.1		
Well Depth (m, bgs)	61.0		
Elevation - top of casing (m, asl)	7.71		
Geologic Unit	Halifax Formation		
Aquifer Material	Bedrock - slate		

Notes: bgs = below ground surface; asl = above sea level

The location of the Musquodoboit Harbour (078) observation well is shown in Figure F.30a, Appendix F, and a photograph of the well is shown in Figure F.30b. The well is located on the edge of a ball field near a wetland and the Musquodoboit River (within 200 m of the river). It is located within 300 m from the nearest domestic well.

Monitoring Results - Water Levels

The water level graphs for Musquodoboit Harbour (078) are shown in Figure B.30, Appendix B. This well has been monitored since May 2008. The average water level elevation since monitoring began was 4.98 m above sea level with an annual water level fluctuation of approximately 2.5 m. The average depth to water is 2.73 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The Musquodoboit Harbour (078) well was not sampled in 2009. Previous water chemistry results from 2008 are presented in Appendix C. The results indicate that no drinking water guidelines were exceeded. VOCs and pesticides were not detected.

The average groundwater temperature at this well since monitoring began was 7.38 °C, with fluctuations between approximately 6.16 and 8.93°C. A graph of the average daily temperature in this well is presented in Appendix D.

3.31 Lewis Lake (079)

Well Description

The Lewis Lake (079) observation well is located in the Jerry Lawrence Provincial Park near the community of Lewis Lake, Halifax County. The well was constructed in 1969 as a water supply for the park and was converted to an observation well in 2008 because it was no longer in use as a water supply well.

The well is completed in a granite aquifer and is 77.0 m deep with 7.6 m of casing. Well location and construction information is provided in Table 3.31 and the well log is provided in Appendix A. A 3 hour pumping test (i.e., step-test) was conducted at this well in 2008 by NSDNR (Kennedy et al., 2009). The results indicated a transmissivity of 1.53 m²/day, hydraulic conductivity of 2.7x10⁻² m/day and an estimated safe yield of 57.31 m³/day (8.8 igpm).

Table 3.31: Lewis Lake (079) Well Construction Information

Well Name	Lewis Lake (079)
Observation Well ID Number	079
NSE Well Log Number	690090
County	Halifax
Nearest Community	Lewis Lake
UTM - Easting	433048
UTM - Northing	4948873
Year Monitoring Started	2008
Casing Depth (m, bgs)	7.6
Well Depth (m, bgs)	77.0
Elevation - top of casing (m, asl)	82
Geologic Unit	Late Devonian Granite
Aquifer Material	Bedrock - granite

Notes: bgs = below ground surface; asl = above sea level

The location of the Lewis Lake (079) observation well is shown in Figure F.31a, Appendix F, and a photograph of the well is shown in Figure F.31b. The well is located in a forested area within 100 m of Lewis Lake. The nearest domestic well is approximately 1,000 m away.

Monitoring Results - Water Levels

The water level graphs for Lewis Lake (079) are shown in Figure B.31, Appendix B. This well has been monitored since November 2008. The average water level elevation since monitoring began was 69.51 m above sea level with annual water level fluctuations of approximately 0.7 m. The average depth to water is 2.33 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The Lewis Lake (079) well was not sampled in 2009. Previous water chemistry results from 2008 are presented in Appendix C. The results indicate that health-based drinking water guidelines were exceeded for arsenic and fluoride, and aesthetic drinking water guidelines were exceeded for manganese. VOCs and pesticides were not detected.

The average groundwater temperature at this well in 2009 was 7.39 °C, with temperature fluctuations between 6.76 °C and 8.17 °C. A graph of the average daily temperature in this well is presented in Appendix D.

3.32 **Arisaig** (080)

Well Description

The Arisaig (080) observation well is located in Arisaig Provincial Park, near Arisaig in Antigonish County. The well was constructed in 1977 as a water supply for the park and was converted to an observation well in 2009 because it was no longer in use as a water supply well. The location of the Arisaig (080) observation well is shown in Figure F.32a, Appendix F.

The well is completed in a bedrock aquifer and is 91.5 m deep with 12.2 m of casing. Well location and construction information is provided in Table 3.32 and the well log is provided in Appendix A.

Table 3.32: Arisaig (080) Well Construction Information

Well Name	Arisaig (080)		
Observation Well ID Number	080		
NSE Well Log Number	770542		
County	Antigonish		
Nearest Community	Arisaig		
UTM - Easting	564737		
UTM - Northing	5067204		
Year Monitoring Started	2009		
Casing Depth (m, bgs)	12.2		
Well Depth (m, bgs)	91.5		
Elevation - top of casing (m, asl)	27.67		
Geologic Unit	Earltown Formation		
Aquifer Material	Bedrock - shale		

Notes: bgs = below ground surface; asl = above sea level

The water level graphs for Arisaig (080) are shown in Figure B.32, Appendix B. This well has been monitored since December 2009. The average water level elevation since monitoring began was 14.91 m above sea level, with a water level fluctuation of approximately 1.5 m. The average depth to water is 12.77 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The Arisaig (080) well was sampled in September 2009. Water chemistry results are presented in Appendix C. The results indicate that no health-based drinking water guidelines were exceeded; however, the water chemistry results indicate a pH does not meet the drinking water aesthetic objective. The pH at the Arisaig (080) well was 8.63 and Health Canada recommends a range from 6.5 to 8.5. VOCs and pesticides were not detected at the Arisaig (080) well, with the exception of a low level of toluene (2 ug/l). The drinking water guideline for toluene is 24 ug/L.

The chloride level in this well was 57 mg/L. Although this does not exceed the aesthetic objective of 250 mg/L, it is elevated above the typical background level for groundwater in coastal Nova Scotia (<50 mg/L). The ocean is about 0.5 km from this well and, therefore, the elevated chloride level may be due to seawater influence. The bromide/chloride ratio for this well was 35 (i.e., 0.2 mg/L/ 57mg/L x 10,000 = 35). This result indicates that the source of the chloride is sea water. Please see Section 2.2.4 for a discussion of how this ratio is used to assess salt sources.

The average groundwater temperature at this well since monitoring began was 7.82 °C. A graph of the average daily temperature in this well is presented in Appendix D.

3.33 Coldbrook (081)

Well Description

The Coldbrook (081) observation well is located in the Coldbrook Provincial Park near the community of Coldbrook, Kings County. The well was constructed in 1961 as a water supply for the park and was converted to an observation well in 2009 because it was no longer in use as a water supply well. The location of the Coldbrook (081) observation well is shown in Figure F.33a, Appendix F, and a photograph of the well is shown in Figure F.33b.

The well is completed in a bedrock aquifer and is 70.7 m deep with 52.4 m of casing. Well location and construction information is provided in Table 3.33 and the well log is provided in Appendix A. A 1 hour pumping test was conducted at this well in 1974. The results indicated a specific capacity of 6.29 m²/day and an estimated short-term safe yield of 26.18 m³/day (8.8 igpm).

Table 3.33: Coldbrook (081) Well Construction Information

Well Name	Coldbrook (081)		
Observation Well ID Number	081		
NSE Well Log Number	610135		
County	Kings		
Nearest Community	Coldbrook		
UTM - Easting	376149		
UTM - Northing	4991748		
Year Monitoring Started	2009		
Casing Depth (m, bgs)	52.4		
Well Depth (m, bgs)	70.7		
Elevation - top of casing (m, asl)	27		
Geologic Unit	Wolfville Formation		
Aquifer Material	Bedrock - sandstone		

Notes: bgs = below ground surface; asl = above sea level

The water level graphs for Coldbrook (081) are shown in Figure B.33, Appendix B. This well has been monitored since June 2009. The average water level elevation since monitoring began was 11.98 m above sea level with a water level fluctuation of approximately 1 m. The depth to water was approximately 15 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The Coldbrook (081) well was sampled in August 2009. Water chemistry results are presented in Appendix C. The results indicate that all parameters are within the drinking water guidelines. VOCs and pesticides were not detected.

The average groundwater temperature at this well since monitoring began was 8.05 °C. A graph of the average daily temperature in this well is presented in Appendix D.

3.34 Long Point (082)

Well Description

The Long Point (082) observation well is located in the Long Point Provincial Park near the community of Long Point, Inverness County. The well was constructed in 1974 as a water supply for the park and was converted to an observation well in 2009 because it was no longer in use as a water supply well. The location of the Long Point (082) observation well is shown in Figure F.34a, Appendix F, and a photograph of the well is shown in Figure F.34b.

The well is completed in a bedrock aquifer and is 18.6 m deep with 13.1 m of casing. Well location and construction information is provided in Table 3.34 and the well log is provided in Appendix A. A pumping test was conducted at this well in 1974. The results indicated a transmissivity of 3.6 m²/day and an estimated safe yield of 13.7 m³/day (2.1 igpm).

Table 3.34: Long Point (082) Well Construction Information

Well Name	Long Point (082)		
Observation Well ID Number	082		
NSE Well Log Number	742421		
County	Inverness		
Nearest Community	Long Point		
UTM - Easting	618131		
UTM - Northing	5074277		
Year Monitoring Started	2009		
Casing Depth (m, bgs)	13.1		
Well Depth (m, bgs)	18.5		
Elevation - top of casing (m, asl)	10.17		
Geologic Unit	Mabou Group		
Aquifer Material	Bedrock - mudstone/sandstone		

Notes: bgs = below ground surface; asl = above sea level

The water level graphs for Long Point (082) are shown in Figure B.34, Appendix B. This well has been monitored since August 2009. The average water level elevation since monitoring began was 8.48 m above sea level, with a water level fluctuation of approximately 0.5 m. The average depth to water was 1.69 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The Long Point (082) well was sampled in August 2009. Water chemistry results are presented in Appendix C. The results indicate that no drinking water guidelines were exceeded. VOCs and pesticides were not detected at the Long Point (082) well, with the exception of a low level of toluene (2 ug/l). The drinking water guideline for toluene is 24 ug/l.

The chloride level in this well was 61 mg/L. Although this level does not exceed the aesthetic objective of 250 mg/L, it is elevated above the typical background level for groundwater in coastal Nova Scotia (<50 mg/L). The bromide/chloride ratio for this well was >10 (i.e., 0.25 mg/L/61 mg/L x 10,000 = 41). This result indicates that the source of the chloride is formation salt, indicating the well may be influenced by the nearby Windsor Group/Carbonate bedrock. Please see Section 2.2.4 for a discussion of how this ratio is used to assess salt sources.

The average groundwater temperature at this well since monitoring began was 11.20 °C. A graph of the average daily temperature in this well is presented in Appendix D.

3.35 Tatamagouche (083)

Well Description

The Tatamagouche (083) observation well is located at the Tatamagouche Provincial Park, 1.5 km east of the community of Tatamagouche, Colchester County. The well was constructed in 1951 as a water supply for the park and was converted to an observation well in 2009 because it was no longer in use as a water supply well. The location of the Tatamagouche (083) observation well is shown in Figure F.35a, Appendix F.

The well is completed in a bedrock aquifer and is 24.5 m deep with an unknown casing length. Well location and construction information is provided in Table 3.35 and the well log is provided in Appendix A. A 22 hour pumping test was conducted at this well in 1974. The results indicated a transmissivity of 1.72 m²/day and an estimated safe yield of 13.09 m³/day (2.0 igpm).

Table 3.35: Tatamagouche (083) Well Construction Information

Well Name	Tatamagouche (083)		
Observation Well ID Number	083		
NSE Well Log Number	510124		
County	Colchester		
Nearest Community	Tatamagouche		
UTM - Easting	479226		
UTM - Northing	5061591		
Year Monitoring Started	2009		
Casing Depth (m, bgs)	unknown		
Well Depth (m, bgs)	24.5		
Elevation - top of casing (m, asl)	16		
Geologic Unit	Tatamagouche Formation		
Aquifer Material	Bedrock - sandstone/siltstone		

Notes: bgs = below ground surface; asl = above sea level

The water level graphs for Tatamagouche (083) are shown in Figure B.35, Appendix B. This well has been monitored since September 2009. The average water level elevation since monitoring began was 14.13 m above sea level with a water table fluctuation of approximately 1 m. The depth to water was approximately 1.9 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The Tatamagouche (083) well was not sampled in 2009. Water chemistry results from 2008 are presented in Appendix C. The results indicate that no health-based drinking water guidelines were exceeded; however, aesthetic drinking water guidelines were exceeded for colour, pH, turbidity, and manganese. VOCs and pesticides were not detected.

The average groundwater temperature at this well since monitoring began was 8.67 °C, ranging from 7.74 to 9.15 °C. A graph of the average daily temperature in this well is presented in Appendix D.

4.0 SUMMARY & CONCLUSIONS

4.1 Groundwater Levels

Table 4.1 presents a summary of groundwater level trends for each observation well and further details are provided in Appendix E. Trend analyses were only carried out on wells with at least ten years of "useable" water level data. A year was considered useable if data were available for at least 75% of the year. Thirteen of the observation wells had enough water level data available to complete trend analyses. The remaining 22 wells had either been monitored for less than ten years, or had data gaps that caused some years of monitoring data to be unuseable. Trends were considered statistically significant if the confidence level was greater than 80%.

The results indicate that seven of the wells exhibit statistically significant groundwater level trends, with three having small upward trends and four having small downward trends. The downward trends are larger than the upward trends, however, the size of the trends in all cases is relatively small.

Upward trends were observed at the following wells: Fraser Brook (004), Durham (045) and Hayden Lake (059). The largest upward trend was 1.8 cm/year at the Durham (045) observation well, which resulted in a total rise of approximately 0.7 m over the entire monitoring period at this well. The reason for the upward trends at these wells has not been determined, however, possible reasons include: increased precipitation; greater infiltration rates due to changes in land use; and, reduction in evapotranspiration rates.

Downward trends were observed at the following wells: Murray Siding (007), Wolfville (010), Kentville (048) and Sydney (050). The largest downward trend was 5.8 cm/year at the Sydney (050) observation well, which resulted in a total decline of approximately 1.2 m since monitoring began. The reason for the downward trends at these wells has not been confirmed, however, three of these observation wells are located in municipal wellfields and, therefore, groundwater levels in these areas are expected to have dropped due to wellfield pumping.

Table 4.1: Summary of Groundwater Level Trends

Well Name	Year Monitoring Started	No. of Usable Years ¹	Average Yearly Water Level Change (cm/year) ²	Total Water Level Change Since Monitoring Began (m)	Water Level Trend ³
Greenwood (003)	1966	21	NA	NA	No Trend
Fraser Brook (004)	1966	20	0.4	0.1	Up
Wilmot (005)	1966	19	NA	NA	No Trend
Murray Siding (007)	1967	13	-2.5	-1	Down
Wolfville (010)	1969	21	-2.3	-0.7	Down
Truro (014)	1971	17	NA	NA	No Trend
Monastery (028)	1976	11	NA	NA	No Trend
Point Aconi (030)	1976	17	NA	NA	No Trend
Lawrencetown (043)	1978	13	NA	NA	No Trend
Durham (045)	1979	24	1.8	0.7	Up
Kentville (048)	1980	16	-0.8	-0.6	Down
Sydney (050)	1984	15	-5.8	-1.2	Down
North Grant (054)	1987	8	NA	NA	Insufficient Data
Stillwater (055)	1987	7	NA	NA	Insufficient Data
Sheet Harbour (056)	1987	7	NA	NA	Insufficient Data
Hayden Lake (059)	1988	15	0.9	0.2	Up
Meteghan (060)	1987	9	NA	NA	Insufficient Data
Annapolis Royal (062)	1990	8	NA	NA	Insufficient Data
Hebron (063)	1990	8	NA	NA	Insufficient Data
Margaree (064)	1990	8	NA	NA	Insufficient Data
Ingonish (065)	1990	7	NA	NA	Insufficient Data
Debert (068)	1993	4	NA	NA	Insufficient Data
Dalem Lake (069)	1992	6	NA	NA	Insufficient Data
Amherst (071)	1993	3	NA	NA	Insufficient Data

Well Name	Year Monitoring Started	No. of Usable Years ¹	Average Yearly Water Level Change (cm/year) ²	Total Water Level Change Since Monitoring Began (m)	Water Level Trend ³
Kelley River (073)	2006	3	NA	NA	Insufficient Data
Atlanta (074)	2008	1	NA	NA	Insufficient Data
Sheffield Mills (075)	2008	1	NA	NA	Insufficient Data
Fall River (076)	2008	1	NA	NA	Insufficient Data
West Northfield (077)	2008	1	NA	NA	Insufficient Data
Musquodoboit Hbr (078)	2008	1	NA	NA	Insufficient Data
Lewis Lake (079)	2008	<1	NA	NA	Insufficient Data
Arisaig (080)	2009	<1	NA	NA	Insufficient Data
Coldbrook (081)	2009	<1	NA	NA	Insufficient Data
Long Point (082)	2009	<1	NA	NA	Insufficient Data
Tatamagouche (083)	2009	<1	NA	NA	Insufficient Data

Notes:

- 1. For a year to be considered a "useable" year, data must be available for at least 75% of the year.
- 2. Positive (+) values indicate upward trend and negative (-) values indicate downward trend.
- 3. The trend is considered to be statistically significant if the confidence level is 80% or more.
- 5. Insufficient data means there are less than 10 useable years of data available.

4.2 Groundwater Quality

Table 4.2 presents a summary of the groundwater quality results for each of the network's observation wells. Detailed chemistry results are available in Appendix C. The results indicate that seven of the 35 wells exceeded health-based drinking water guidelines. The parameters that exceeded health-based guidelines included: arsenic (at four wells), fluoride (one well), lead (one well), nitrate (one well) and uranium (one well). Most of these exceedances (including arsenic, fluoride and uranium) are associated with naturally-occurring contaminants that are known to occur in groundwater in certain areas of the province due to the presence of naturally-occurring minerals in the soil and bedrock. The nitrate exceedance that was observed at a well which is located in an agricultural area and is likely to be caused by human activity.

Nineteen of the 35 wells exceeded aesthetic drinking water guidelines. The parameters that exceeded aesthetic drinking water guidelines included: manganese (at 13 wells), iron (at seven wells), chloride (at one well), pH (at five wells), turbidity (at eight wells), colour (at one well) and sodium (at one well). The majority of these parameters are naturally-occurring water quality problems that are commonly encountered in water wells in Nova Scotia and elsewhere. Note that chloride was detected above background levels at five wells, including one well where the chloride level was above the aesthetic drinking water guideline. Based on the chemistry and location of these wells, it is expected that two of these wells have been impacted by road salt, two have been impacted by sea water intrusion, and one is impacted by naturally-occurring salt contained in the geologic formation.

The water quality results show that none of the observation wells exceeded drinking water guidelines for VOCs or pesticides. However, one VOC (toluene) was detected at three observation wells at low levels (i.e., 2 ug/L). The source of the toluene at these wells has not been determined; however, these wells are located beside roads so it may be due to gasoline runoff from roads. No pesticides were detected in any of the observation wells.

The groundwater temperature data collected at each observation well (see Appendix D) shows that all of the observation wells experience seasonal temperature fluctuations. The peak groundwater temperatures usually occur between September and January and the lowest temperatures usually occur between March and June. The temperature range at each observation well is variable,

however, the typical range is between 6°C and 10°C, with a typical average temperature of approximately 8°C.

Of the 17 observation wells that have been tested for tritium, 13 wells contained either recent water (recharged after 1952) or a mix of recent and old water (recharged before and after 1952). Only four of the seventeen wells tested for tritium contained purely old water (recharged before 1952). These results suggest that most of the wells draw water from aquifers are recharged relatively quickly. This is encouraging from a water quantity point of view because the aquifers are being regularly replenished with new water, however, it also indicates that the aquifers are vulnerable to contamination (i.e., contaminants released at the surface will be carried into the aquifer relatively quickly). This emphasizes the importance of source water protection in the province to ensure that groundwater is kept clean.

Table 4.2: Summary of Groundwater Quality Results

Well Name	Parameters Exceeding Health-Based Drinking Water Guidelines	Parameters Exceeding Aesthetic Drinking Water Guidelines	Comments
Greenwood (003)	None	pH, Turbidity, Iron, Manganese	None
Fraser Brook (004)	Arsenic	None	None
Wilmot (005)	Nitrate	Turbidity	None
Murray Siding (007)	Not sampled	Not sampled	Not sampled
Wolfville (010)	None	Turbidity, Iron, Manganese	Chloride exceeds background
Truro (014)	Not sampled	Not sampled	Not sampled
Monastery (028)	None	None	None
Point Aconi (030)	None	None	None
Lawrencetown (043)	Arsenic	None	Chloride exceeds background
Durham (045)	None	None	None
Kentville (048)	Lead	Chloride, Iron	None
Sydney (050)	None	Manganese	None
North Grant (054)	Arsenic	Turbidity, Iron	None
Stillwater (055)	None	Manganese	None
Sheet Harbour (056)	None	Manganese	Arsenic was detected at a level equal to the guideline (10 ug/L)
Hayden Lake (059)	None	рН	None
Meteghan (060)	None	Turbidity, Iron, Manganese,	None
Annapolis Royal (062)	None	Turbidity, Manganese	Toluene detected below guidelines
Hebron (063)	None	Turbidity, Iron, Manganese	None
Margaree (064)	None	None	None

Well Name	Parameters Exceeding Health-Based Drinking Water Guidelines	Parameters Exceeding Aesthetic Drinking Water Guidelines	Comments
Ingonish (065)	None	Sodium	None
Debert (068)	Not sampled	Not sampled	Not sampled
Dalem Lake (069)	None	Manganese	None
Amherst (071)	None	None	None
Kelley River (073)	None	None	None
Atlanta (074)	Uranium	None	None
Sheffield Mills (075)	None	None	None
Fall River (076)	None	pH, Iron, Manganese	None
West Northfield (077)	None	Manganese	None
Musquodoboit Hbr (078)	None	None	None
Lewis Lake (079)	Arsenic, Fluoride	Manganese	None
Arisaig (080)	None	рН	Toluene detected below guidelines; Chloride exceeds background
Coldbrook (081)	None	None	None
Long Point (082)	None	None	Toluene detected below guidelines; Chloride exceeds background
Tatamagouche (083)	None	pH, Turbidity, Manganese, Colour	None

Note: Some wells have been sampled multiple times. This table summarizes the most recent sample results.

5.0 REFERENCES

Baechler, F.E. 1986. Regional Water Resources Sydney Coalfield, Nova Scotia. Department of the Environment, Halifax.

Bottomley, D.J. 1983. Origins of Some Arseniferous Groundwaters in Nova Scotia and New Brunswick, Canada. Canada Journal of Hydrology, 69: 223-257.

Callan, D.M. 1977. Groundwater Exploration and Testing Programme - Annapolis Valley Industrial Park, Kentville, N.S.

Clark I.D. and P. Fritz. 1997. Environmental Isotopes in Hydrogeology. Lewis Publishers, Boca Raton.

Cross, H.J. 1980. Report on Test Drilling, Upper Lawrencetown, Halifax County, Nova Scotia. Department of the Environment, Water Planning and Management Division, Halifax.

Environment Canada. 2007. Canadian Climate Normals Online. http://climate.weatheroffice.ec.gc.ca

Gibb, J.E., and K.A. McMullin. 1980. Regional Water Resources, Pictou County, Nova Scotia. Nova Scotia Department of the Environment.

Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. John Wiley & Sons.

Health Canada. 2007. Perchlorate and Human Health.

(Website: http://www.hc-sc.gc.ca/ewh-semt/water-eau/drink-potab/perchlorate_e.html)

Hennigar, T.W. 1966. Report on the geology and hydrology of the Fraser Brook Watershed, IHD-IWB-RB-23.

Hennigar, T.W. 1972. Hydrogeology of the Truro Area, Nova Scotia. Province of Nova Scotia Department of Mines, Groundwater Section report 72-1.

Hennigar, T.W. 1974. Hydrogeology of the Kelley River IHD Benchmark Basin, Cumberland County, Nova Scotia. Province of Nova Scotia Department of Environment.

Kennedy, G.W., K. G. Garroway and J. M. Drage. 2009. Hydrogeology program in Nova Scotia. Minerals Resources Branch Report of Activities 2008. Nova Scotia Department of Natural Resources. Report ME 2009-1.

McIntosh, J.R. 1984. Groundwater Hydrographs in Nova Scotia 1965-1981. Nova Scotia Department of the Environment.

NS Department of Natural Resources. In Progress. Mineral Resources Branch Report of Activities, 2009.

NS Environment and Labour. 2007. Nova Scotia Groundwater Observation Well Network - 2007 Report. Nova Scotia Department of Environment and Labour.

NS Environment. 2008. Nova Scotia Groundwater Observation Well Network - 2008 Report. Nova Scotia Department of Environment.

NS Environment. 2009. Nova Scotia Groundwater Observation Well Network - 2009 Report. Nova Scotia Department of Environment.

Rivard, C., D. Paradis, S.J. Paradis, A. Bolduc, R.H. Morin, S. Liao, S. Pullan, Gauthier, M.-J., S. Trepanier, A. Blackmore, I. Spooner, C. Deblonde, R. Fernandes, S. Castonguay, Y. Michaud, J. Drage, and C. Paniconi. In progress. Canadian Groundwater Inventory: Regional Hydrogeological Characterization of the Annapolis-Cornwallis Valley Aquifers. Geological Survey of Canada.

Strait of Canso Natural Environment Committee. 1975. Strait of Canso Natural Environment Inventory Water Resources

Trescott, P.C. 1968. Groundwater Resources and Hydrogeology of the Annapolis-Cornwallis Valley, Nova Scotia. Nova Scotia Department of Mines, Memoir 6.

Trescott, P.C. 1969. Wolfville aquifer evaluation, Kings County, Nova Scotia. Province of Nova Scotia Department of Mines, Groundwater Section Report 69-1.

APPENDIX A WELL LOGS

Table A-1: Summary of Observation Well Construction Information

Well#	Address	Community	County	Date	Well Depth	Casing Depth	Depth to Bedrock	Depth to Static Level	Water Yield	Driller	Type of Well
661225	NS OBS WELL - GREENWOOD (003)	GREENWOOD	KINGS	20-Jun-66	25	21.5	(II)	(ft)	(igpm)	1	DRILLED
661226	NS OBS WELL - FRASER BROOK (004)	LOWER HARMONY	COLCHESTER	11-Jul-66	60		2		5	1	DRILLED
661267	NS OBS WELL - WILMOT (005)	WILMOT	ANNAPOLIS	18-May-66	60	21				1	DRILLED
671074	NS OBS WELL - MURRAY SIDING (007)	MURRAYS SIDING	COLCHESTER	02-Aug-67	28	26	26			1	DRILLED
681252	NS OBS WELL - WOLFVILLE (010)	WOLFVILLE	KINGS	17-Dec-68	79	74.5	35			1	DRILLED
701431	NS OBS WELL - TRURO (014)	TRURO	COLCHESTER	16-Nov-70	300	60	35			1	DRILLED
			ANTIGONISH			00	33		40		
742420	NS OBS WELL - MONASTERY (028)	MONASTERY		01-Jan-74	520	40	44			1	DRILLED
761408	NS OBS WELL - POINT ACONI (030)	POINT ACONI UPPER	CAPE BRETON	11-Aug-76	100	42	14		10	45	DRILLED
771538	NS OBS WELL - LAWRENCETOWN (043)	LAWRENCETOWN	HALIFAX	16-Mar-77	175	145	10	4	8	83	DRILLED
772021	NS OBS WELL - KENTVILLE (048)	KENTVILLE	KINGS	20-May-77	400	100	95		150	20	DRILLED
771077	NS OBS WELL - SYDNEY (050)	SYDNEY	CAPE BRETON	09-Mar-77	330	22	13		250	45	DRILLED
782683	NS OBS WELL - DURHAM (045)	DURHAM	PICTOU	01-Jul-78	247		20		100	4	DRILLED
832002	NS OBS WELL - DEBERT (068)	DEBERT	COLCHESTER	13-Aug-83	153	26		112	10	6	DRILLED
871262	NS OBS WELL - NORTH GRANT (054)	LOWER NORTH GRANT	ANTIGONISH	30-Mar-87	150	43		14	20	2	DRILLED
871263	NS OBS WELL - STILLWATER (055)	STILLWATER	GUYSBOROUGH	01-Apr-87	118	44		30	4.5	2	DRILLED
871264	NS OBS WELL - SHEET HARBOUR (056)	BEAVER HARBOUR	HALIFAX	06-Apr-87	150	23		10	0.7	2	DRILLED
870189	NS OBS WELL - HAYDEN LAKE (059)	EAST JORDAN	SHELBURNE	31-Mar-87	160	20	10		3.7	210	DRILLED
870188	NS OBS WELL - METEGHAN (060)	METEGHAN RIVER	DIGBY	31-Mar-87	200	40			0.7	210	DRILLED
891721	NS OBS WELL - HEBRON (063)	DAYTON	YARMOUTH	19-Dec-89	150	40	3		45	210	DRILLED
891722	NS OBS WELL - ANNAPOLIS ROYAL (062)	LAKE LA ROSE	ANNAPOLIS	20-Dec-89	205	80	71		0.5	210	DRILLED
892288	NS OBS WELL - INGONISH (065)	INGONISH	VICTORIA	12-Dec-89	150	40			100	45	DRILLED
902524	NS OBS WELL - MARGAREE (064)	MARGAREE VALLEY	INVERNESS	16-Jan-90	150	40			10	45	DRILLED
943326	NS OBS WELL - DALEM LAKE (069)	NEW DOMINION	VICTORIA	01-Jan-92	200	40.5					DRILLED
862667	NS OBS WELL - AMHERST (071)	AMHERST	CUMBERLAND	29-Jul-86	382	20	15			32	DRILLED
721858	NS OBS WELL - KELLEY RIVER (073)	RIVER HEBERT	CUMBERLAND	01-Dec-71	50	13.6					DRILLED
070613	NS OBS WELL - ATLANTA (074)	ATLANTA	KINGS	29-Aug-07	175	118	112		100	307	DRILLED
070618	NS OBS WELL - SHEFFIELD MILLS (075)	SHEFFIELD MILLS	KINGS	29-Aug-07	175	63	16		60	307	DRILLED
080824	NS OBS WELL - FALL RIVER (076)	FALL RIVER	HALIFAX	28-Feb-08	200	43	3.5	12	1.5	695	DRILLED
080132	NS OBS WELL - WEST NORTHFIELD (077)	WEST NORTHFIELD	LUNENBURG	06-Mar-08	160	42	24		7	307	DRILLED
080861	NS OBS WELL - MUSQUODOBOIT HBR (078)	MUSQUODOBOIT HARBOUR	HALIFAX	06-Mar-08	200	89	81		0.5	734	DRILLED
690090	NS OBS WELL - LEWIS LAKE (079)	LEWIS LAKE	HALIFAX	11-Jun-69	250	25	20		6	3	DRILLED
770542	NS OBS WELL - ARISAIG (080)	ARISAIG	ANTIGONISH	05-Jul-77	300	40	30			15	DRILLED
610135	NS OBS WELL - COLDBROOK (081)	COLDBROOK	KINGS	01-Jan-61	232	172		45			DRILLED
742421	NS OBS WELL - LONG POINT (082)	LONG POINT	INVERNESS	01-Aug-74	61	43		7.5			DRILLED
510124	NS OBS WELL - TATAMAGOUCHE (083)	TATAMAGOUCHE	COLCHESTER	01-Jan-51	80.4					33	DRILLED
510124	INO ODO WELL - TATAWAGOUCHE (U83)	TA LAWIAGUUCHE	COLUMESTER	UI-Jan-51	oU.4					33	DKILLED

Well Report

NSEL Well No.

Well Type

661225 DRILLED

(Summary Log)

Environment and Labour						
Certified Well Contractor	r	Well Owner/Contractor Information				
Name MINES	Well Drilled For:	Owner NS DEPT. OF MINES				
Certificate No. 1	or Contractor/Bui	lder/Consultant, etc.				
Company N. S. DEPARTMENT OF MINE	Civic Address of	Civic Address of Well NS OBS WELL - GREENWOOD (003)				
	Lot Number	Subdivision				
	County KINGS	Postal Code				
	Nearest Commun	nity in Altlas/Map Book ATLAS GREENWOOD				
	Well Location					
NS Atlas or Map Book Reference :	NTS Map Reference :	GPS (WGS84 UTM) :				
Atlas or Map Book	Map Sheet 21H2	Northing (m) 4985498				
Map Page No.	Reference Map B	Easting (m) 350680				
Reference Letter	Tract No. 7	Property (PID)				
Reference Number	Claim M	Well Location Sketch Available				
Roamer Letter						
Roamer Number						
Depth in feet Prim	nary Lithology	Secondary Lithology				
From To Colour 1 Description 1	Lithology 1 Colour 2	Description 2 Lithology 2 Water Found				
0 25 FINE GRAINED	SAND	COARSE GRAIN SAND				
Well Construction Information	Dug Well Information	Weter Viold				
Well Construction Information	Dug Well Information	Water Yield				
Total depth below surface (ft) 25	Depth of liner (crock) (ft)	Estimated Yield (igpm)				
Depth to bedrock (ft)	Reservoir material	Method				
Water bearing fractures encountered at (ft):	Reservoir vol. (cu.yd)	Rate (igpm)				
Outer Well Casing:	Reservoir material size	Duration (hrs)				
From (ft) 0 To (ft) 22	Apron Material	Depth to water at end of test (ft)				
110111 (11)						
l	Apron depth (ft)	Total drawdown (ft)				
Diameter (in) 4.5	Apron thickness (ft)					
Diameter (in) 4.5 Length of casing above ground :	Apron thickness (ft) Apron width (ft)	Total drawdown (ft)				
	Apron thickness (ft) Apron width (ft) Apron volume (cu.yd)	Total drawdown (ft) Water level recovered to (ft)				
Length of casing above ground :	Apron thickness (ft) Apron width (ft)	Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs)				
Length of casing above ground : (ft) (in) Driveshoe make	Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft)				
Length of casing above ground : (ft) (in) Driveshoe make	Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow				
Length of casing above ground : (ft) (in) Driveshoe make	Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow Well Status/Water Use/Date Completed				
Length of casing above ground : (ft) (in) Driveshoe make	Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL				

Well Report

NSEL Well No.

661226 DRILLED

Well Type

Environment and Labour

(Summary Log)

Certified Well Contractor		1		Well Owner/0	Contractor Inform	nation		
Columba Well Collination				violi o viiloi,	John Gold Hillorn	lation		
Name MINES		Well Drill	led For: (Owner	NS D	EPT. OF MINES		
Certificate No. 1			or Contractor/Builder/Consultant, etc.					
Company N. S. DEPARTMENT OF MINES			Civic Address of Well NS OBS WELL - FRASER BROOK (004)					
		Lot Numl	ber 🗀	Subdivisio	n			
		County	COLCH	IESTER	Postal	Code		
		Nearest	Commur	nity in Altlas/Map Be	ook ATLAS	LOWER HARMONY		
	\A/-II			,,				
NO Alles on Man Book Before as		Location		000 4	MOOO 4 LITM)			
NS Atlas or Map Book Reference :	NTS Map Reference				WGS84 UTM) :	5004400		
Atlas or Map Book	Map Sheet	11E6		Northin		5021100		
Map Page No. Reference Letter	Reference Map	A		Easting	g (m)	486889		
	Tract No.	81		Proper	ty (PID)			
Reference Number	Claim	J		Well Lo	ocation Sketch A	vailable		
Roamer Letter Roamer Number	,					_		
	ary Lithology			Secondary	Lithology			
From To Colour 1 Description 1	Lithology 1	Col	lour 2	Description 2	Lithology 2	2 Water Found		
0 2 REDDISH SANDY	TILL							
	SII TSTONE	GPA	V I	AVEDS	SII TSTONE			
6 60 REDDISH LAMINATED	SILTSTONE	GRA	AY I	_AYERS	SILTSTONE			
	SILTSTONE	GRA	AY I	_AYERS	SILTSTONE			
	SILTSTONE	GRA	AY I	AYERS	SILTSTONE			
	SILTSTONE Dug Well Ir		AY I	AYERS	SILTSTONE Water	Yield		
6 60 REDDISH LAMINATED		nformation	AY I					
6 60 REDDISH LAMINATED Well Construction Information	Dug Well Ir	nformation ock) (ft)	AY I	Esti	Water \			
6 60 REDDISH LAMINATED Well Construction Information Total depth below surface (ft) 60	Dug Well Ir Depth of liner (cro	nformation ock) (ft)	AY I	Esti Met	Water ` mated Yield (igp	m) 6.5 PUMP TEST		
Well Construction Information Total depth below surface (ft) Depth to bedrock (ft) 2	Dug Well Ir Depth of liner (cro Reservoir materia	nformation ock) (ft) al	AY I	Esti Met Rat	Water \mated Yield (igp hod e (igpm)	m) 6.5 PUMP TEST 5		
Well Construction Information Total depth below surface (ft) Depth to bedrock (ft) 2	Dug Well Ir Depth of liner (cro Reservoir materia Reservoir vol. (cu	nformation ock) (ft) al	AY I	Esti Met Rat Dur	Water wated Yield (igphode (igpm) ation (hrs)	m) 6.5 PUMP TEST 5		
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft):	Dug Well Ir Depth of liner (cro Reservoir materia Reservoir vol. (cu Reservoir materia	nformation ock) (ft) al	AY I	Esti Met Rat Dur Dep	Water \text{Yield (igp} \text{hod} \text{e (igpm)} \text{ation (hrs)}	PUMP TEST 5 24 ad of test (ft)		
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing:	Dug Well Ir Depth of liner (cro Reservoir materia Reservoir vol. (cu Reservoir materia Apron Material	nformation ock) (ft) al u.yd) al size	AY I	Esti Met Rat Dur Dep Tota	Water mated Yield (igp hod e (igpm) ation (hrs) oth to water at en al drawdown (ft)	m) 6.5 PUMP TEST 5 24 ad of test (ft) 29.5		
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) To (ft) Diameter (in) 6	Dug Well Ir Depth of liner (cro Reservoir materia Reservoir vol. (cu Reservoir materia Apron Material Apron depth (ft)	nformation ock) (ft) al u.yd) al size	AY I	Esti Met Rat Dur Dep Tota Wat	Water mated Yield (igp hod e (igpm) ation (hrs) oth to water at enal drawdown (ft) ter level recovered.	m) 6.5 PUMP TEST 5 24 ad of test (ft) 29.5		
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) 70 (ft) 6 Length of casing above ground:	Dug Well Ir Depth of liner (cro Reservoir material Reservoir wol. (cu Reservoir material Apron Material Apron depth (ft) Apron thickness (nformation ock) (ft) al u.yd) al size	AY I	Esti Met Rat Dur Dep Tota Wat Rec	Water mated Yield (igp hod e (igpm) ation (hrs) oth to water at end drawdown (ft) ter level recovers time (hrs)	PUMP TEST 5 24 ad of test (ft) 29.5 ed to (ft)		
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) To (ft) Diameter (in) 6 Length of casing above ground: (ft) (in)	Dug Well Ir Depth of liner (cro Reservoir materia Reservoir vol. (cu Reservoir materia Apron Material Apron depth (ft) Apron thickness (Apron width (ft)	nformation ock) (ft) al u.yd) al size	AY I	Esti Met Rat Dur Dep Tota Wat Rec Dep	Water wated Yield (igp hod e (igpm) ation (hrs) oth to water at end drawdown (ft) ter level recovers tovery time (hrs) oth to static level	PUMP TEST 5 24 ad of test (ft) 29.5 ed to (ft)		
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) To (ft) 5 Length of casing above ground: (ft) (in) Driveshoe make	Dug Well Ir Depth of liner (cro Reservoir material Reservoir vol. (cu Reservoir material Apron Material Apron depth (ft) Apron thickness (Apron width (ft) Apron volume (cu Bottom material	nformation ock) (ft) al u.yd) al size	AY I	Esti Met Rat Dur Dep Tota Wat Rec Dep Ove	Water mated Yield (igp hod e (igpm) ation (hrs) oth to water at end drawdown (ft) ter level recovery time (hrs) oth to static level erflow	m) 6.5 PUMP TEST 5 24 ad of test (ft) 29.5 ed to (ft) (ft)		
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) To (ft) Diameter (in) 6 Length of casing above ground: (ft) (in)	Dug Well Ir Depth of liner (cro Reservoir material Reservoir vol. (cu Reservoir material Apron Material Apron depth (ft) Apron thickness (Apron width (ft) Apron volume (cu Bottom material	nformation ock) (ft) al u.yd) al size	AY I	Esti Met Rat Dur Dep Tota Wat Rec Dep Ove	Water mated Yield (igp hod e (igpm) ation (hrs) oth to water at end al drawdown (ft) ter level recovery time (hrs) oth to static level erflow Status/Water Us	PUMP TEST 5 24 ad of test (ft) 29.5 ed to (ft) (ft) ce/Date Completed		
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) To (ft) 5 Length of casing above ground: (ft) (in) Driveshoe make	Dug Well Ir Depth of liner (cro Reservoir material Reservoir vol. (cu Reservoir material Apron Material Apron depth (ft) Apron thickness (Apron width (ft) Apron volume (cu Bottom material	nformation ock) (ft) al u.yd) al size	AY I	Esti Met Rat Dur Dep Tota Wat Rec Dep Ove	Water mated Yield (igp hod e (igpm) ation (hrs) oth to water at end drawdown (ft) ter level recovery time (hrs) oth to static level erflow Status/Water User well of well OBSER\	PUMP TEST 5 24 ad of test (ft) 29.5 ed to (ft) (ft) ce/Date Completed		
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) To (ft) 5 Length of casing above ground: (ft) (in) Driveshoe make	Dug Well Ir Depth of liner (cro Reservoir material Reservoir vol. (cu Reservoir material Apron Material Apron depth (ft) Apron thickness (Apron width (ft) Apron volume (cu Bottom material	nformation ock) (ft) al u.yd) al size		Esti Met Rat Dur Dep Tota War Rec Dep Ove Well Final status of Water use	Water mated Yield (igp hod e (igpm) ation (hrs) oth to water at end al drawdown (ft) ter level recovery time (hrs) oth to static level erflow Status/Water User Wolf well OBSERV	PUMP TEST 5 24 ad of test (ft) 29.5 ed to (ft) (ft) ce/Date Completed		
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) To (ft) 5 Length of casing above ground: (ft) (in) Driveshoe make	Dug Well Ir Depth of liner (cro Reservoir material Reservoir vol. (cu Reservoir material Apron Material Apron depth (ft) Apron thickness (Apron width (ft) Apron volume (cu Bottom material	nformation ock) (ft) al u.yd) al size	AY I	Esti Met Rat Dur Dep Tota Wat Rec Dep Ove	Water mated Yield (igp hod e (igpm) ation (hrs) oth to water at enal drawdown (ft) ter level recovery time (hrs) oth to static level erflow Status/Water Us MONITO	PUMP TEST 5 24 ad of test (ft) 29.5 ed to (ft) (ft) ce/Date Completed		

Well Report

(Summary Log)

NSE Well No.

661267 DRILLED

Well Type

Certified Well Contractor		Well Owner/Contractor Information				
Name MINES Certificate No. 1 Company N. S. DEPARTMENT OF MINES NS Atlas or Map Book Reference: Atlas or Map Book Map Page No. Reference Letter Reference Number Roamer Letter Roamer Number	or Cor Civic A Lot Nu County	Orilled For: Owner Intractor/Builder/Consultant, etc. Address of Well NS OBS WELL - WILMOT (005) Imber Subdivision Y ANNAPOLIS Postal Code st Community in Altlas/Map Book ATLAS WILMOT GPS (WGS84 UTM): Northing (m) 4979368 Easting (m) 340015 1 Property (PID)				
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) 0 To (ft) 21 Diameter (in) 4.5 Length of casing above ground: (ft) (in) Driveshoe make	Dug Well Information Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	Method Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow				
Comments NS OBSERVATION WELL - WILM	MOT (005)	Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL Water use MONITORING Method of drilling Date well completed 18-May-66				

(Summary Log)

NSE Well No. Well Type

Certified Well Contractor		Well Owner/Contractor Information			
Name MINES Certificate No. 1 Company N. S. DEPARTMENT OF MINES		Well Drilled For: Owner NS DEPT. OF MINES or Contractor/Builder/Consultant, etc. Civic Address of Well NS OBS WELL - MURRAY SIDING (007) Lot Number Subdivision			
			ESTER Postal Code Inity in Altlas/Map Book ATLAS MURRAYS SIDING		
NS Atlas or Map Book Reference : Atlas or Map Book Map Page No. Reference Letter Reference Number Roamer Letter Roamer Number Depth in feet Prima From To Colour 1 Description 1 0 26 COARSE GRAIN 26 28	NTS Map Reference Map Sheet Reference Map Tract No. Claim Well Construction Sk	A 107 K ketch Available Colour 2	GPS (WGS84 UTM): Northing (m) 5024186 Easting (m) 483114 Estimated GPS Accuracy (m, +/-) 50 Property (PID) Well Location Sketch Available Secondary Lithology Description 2 Lithology 2 Water Found COARSE GRAIN GRAVEL SILTSTONE		
Well Construction Information	Dug Well Info	formation	Water Yield		
Total depth below surface (ft) 28 Depth to bedrock (ft) 26 Water bearing fractures encountered at (ft) Outer Well Casing: From (ft) 0 To (ft) 26 Diameter (in) 6 Length of casing above ground: (ft) (in) Driveshoe make	Depth of liner (croc Reservoir material Reservoir vol. (cu.y Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.y Bottom material	ck) (ft)	Estimated Yield (igpm) Method Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow		
Comments NS OBS WELL - MURRAY SIDING (007) NOTE: WELL AND CASING DEPT 20 MAY 2010; ASSUME WELL CO	TH MEASURED TO BE	18 FT BGS ON	Final status of well OBSERVATION WELL Water use MONITORING Method of drilling Date well completed 02-Aug-67		

NSEL Well No.

681252 DRILLED

Well Type

Environment and Labour

Certified Well Contractor			Well Owner/Contractor Information
Name MINES Certificate No. 1 Company N. S. DEPARTMENT OF MINES NS Atlas or Map Book Reference : Atlas or Map Book	wner NS DEPT. OF MINES er/Consultant, etc. ell NS OBS WELL - WOLFVILLE (010) Subdivision Postal Code y in Altlas/Map Book ATLAS WOLFVILLE GPS (WGS84 UTM): Northing (m) 4993828		
Map Page No. Reference Letter Reference Number Roamer Letter Roamer Number	Reference Map Tract No. Claim	В 78 К	Easting (m) 392086 Property (PID) Well Location Sketch Available
From To Colour 1 Description 1 0 3 RED CLAYEY 3 15 FINE GRAINED 15 35 RED CLAYEY 35 79 RED	Lithology 1 TILL SAND TILL SAND TILL SANDSTONE	Colour 2	Secondary Lithology Description 2 Lithology 2 Water Found GRAVEL L
Well Construction Information Total depth below surface (ft) 79 Depth to bedrock (ft) 35 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) 75 Diameter (in) 4.5 Length of casing above ground: (ft) (in) Driveshoe make	Dug Well Infor Depth of liner (crock) Reservoir material Reservoir wol. (cu.yd Reservoir material si Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd Bottom material) (ft)	Water Yield Estimated Yield (igpm) Method Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow
Comments NS OBSERVATION WELL - WOL	FVILLE (010)		Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL Water use MONITORING Method of drilling Date well completed 17-Dec-68

NSEL Well No.

Environment and Labour

(Summary Log)

701431 DRILLED Well Type

Certified Well Contractor	Well Owner/Contractor Information				
Name MINES Certificate No. 1 Company N. S. DEPARTMENT OF MINES Well L NS Atlas or Map Book Reference: NTS Map Reference Atlas or Map Book Map Sheet Reference Map Reference Map Reference Map Reference Number Roamer Letter Roamer Number		Well Drilled For: Owner NS DEPT. OF MINES or Contractor/Builder/Consultant, etc. Civic Address of Well NS OBS WELL - TRURO (014) Lot Number Subdivision County COLCHESTER Postal Code Nearest Community in Altlas/Map Book ATLAS TRURO			
Depth in feet Prin	Lithology 1	Colour 2	Secondary Description 2	Lithology 2	Water Found
0 20 20 35 35 300	GRAVEL GLACIAL TILL SHALE		SEAM :	SANSTONE	
Well Construction Information	Dug Well Inf	ormation		Water Yield	
Total depth below surface (ft) 300 Depth to bedrock (ft) 35 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) 0 To (ft) 60 Diameter (in) 6 Length of casing above ground: (ft) (in) Driveshoe make	Depth of liner (crock Reservoir material Reservoir wol. (cu.y Reservoir material Apron Material Apron depth (ft) Apron thickness (ft Apron width (ft) Apron volume (cu.y Bottom material	ck) (ft)	Meth Rate Dura Depi Tota Wate Reco Depi Ove	mated Yield (igpm) nod e (igpm) ation (hrs) th to water at end of the control o	(ft)
Comments NS OBSERVATION WELL - TRI	JRO (014)		Final status of Water use Method of dril Date well com	MONITORING	ON WELL

NSEL Well No.

742420

Environment and Labour	(Summary	y Log)	Well Type DRILLED
Certified Well Contractor			Well Owner/Contractor Information
Name MINES Certificate No. 1 Company N. S. DEPARTMENT OF MINE	ES C	Civic Address of Lot Number County ANTIG Nearest Commu	
NC Atlan or Man Book Peteroneo	Well Loc		CDS (M/CSSA LITM) .
NS Atlas or Map Book Reference : Atlas or Map Book	NTS Map Reference : Map Sheet	11F12	GPS (WGS84 UTM) : 5052489
Map Page No.	Reference Map		
Reference Letter	· <u></u>	A 04	Easting (m) 606083
Reference Number	Tract No.	91	Property (PID)
Roamer Letter	Claim		Well Location Sketch Available
Roamer Number			
Depth in feet Prim	nary Lithology		Secondary Lithology
From To Colour 1 Description 1 0 1 CLAYEY	Lithology 1	Colour 2	Description 2 Lithology 2 Water Found
1 520 CLAYEY	SANDSTONE		SHALE & CONGLOM
Well Construction Information	Dug Well Infor	rmation	Water Yield
Total depth below surface (ft) 520	Depth of liner (crock)) (ft)	Estimated Yield (igpm) 67
Depth to bedrock (ft)	Reservoir material		Method
Water bearing fractures encountered at (ft):	Reservoir vol. (cu.yd)		Rate (igpm) 40
Outer Well Casing:	Reservoir material siz	ize	Duration (hrs) 50
From (ft) To (ft)	Apron Material Apron depth (ft)		Depth to water at end of test (ft)
Diameter (in)	Apron depth (it) Apron thickness (ft)		Total drawdown (ft)
Length of casing above ground :	Apron width (ft)		Water level recovered to (ft)
(ft) (in)	Apron volume (cu.yd)	i)	Recovery time (hrs) Depth to static level (ft)
Driveshoe make	Bottom material		Overflow
Comments NS OBSERVATION WELL - MOI	NASTERY (028)		Well Status/Water Use/Date Completed
·			Final status of well OBSERVATION WELL
			Water use MONITORING
			Method of drilling Date well completed 01-Jan-74
4			Date well completed

NSEL Well No.

761408 DRILLED

Well Type

Environment and Labour

Certified Well Contractor			Well Owner/Contractor Information
Name MCDONALD, IAN Or Co Certificate No. 45 Company ISLAND WELL DRILLERS Well Location NS Atlas or Map Book Reference : Atlas or Map Book MAP Map Sheet 11			CAPE BRETON DEVELOPMEN uilder/Consultant, etc. of Well NS OBS WELL - POINT ACONI (030) Subdivision BRETON Postal Code unity in Altlas/Map Book ATLAS POINT ACONI GPS (WGS84 UTM): Northing (m) 5133152
Reference Letter A Reference Number 1 Roamer Letter O Roamer Number 13	Reference Map Tract No. Claim	70	Property (PID) Well Location Sketch Available
Prima From To Colour 1 Description 1 0 14 14 100	Lithology Lithology 1 SHALE & CLAY SANDSTONE	Colour 2	Secondary Lithology Description 2 Lithology 2 Water Found
Well Construction Information Total depth below surface (ft) 100 Depth to bedrock (ft) 14 Water bearing fractures encountered at (ft): 70	Dug Well Information Depth of liner (crock Reservoir material Reservoir vol. (cu.yd Reservoir material si Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd Bottom material) (ft)	Water Yield Estimated Yield (igpm) 10 Method PUMPED Rate (igpm) 10 Duration (hrs) 1 Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow
Comments NS OBSERVATION WELL - POIN	NT ACONI (030)		Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL Water use MONITORING Method of drilling ROTARY Date well completed 11-Aug-76

NSEL Well No.

771538 DRILLED

Well Type

Environment and Labour

Elivironinient dila Eaboui					
Certified Well Contractor			Well Owner/Contractor Information		
Name EDWARDS, HARRY A. Certificate No. 83 Company H. J. EDWARDS WELL DRILLII	or C Civi Lot	c Address of Number Inty HALIF	wner NS DEPT. OF ENVIRONMENT er/Consultant, etc. fell NS OBS WELL - LAWRENCETOWN (043) Subdivision		
			LAWRENCETOWN		
	Well Location	on			
NS Atlas or Map Book Reference :	NTS Map Reference :		GPS (WGS84 UTM) :		
Atlas or Map Book MAP	Map Sheet		Northing (m) 4947712		
Map Page No. 24	Reference Map		Easting (m) 464172		
Reference Letter D					
Reference Number 3	Tract No.		Property (PID)		
Roamer Letter N	Claim		Well Location Sketch Available		
Roamer Number 11	•				
Depth in feet Prima	ary Lithology		Secondary Lithology		
From To Colour 1 Description 1 0 5 5 12 12 152 GRAY 152 165 DARK GRA 165 174 GREENISH	Lithology 1 SAND & GRAVEL & BOU BOULDER & ROCK QUARTZITE SLATE QUARTZITE	Colour 2	Description 2 Lithology 2 Water Found SLATE QUARTZ VEINS SLATE		
Well Construction Information	Dug Well Informa	tion	Water Yield		
Total depth below surface (ft) 175 Depth to bedrock (ft) 10 Water bearing fractures encountered at (ft):	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd)		Estimated Yield (igpm) 14.5 Method Rate (igpm) 8		
152 155	Reservoir material size		Duration (hrs)		
Outer Well Casing:	Apron Material	·	Depth to water at end of test (ft)		
From (ft) 0 To (ft) 145	Apron depth (ft)		Total drawdown (ft)		
Diameter (in) 6	Apron thickness (ft)		Water level recovered to (ft)		
Length of casing above ground :	Apron width (ft)		Recovery time (hrs)		
(ft) (in)	Apron volume (cu.yd)		Depth to static level (ft)		
Driveshoe make UNKNOWN	Bottom material		Overflow		
Comments NS OBSERVATION WELL - LAW	/RENCETOWN (043)		Well Status/Water Use/Date Completed		
	(0.0)		Final status of well OBSERVATION WELL Water use MONITORING Method of drilling ROTARY Date well completed 16-Mar-77		

NSEL Well No.

782683 DRILLED

Well Type

Environment and Labour (Summary Log)

Certified Well Contractor		Well Owner/Contractor Information
Certified Well Contractor		Well Owner/Somilation Information
Name STEWART, EDMUND	Well Drilled	For: Owner NS DEPT. OF ENVIRONMENT
Certificate No. 4	or Contract	or/Builder/Consultant, etc.
Company E. D. STEWART LTD.	Civic Addre	ss of Well NS OBS WELL - DURHAM (045)
<u> </u>	Lot Numbe	Subdivision
	County	CTOU Postal Code
		mmunity in Altlas/Map Book ATLAS DURHAM
		THE PORT OF
	Well Location	
NS Atlas or Map Book Reference :	NTS Map Reference :	GPS (WGS84 UTM) :
Atlas or Map Book	Map Sheet 11E10	Northing (m) 5052105
Map Page No.	Reference Map	Easting (m) 516224
Reference Letter	Tract No.	Property (PID)
Reference Number Roamer Letter	Claim	Well Location Sketch Available
Roamer Number		
	ary Lithology	Secondary Lithology
From To Colour 1 Description 1 0 20 SANDY	Lithology 1 Colou	r 2 Description 2 Lithology 2 Water Found
20 247 RED	SANDSTONE & SHALE GRAY	SANDSTONE & SHA
Well Construction Information	Dug Well Information	Water Yield
Total depth below surface (ft) 247	Depth of liner (crock) (ft)	Estimated Yield (igpm) 100
Depth to bedrock (ft)	Reservoir material	Method PUMPED
Water bearing fractures encountered at (ft):	Reservoir vol. (cu.yd)	Rate (igpm) 100
	Reservoir material size	Duration (hrs) 72
Outer Well Casing:	Apron Material	Depth to water at end of test (ft)
From (ft) To (ft)	Apron depth (ft)	Total drawdown (ft)
Diameter (in)	Apron thickness (ft)	Water level recovered to (ft)
Length of casing above ground :	Apron width (ft)	Recovery time (hrs)
(ft) (in)	Apron volume (cu.yd)	Depth to static level (ft)
Driveshoe make	Bottom material	Overflow
Comments NS OBSERVATION WELL - DUR	HAM (045)	Well Status/Water Use/Date Completed
		Final status of well OBSERVATION WELL
		Water use MONITORING
		Method of drilling
		Date well completed 01-Jul-78

NSEL Well No.

Environment and Labour

(Summary Log)

772021 DRILLED Well Type

Certified Well Contractor		Well Owner/Contractor Information			
Name HOPPER, RUSSELL	V	Well Drilled For: Ov	wner	NS DEPT. OF DEVELOPMENT	
Certificate No. 20	0	or Contractor/Builder/Consultant, etc. CBCL			
Company HOPPER BROS. LTD.	c	Civic Address of W	/ell NS OBS WELL - KENT	TVILLE (048)	
,		Lot Number	Subdivision		
	C	County KINGS		Postal Code	
	N	Nearest Community	y in Altlas/Map Book	LAS KENTVILLE	
	Well Loc	cation			
NS Atlas or Map Book Reference :	NTS Map Reference :		GPS (WGS84 U⁻	ГМ) :	
Atlas or Map Book	Map Sheet	21A2	Northing (m)	4992245	
Map Page No.	Reference Map	Α	Easting (m)	377628	
Reference Letter	Tract No.	71	Property (PID)		
Reference Number	Claim		Well Location Sk	etch Available	
Roamer Letter Roamer Number	,				
	ary Lithology		Secondary Lithology		
From To Colour 1 Description 1 0 55 FINE GRAINED	Lithology 1	Colour 2	Description 2 Lith EDIUM GRAINE SAND	ology 2 Water Found	
55 60 MEDIUM GRAIN	-		DARSE GRAIN SAND		
60 95	GRAVEL			V	
95 380 GRAY 380 400 BROWN ARGILLACEOU	SANDSTONE METASEDIMENT	PURPLE IN	TERBEDDED SHALE		
			1		
Well Construction Information	Dug Well Inform			Water Yield	
Total depth below surface (ft) 400	Depth of liner (crock)	(ft)	Estimated Yie		
Depth to bedrock (ft) 95	Reservoir material		Method	PUMPED	
Water bearing fractures encountered at (ft):	Reservoir vol. (cu.yd)		Rate (igpm)	150	
Outer Well Casing:	Reservoir material siz Apron Material	ze	72		
From (ft) 0 To (ft) 100	Apron depth (ft)	Depth to water at end of test (ft) 12			
Diameter (in) 8	Apron thickness (ft)		vn (ft) 140		
Length of casing above ground :	Apron width (ft)			ecovered to (ft)	
Apron volume (cu.)	Recovery time		
(ft) (in) Bottom material			Depth to station	C level (II)	
	T.(II.L.E.(0.40)			ater Use/Date Completed	
Comments NS OBSERVATION WELL - KEN	I VILLE (048)			BSERVATION WELL	
				ONITORING	
I I					
			Method of drilling		

NSEL Well No.

Environment and Labour

(Summary Log)

771077 DRILLED Well Type

Certified Well Contractor			Well Owner/Contractor Information				
Name MCDONALD, IAN Certificate No. 45 Company ISLAND WELL DRILLERS NS Atlas or Map Book Reference: Atlas or Map Book MAP Map Page No. Reference Letter A	Well L NTS Map Reference Map Sheet Reference Map	or Co Civic Lot N Cour Near Location e:	Address of Number CAPE Test Commun 1K1	Owner illder/Consultant, etc Well NS OBS WE Subdivisio BRETON nity in Altlas/Map Both GPS (V	NS D C. LL - SYDNEY (C n Postal ook ATLAS WGS84 UTM) : ng (m) g (m)	DEPT. OF ENVIRONMENT	
Reference Number 5	Tract No.	(66	Proper	ty (PID)		
Roamer Letter J	Claim			Well Lo	ocation Sketch A	vailable	
Roamer Number 13							
Depth in feet Prin	nary Lithology			Secondary	/ Lithology		
From To Colour 1 Description 1 0 13 13 330	Lithology 1 BOULDER & GRAVE COAL &SHALE & SA		Colour 2	Description 2	Lithology	2 Water Found	
Well Construction Information	Dug Well In	formati	ion		Water	Yield	
Total depth below surface (ft) 330 Depth to bedrock (ft) 13 Water bearing fractures encountered at (ft):	Depth of liner (crook Reservoir material Reservoir vol. (cu.			Met	imated Yield (igp hod e (igpm)	PUMPED 250	
63	Reservoir material	size		·	Duration (hrs)		
Outer Well Casing:	Apron Material				Depth to water at end of test (ft)		
From (ft) 6 To (ft) 22	Apron depth (ft)			Tota	Total drawdown (ft)		
Diameter (in) 6	Apron thickness (ft Apron width (ft)	^{t)}			Water level recovered to (ft)		
Length of casing above ground :	Apron volume (cu.	.yd)		Recovery time (hrs)			
(ft) (in) UNKNOWN	1) Bottom material				Depth to static level (ft) Overflow		
Comments NS OBSERVATION WELL - SY	ONEY (050)			Well	Status/Water Us	se/Date Completed	
				Final status of	of well OBSER	VATION WELL	
				Water use	MONITO		
				Method of dri	-		
ļ				Date well cor	npleted	09-Mar-77	

NSEL Well No.

Well Type

871262 DRILLED

Environment and Labour

Certified Well Contractor				Well Owner/	Well Owner/Contractor Information		
Name CHISHOLM, WAYNE			rilled For:	Owner ilder/Consultant, et		OF ENVIRONMENT	
Certificate No. 2					ļ	(05.4)	
G. W. REID WELL DRILLING I	.TD.		_		ELL - NORTH GRANT	(054)	
		Lot Nu	mber	Subdivision	n <u> </u>		
		County	ANTIG	ONISH	Postal Code		
		Neares	st Commu	nity in Altlas/Map E	Book LOV	WER NORTH GRANT	
		ocation					
NS Atlas or Map Book Reference :	NTS Map Reference	e :		_	WGS84 UTM) :		
Atlas or Map Book	Map Sheet			Northi	ng (m)	5055139	
Map Page No. 29	Reference Map			Eastin	g (m)	576403	
Reference Letter C	Tract No.			Prope	ty (PID)		
Reference Number 4	Claim			Well L	ocation Sketch Availab	ele \square	
Roamer Letter M]			
Roamer Number 12							
Depth in feet Prim	ary Lithology			Secondary	y Lithology		
From To Colour 1 Description 1	Lithology 1	(Colour 2	Description 2	Lithology 2	Water Found	
0 34	MUD				CLATE		
34 150	SHALE				SLATE		
Well Construction Information	Dug Well Int	formation	n		Water Yield		
Total depth below surface (ft) 150	Depth of liner (crod	ck) (ft)		Est	imated Yield (igpm)		
Depth to bedrock (ft)	Reservoir material		,	Me	thod AIR L	.IFT	
Water bearing fractures encountered at (ft)	Reservoir vol. (cu.)	yd)		Rat	e (igpm)	20	
	Reservoir material	size		•			
Outer Well Casing:	Apron Material				ration (hrs)		
From (ft) To (ft) 43	Apron depth (ft)				oth to water at end of to al drawdown (ft)	est (It)	
Diameter (in) 6	Apron thickness (ft	t)			ter level recovered to (#\	
Length of casing above ground :	Apron width (ft)				covery time (hrs)	")	
(ft) (in)	Apron volume (cu.	yd)			oth to static level (ft)	14	
Driveshoe make	D ()			50		<u> </u>	
	Bottom material			Ove	erflow		
NO ODGEDVATION MELL MOD		-			erflow Status/Water Use/Dat	e Completed	
Comments NS OBSERVATION WELL NOR				Well	Status/Water Use/Dat	·	
Comments NS OBSERVATION WELL NOR				Well Final status	Status/Water Use/Dat	·	
Comments NS OBSERVATION WELL NOR				Well	Status/Water Use/Dat of well OBSERVATIO	·	

NSEL Well No.

Well Type

871263 DRILLED

Environment and Labour

Certified Well Contractor			Well Owner/Contractor Information		
Name CHISHOLM, WAYNE Certificate No. 2 Company G. W. REID WELL DRILLING I NS Atlas or Map Book Reference : Atlas or Map Book	TD. W	ivic Address of ot Number ounty GUYSE earest Commun	Owner NS DEPT. OF ENVIRONMENT ilder/Consultant, etc. Well NS OBS WELL - STILLWATER (055) Subdivision		
Map Page No. 30 Reference Letter C Reference Number 4 Roamer Letter P Roamer Number 12	Tract No. Claim		Easting (m) 579938 Property (PID) Well Location Sketch Available		
Prim From To Colour 1 Description 1 0 24 24 38 38 118	Lithology 1 MUD ROCK BEDROCK	Colour 2	Secondary Lithology Description 2 Lithology 2 Water Found GRAVEL		
Well Construction Information Total depth below surface (ft) 118 Depth to bedrock (ft)	Dug Well Inform Depth of liner (crock) (Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	(ft)	Water Yield Estimated Yield (igpm) Method AIR LIFT Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow Well Status/Water Use/Date Completed		
. OBSERVATION WELL STILL	LVVATER (USS)		Final status of well OBSERVATION WELL Water use MONITORING Method of drilling Date well completed 01-Apr-87		

Environment and Labour

Well Report

(Summary Log)

NSEL Well No.

871264

Well Type DRILLED

Certified Well Contractor			Well Owner/	Well Owner/Contractor Information				
Name CHISHOLM, WA Certificate No. 2 Company G. W. REID WE	AYNE ELL DRILLING LT	TD.	or Co Civic Lot N Cour	Address of Number	ilder/Consultant, et Well NS OBS WE Subdivisio			
		Well	Location	n				
NS Atlas or Map Book Referer	ice:	NTS Map Reference	ce:		GPS (WGS84 UTM) :		
Atlas or Map Book		Map Sheet			Northi	ng (m) 49	972468	
Map Page No. 28	3	Reference Map			Eastin	g (m)	543176	
Reference Letter E		Tract No.			Prope	rty (PID)		
Reference Number 2		Claim				ocation Sketch Available		
Roamer Letter H					, vvoii E	ocation execut / wallable	,	
Roamer Number 14	ł							
Depth in feet	Prima	ry Lithology			Secondar	y Lithology		
From To Colour 1	Description 1	Lithology 1		Colour 2	Description 2	Lithology 2	Water Found	
0 8		GRAVEL						
8 18 18 150		ROCK BEDROCK						
Well Construction Inform	nation	Dug Well I	nformati	ion		Water Yield		
Total depth below surface (ft)	150	Depth of liner (cro	ock) (ft)		Est	imated Yield (igpm)		
Depth to bedrock (ft)		Reservoir materia	al		Me	thod AIR LI	FT	
Water bearing fractures encoun	tered at (ft)	Reservoir vol. (cu	ı.yd)		Ra	te (igpm)	0.7	
		Reservoir materia	al size		•	ration (hrs)		
Outer Well Casing:	_	Apron Material		·		oth to water at end of te	st (ft)	
From (ft) To	(ft) 23	Apron depth (ft)		Total drawdown (ft)				
Diameter (in)	6	Apron thickness ((ft)			iter level recovered to (fl	t)	
Length of casing above ground : Apron width (ft)				Re	Recovery time (hrs)			
(ft) Apron volume (cu.		ı.yd)		De	pth to static level (ft)	10		
Driveshoe make		Bottom material			Ov	erflow	. 🗆	
Comments NS OBSERVATION	ON WELL SHEE	T HARBOUR (056)			Well	Status/Water Use/Date	Completed	
·					Final status	of well OBSERVATION	1 WELL	
					Water use	OTHER		
					Method of di	illing		
					Date well co	mpleted	06-Apr-87	

NSEL Well No.

Well Type

870189 DRILLED

Environment and Labour

O STEELING TO A					Mall O consideration of the state of the sta				
Certified Well Contractor					Well Owner/Contractor Information				
Name M	OWAT, DON	ALD		Well [Well Drilled For: Owner NS DEPT. OF ENVIRONMENT				
Certificate No.	rate No. 210				or Contractor/Builder/Consultant, etc.				
l '=		LL DRILLING LT	n.	Civic /	Address of	Well NS OBS WELL - HAYDEN LAKE (059)			
Jepa	3		2.	Lot Nu	umber	Subdivision			
				County					
				Neare	st Commu	nity in Altlas/Map Book ATLAS EAST JORDAN			
			Well	Location					
NS Atlas or Map	Book Refere	ence :	NTS Map Referenc	ce :	_	GPS (WGS84 UTM) :			
Atlas or Map Boo	ok M/	AP	Map Sheet			Northing (m) 4849195			
Map Page No.	1	10	Reference Map			Easting (m) 321365			
Reference Letter		С	Tract No.			Property (PID)			
Reference Numb		5	Claim			Well Location Sketch Available			
Roamer Letter		G	<u> </u>						
Roamer Number		7							
Depth in feet		Prima	ary Lithology]	Secondary Lithology			
From To	Colour 1	Description 1	Lithology 1		Colour 2	Description 2 Lithology 2 Water Found			
0 10		<u> </u>	CLAY			BOULDER			
10 160			GREYWACKE						
i [
 									
Well Cons	struction Infor	rmation	Dug Well In	nformatio	on .	Water Yield			
Total depth below		160	Depth of liner (cro			Estimated Yield (igpm) 3.7			
Depth to bedrock		10	Reservoir materia			Method AIR LIFT			
Water bearing fra		ntered at (ft):	Reservoir vol. (cu		$\overline{}$				
30			Reservoir materia			Rate (igpm) 3.7			
Outer Well Casing	g:		Apron Material			Duration (hrs)			
From (ft) 0	To	o (ft) 20	Apron depth (ft)	H		Depth to water at end of test (ft)			
Diameter (in)		6	Apron thickness (f	(ft)		Total drawdown (ft)			
	above ground	۷٠	Apron width (ft)			Water level recovered to (ft)			
Apron volume (cu		ı.yd)		Recovery time (hrs)					
(ft)	/:m\		Apron volume (cu			Donth to static level (ft)			
Driveshoe make	(in)		Bottom material			Depth to static level (ft)			
			Bottom material			Overflow			
Comments NS		ION WELL - HAYI	Bottom material			Overflow Well Status/Water Use/Date Completed			
Comments NS		ON WELL - HAYI	Bottom material	<u>_</u>		Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL			
Comments NS		ON WELL - HAYI	Bottom material	<u></u>		Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL Water use MONITORING			
Comments NS		ON WELL - HAYI	Bottom material	<u></u>		Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL			

(Summary Log)

NSE Well No.

Well Type

Certified Well Contractor						Well Owner/Contractor Information								
Name MOWAT, DONALD Certificate No. 210 Company MOWAT'S WELL DRILLING LTD. Well Le NS Atlas or Map Book Reference : NTS Map Reference Atlas or Map Book Map Sheet						or Cont Civic A Lot Nur County Neares	ddress of	uilde f We		c. LL - ME	TEGHAN (060) ode	ENVIRONMI HAN RIVEF	
Map Page No. Reference Lette Reference Num Roamer Letter	nber	4 A 4 F		Reference Map Tract No.					Easting Propert Well Lo	ty (PID)	Sketch Ava		890	
Depth in feet				C	Colour 2		Secondary Description 2		gy ithology 2		Water Foun	d		
								_						
Total depth below Depth to bedrood Water bearing from 180 Outer Well Casin From (ft) Diameter (in) Length of casing (ft) Driveshoe make	w surface k (ft) actures en ng: g above gro	countered at To (ft)	6	Dug Well Depth of liner (cr Reservoir materi Reservoir vol. (cr Reservoir materi Apron Material Apron depth (ft) Apron thickness Apron width (ft) Apron volume (cr Bottom material	rock) ial [:u.yd) ial siz (ft) [:u.yd)	(ft)			Meti Rate Dura Dep Tota Wat Rec Dep Ove	hod e (igpm) ation (hi th to wa al drawd er level overy tii th to sta	<u> </u>	of test (to (ft)		
Comments NS OBSERVATION WELL METEGHAN (060)								Final status o Water use Method of dril Date well con	f well	OBSERVA MONITORI	TION W			

NSEL Well No.

891722 DRILLED

Well Type

Environment and Labour

Certified Well Contractor		Well Owner/Contractor Information				
Name MOWAT, DONALD Certificate No. 210 Company MOWAT'S WELL DRILLING LT NS Atlas or Map Book Reference: Atlas or Map Book MAP Map Page No. 8 Reference Letter A Reference Number 4	D. Circle Con New Well Local NTS Map Reference : Map Sheet Reference Map Tract No.	vic Address of t Number bunty ANNAF earest Commun	Ider/Consultant, etc. Well NS OBS WELL - ANNAPOL Subdivision POLIS Post nity in Altlas/Map Book ATLAS GPS (WGS84 UTM) : Northing (m) Easting (m) Property (PID)	4952588 303029		
Roamer Letter H	Claim		Well Location Sketch	Available		
Roamer Number 14 Depth in feet Prim	ary Lithology		Secondary Lithology			
From To Colour 1 Description 1 0 71 71 205	Lithology 1 CLAY GRANITE	Colour 2	Description 2 Lithology BOULDER	y 2 Water Found		
Well Construction Information	Dug Well Inform	ation	Wate	r Yield		
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft): 120 Outer Well Casing: From (ft) Diameter (in) Cuter the following of t	Depth of liner (crock) (f Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	it)	Estimated Yield (ig Method Rate (igpm) Duration (hrs) Depth to water at e Total drawdown (ff Water level recove Recovery time (hrs Depth to static level Overflow	apm) 0.5 AIR LIFT 0.5 end of test (ft) ered to (ft) s) el (ft)		
Comments NS OBSERVATION WELL - ANN	IAPOLIS ROYAL (062)		Final status of well OBSEF	Jse/Date Completed RVATION WELL ORING 20-Dec-89		

NSEL Well No.

891721 DRILLED

Well Type

Environment and Labour (Summary Log)

Certified Well Contract	or	Well Owner/Contractor Information				
Name MOWAT, DONALD	Well	Drilled For:	Owner	NS DEPT. 0	OF ENVIRONMENT	
Certificate No. 210	or Co	or Contractor/Builder/Consultant, etc.				
Company MOWAT'S WELL DRILLING I	TD. Civic	Address of	Well NS OBS WELL	HEBRON (063)		
		lumber	Subdivision			
	Cour	nty YARM		Postal Code		
		, h	nity in Altlas/Map Boo		YTON	
			Tilly III Allias/Map Boo	IN INTERS IDAT	TION	
	Well Location	n				
NS Atlas or Map Book Reference :	NTS Map Reference :		-	GS84 UTM) :		
Atlas or Map Book MAP	Map Sheet		Northing	(m) 4	862322	
Map Page No. 5	Reference Map		Easting ((m)	250697	
Reference Letter A Reference Number 3	Tract No.		Property	(PID)		
Roamer Letter F	Claim		Well Loc	ation Sketch Availabl	le 🗌	
Roamer Number 14	r					
		7	Casandamil	ide a la au.		
	mary Lithology		Secondary L			
From To Colour 1 Description 0 3 3 140 140 144 144 150	1 Lithology 1 TOPSOIL SLATE QUARTZITE SHALE	Colour 2	Description 2	Lithology 2	Water Found	
Well Construction Information	Dug Well Informati	on		Water Yield		
Total depth below surface (ft) 150	Depth of liner (crock) (ft)		Estim	ated Yield (igpm)	45	
Depth to bedrock (ft)	Reservoir material		Metho	od AIR L	.IFT	
Water bearing fractures encountered at (ft):	Reservoir vol. (cu.yd)		Rate	(igpm)	45	
57 150	Reservoir material size		'	ion (hrs)		
Outer Well Casing:	Apron Material			n to water at end of te	set (ft)	
From (ft) 0 To (ft) 40	Apron depth (ft)		-	drawdown (ft)	231 (11)	
Diameter (in) 6	Apron thickness (ft)			r level recovered to (f	ft)	
Length of casing above ground :	Apron width (ft)			very time (hrs)		
(ft) (in)	Apron volume (cu.yd)		Depth	to static level (ft)		
Driveshoe make	Bottom material		Overf	low		
Comments NS OBSERVATION WELL - HE	EBRON (063)		Well S	tatus/Water Use/Date	e Completed	
			Final status of	well OBSERVATIO	N WELL	
			Water use	MONITORING		
			Method of drilling	ng		
			Date well comp	oleted	19-Dec-89	

(Summary Log)

NSE Well No.

Well Type

902524

Certified Well Contractor		Well Owner/Contractor Information					
Name MCDONALD, IAN		Well Drilled For:	Owner	NS NS	S DEPT. OF ENVIRONMENT		
Certificate No. 45		or Contractor/Builder/Consultant, etc.					
Company ISLAND WELL DRILLERS		Civic Address of	Well NS OBS WE	LL - MARGAI	REE (064)		
		Lot Number	Subdivisio	n			
		County INVER	NESS	Pos	stal Code		
		,	nity in Altlas/Map Bo		MARGAREE VALLEY		
			They in 7 that of the D		W/ WO/ WEEL V/ LEEL I		
NO All NO A D I D (Well Lo		0.00 4	NOOGA LITAN			
NS Atlas or Map Book Reference :	NTS Map Reference :		-	NGS84 UTM)			
Atlas or Map Book	Map Sheet		Northin		5137031		
Map Page No. 38 Reference Letter A	Reference Map		Easting	g (m)	655717		
Reference Number 1	Tract No.		Proper	ty (PID)			
Roamer Letter L	Claim		Well Lo	ocation Sketcl	h Available		
Roamer Number 12							
Double in fact	ary Lithology		Casandan	. I ith alam.			
		Colour	Secondary		au C. Notas Faund		
From To Colour 1 Description 1	Lithology 1 GRAVEL	Colour 2	Description 2	Litholog TILL	gy 2 Water Found		
9 150	CONGLOMERATE	CONGLOMERATE					
Well Construction Information	Dug Well Info		r		er Yield		
Total depth below surface (ft) 150	Depth of liner (crock) (ft)	Esti	mated Yield (
Depth to bedrock (ft)	Reservoir material	ļ	Met	hod	AIR LIFT		
Water bearing fractures encountered at (ft):	Reservoir vol. (cu.yd)	Rate	e (igpm)	10		
Outer Well Confer	Reservoir material si	ize	. Dur	ation (hrs)			
Outer Well Casing: From (ft) To (ft) 40	Apron Material		Dep	oth to water at	end of test (ft)		
	Apron depth (ft)		. Tota	al drawdown ((ft)		
Diameter (in) 6	Apron thickness (ft)		. Wat	ter level recov	vered to (ft)		
Length of casing above ground :	Apron width (ft)		. Red	covery time (h	rs)		
(ft) (in)	Apron volume (cu.yo Bottom material	1)	Dep	oth to static le	vel (ft)		
Driveshoe make	Bottom material	ļ	Ove	erflow			
Comments NOFRACTUREINCREASEDFR8	0'- NS OBSERVATION W	ELL	Well	Status/Water	Use/Date Completed		
· MARGAREE (064)			Final status of	of well			
			Water use				
			T				
			Method of dri Date well cor	·	16-Jan-90		

(Summary Log)

NSE Well No.

892288

DRILLED Well Type

Certified Well Contractor		Well Owner/Contractor Information				
Name MCDONALD, IAN Certificate No. 45 Company ISLAND WELL DRILLERS NS Atlas or Map Book Reference: Atlas or Map Book Map Page No. 42 Reference Letter A Reference Number 2 Roamer Letter F Roamer Number 10	or Contract Civic Add Lot Numb County Nearest Neare	ctor/Builder/Consultant, etc. ress of Well NS OBS WELL - INGO VICTORIA Community in Altlas/Map Book GPS (WGS84 U Northing (m) Easting (m) Property (PID) Well Location Si	DEPT. OF ENVIRONMENT ONISH (065) Postal Code INGONISH JTM): 5170473 698083 ketch Available			
Depth in feet Prima From To Colour 1 Description 1 0 30 33 30 33 33 33 150 33	Lithology 1 Cold GRAVEL GRANITE GRANITE	Secondary Litholog Dur 2 Description 2 Lith BOULDE	hology 2 Water Found			
Mall Construction Information	Dug Mall Information		Motor Viold			
Well Construction Information Total depth below surface (ft) 150 Depth to bedrock (ft) Water bearing fractures encountered at (ft): 44 149 1 149 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dug Well Information Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	Estimated Yi Method Rate (igpm) Duration (hrs Depth to wat Total drawdo Water level r Recovery tim Depth to stat Overflow	AIR LIFT 100 er at end of test (ft) own (ft) ecovered to (ft) ne (hrs) cic level (ft)			
Comments NS OBSERVATION WELL INGO	NISH (065)		/ater Use/Date Completed BSERVATION WELL 12-Dec-89			

NSE Well No.

832002

Environment	(Summ	ary Log)		Well Type	DRILLED
Certified Well Contractor			Well Owner/Contracto	or Information	
Name JOHNSON, GREGORY I. Certificate No. 6 Company HUB WELL DRILLING LTD. NS Atlas or Map Book Reference : Atlas or Map Book	Well L NTS Map Reference Map Sheet	Lot Number County COLCHES Nearest Community cocation	er/Consultant, etc. ell NS OBS WELL - DEB Subdivision	Postal Code DEBERT	33
Map Page No.	Reference Map	С	Easting (m)	46692	21
Reference Letter	Tract No.	60	Property (PID)		$\overline{}$
Reference Number	Claim		Well Location S	ketch Available	
Roamer Letter				Ĺ	
Roamer Number					
Depth in feet Prima	ary Lithology		Secondary Litholog	iy	
From To Colour 1 Description 1 0 18 18 153	Lithology 1 CLAY CONGLOMERATE	Colour 2	Description 2 Lit SAND /L		ater Found
Well Construction Information	Dug Well In	formation		Water Yield	
Total depth below surface (ft) 153	Depth of liner (crod		Estimated Yi		
Depth to bedrock (ft)	Reservoir material		Method	, , <u> </u>	
Water bearing fractures encountered at (ft):	Reservoir vol. (cu.			<u> </u>	
112	Reservoir material		Rate (igpm)		10
Outer Well Casing:	Apron Material	SIZC	Duration (hrs	l l	
From (ft) To (ft) 26	Apron depth (ft)			ter at end of test (ft)	
Diameter (in) 4	Apron thickness (fi	2)	Total drawdo	_	
Length of casing above ground :	Apron width (ft)	"		recovered to (ft)	
	Apron volume (cu.	yd)	Recovery tim		
(ft) (in)	Bottom material		Depth to stat	tic level (ft)	112
Driveshoe make			Overflow		
Comments NS OBSERVATION WELL DEBE	RT (068)			Vater Use/Date Com	
			<u> </u>	VATER SUPPLY WE	ELL
			L	OOMESTIC	
			Method of drilling		

Date well completed

13-Aug-83

(Summary Log)

NSE Well No.

Well Type

943326 DRILLED

Certified Well Contractor		Well Owner/Contractor Information				
Name Certificate No. Company ISLAND WELL DRILLERS	Civic Address of W Lot Number County VICTOR Nearest Communi	der/Consultant, etc. Vell NS OBS WELL - DALEM LAKE (069) Subdivision				
NOA! M B I B (Well Location	ODO AMOCOALITAN				
NS Atlas or Map Book Reference :	NTS Map Reference :	GPS (WGS84 UTM) :				
Atlas or Map Book MAP	Map Sheet	Northing (m) 5124576				
Map Page No. 38	Reference Map	Easting (m) 698221				
Reference Letter E Reference Number 2	Tract No.	Property (PID)				
Reference Number 2 Roamer Letter 0	Claim	Well Location Sketch Available				
Roamer Number 12	,					
Depth in feet Prima	ary Lithology	Secondary Lithology				
Well Construction Information	Dug Well Information	Water Yield				
Total depth below surface (ft) 200	Depth of liner (crock) (ft)	Estimated Yield (igpm)				
Depth to bedrock (ft)	Reservoir material	Method				
Water bearing fractures encountered at (ft):	Reservoir vol. (cu.yd)					
	Reservoir material size	Rate (igpm)				
Outer Well Casing:	Apron Material	Duration (hrs)				
From (ft) 0 To (ft) 41	Apron depth (ft)	Depth to water at end of test (ft) Total drawdown (ft)				
Diameter (in) 6	Apron thickness (ft)	Water level recovered to (ft)				
Length of casing above ground :	Apron width (ft)	Recovery time (hrs)				
(ft) (in)	Apron volume (cu.yd)	Depth to static level (ft)				
Driveshoe make	Bottom material	Overflow				
Comments NS OBSERVATION WELL - DALI	EM LAKE (069)	Well Status/Water Use/Date Completed				
	, ,	Final status of well OBSERVATION WELL				
		Water use MONITORING				
		Method of drilling				
		Date well completed 01-Jan-94				

Date well completed

(Summary Log)

NSE Well No.

862667

Well Type DRILLED

Certified Well Contractor						Well Owner/Contractor Information									
								ĺ							
Na	ame	CH	IAPP	ELL, W	ALTER			7 V	Vell Drilled For	: Owner	TOWN OF	AMHERST			
Ce	ertificate N	lo. 🗀	32					_ o	r Contractor/B	uilder/Consultant, et	с.		\neg		
	ompany			В СНФ	PPFII W	/FII DRII	LLING LTD.	- 1 c	Civic Address of Well NS OBS WELL - AMHERST (071)						
	πραιιγ	Lvv	\L L	it of iAf	LLL VI	LLL DIVII	LLING LID.	_	ot Number	Subdivisio			=		
l													_		
								С	County CUME	BERLAND	Postal Cod	e			
								N	learest Comm	unity in Altlas/Map B	ook ATLAS AN	MHERST	╗		
									, , , , , , , , , , , , , , , , , , ,						
							W	ell Loca	Location						
	NS Atlas o	or Map	Book	Refere	nce :	_	NTS Map Refere	ence :		GPS (WGS84 UTM) :				
	Atlas or Ma	ар Воо	k [MA	AP		Map Sheet			Northir	ng (m)	5079213			
	Map Page	No.		1	8		Reference Map			Eastin	g (m)	411279			
	Reference	Letter		E	3		Tract No.			Proper	ty (PID)				
	Reference	Numb	er 🛭	2	2					_		hlo 🗆			
	Roamer Le	etter	Γ	C	3		Claim	<u> </u>		vvell L	ocation Sketch Availa	nie 🗌			
	Roamer N	umber	Ē	8	3										
ſ	Depth i	n feet	7			Primar	ry Lithology			Secondar	y Lithology				
	From	То		our 1	Descri	ption 1	Lithology	1	Colour 2	Description 2	Lithology 2	Water Found	٦		
	0	15	001	oui i	Descri	Puon i	TILL		Colour Z	Description 2	Littlology 2	vater i dunu			
	15	45					SANDSTONE								
	45		REDI	DISH			SHALE		BROWN						
	101		BRO		FINE GF	RAINED	SANDSTONE								
	109		REDI		FINE GF	RAINED									
Щ	114	124	REDI	DISH	FINE GF	RAINED	SANDSTONE			MEDIUM GRAINE			4		
	124	127	BRO	WN	FINE GF	RAINED	SHALE								
	127	130					SHALE				SANDSTONE				
	130						SANDSTONE		RED	COARSE GRAINE					
	157		GRA`		MEDIUM	1 GRAIN	SANDSTONE			COARSE GRAINE					
	161			DISH			SHALE		BROWN						
	165		BRO'				MUDSTONE								
	166		GRA'		MEDIUM	1 GRAIN	SANDSTONE				CANDOTONE				
	196			DISH			SHALE				SANDSTONE	<u> </u>			
	198			DISH			SILTSTONE								
	202 206		BRO' BRO'				SHALE								
	211		BRO				SILTSTONE				SHALE				
	227			DISH			SHALE				OI IALL				
	235		BRO				SILTSTONE		GREENIS						
	258				MEDIUM	1 GRAIN	SANDSTONE		5						
	262			DISH		·- · · ·	SHALE								
	263				MEDIUM	1 GRAIN	SANDSTONE								
	277	281	REDI	DISH			SHALE								
	281	294	BRO	WN			SILTSTONE								
	294		BRO				SHALE								
	296	358	BRO	WN	FINE GF	RAINED	SILTSTONE				SHALE				
	358	370	REDI	DISH			SANDSTONE								
	370			YISH			SANDSTONE								
	378	202	RP()	IA/NI			SII TSTONE						1		

Well Construction Information	Dug Well Information	Water Yield			
Total depth below surface (ft) 382	Depth of liner (crock) (ft)	Estimated Yield (igpm)			
Depth to bedrock (ft)	Reservoir material	Method			
Water bearing fractures encountered at (ft): 140 Outer Well Casing: From (ft) To (ft) 20	Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft)	Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft)			
Diameter (in) 6 Length of casing above ground: (ft) (in) Driveshoe make	Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow			
Comments NS OBSERVATION WELL - AMH	HERST (071)	Well Status/Water Use/Date Completed Final status of well TEST HOLE Water use MONITORING Method of drilling Date well completed 29-Jul-86			

(Summary Log)

NSE Well No.

Well Type

Certified Well Contractor		Well Owner/Contractor Information				
Name Certificate No. Company NS Atlas or Map Book Reference: Atlas or Map Book MAP Map Page No. Reference Letter Roamer Letter Roamer Number	Lot Number County CUMBER	wner NS DEPT. OF ENVIRONMENT er/Consultant, etc. /ell NS OBS WELL - KELLEY RIVER (073) Subdivision				
Well Construction Information	Dug Well Information	Water Yield				
Total depth below surface (ft) 38	Depth of liner (crock) (ft)	Estimated Yield (igpm)				
Depth to bedrock (ft)	Reservoir material	Method				
Water bearing fractures encountered at (ft):	Reservoir vol. (cu.yd)					
	Reservoir material size	Rate (igpm)				
Outer Well Casing:	Apron Material	Duration (hrs)				
From (ft) 0 To (ft) 14	Apron depth (ft)	Depth to water at end of test (ft)				
Diameter (in)	Apron thickness (ft)	Total drawdown (ft)				
Length of casing above ground :	Apron width (ft)	Water level recovered to (ft)				
	Apron volume (cu.yd)	Recovery time (hrs)				
(ft) (in)	Bottom material	Depth to static level (ft) Overflow				
Driveshoe make	<u></u>					
Comments NS OBSERVATION WELL - KEL	LEY RIVER (073)	Well Status/Water Use/Date Completed				
		Final status of well OBSERVATION WELL				
		Water use MONITORING				
		Method of drilling				
<u> </u>		Date well completed 01-Jul-72				

NSE Well No.

070613

29-Aug-07

Date well completed

Environment	(Summa	ary Log)			Well Type	DRILLED
Certified Well Contractor				Well Owner/Contractor In	nformation	
Name ROGERS, KIRK Certificate No. 307 Company K. D. ROGERS WELL DRILLIN	G LTD.	Civic Addre	or/Builde ss of We - NGS	er/Consultant, etc. NS OBS WELL - ATLAN Subdivision	ostal Code B0P	1H0
	Well L	ocation				
NS Atlas or Map Book Reference : Atlas or Map Book ATLAS Map Page No. 46 Reference Letter Z Reference Number 2 Roamer Letter H Roamer Number 6	NTS Map Reference Map Sheet Reference Map Tract No. Claim	·:		GPS (WGS84 UTM Northing (m)	500075 38195 5045942	
Depth in feet Prim	ary Lithology			Secondary Lithology		
From To Colour 1 Description 1 0 112 112 175	Lithology 1 SAND SANDSTONE	Colou	r 2	Description 2 Lithol	logy 2 Wa	ater Found
Well Construction Information	Dug Well Inf	formation		W	ater Yield	
Total depth below surface (ft) 175	Depth of liner (croc					
Depth to bedrock (ft) Water bearing fractures encountered at (ft): 115	Reservoir material Reservoir vol. (cu.) Reservoir material Apron Material Apron depth (ft) Apron thickness (ft Apron width (ft) Apron volume (cu.) Bottom material	yd) [Total drawdowr Water level recovery time of Depth to static of Overflow	at end of test (ft) n (ft) overed to (ft) (hrs)	100 1 10 24
Comments NS OBSERVATION WELL - ATL FRACTURES 115-175 FT. DIST 200+'. WELL LOC EDGE OF WC GROUND.	TO PRÒP LINE 300+', V			Final status of well OBS Water use MOI	SERVATION WEL NITORING TARY	

(Summary Log)

NSE Well No.

Well Type

070618

Certified Well Contractor			Well Owner/C	Contractor Information	
Name ROGERS, KIRK Certificate No. 307 Company K. D. ROGERS WELL DRILLIN NS Atlas or Map Book Reference :	Well NTS Map Referenc	Civic Address of Lot Number County KINGS Nearest Commu	Owner ilder/Consultant, etc Well NS OBS WE Subdivision nity in Altlas/Map Bo	NS DEPT. NS DEPT. Postal Code Pok ATLAS SHI	B0P 1H0 EFFIELD MILLS
Atlas or Map Book Map Page No. Reference Letter V Reference Number Roamer Letter D Roamer Number 6	Map Sheet Reference Map Tract No. Claim		- 1	°`'	384693
Prim From To Colour 1 Description 1 0 16 16 175	Lithology SAND SANDSTONE	Colour 2	Secondary Description 2	Lithology 2	Water Found
Well Construction Information	Dug Well In	nformation	T	Water Yield	
Total depth below surface (ft) 175 Depth to bedrock (ft) 16 Water bearing fractures encountered at (ft): 60 175	Depth of liner (cro Reservoir materia Reservoir vol. (cu. Reservoir materia Apron Material Apron depth (ft) Apron thickness (f Apron width (ft) Apron volume (cu. Bottom material	ock) (ft)	Meti Rate Dura Dep Tota Wat Rec Dep	mated Yield (igpm) hod AIR L e (igpm) ation (hrs) th to water at end of te al drawdown (ft) er level recovered to (overy time (hrs) th to static level (ft)	60 1 est (ft) ft) 20 24
Comments NS OBSERVATION WELL - SHE FRACTURES 60-175 FT. WELL FT ABOVE GROUND.	FFIELD MILLS (075) LOC AT EDGE OF FIEL	LD. WELLHEAD 4	Final status o Water use Method of dri Date well con	MONITORING ROTARY	N WELL

NSE Well No. 080824
Well Type DRILLE

Environment	(Summary Log)	Well Type DRILLED
Certified Well Contracto)r	Well Owner/Contractor Information
Name JACOBS, BYRON Certificate No. 695	Well Drilled For: Of or Contractor/Build	
Company BLUENOSE WELL DRILLING	Civic Address of W	/ell NS OBS WELL - FALL RIVER (076); TAMARACK DRIVE
,	Lot Number 65	Subdivision
	County HALIFAX	
		ty in Altlas/Map Book ATLAS FALL RIVER
	Well Location	,
NS Atlas or Map Book Reference :	NTS Map Reference :	GPS (WGS84 UTM) :
Atlas or Map Book ATLAS	Map Sheet	Northing (m) 4962226
Map Page No. 58	Reference Map	Easting (m) 450243
Reference Letter Y	Tract No.	Estimated GPS Accuracy (m, +/-) 50
Reference Number 4 Roamer Letter F	Claim	Property (PID) 40372922
Roamer Number 5	Well Construction Sketch Available	Well Location Sketch Available ✓
Depth in feet Prir	mary Lithology	Secondary Lithology
From To Colour 1 Description		Description 2 Lithology 2 Water Found
0 4		
4 200	SLATE	
1		■ 7
Well Construction Information	Dug Well Information	Water Yield
Total depth below surface (ft) 200	Depth of liner (crock) (ft)	Estimated Yield (igpm)
Total depth below surface (ft) Depth to bedrock (ft) 200 3.5	Depth of liner (crock) (ft) Reservoir material	
Total depth below surface (ft) 200 Depth to bedrock (ft) 3.5 Water bearing fractures encountered at (ft):	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd)	Estimated Yield (igpm)
Total depth below surface (ft) Depth to bedrock (ft) 200 3.5	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size	Estimated Yield (igpm) Method AIR LIFT
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft): 18 41 102	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 1.5 Duration (hrs) Depth to water at end of test (ft) 195
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft): 18 41 102 000 Outer Well Casing:	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 1.5 Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft)
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft): 18 41 102 Outer Well Casing: From (ft) 0 To (ft) 43	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft)	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 1.5 Duration (hrs) 1 Depth to water at end of test (ft) 195 Total drawdown (ft) Water level recovered to (ft)
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft): 18 41 102 Outer Well Casing: From (ft) 0 To (ft) 43 Diameter (in) 6 Length of casing above ground :	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft)	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 1.5 Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs)
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft): 18 41 102 Outer Well Casing: From (ft) 0 To (ft) 43 Diameter (in) 6 Length of casing above ground:	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft)	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 1.5 Duration (hrs) 1 Depth to water at end of test (ft) 195 Total drawdown (ft) Water level recovered to (ft)
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft): 18 41 102 Outer Well Casing: From (ft) 0 To (ft) 43 Diameter (in) 6 Length of casing above ground: (ft) 1 (in)	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 1.5 Duration (hrs) 1 Depth to water at end of test (ft) 195 Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) 12
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft): 18 41 102 Outer Well Casing: From (ft) 0 To (ft) 43 Diameter (in) 6 Length of casing above ground: (ft) 1 (in) Driveshoe make HEAVY WALL Comments: NS OBS WELL - FALL RIVER (0 102' 1 GPM. WELL LOC SKETO	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material O76); WB FRACT 18' 5 GPM, 41' 0.5 GPM, CH: NEAR BALLFIELD OFF TALISMAN DR.	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 1.5 Duration (hrs) 1 Depth to water at end of test (ft) 195 Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) 12 Overflow Well Status/Water Use/Date Completed
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft): 18 41 102 Outer Well Casing: From (ft) 0 To (ft) 43 Diameter (in) 6 Length of casing above ground: (ft) 1 (in) Driveshoe make HEAVY WALL Comments: NS OBS WELL - FALL RIVER (0 102' 1 GPM. WELL LOC SKETO	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron volume (cu.yd) Bottom material O76); WB FRACT 18' 5 GPM, 41' 0.5 GPM, CH: NEAR BALLFIELD OFF TALISMAN DR. HOLE FOR CASING, 6" BOREHOLE,	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 1.5 Duration (hrs) 1 Depth to water at end of test (ft) 195 Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) 12 Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft): 18 41 102 Outer Well Casing: From (ft) 0 To (ft) 43 Diameter (in) 6 Length of casing above ground: (ft) 1 (in) Driveshoe make HEAVY WALL Comments: NS OBS WELL - FALL RIVER (0 102' 1 GPM. WELL LOC SKETO WELL SKETCH SHOWS 8.75" H	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron volume (cu.yd) Bottom material O76); WB FRACT 18' 5 GPM, 41' 0.5 GPM, CH: NEAR BALLFIELD OFF TALISMAN DR. HOLE FOR CASING, 6" BOREHOLE,	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 1.5 Duration (hrs) 1 Depth to water at end of test (ft) 195 Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) 12 Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL Water use MONITORING
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft): 18 41 102 Outer Well Casing: From (ft) 0 To (ft) 43 Diameter (in) 6 Length of casing above ground: (ft) 1 (in) Driveshoe make HEAVY WALL Comments: NS OBS WELL - FALL RIVER (0 102' 1 GPM. WELL LOC SKETOWELL SKETCH SHOWS 8.75" RENTONITE SEAL ABOVE DRI	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron volume (cu.yd) Bottom material O76); WB FRACT 18' 5 GPM, 41' 0.5 GPM, CH: NEAR BALLFIELD OFF TALISMAN DR. HOLE FOR CASING, 6" BOREHOLE,	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 1.5 Duration (hrs) 1 Depth to water at end of test (ft) 195 Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) 12 Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft): 18 41 102 Outer Well Casing: From (ft) 0 To (ft) 43 Diameter (in) 6 Length of casing above ground: (ft) 1 (in) Driveshoe make HEAVY WALL Comments: NS OBS WELL - FALL RIVER (0 102' 1 GPM. WELL LOC SKETOWELL SKETCH SHOWS 8.75" RENTONITE SEAL ABOVE DRI	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material O76); WB FRACT 18' 5 GPM, 41' 0.5 GPM, CH: NEAR BALLFIELD OFF TALISMAN DR. HOLE FOR CASING, 6" BOREHOLE, VE SHOE. LOT FROM POL.	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 1.5 Duration (hrs) 1 Depth to water at end of test (ft) 195 Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) 12 Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL Water use MONITORING
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft): 18 41 102 Outer Well Casing: From (ft) 0 To (ft) 43 Diameter (in) 6 Length of casing above ground: (ft) 1 (in) Driveshoe make HEAVY WALL Comments: NS OBS WELL - FALL RIVER (0 102' 1 GPM. WELL LOC SKETOWELL SKETCH SHOWS 8.75" RENTONITE SEAL ABOVE DRI	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material O76); WB FRACT 18' 5 GPM, 41' 0.5 GPM, CH: NEAR BALLFIELD OFF TALISMAN DR. HOLE FOR CASING, 6" BOREHOLE, VE SHOE. LOT FROM POL.	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 1.5 Duration (hrs) 1 Depth to water at end of test (ft) 195 Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) 12 Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL Water use MONITORING Method of drilling ROTARY

Environment

(Summary Log)

NSE Well No. 080132 DRILLED Well Type

Certified Well Contractor			Well Owner/Contractor Information
Name ROGERS, KIRK Certificate No. 307 Company K. D. ROGERS WELL DRILLING NS Atlas or Map Book Reference: Atlas or Map Book ATLAS	G	Civic Address of W Lot Number County LUNENB Nearest Communit	Owner NS DEPT. OF ENVIRONMENT & Ider/Consultant, etc. Well NS OBS WELL - WEST NORTHFIELD (077); BRUHM ROAD Subdivision
Map Page No. 73 Reference Letter Z Reference Number 2 Roamer Letter A Roamer Number 1	Reference Map Tract No. Claim Well Construction Ske	etch Available	Easting (m) Stimated GPS Accuracy (m, +/-) Property (PID) 60200029 Well Location Sketch Available
Prima From To Colour 1 Description 1 0 10 10 24 24 160	SAND & SILT SLATE	Colour 2	Secondary Lithology Description 2 Lithology 2 Water Found
Well Construction Information Total depth below surface (ft) 160 Depth to bedrock (ft) 24 Water bearing fractures encountered at (ft): 124 Outer Well Casing: From (ft) 0 To (ft) 42 Diameter (in) 6 Length of casing above ground: (ft) 3 (in) Driveshoe make MEDIUM	Dug Well Info Depth of liner (crock Reservoir material Reservoir vol. (cu.yo Reservoir material s Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yo Bottom material	s) (ft)	Water Yield Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 7 Duration (hrs) 1 Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) 32 Recovery time (hrs) 1 Depth to static level (ft) Overflow
Comments: NS OBS WELL - WEST NORTHF 100+ FT. ADDRESS HWY #10 (P		F-SITE SEPTIC:	Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL Water use MONITORING Method of drilling ROTARY Date well completed 06-Mar-08

NSE Well No. 080861

Environment		(Summ	ary Log)		Well Type	DRILLED
	Certified Well Contractor			Well Owner/Contract	ctor Information	
Certificate No. 734	BS, LARRY NOSE WELL DRILLING		Lot Number County HALIFAX	er/Consultant, etc. Well NS OBS WELL - MU PARK RD Subdivision DAL	INS DEPT. OF ENUSQUODOBOIT HBRUSE BENNETT PARK Postal Code ATLAS MUSQUO	R (078); 104
					HARBOU	R
NS Atlas or Map Boo Atlas or Map Book Map Page No. Reference Letter Reference Number Roamer Letter	ATLAS 59 Y 5 D	Well L NTS Map Reference Map Sheet Reference Map Tract No. Claim Well Construction Sl		Property (PID)	S Accuracy (m, +/-) 40591471	4959880 488125 50
Depth in feet		ary Lithology		Secondary Litholo	_	
From To Co 0 66 66 81 81 200	olour 1 Description 1 COARSE GRAIN	Lithology 1 N SAND SEE COMMENTS	Colour 2	Description 2	Lithology 2 W	/ater Found
Well Construct	tion Information	Dug Well In	formation		Water Yield	
Total depth below surf Depth to bedrock (ft) Water bearing fracture 66 81 95 Outer Well Casing: From (ft) 0 Diameter (in) Length of casing abov (ft) 1 (ir	To (ft) 89 e ground:	Depth of liner (crook Reservoir material Reservoir vol. (cu.) Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.) Bottom material	yd) size t)	Method Rate (igpm Duration (h Depth to w Total draw Water leve Recovery t	vater at end of test (ft) down (ft)	0.5
WELL SI BENTON CASING 200 FT N	WELL - MUSQUODOBO KETCH: CASED OFF SA NITE SEAL ABOVE DRIV S. WELL LOC SKETCH: W NOT GIVEN. ADDRESS FROM POL.	ND WITH CÓBBLES W E SHOE; 6" BOREHOL	ITH 200 GPM; E BELOW	Final status of well Water use	Water Use/Date Com OBSERVATION WE MONITORING ROTARY	<u> </u>

(Summary Log)

NSE Well No. Well Type

Certified Well Contractor		Well Owner/Contractor Information			
Name BOWMASTER Certificate No. 3 Company WILLIAM BOWMASTER, SR.		Well Drilled For: Or or Contractor/Build Civic Address of W Lot Number County HALIFAX	er/Consultant, etc /ell NS OBS WEL	NS DEPT. C	DF LANDS & FORES
		Nearest Communit			IS LAKE
	Well Lo				
NS Atlas or Map Book Reference :	NTS Map Reference	:	GPS (W	/GS84 UTM) :	
Atlas or Map Book MAP	Map Sheet		Northing		4948873
Map Page No. 20	Reference Map		Easting		433048
Reference Letter D	· <u></u>			,	
Reference Number 5	Tract No.			ed GPS Accuracy (m, -	+/-) 50
Roamer Letter H	Claim		Property	(PID)	
Roamer Number 8	Well Construction Ske	etch Available	Well Lo	cation Sketch Available	
Depth in feet Prima	ary Lithology		Secondary	Lithology	
From To Colour 1 Description 1	Lithology 1	Colour 2	Description 2	Lithology 2	Water Found
0 20 20 250	GRANITE				
20 250	OIGHTE				
Well Construction Information	Dug Well Info	ormation		Water Yield	
Well Construction Information Total depth below surface (ft) 250	Dug Well Info		Estir	Water Yield nated Yield (igpm)	
			Estir	nated Yield (igpm)	
Total depth below surface (ft) 250	Depth of liner (crock	k) (ft)	Meth	nated Yield (igpm)	6
Total depth below surface (ft) 250 Depth to bedrock (ft) 20	Depth of liner (crock Reservoir material	k) (ft) d)	Meth Rate	nated Yield (igpm)	6
Total depth below surface (ft) 250 Depth to bedrock (ft) 20 Water bearing fractures encountered at (ft):	Depth of liner (crock Reservoir material Reservoir vol. (cu.yo	k) (ft) d)	Meth Rate Dura	nated Yield (igpm) nod (igpm) tion (hrs)	1.5
Total depth below surface (ft) 250 Depth to bedrock (ft) 20 Water bearing fractures encountered at (ft):	Depth of liner (crock Reservoir material Reservoir vol. (cu.yo Reservoir material s	k) (ft) d)	Meth Rate Dura Dept	nated Yield (igpm) od (igpm) tion (hrs) h to water at end of tes	1.5
Total depth below surface (ft) 250 Depth to bedrock (ft) 20 Water bearing fractures encountered at (ft): 240 250 000 Outer Well Casing:	Depth of liner (crock Reservoir material Reservoir vol. (cu.yo Reservoir material s Apron Material	d)	Meth Rate Dura Dept Tota	nated Yield (igpm) nod (igpm) tion (hrs) h to water at end of test	1.5 st (ft) 27
Total depth below surface (ft) 250 Depth to bedrock (ft) 20 Water bearing fractures encountered at (ft): 240 250 Couter Well Casing: From (ft) 6 To (ft) 25	Depth of liner (crock Reservoir material Reservoir vol. (cu.yo Reservoir material s Apron Material Apron depth (ft)	d)	Meth Rate Dura Dept Tota Wate	nated Yield (igpm) nod (igpm) tion (hrs) h to water at end of test drawdown (ft) er level recovered to (ft	1.5 st (ft) 27
Total depth below surface (ft) 250 Depth to bedrock (ft) 20 Water bearing fractures encountered at (ft): 240 250	Depth of liner (crock Reservoir material Reservoir vol. (cu.you Reservoir material s Apron Material Apron depth (ft) Apron thickness (ft)	k) (ft)	Meth Rate Dura Dept Tota Wate Reco	nated Yield (igpm) nod (igpm) tion (hrs) h to water at end of test drawdown (ft) er level recovered to (ft	1.5 st (ft) 27
Total depth below surface (ft) 250 Depth to bedrock (ft) 20 Water bearing fractures encountered at (ft): 240 250	Depth of liner (crock Reservoir material Reservoir vol. (cu.you Reservoir material standard Apron Material Apron depth (ft) Apron thickness (ft)	k) (ft)	Meth Rate Dura Dept Tota Wate Reco	nated Yield (igpm) nod (igpm) tion (hrs) h to water at end of test drawdown (ft) er level recovered to (ft overy time (hrs) h to static level (ft)	1.5 st (ft) 27
Total depth below surface (ft) 250 Depth to bedrock (ft) 20 Water bearing fractures encountered at (ft): 240 250 To (ft) 25 Outer Well Casing: From (ft) 6 To (ft) 25 Diameter (in) 6 Length of casing above ground: (ft) (in)	Depth of liner (crock Reservoir material Reservoir vol. (cu.you Reservoir material standard Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.you Bottom material	k) (ft)	Meth Rate Dura Depi Tota Wate Reco Depi Over	nated Yield (igpm) nod (igpm) tion (hrs) h to water at end of test drawdown (ft) er level recovered to (ft overy time (hrs) h to static level (ft)	1.5 st (ft) 27
Total depth below surface (ft) 250 Depth to bedrock (ft) 20 Water bearing fractures encountered at (ft): 240 250 To (ft) 25 Outer Well Casing: From (ft) 6 To (ft) 25 Diameter (in) 6 Length of casing above ground: (ft) (in) Driveshoe make UNKNOWN	Depth of liner (crock Reservoir material Reservoir vol. (cu.you Reservoir material so Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.you Bottom material	k) (ft) d) size d) WATER SUPPLY	Meth Rate Dura Dept Tota Wate Reco Dept Over	nated Yield (igpm) nod (igpm) tion (hrs) h to water at end of test drawdown (ft) er level recovered to (ft overy time (hrs) h to static level (ft) flow Status/Water Use/Date	1.5 st (ft) 27
Total depth below surface (ft) 250 Depth to bedrock (ft) 20 Water bearing fractures encountered at (ft): 240 250 To (ft) 25 Outer Well Casing: From (ft) 6 To (ft) 25 Diameter (in) 6 Length of casing above ground: (ft) (in) Driveshoe make UNKNOWN Comments: NS OBS WELL - LEWIS LAKE (07	Depth of liner (crock Reservoir material Reservoir vol. (cu.you Reservoir material of Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.you Bottom material	k) (ft) d) size d) WATER SUPPLY	Meth Rate Dura Dept Tota Wate Recc Dept Over Well S	nated Yield (igpm) nod (igpm) tion (hrs) h to water at end of test drawdown (ft) er level recovered to (ft) every time (hrs) h to static level (ft) flow Status/Water Use/Date	1.5 st (ft) 27
Total depth below surface (ft) 250 Depth to bedrock (ft) 20 Water bearing fractures encountered at (ft): 240 250 To (ft) 25 Outer Well Casing: From (ft) 6 To (ft) 25 Diameter (in) 6 Length of casing above ground: (ft) (in) Driveshoe make UNKNOWN Comments: NS OBS WELL - LEWIS LAKE (07	Depth of liner (crock Reservoir material Reservoir vol. (cu.you Reservoir material of Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.you Bottom material	k) (ft) d) size d) WATER SUPPLY	Meth Rate Dura Dept Tota Wate Reco Dept Over	nated Yield (igpm) nod (igpm) tion (hrs) h to water at end of test drawdown (ft) er level recovered to (ft overy time (hrs) h to static level (ft) flow Status/Water Use/Date	1.5 st (ft) 27
Total depth below surface (ft) 250 Depth to bedrock (ft) 20 Water bearing fractures encountered at (ft): 240 250 To (ft) 25 Outer Well Casing: From (ft) 6 To (ft) 25 Diameter (in) 6 Length of casing above ground: (ft) (in) Driveshoe make UNKNOWN Comments: NS OBS WELL - LEWIS LAKE (07	Depth of liner (crock Reservoir material Reservoir vol. (cu.you Reservoir material of Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.you Bottom material	k) (ft) d) size d) WATER SUPPLY	Meth Rate Dura Dept Tota Wate Recc Dept Over Well S	nated Yield (igpm) nod (igpm) tion (hrs) h to water at end of test drawdown (ft) er level recovered to (ft overy time (hrs) h to static level (ft) flow Status/Water Use/Date well OBSERVATION MONITORING	1.5 st (ft) 27
Total depth below surface (ft) 250 Depth to bedrock (ft) 20 Water bearing fractures encountered at (ft): 240 250 To (ft) 25 Outer Well Casing: From (ft) 6 To (ft) 25 Diameter (in) 6 Length of casing above ground: (ft) (in) Driveshoe make UNKNOWN Comments: NS OBS WELL - LEWIS LAKE (07	Depth of liner (crock Reservoir material Reservoir vol. (cu.you Reservoir material of Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.you Bottom material	k) (ft) d) size d) WATER SUPPLY	Meth Rate Dura Dept Tota Wate Recc Dept Over Well S Final status of Water use	nated Yield (igpm) nod (igpm) tion (hrs) h to water at end of test drawdown (ft) er level recovered to (ft) overy time (hrs) h to static level (ft) flow Status/Water Use/Date well OBSERVATION MONITORING	1.5 st (ft) 27
Total depth below surface (ft) 250 Depth to bedrock (ft) 20 Water bearing fractures encountered at (ft): 240 250 To (ft) 25 Outer Well Casing: From (ft) 6 To (ft) 25 Diameter (in) 6 Length of casing above ground: (ft) (in) Driveshoe make UNKNOWN Comments: NS OBS WELL - LEWIS LAKE (07	Depth of liner (crock Reservoir material Reservoir vol. (cu.you Reservoir material of Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.you Bottom material	k) (ft) d) size d) WATER SUPPLY	Method of dril	nated Yield (igpm) nod (igpm) tion (hrs) h to water at end of test drawdown (ft) er level recovered to (ft) overy time (hrs) h to static level (ft) flow Status/Water Use/Date well OBSERVATION MONITORING	1.5 st (ft) 27 c) Completed
Total depth below surface (ft) 250 Depth to bedrock (ft) 20 Water bearing fractures encountered at (ft): 240 250 To (ft) 25 Outer Well Casing: From (ft) 6 To (ft) 25 Diameter (in) 6 Length of casing above ground: (ft) (in) Driveshoe make UNKNOWN Comments: NS OBS WELL - LEWIS LAKE (07	Depth of liner (crock Reservoir material Reservoir vol. (cu.you Reservoir material of Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.you Bottom material	k) (ft) d) size d) WATER SUPPLY	Method of dril	nated Yield (igpm) nod (igpm) tion (hrs) h to water at end of test drawdown (ft) er level recovered to (ft) overy time (hrs) h to static level (ft) flow Status/Water Use/Date well OBSERVATION MONITORING	1.5 st (ft) 27 c) Completed

(Summary Log)

NSE Well No. Well Type

Certified Well Contractor		Well Owner/Contractor Information	
Name HINGLEY, FLEMING Certificate No. 15 Company A & W WELL DRILLING LTD.	or Contrac Civic Addi Lot Numb	ed For: Owner NS DEPT. OF ENVIRON ctor/Builder/Consultant, etc. lress of Well NS OBS WELL - ARISAIG (080)	IMENT
	Nearest C	Community in Altlas/Map Book ARISAIG	
	Well Location	,,	
NS Atlas or Map Book Reference : Atlas or Map Book MAP Map Page No. 29 Reference Letter B Reference Number 3 Roamer Letter L Roamer Number 9 Depth in feet Prim From To Colour 1 Description 1 1 20 20 30	NTS Map Reference : Map Sheet Reference Map Tract No. Claim Well Construction Sketch Availa ary Lithology Lithology 1 Cold GRAVEL & SAND SHALE	Property (PID)	7
Well Construction Information	Dug Wall Information	Weter Viold	
Well Construction Information Total depth below surface (ft) 300 Depth to bedrock (ft) 30 Water bearing fractures encountered at (ft) Outer Well Casing: From (ft) 1 To (ft) 40 Diameter (in) 6 Length of casing above ground: (ft) (in) Driveshoe make UNKNOWN Comments NS OBS WELL - ARISAIG (080) FORMER PARK WATER SUPPL CONVERTED TO MONITORING		Water Yield Estimated Yield (igpm) Method Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL Water use MONITORING Method of drilling ROTARY Date well completed 05-Jul	-77

(Summary Log)

NSE Well No. Well Type

Certified Well Contractor		Well Owner/Contractor Information	
Name Certificate No. Company	Civic Address of V Lot Number County KINGS	Well NS OBS WELL - COLDBROOK (081) 7073 HWY 1 Subdivision Postal Code ty in Altlas/Map Book ATLAS COLDBROOK	
	Well Location		
NS Atlas or Map Book Reference : Atlas or Map Book Map Page No. Reference Letter Reference Number Roamer Letter Roamer Number	NTS Map Reference : Map Sheet Reference Map Tract No. Claim Well Construction Sketch Available	GPS (WGS84 UTM) : Northing (m)	
Depth in feet Prima	ary Lithology	Secondary Lithology	
Well Construction Information	Dug Well Information	Water Yield	
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) Diameter (in) Length of casing above ground: (ft) (in) Driveshoe make Comments: NS OBS WELL - COLDBROOK (0)	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material D81) CONVERTED TO OBSERVATION WELL OF TIN 1961 AND 44 FT IN 1974;	Estimated Yield (igpm) Method Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) 45 Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL Water use MONITORING Method of drilling	

(Summary Log)

NSE Well No. 74
Well Type DF

Certified Well Contractor		Well Owner/Contractor Information
Name Certificate No. Company NS Atlas or Map Book Reference :	Well Drilled For: Or or Contractor/Build Civic Address of W Lot Number County INVERNE	wner NS DEPT. OF LANDS AND FOR der/Consultant, etc. NS OBS WELL - LONG POINT (082) HWY 19 Subdivision
Atlas or Map Book	Map Sheet	Northing (m) 5074277
Map Page No.	Reference Map	Easting (m) 618131
Reference Letter	Tract No.	Estimated GPS Accuracy (m, +/-) 50
Reference Number Roamer Letter	Claim	Property (PID) 50017490
Roamer Number	Well Construction Sketch Available	Well Location Sketch Available
Depth in feet Prim	nary Lithology	Secondary Lithology
Well Construction Information	Dug Well Information	Water Yield
	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material D82) CONVERTED TO OBSERVATION WELL N DATE ASSUMED TO BE 1-AUG-1974	Estimated Yield (igpm) Method Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL Water use MONITORING Method of drilling
		Date well completed 01-Aug-74

510124 NSE Well No. Well Type DRILLED

Environment	(Summary Log)	71
Certified Well Contractor		Well Owner/Contractor Information
	Well Drilled For: Own or Contractor/Builder	INS DEPT. OF LANDS AND FOR T/Consultant, etc. III NS OBS WELL - TATAMAGOUCHE (083) 2660 HWY 6 Subdivision TER Postal Code in Altlas/Map Book ATLAS TATAMAGOUCHE GPS (WGS84 UTM): Northing (m) 5061591 Easting (m) 479226 Estimated GPS Accuracy (m, +/-) 50
Roamer Letter	Claim	Property (PID) 20419768
Roamer Number	Well Construction Sketch Available	Well Location Sketch Available
Depth in feet Prim	ary Lithology	Secondary Lithology
Well Construction Information	Dug Well Information	Water Yield
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) Diameter (in) Length of casing above ground: (ft) (in) Driveshoe make Comments: NS OBS WELL - TATAMAGOUCH	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	Estimated Yield (igpm) Method Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL Water use MONITORING Method of drilling Date well completed 01-Jan-51

APPENDIX B GROUNDWATER LEVEL GRAPHS

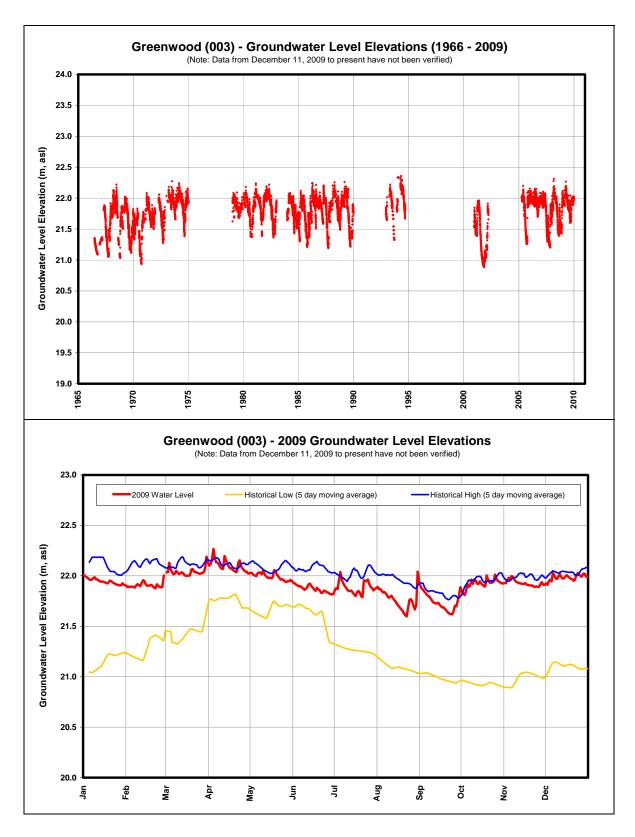


Figure B.1: Greenwood (003) Groundwater Level Elevations

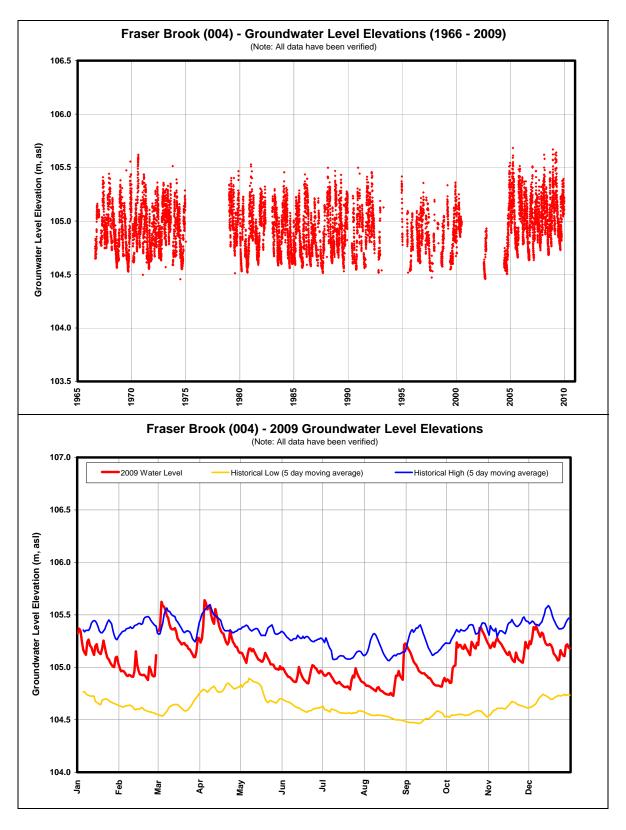


Figure B.2: Fraser Brook (004) Groundwater Level Elevations

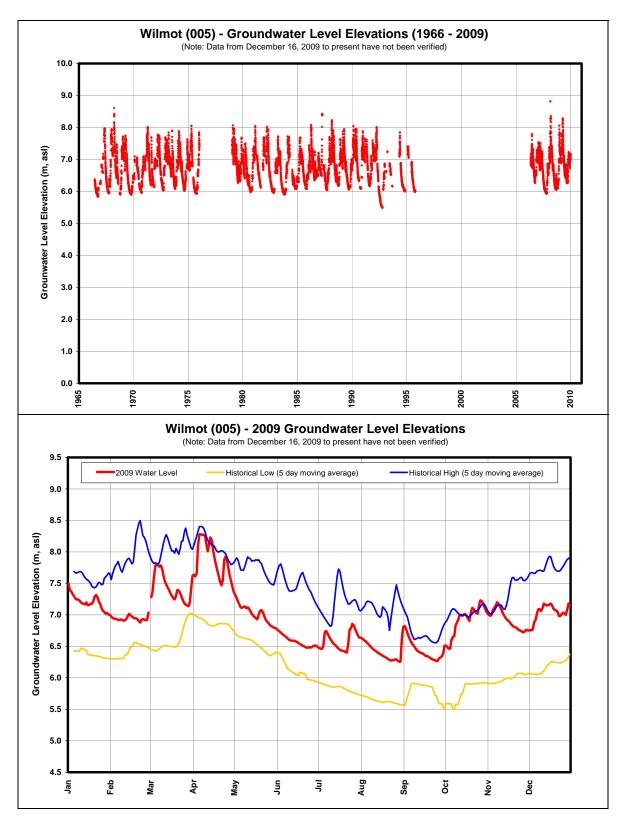


Figure B.3: Wilmot (005) Groundwater Level Elevations

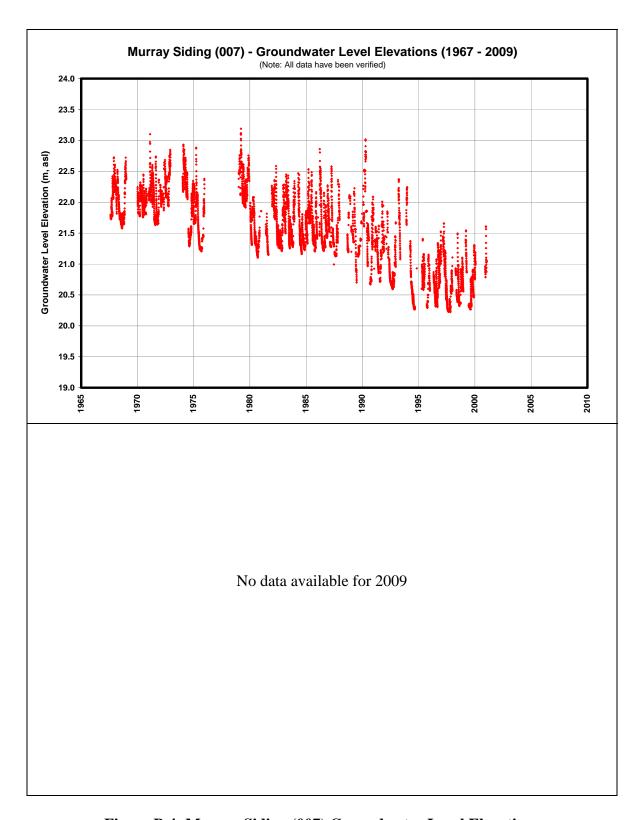


Figure B.4: Murray Siding (007) Groundwater Level Elevations

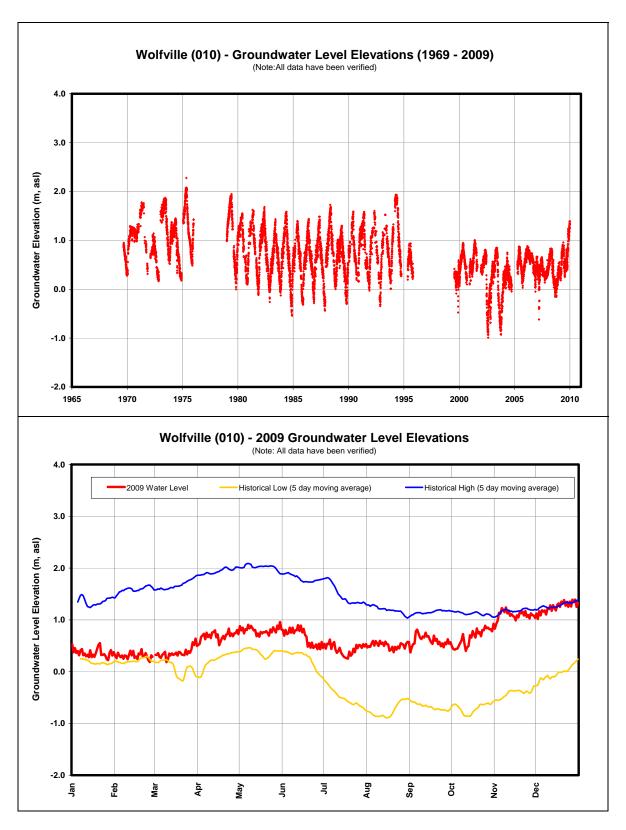


Figure B.5: Wolfville (010) Groundwater Level Elevations

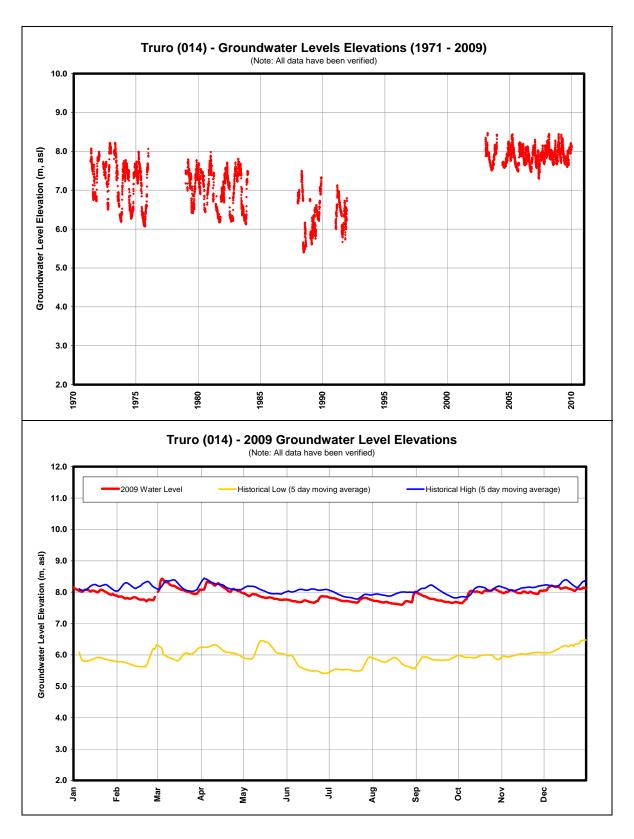


Figure B.6: Truro (014) Groundwater Level Elevations

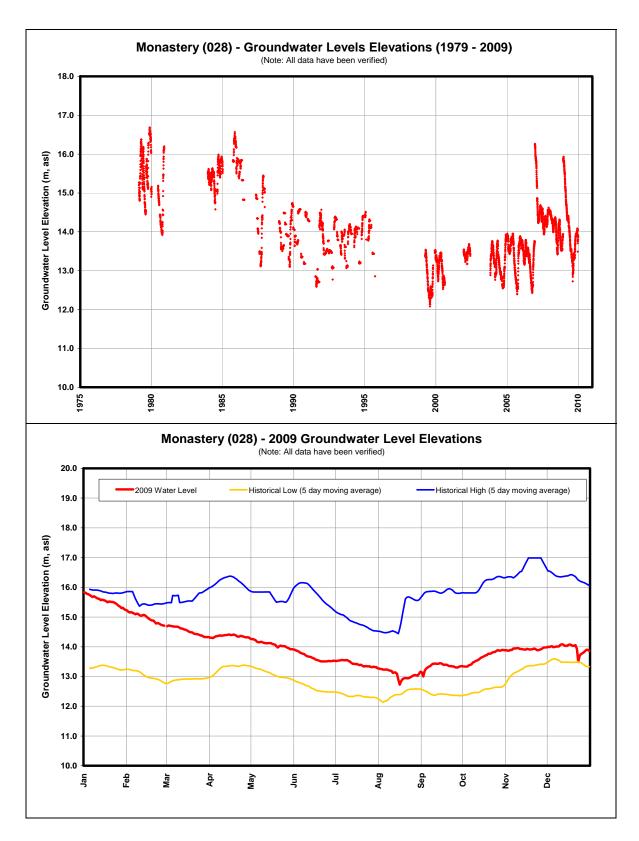


Figure B.7: Monastery (028) Groundwater Level Elevations

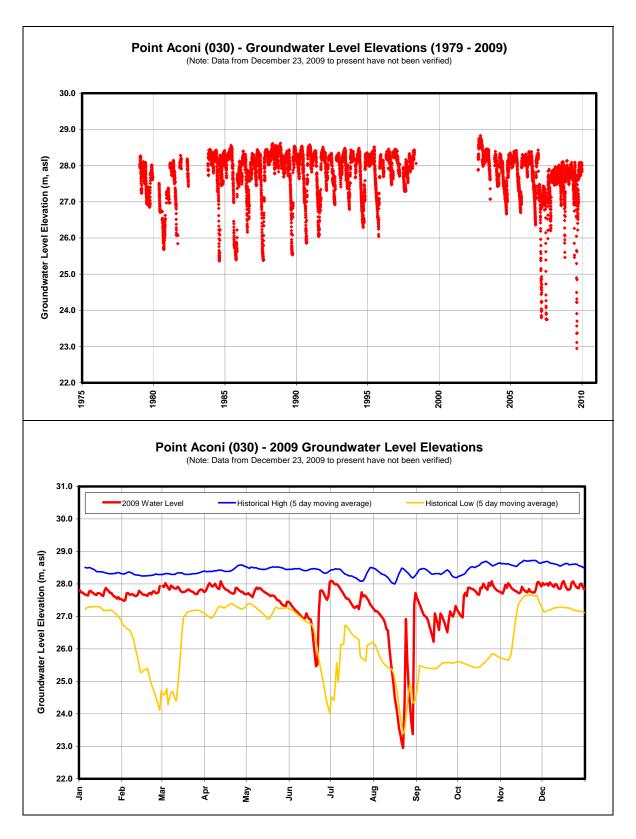


Figure B.8: Point Aconi (030) Groundwater Level Elevations

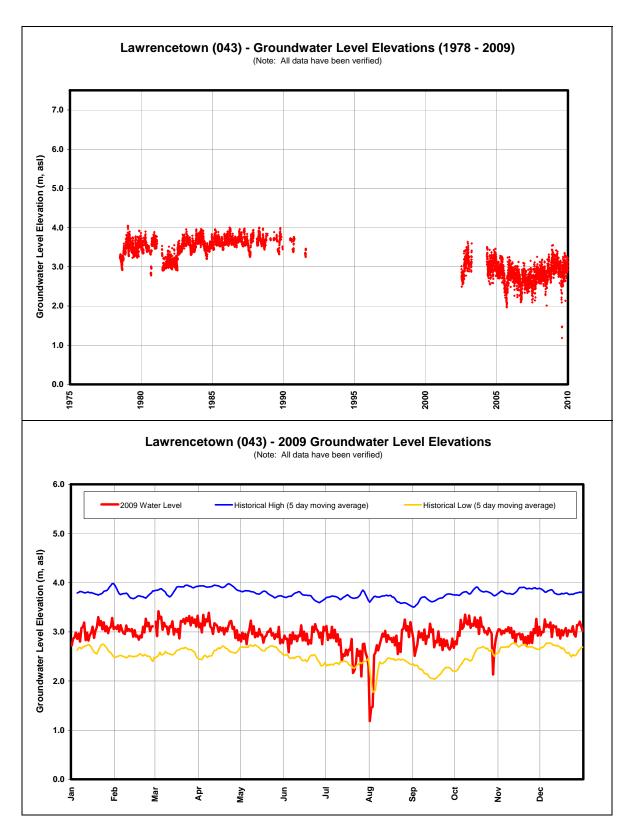


Figure B.9: Lawrencetown (043) Groundwater Level Elevations

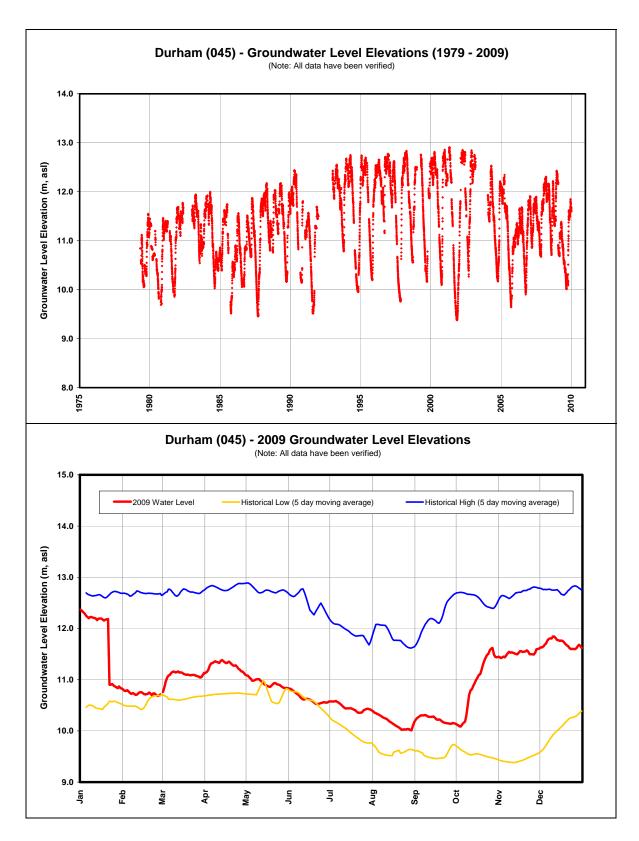


Figure B.10: Durham (045) Groundwater Level Elevations

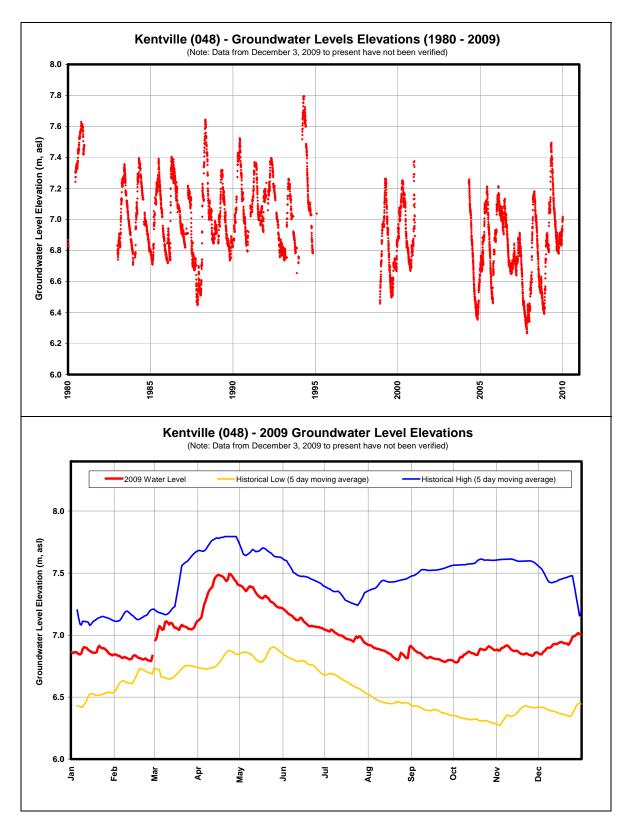


Figure B.11: Kentville (048) Groundwater Level Elevations

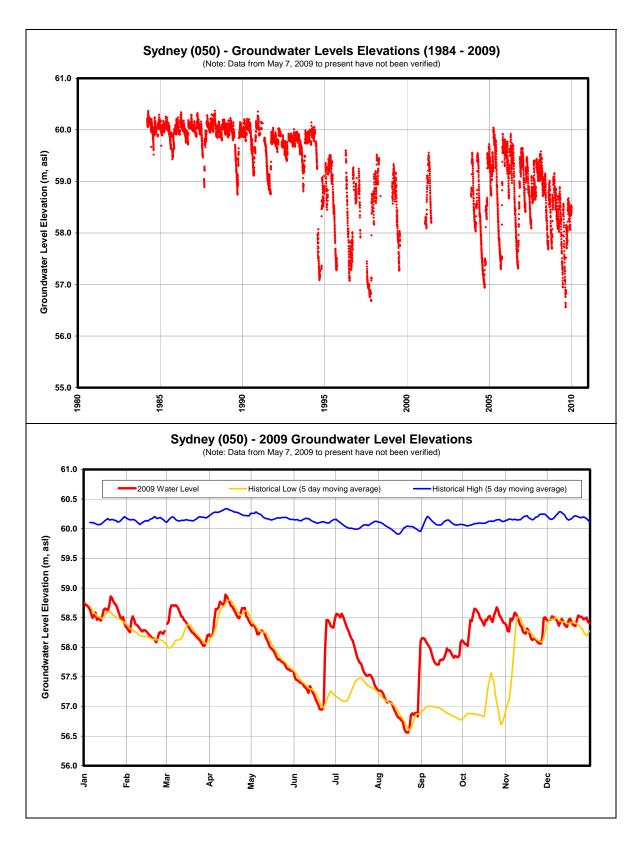


Figure B.12: Sydney (050) Groundwater Level Elevations

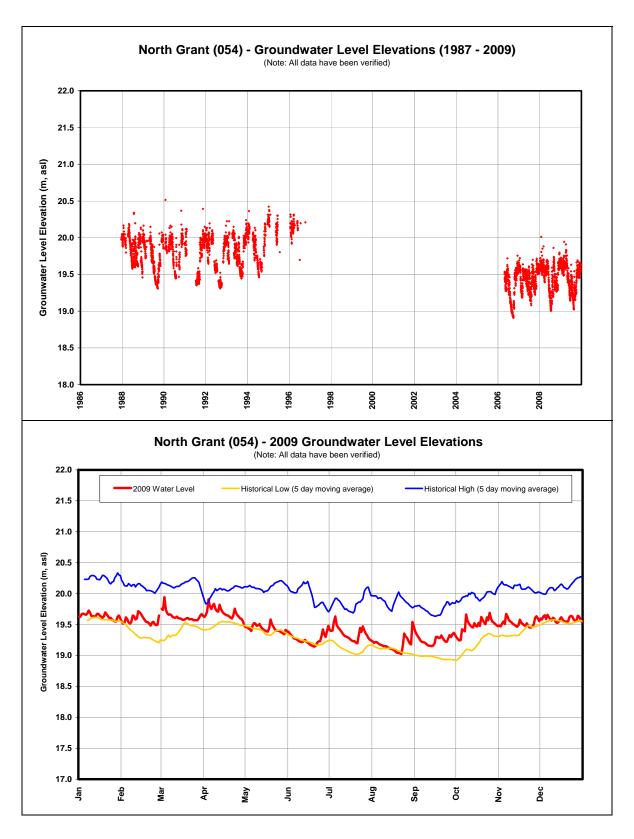


Figure B.13: North Grant (054) Groundwater Level Elevations

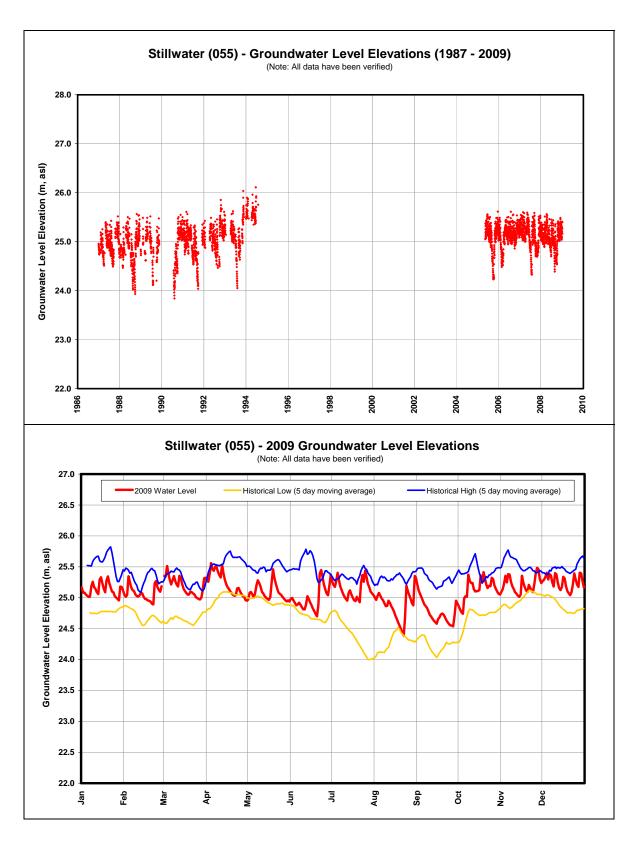


Figure B.14: Stillwater (055) Groundwater Level Elevations

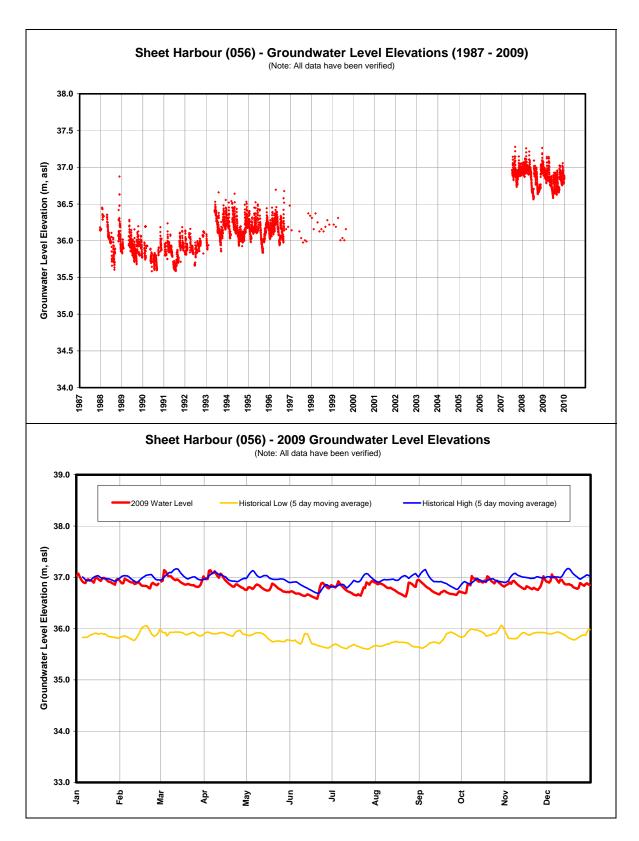


Figure B.15: Sheet Hbr (056) Groundwater Level Elevations

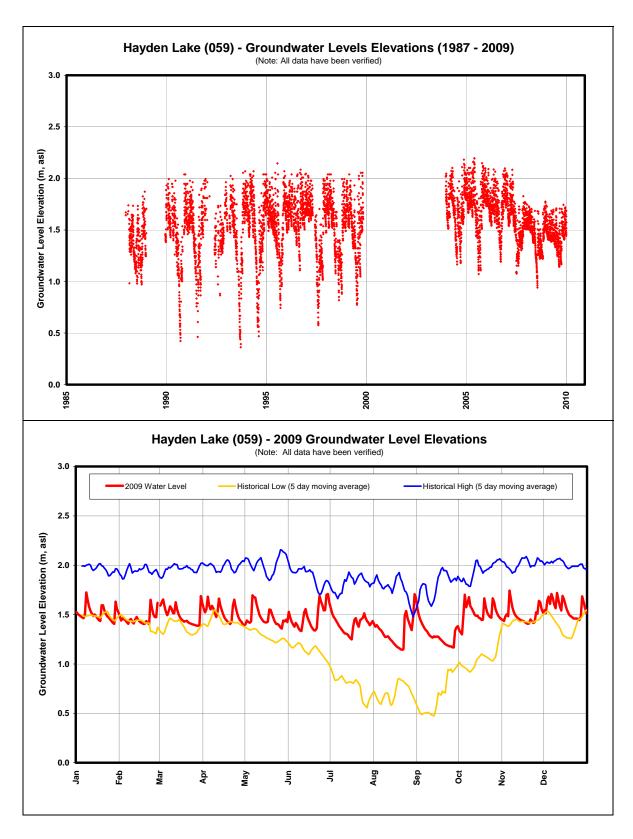


Figure B.16: Hayden Lake (059) Groundwater Level Elevations

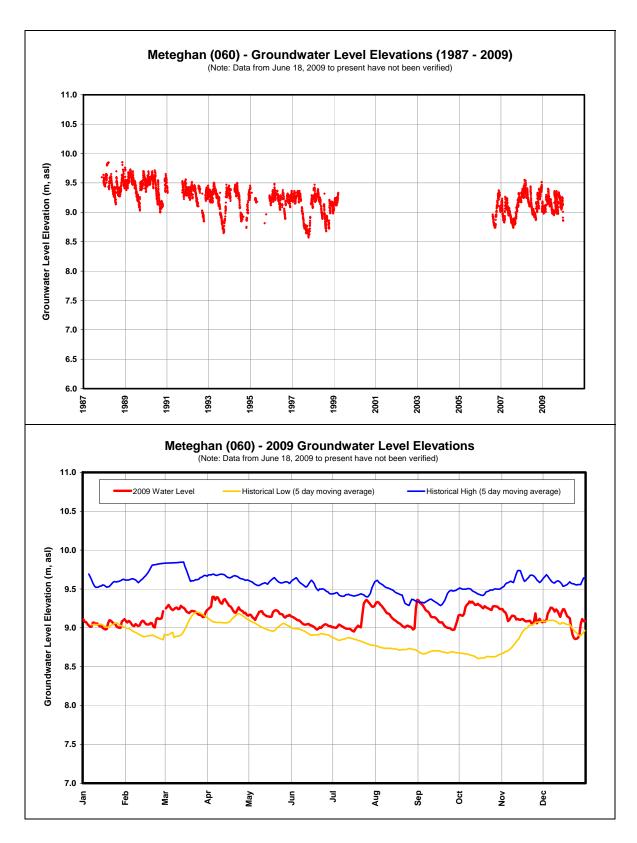


Figure B.17: Meteghan (060) Groundwater Level Elevations

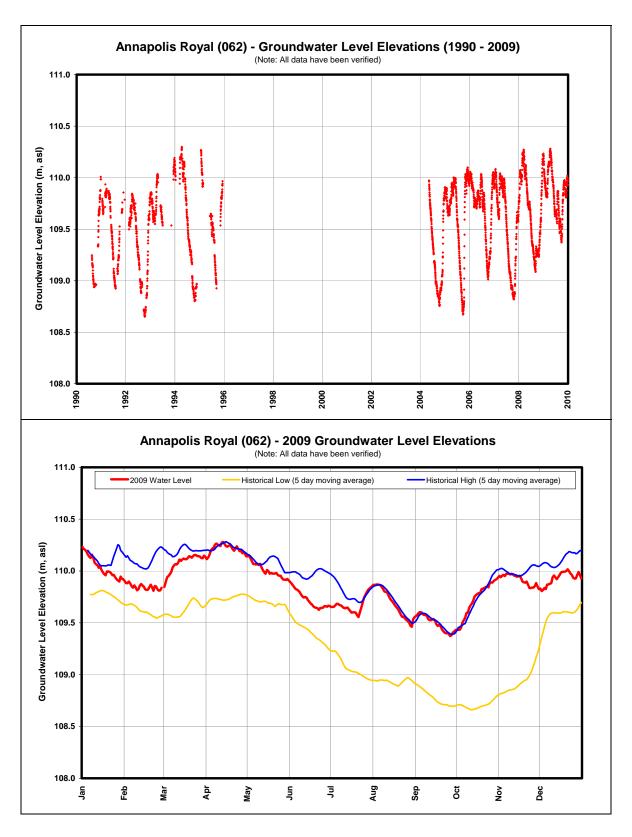


Figure B.18: Annapolis Royal (062) Groundwater Level Elevations

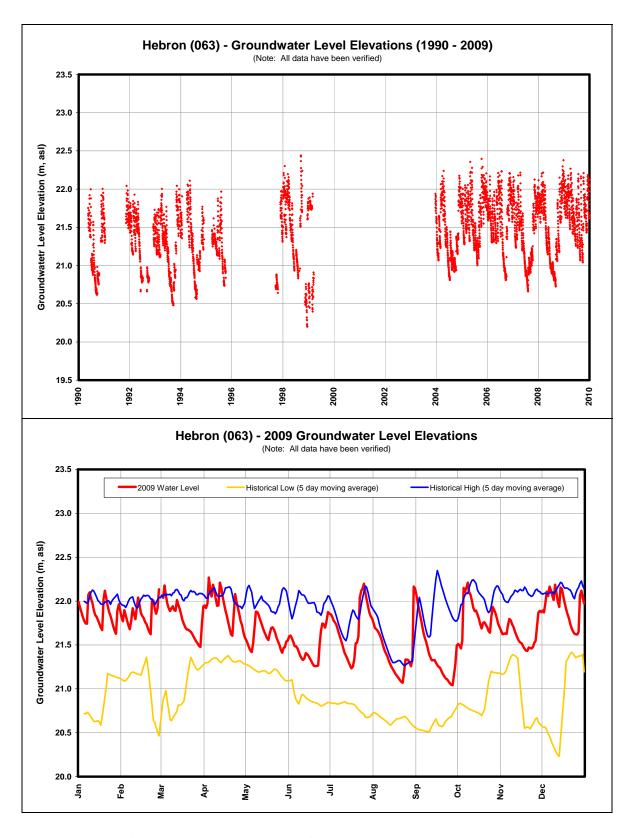


Figure B.19: Hebron (063) Groundwater Level Elevations

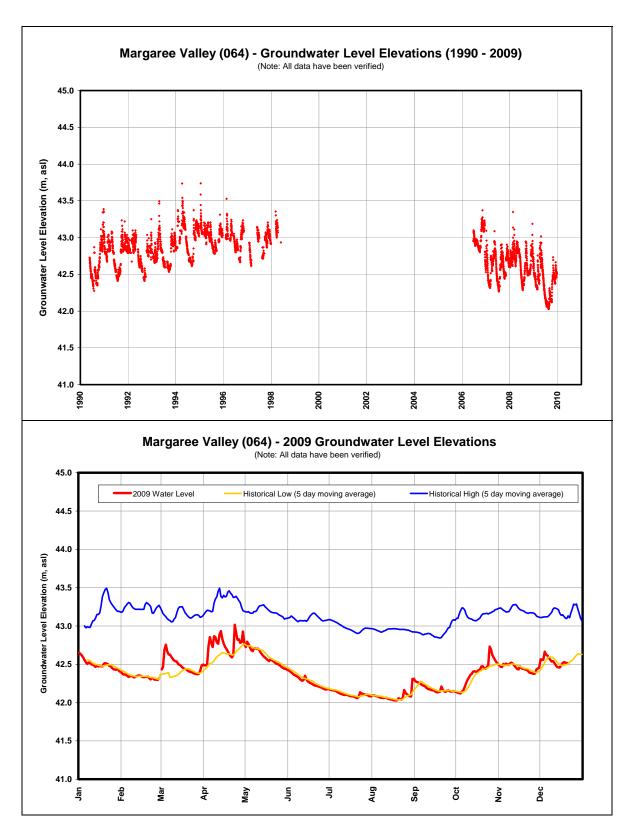


Figure B.20: Margaree (064) Groundwater Level Elevations

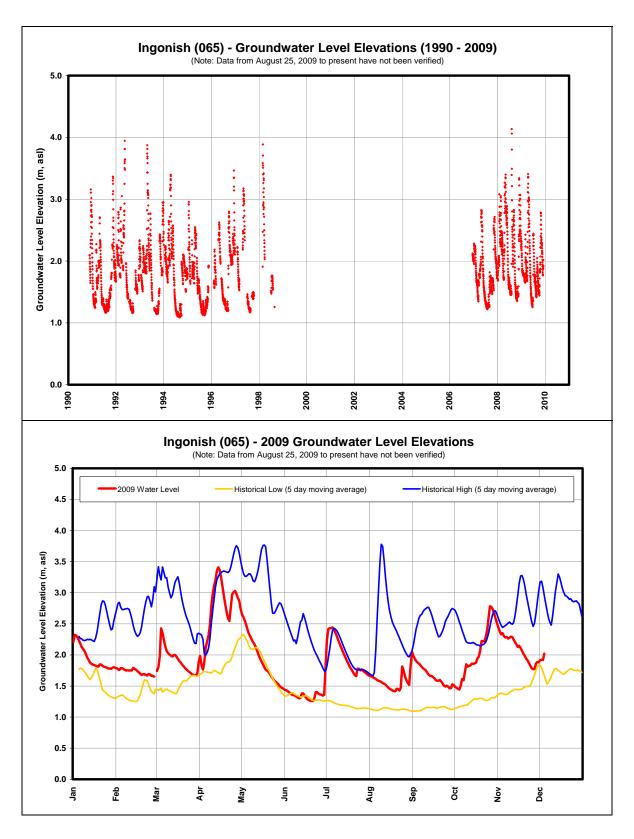


Figure B.21: Ingonish (065) Groundwater Level Elevations

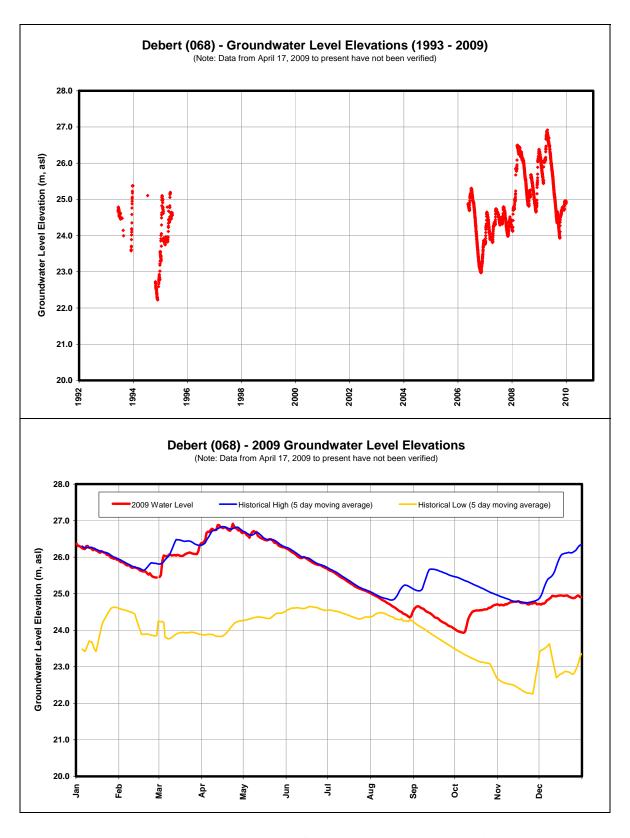


Figure B.22: Debert (068) Groundwater Level Elevations

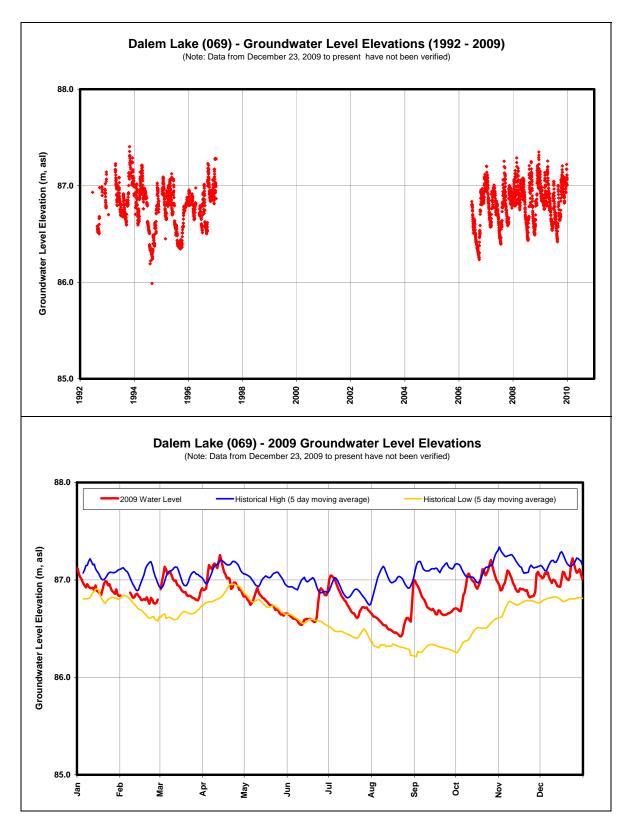


Figure B.23: Dalem Lake (069) Groundwater Level Elevations

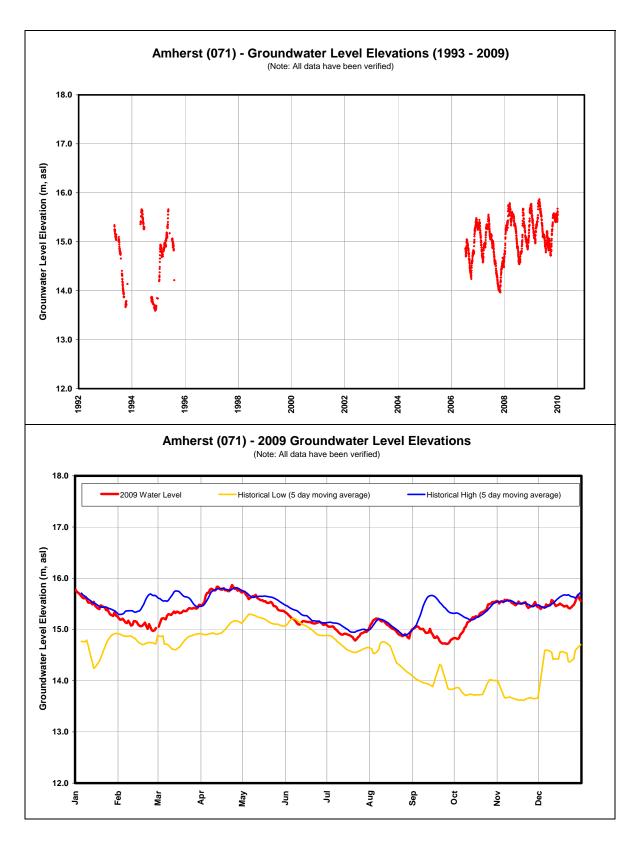


Figure B.24: Amherst (071) Groundwater Level Elevations

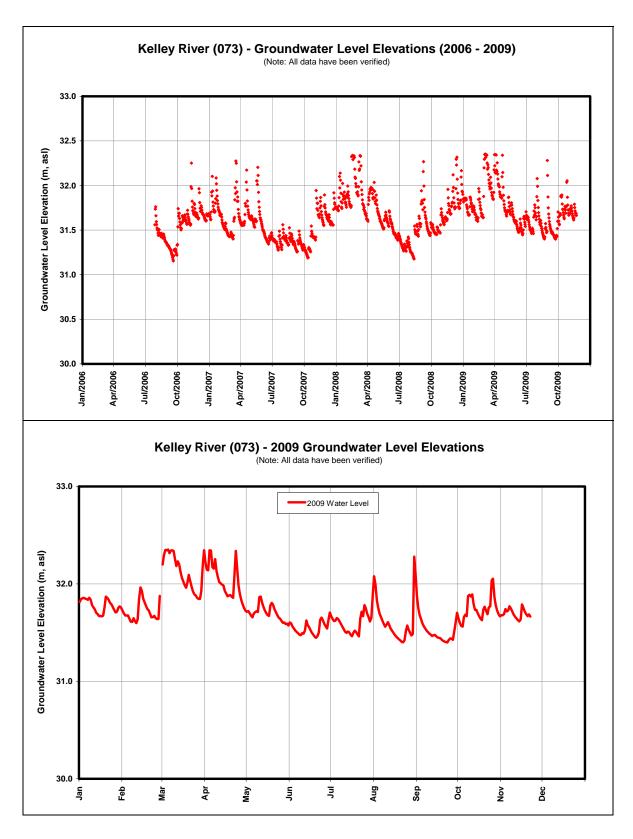


Figure B.25: Kelley River (075) Groundwater Level Elevations

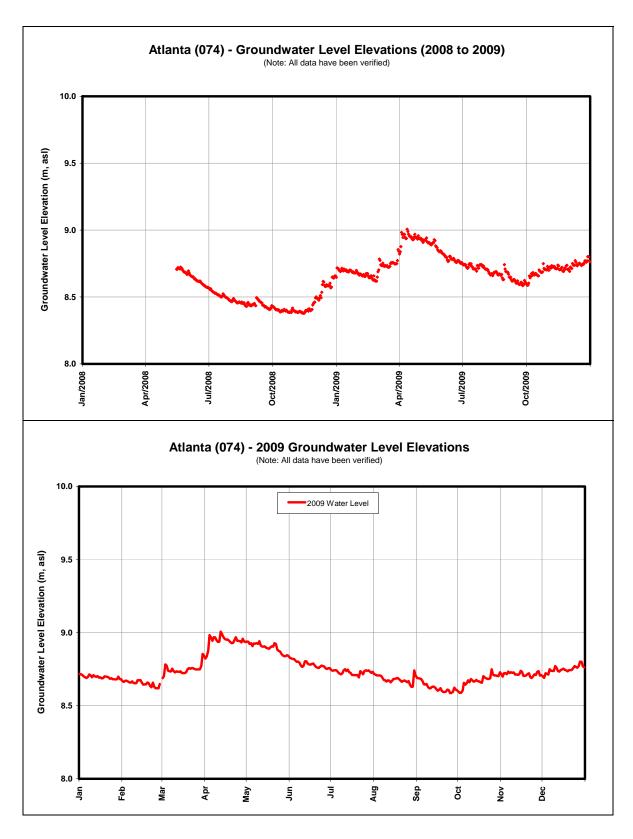


Figure B.26: Atlanta (074) Groundwater Level Elevations

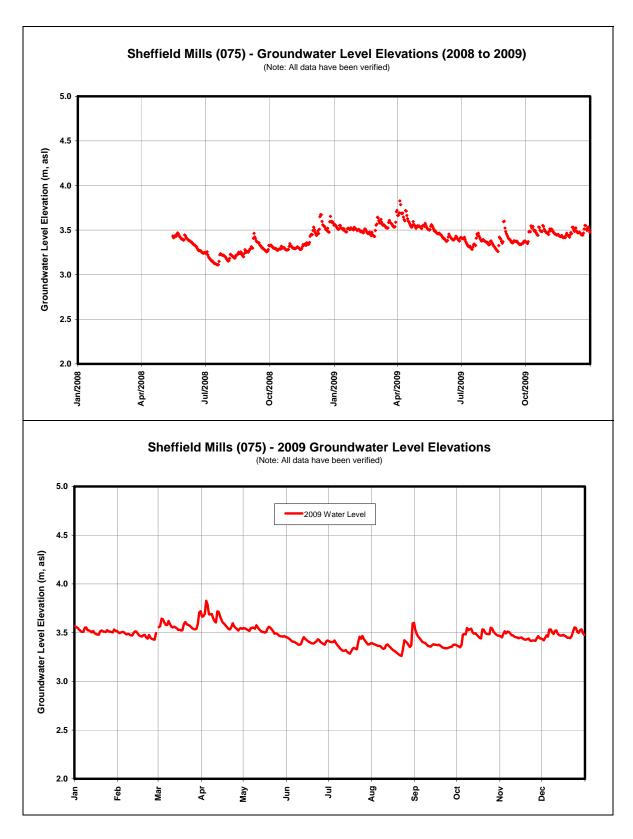


Figure B.27: Sheffield Mills (075) Groundwater Level Elevations

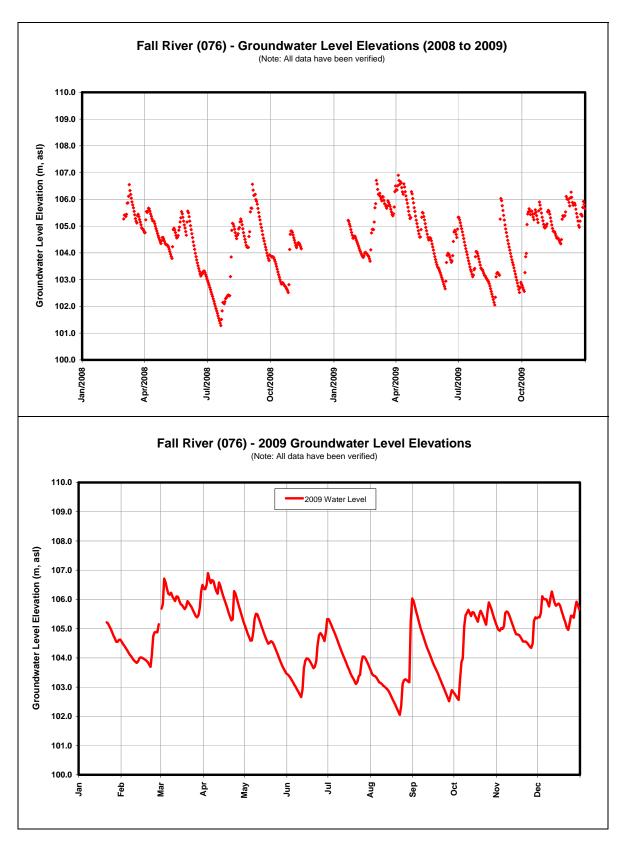


Figure B.28: Fall River (076) Groundwater Level Elevations

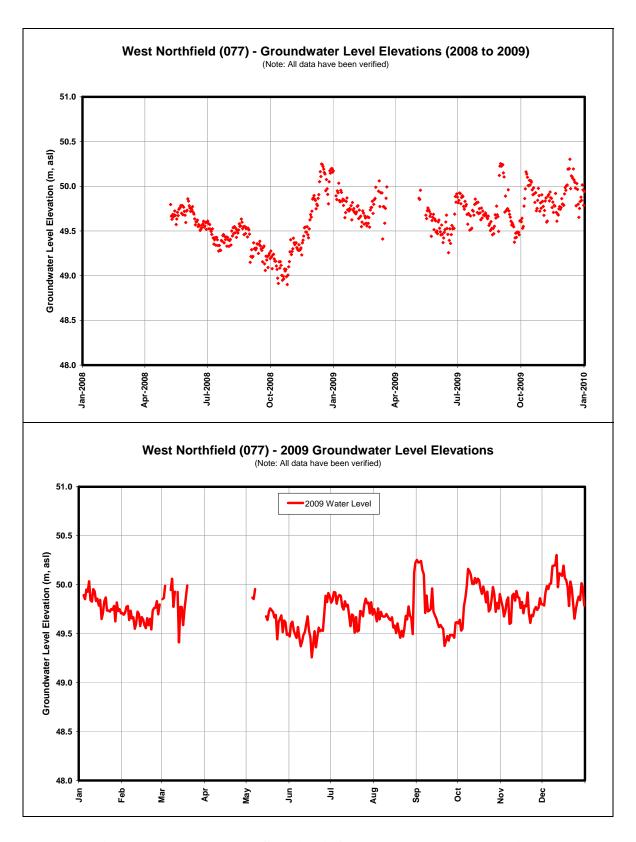


Figure B.29: West Northfield (077) Groundwater Level Elevations

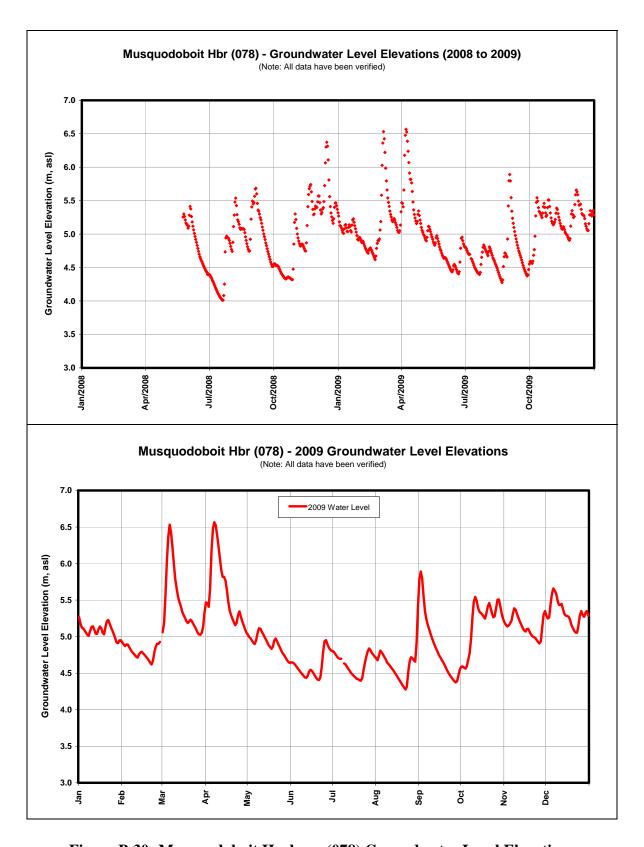


Figure B.30: Musquodoboit Harbour (078) Groundwater Level Elevations

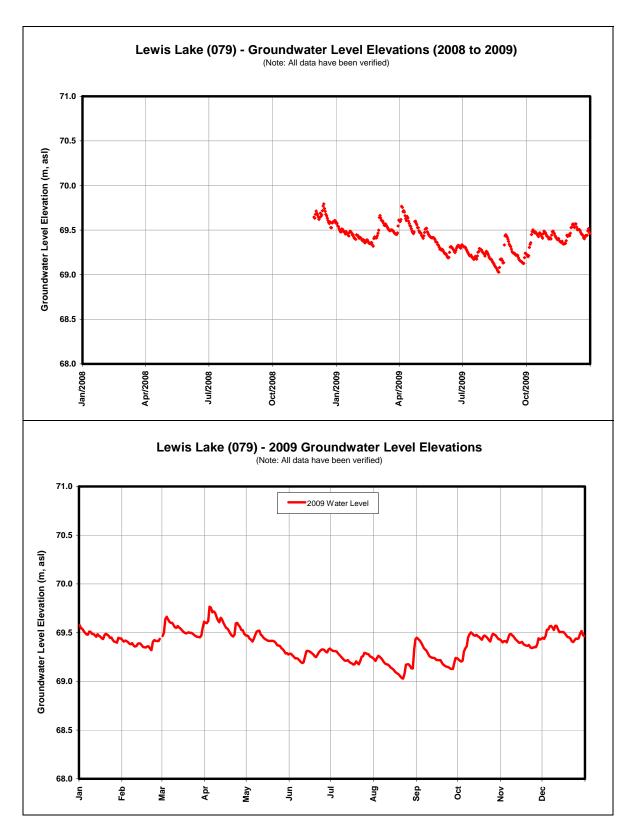


Figure B.31: Lewis Lake (079) Groundwater Level Elevations

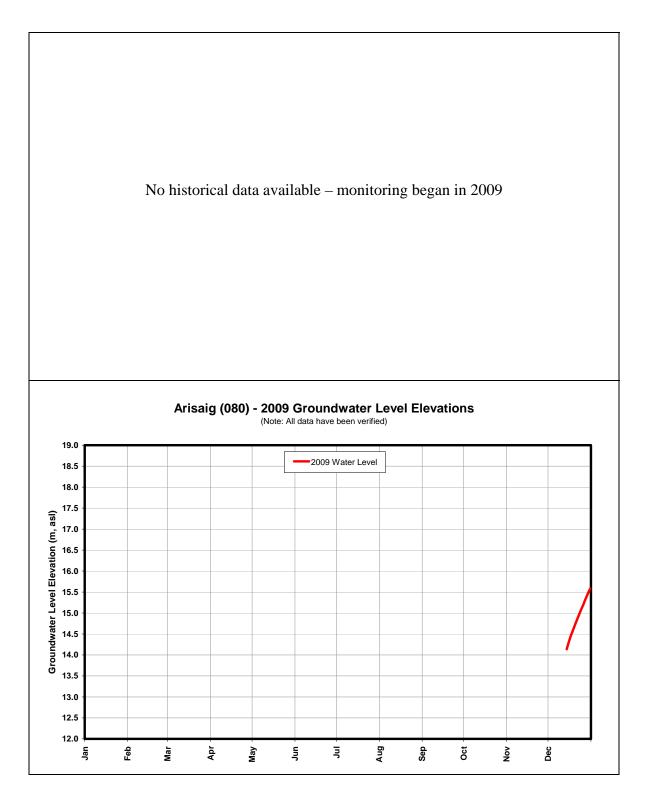


Figure B.32: Arisaig (080) Groundwater Level Elevations

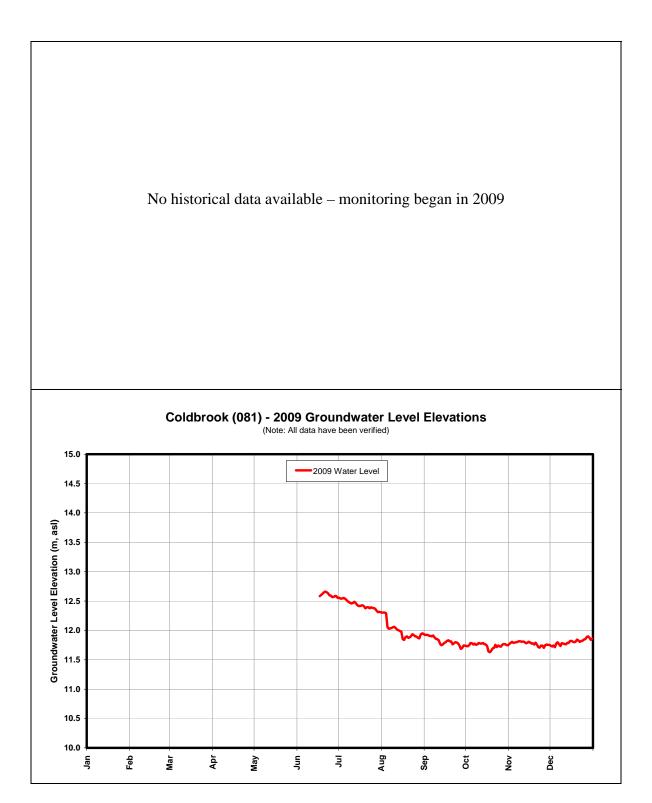


Figure B.33: Coldbrook (081) Groundwater Level Elevations

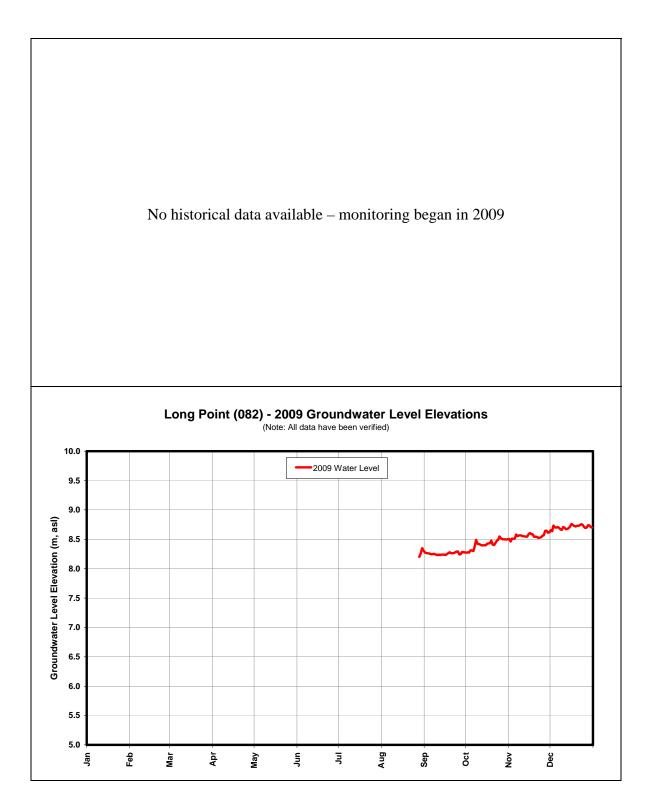


Figure B.34: Long Point (082) Groundwater Level Elevations

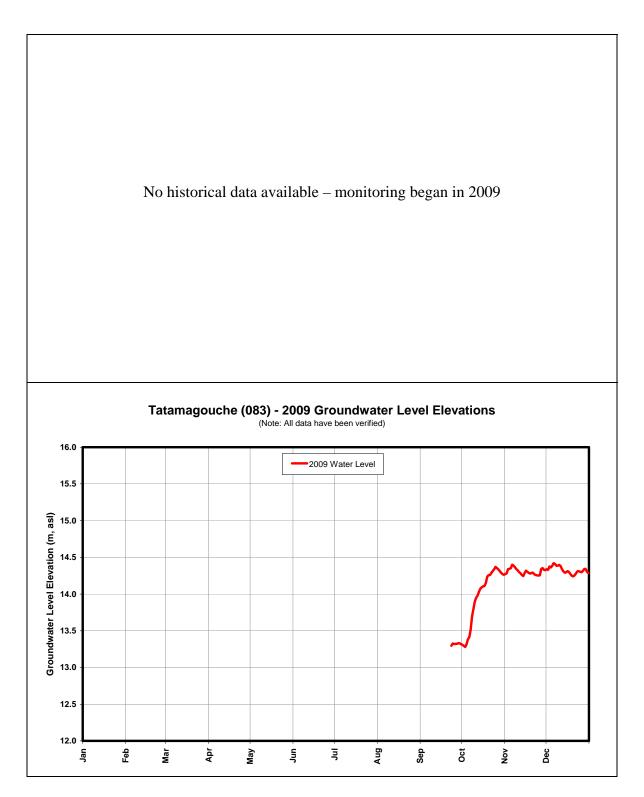


Figure B.35: Tatamagouche (083) Groundwater Level Elevations

APPENDIX C GROUNDWATER CHEMISTRY RESULTS

Table C1. Summary of Parameters Tested at Each Well

Observation Well		General Chemistry	Metals	VOC	Pesticides	Tritium	Perchlorate
Greenwood (003)	23/Nov/2005	√	✓	√	✓	✓	√
	18/Dec/2008	✓	✓	✓	✓		
Fraser Brook (004)	10/Dec/2004	✓	✓	✓	✓		✓
, ,	03/Dec/2008	✓	✓	✓	✓		
Wilmot (005)	29/Nov/2006	✓	✓	✓			
Murray Siding (007)	N/A						
Wolfville (010)	22/Dec/2004	✓	✓	✓	✓	✓	✓
	18/Dec/2008	✓	✓	✓	✓		
Truro (014)	N/A						
Monastery (028)	15/Dec/2006	✓	✓	✓	✓	✓	✓
	09/Dec/2008	✓	✓	✓	✓		
Point Aconi (030)	15/Sep/2005	√	√	✓	√	✓	√
	10/Dec/2008	✓	√	√	√		
Lawrencetown (043)	18/Nov/2004	√	√				
	05/Dec/2008	√	√	√	✓		
Durham (045)	05/Oct/2005	√	√	√	✓	√	✓
	21/Jan/2009	· ✓	✓	√	✓	-	·
Kentville (048) Sydney (050)	15/Jun/2005	· ·	· ✓	*	·	√	✓
	07/Nov/2007	· ·	· /	√	· /	Ť	
	15/Sep/2005	·	√	✓	· ·	√	√
	11/Dec/2008	·	√	✓	· ·	•	•
North Grant (054)	13/Dec/2006	V ✓	√	√	√	√	
North Grant (054)	22/Jul/2008	V /	∨	∨	∨ ✓	V	
Ctillerates (OFF)		✓	✓	∨	∨	✓	
Stillwater (055)	13/Dec/2006	✓	•	-		v	
	04/Dec/2008		√	√	√		
Sheet Harbour (056)	05/Dec/2008	√	√	√	√		
Hayden Lake (059)	09/Jun/2005	✓	✓	✓	√	✓	✓
Meteghan (060)	16/Dec/2008	√	✓	✓	✓		
	12/Dec/2006	✓	✓	√	√	✓	
	17/Dec/2008	✓	✓	✓	✓		
Annapolis Royal (062)	09/Nov/2005	✓	✓	✓	✓	✓	✓
	26/Nov/2007	✓	✓	✓	✓		
Hebron (063)	09/Jun/2005	✓	✓	✓	✓	✓	✓
	17/Dec/2008	✓	✓	✓	✓		
Margaree (064)	14/Dec/2006	✓	✓	✓	✓	✓	
	10/Dec/2008	✓	✓	✓	✓		
Ingonish (065)	25/Aug/2009	✓	✓	✓	✓		
Debert (068)	N/A						
Dalem Lake (069)	14/Dec/2006	✓	✓	✓	✓	✓	
	11/Dec/2008	✓	✓	✓	✓		
Amherst (071)	16/Dec/2006	✓	✓	✓	✓	✓	
	08/Jan/2009	✓	✓	✓	✓		
Kelley River (073)	12/Jan/2007	✓	✓	✓	✓	✓	
	09/Jun/2009	✓	✓	✓	√		
Atlanta (074)	03/Sep/2007	✓	√	✓	√		
Sheffield Mills (075)	10/Sep/2007	✓	√	✓	√		
Fall River (076)	20/May/2008	✓	√	✓	√		
West Northfield (077)	12/Jun/2008	√	√	√	✓		
Musquodoboit Hbr (078)	22/May/2008	· ✓	✓	√	✓		
Lewis Lake (079)	31/Jul/2008	·	· ✓	· ✓	· ✓		
Arisaig (080)	08/Sep/2009	· ·	·	· ✓	· ✓		
Coldbrook (081)	08/Aug/2009	·	→	·	· ·		
Long Point (082)	12/Aug/2009	V ✓	√	√	√		
	21/Jul/2008	V ✓	∨ ✓	∨	∨ ✓		
Tatamagouche (083)	Z 1/JUI/ZUU0	, v	٧	٧	٧		

Table C2: General Chemistry and Metal Results

Parameter	Units	Drinking Water Guideline	Detection Limit	Greenwood (003)		Fraser Brook (004)		Wilmot (005)
Parameter				23-Nov-2005	18-Dec-2008	10-Dec-2004	3-Dec-2008	29-Nov-2006
General Chemistry								
Total Alkalinity (Total as CaCO3)	mg/L	-	5	ND	ND	74	71	16
Chloride (CI)	mg/L	250 AO	1	6	3	5	5	22
Colour	TCU	15 AO	5	5	7	ND	ND	ND
Hardness (CaCO3)	mg/L	500 AO	-	10	5	79.1	75	180
Nitrate + Nitrite	mg/L	10	0.05	ND	0.12	ND	1.2	30
Nitrite (N)	mg/L	1	0.01	ND	ND	ND	ND	0.02
Nitrate (N)	mg/L	10	0.05	ND	0.12	ND	1.2	30
Nitrogen (Ammonia Nitrogen)	mg/L	-	0.05	0.22	ND	ND	ND	ND
Total Organic Carbon (C)	mg/L	-	0.5	2	0.8	ND	0.5	ND
Orthophosphate (P)	mg/L	-	0.01	0.05	ND	0.02	0.03	0.07
oH .	pН	6.5 - 8.5 AO	-	6.41	6.49	7.6	8.05	6.7
Reactive Silica (SiO2)	mg/L		0.5	11	11	7.8	7.1	7.9
Sulphate (SO4)	mg/L	500 AO	2	9	5	5	4	27
Furbidity	NTU	5 AO	0.1	39	5.4	0.2	0.3	50
Conductivity	uS/cm	-	-	79	41	166	160	410
Anion Sum	me/L	-		0.372	0.18	1.73	1.73	3.65
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	1	ND	ND	74	70	16
Calculated TDS	mg/L	-	1	40	28	94	95	275
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1	ND 0.540	ND 0.00	ND	ND 4.74	ND 0.00
Cation Sum	me/L	-	-	0.549	0.38	1.78	1.71	3.92
on Balance (% Difference)	% N/A	-	-	19.2	35.7	1.56	0.58 -0.188	3.58
Langelier Index (@ 20C) Langelier Index (@ 4C)	N/A N/A		- :	-	NC NC	-0.68 -1.08	-0.188	-1.75 -2
	N/A N/A	-	-	-	NC NC	8.28	8.24	-2 8.45
Saturation pH (@ 20C) Saturation pH (@ 4C)	N/A	-	- :	-	NC NC	8.68	8.49	8.7
Calcium (Ca)	mg/L	-	0.1	2.2	1.2	19.3	18	56
Magnesium (Mg)	mg/L	-	0.1	1	0.4	7.5	7.3	8.5
Phosphorus (P)	mg/L	-	0.1	ND	ND	ND	ND	0.2
Potassium (K)	mg/L	-	0.1	2.4	1.7	1	1	3.1
Sodium (Na)	mg/L	200 AO	0.1	3.6	2.1	4	4.3	7.5
Bromide (Br)	mg/L	-	0.5	ND	ND	0.03	ND	-
Fluoride (F)	mg/L	1.5	0.1	ND	ND	ND	ND	-
Metals	y-		***					
Aluminum (AI)	ug/L	_	10	47	18	ND	ND	ND
Antimony (Sb)	ug/L	6	2	ND	ND	ND	ND	ND
Arsenic (As)	ug/L	10	2	2	ND	14	15	ND
Barium (Ba)	ug/L	1000	5	59	25	5	6	89
Beryllium (Be)	ug/L	-	2	ND	ND	ND	ND	ND
Bismuth (Bi)	ug/L	-	2	ND	ND	ND	ND	ND
Boron (B)	ug/L	5000	5	ND	ND	30	27	14
Cadmium (Cd)	ug/L	5	0.3	ND	ND	ND	ND	ND
Chromium (Cr)	ug/L	50	2	ND	ND	ND	ND	ND
Cobalt (Co)	ug/L	-	1	3	1	ND	ND	ND
Copper (Cu)	ug/L	1000 AO	2	3	ND	ND	ND	ND
ron (Fe)	ug/L	300 AO	50	8700	4300	ND	ND	ND
Lead (Pb)	ug/L	10	0.5	1.7	ND	ND	ND	2.3
Manganese (Mn)	ug/L	50 AO	2	140	84	ND	ND	15
Molybdenum (Mo)	ug/L	-	2	ND	ND	ND	ND	ND
Mercury (Hg)	ug/L	1	0.01		ND		ND	
Nickel (Ni)	ug/L	-	2	4	2	ND	ND	3
Selenium (Se)	ug/L	10	2	ND	ND	ND	ND	ND
Silver (Ag)	ug/L	-	0.5	ND	ND	ND	ND	ND
Strontium (Sr)	ug/L	-	5	9	ND	150	150	160
Thallium (TI)	ug/L	-	0.1	ND	ND	ND	ND	ND
Tin (Sn)	ug/L	-	2	ND	ND	ND	ND	ND
Titanium (Ti)	ug/L	-	2	ND	ND	ND	ND	ND
Uranium (U)	ug/L	20	0.1	0.2	ND	1.5	1.4	ND
Vanadium (V)	ug/L	-	2	ND	ND	2	2	ND
Zinc (Zn)	ug/L	5000 AO	5	87	60	ND	ND	7

Notes:

AO = Aesthetic Objective.

ND = not detected

ND() = not detected at the elevated detection limit shown in brackets ()

All guidelines are health-based MACs or IMACs, unless otherwise indicated.

Shaded values exceed guidelines.

Table C2: General Chemistry and Metal Results

		Drinking Water		Wolfvil	le (010)	Monast	ery (028)	Point Aconi (030)		
Parameter	Units	Guideline	Detection Limit			45.0		15-Sep-2005 10-Dec-2008		
General Chemistry				22-Dec-2004	18-Dec-2008	15-Dec-2006	9-Dec-2008	15-Sep-2005	10-Dec-2008	
Total Alkalinity (Total as CaCO3)	mg/L	-	5	25	10	240	220	140	130	
Chloride (CI)	mg/L	250 AO	1	78	87	31	24	19	11	
Colour	TCU	15 AO	5	ND	14	ND	ND	ND	ND	
Hardness (CaCO3)	mg/L	500 AO	-	101	67	120	95	140	160	
Nitrate + Nitrite		10	0.05	1.9	1.5	ND	ND ND	ND	1.3	
	mg/L		0.05	ND	ND	ND ND	ND ND	ND ND	ND	
Nitrite (N)	mg/L	1								
Nitrate (N)	mg/L	10	0.05	1.9	1.5	ND 0.4.4	ND 0.40	ND	1.3	
Nitrogen (Ammonia Nitrogen)	mg/L		0.05	ND	0.63	0.14	0.12	ND	ND	
Total Organic Carbon (C)	mg/L	-	0.5	ND	1.6	2.1	1	ND	1.3	
Orthophosphate (P)	mg/L	-	0.01	ND	0.01	ND	ND	ND	ND	
pH	pН	6.5 - 8.5 AO	-	6.5	6.53	8.14	8.23	8.01	7.97	
Reactive Silica (SiO2)	mg/L	500.10	0.5	17	14	11	13	7.6	9.2	
Sulphate (SO4)	mg/L	500 AO	2	12	11	72	59	10	21	
Turbidity	NTU	5 AO	0.1	0.9	68	0.2	0.3	ND	0.2	
Conductivity	uS/cm	-	-	382	370	660	640	380	340	
Anion Sum	me/L	-	-	3.08	2.99	7.13	6.36	3.6	3.38	
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	1	25	10	235	220	140	126	
Calculated TDS	mg/L	-	1	196	201	417	365	207	194	
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1	ND	ND	3	4	1	1	
Cation Sum	me/L	-	-	3.3	3.4	7.51	6.28	4.11	3.66	
Ion Balance (% Difference)	%	-	-	3.3	6.42	2.61	0.63	6.56	3.98	
Langelier Index (@ 20C)	N/A	-	-	-2.12	-2.59	0.553	0.539	0.41	0.423	
Langelier Index (@ 4C)	N/A	-	-	-2.52	-2.84	0.304	0.29	0.16	0.173	
Saturation pH (@ 20C)	N/A	-	-	8.62	9.12	7.59	7.69	7.6	7.55	
Saturation pH (@ 4C)	N/A	-	-	9.02	9.37	7.84	7.94	7.85	7.8	
Calcium (Ca)	mg/L	-	0.1	27.4	19	31	25	44	55	
Magnesium (Mg)	mg/L	-	0.1	7.8	4.6	9.3	7.7	6.3	5.8	
Phosphorus (P)	mg/L	-	0.1	ND	ND	ND	ND	ND	ND	
Potassium (K)	mg/L	-	0.1	2	1.9	2.3	3.6	4	1	
Sodium (Na)	mg/L	200 AO	0.1	28.3	29	120	98	30	10	
Bromide (Br)	mg/L	-	0.5	0.06	ND	ND	ND		ND	
Fluoride (F)	mg/L	1.5	0.1	ND	ND	0.3	ND		ND	
Metals										
Aluminum (AI)	ug/L	-	10	ND	ND	ND	ND	15	ND	
Antimony (Sb)	ug/L	6	2	ND	ND	ND	0.78	ND	ND	
Arsenic (As)	ug/L	10	2	ND	ND	6	4.1	ND	ND	
Barium (Ba)	ug/L	1000	5	69	46	25	25	40	18	
Beryllium (Be)	ug/L	-	2	ND	ND	ND	ND	ND	ND	
Bismuth (Bi)	ug/L	-	2	ND	ND	ND	ND	ND	ND	
Boron (B)	ug/L	5000	5	26	23	250	220	35	ND	
Cadmium (Cd)	ug/L	5	0.3	ND	ND	ND	ND	ND	ND	
Chromium (Cr)	ug/L	50	2	ND	ND	ND	ND	ND	ND	
Cobalt (Co)	ug/L	-	1	ND	2	ND	ND	ND	ND	
Copper (Cu)	ug/L	1000 AO	2	ND	ND	7	ND	6	ND	
Iron (Fe)	ug/L	300 AO	50	230	20000	ND	ND	ND	ND	
Lead (Pb)	ug/L	10	0.5	ND	ND	ND	ND	0.6	ND	
Manganese (Mn)	ug/L	50 AO	2	14	1300	42	48	360	7.9	
Molybdenum (Mo)	ug/L	-	2	ND	ND	3	ND	ND	ND	
Mercury (Hg)	ug/L	1	0.01		ND	ND	ND		ND	
Nickel (Ni)	ug/L	-	2	ND	ND	ND	ND	ND	ND	
Selenium (Se)	ug/L	10	2	ND	ND	ND	ND	ND	ND	
Silver (Ag)	ug/L	-	0.5	ND	ND	ND	ND	ND	ND	
Strontium (Sr)	ug/L	-	5	110	67	2400	2600	230	110	
Thallium (TI)	ug/L	-	0.1	ND	ND	ND	ND	ND	ND	
	ug/L	-	2	ND	ND	ND	ND	ND	ND	
Tin (Sn)			-		.,,,					
Tin (Sn) Titanium (Ti)			2	ND	ND	ND	ND	ND	I ND	
Titanium (Ti)	ug/L	- 20	2	ND ND	ND ND	ND 0.6	ND 0.72	ND 0.3	ND 0.36	
		20	2 0.1 2	ND ND ND	ND ND ND	0.6 ND	0.72 ND	0.3 ND	0.36 ND	

Table C2: General Chemistry and Metal Results

Parameter	Units	Drinking Water	Detection Limit	Lawrence	town (043)	Durha	am (045)	Kentvi	le (048)
	011110	Guideline	Dottoolion Linni	18-Nov-2004	5-Dec-2008	5-Oct-2005	21-Jan-2009	15-Jun-2005	7-Nov-200
General Chemistry									
Total Alkalinity (Total as CaCO3)	mg/L	-	5	82	82	140	110	20	22
Chloride (CI)	mg/L	250 AO	1	150	180	44	19	230	270
Colour	TCU	15 AO	5	ND	ND	ND	ND	ND	ND
Hardness (CaCO3)	mg/L	500 AO	-	98.9	100	86	72	150	180
Nitrate + Nitrite	mg/L	10	0.05	ND	ND	ND	ND	1.2	0.96
Nitrite (N)	mg/L	1	0.01	ND	ND	ND	ND	ND	ND
Nitrate (N)	mg/L	10	0.05	ND	ND	ND	ND	1.2	0.96
Nitrogen (Ammonia Nitrogen)	mg/L	-	0.05	0.19	0.12	0.11	ND	0.06	ND
Total Organic Carbon (C)	mg/L	-	0.5	ND	0.5	ND	ND	ND	ND
Orthophosphate (P)	mg/L	-	0.01	ND	ND	ND	0.01	ND	0.05
pH	pН	6.5 - 8.5 AO	-	7.3	8.14	8.16	7.95	6.84	7.39
Reactive Silica (SiO2)	mg/L		0.5	7.3	8.5	11	9.8	11	11
Sulphate (SO4)	mg/L	500 AO	2	ND	ND	16	11	16	19
Turbidity	NTU	5 AO	0.1	1	0.2	ND	0.5	5	0.7
Conductivity	uS/cm	-	-	695	710	410	290	910	1000
Anion Sum	me/L	-	-	5.92	6.77	4.31	2.95	7.36	8.5
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	1	82	81	134	108	20.3	22
Calculated TDS	mg/L	-	1	341	375	243	167	223	503
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1	ND	1	2	ND	ND	ND
Cation Sum	me/L	-	-	6.19	6.39	4.22	2.92	8.18	8.67
Ion Balance (% Difference)	%	-	-	2.27	2.89	1.01	0.51	5.28	0.99
Langelier Index (@ 20C)	N/A	-	-	-0.85	0.039	0.382	0.008	-1.54	-0.975
Langelier Index (@ 4C)	N/A	-	-	-1.25	-0.21	0.132	-0.242	-1.79	-1.22
Saturation pH (@ 20C)	N/A	-	-	8.15	8.1	7.78	7.94	8.38	8.37
Saturation pH (@ 4C)	N/A	-	-	8.55	8.35	8.03	8.19	8.63	8.61
Calcium (Ca)	mg/L	-	0.1	26.1	27	30	25	52	58
Magnesium (Mg)	mg/L	-	0.1	8.2	8.8	2.7	2.3	5.6	7.5
Phosphorus (P)	mg/L	_	0.1	ND	ND	0.1	ND	ND (0.2)	ND
Potassium (K)	mg/L	_	0.1	1.9	1.9	1.6	1.3	4.9	5.4
Sodium (Na)	mg/L	200 AO	0.1	95.4	98	57	33	120	120
Bromide (Br)	mg/L	200 AO	0.5	0.53	ND	ND	ND	ND	ND
Fluoride (F)	mg/L	1.5	0.1	0.11	0.1	0.3	0.2	ND	ND
Metals	mg/L	1.0	0.1	0.11	0.1	0.0	0.2	IND	ND
Aluminum (AI)	ug/L	_	10	ND	ND	16	12	ND	ND
Antimony (Sb)		- 6	2	ND ND	ND	ND	ND	ND	ND ND
	ug/L	10	2			ND 4			
Arsenic (As)	ug/L	1000		56	58	130	2	ND 64	ND 76
Barium (Ba)	ug/L	1000	5	26 ND			110 ND		
Beryllium (Be)	ug/L		2	ND	ND	ND	ND	ND	ND
Bismuth (Bi)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Boron (B)	ug/L	5000	5	93 ND	110 ND	38 ND	27 ND	5.7 ND	6 ND
Cadmium (Cd)	ug/L	5	0.3	ND	ND	ND	ND	ND	ND ND
Chromium (Cr)	ug/L	50	2	ND	ND	ND	ND	ND	ND
Cobalt (Co)	ug/L	4000 10	1	ND	ND	ND	ND	ND	ND
Copper (Cu)	ug/L	1000 AO	2	ND	ND	ND	ND	ND	ND 440
Iron (Fe)	ug/L	300 AO	50	ND	ND	ND	ND	ND	410
Lead (Pb)	ug/L	10	0.5	ND	ND	ND	ND	ND	45
Manganese (Mn)	ug/L	50 AO	2	16	32	21	ND	ND	12
Molybdenum (Mo)	ug/L	-	2	ND	ND	8	4	ND	ND
Mercury (Hg)	ug/L	1	0.01		ND	ļ	ND		0.01
Nickel (Ni)	ug/L		2	ND	ND	ND	ND	ND	ND
Selenium (Se)	ug/L	10	2	ND	ND	ND	ND	ND	ND
Silver (Ag)	ug/L	-	0.5	ND	ND	ND	ND	ND	ND
Strontium (Sr)	ug/L	-	5	1100	1400	1100	520	210	260
Thallium (TI)	ug/L	-	0.1	ND	ND	ND	ND	ND	ND
Tin (Sn)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Titanium (Ti)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Uranium (U)	ug/L	20	0.1	ND	ND	0.7	0.9	ND	ND
Vanadium (V)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Zinc (Zn)	ug/L	5000 AO	5	ND	ND	21	ND	150	8

Table C2: General Chemistry and Metal Results

Parameter	Units	Drinking Water	Detection Limit	Sydne	ey (050)	North Gr	ant (054)	Stillwater (055)		
	Office	Guideline	Detection Limit	15-Sep-2005	11-Dec-2008	13-Dec-2006	22-Jul-2008	13-Dec-2006	4-Dec-2008	
General Chemistry										
Total Alkalinity (Total as CaCO3)	mg/L	-	5	83	90	93	92	58	64	
Chloride (CI)	mg/L	250 AO	1	7	5	30	27	5	5	
Colour	TCU	15 AO	5	ND	8	ND	ND	ND	ND	
Hardness (CaCO3)	mg/L	500 AO	-	87	89	38	36	58	53	
Nitrate + Nitrite	mg/L	10	0.05	0.17	ND	0.55	0.7	0.13	0.1	
Nitrite (N)	mg/L	1	0.01	ND	ND	ND	ND	ND	ND	
Nitrate (N)	mg/L	10	0.05	0.17	ND	0.55	0.7	0.13	0.1	
Nitrogen (Ammonia Nitrogen)	mg/L	-	0.05	ND	ND	ND	ND	0.09	0.06	
Total Organic Carbon (C)	mg/L	-	0.5	ND	1.3	2.5	ND	2.5	0.8	
Orthophosphate (P)	mg/L	-	0.01	ND	ND	ND	ND	ND	ND	
pH	pН	6.5 - 8.5 AO	-	8.03	7.7	7.83	8.03	7.32	7.28	
Reactive Silica (SiO2)	mg/L		0.5	8.6	8	9.6	9.8	12	11	
Sulphate (SO4)	mg/L	500 AO	2	7	7	35	31	6	4	
Turbidity	NTU	5 AO	0.1	0.3	0.2	1.1	53	0.4	0.6	
Conductivity	uS/cm	-	-	210	190	340	340	140	140	
Anion Sum	me/L	-	-	2.02	2.1	3.5	3.3	1.44	1.52	
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	1	82	90	93	91	58	64	
Calculated TDS	mg/L	-	1	115	116	209	206	89	88	
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1	ND	ND	ND	ND	ND	ND	
Cation Sum	me/L	-	-	2.07	2.05	3.43	3.58	1.5	1.4	
Ion Balance (% Difference)	%	-	-	1.29	1.2	1.07	4.07	2.18	4.11	
Langelier Index (@ 20C)	N/A	-	-	0.069	-0.207	-0.526	-0.363	-0.962	-0.998	
Langelier Index (@ 4C)	N/A	-	-	-0.182	-0.458	-0.776	-0.613	-1.21	-1.25	
Saturation pH (@ 20C)	N/A	-	-	7.96	7.91	8.36	8.39	8.28	8.28	
Saturation pH (@ 4C)	N/A	-	-	8.21	8.16	8.61	8.64	8.53	8.53	
Calcium (Ca)	mg/L	-	0.1	30	31	12	11	19	18	
Magnesium (Mg)	mg/L	-	0.1	3	2.8	2.2	2.2	2.2	2	
Phosphorus (P)	mg/L	-	0.1	ND	ND	ND	ND	ND	ND	
Potassium (K)	mg/L	-	0.1	1.7	1.4	1	1	1.8	1.6	
Sodium (Na)	mg/L	200 AO	0.1	6.6	5.5	61	61	6.8	7	
Bromide (Br)	mg/L	-	0.5	ND	ND	ND	ND	ND	ND	
Fluoride (F)	mg/L	1.5	0.1	0.1	0.1	0.6	0.6	ND	ND	
Metals										
Aluminum (Al)	ug/L	-	10	11	ND	46	620	35	20	
Antimony (Sb)	ug/L	6	2	ND	ND	ND	ND	ND	ND	
Arsenic (As)	ug/L	10	2	ND	ND	3	15	ND	ND	
Barium (Ba)	ug/L	1000	5	93	91	88	110	11	10	
Beryllium (Be)	ug/L	-	2	ND	ND	ND	ND	ND	ND	
Bismuth (Bi)	ug/L	-	2	ND	ND	ND	ND	ND	ND	
Boron (B)	ug/L	5000	5	15	10	610	560	8	8	
Cadmium (Cd)	ug/L	5	0.3	ND	ND	ND	ND	ND	ND	
Chromium (Cr)	ug/L	50	2	ND	ND	ND	ND	ND	ND	
Cobalt (Co)	ug/L	-	1	ND	ND	ND	ND	ND	1	
Copper (Cu)	ug/L	1000 AO	2	7	ND	ND	ND	ND	ND	
Iron (Fe)	ug/L	300 AO	50	80	250	85	4900	ND	ND	
Lead (Pb)	ug/L	10	0.5	ND	ND	ND	0.6	ND	ND	
Manganese (Mn)	ug/L	50 AO	2	630	830	8	27	37	100	
Molybdenum (Mo)	ug/L	-	2	ND	ND	3	3	ND	ND	
Mercury (Hg)	ug/L	1	0.01		ND	ND	ND	ND	ND	
Nickel (Ni)	ug/L	-	2	ND	ND	ND	ND	ND	3	
Selenium (Se)	ug/L	10	2	ND	ND	ND	ND	ND	ND	
Silver (Ag)	ug/L	-	0.5	ND	ND	ND	ND	ND	ND	
Strontium (Sr)	ug/L	-	5	230	180	180	180	64	71	
Thallium (TI)	ug/L	-	0.1	ND	ND	ND	ND	ND	ND	
Tin (Sn)	ug/L	-	2	ND	ND	ND	ND	ND	ND	
Titanium (Ti)	ug/L	-	2	ND	ND	ND	24	ND	ND	
Uranium (U)	ug/L	20	0.1	ND	ND	1.3	2.1	0.5	0.3	
Vanadium (V)	ug/L	-	2	ND	ND	2	17	ND	ND	
Zinc (Zn)	ug/L	5000 AO	5	6	ND	ND	8	ND	ND	

Table C2: General Chemistry and Metal Results

Parameter	Units	Drinking Water	Detection Limit	Sheet Harbour (056)	Hayden	Lake (059)	Metegh	an (060)
radifictor	Office	Guideline	Detection Limit	5-Dec-2008	9-Jun-2005	16-Dec-2008	12-Dec-2006	17-Dec-2008
General Chemistry								
Total Alkalinity (Total as CaCO3)	mg/L	-	5	96	14	12	67	63
Chloride (CI)	mg/L	250 AO	1	7	9.2	9	16	17
Colour	TCU	15 AO	5	ND	ND	ND	6	ND
Hardness (CaCO3)	mg/L	500 AO	-	81	15	13	85	77
Nitrate + Nitrite	mg/L	10	0.05	ND	ND	0.06	ND	ND
Nitrite (N)	mg/L	1	0.01	ND	ND	ND	ND	ND
Nitrate (N)	mg/L	10	0.05	ND	ND	0.06	ND	ND
Nitrogen (Ammonia Nitrogen)	mg/L	-	0.05	ND	ND	ND	0.07	0.08
Total Organic Carbon (C)	mg/L	-	0.5	0.6	0.8	0.6	3.3	0.6
Orthophosphate (P)	mg/L	-	0.01	ND	ND	ND	ND	ND
pH	pН	6.5 - 8.5 AO	-	7.99	6.74	6.33	7.42	7.31
Reactive Silica (SiO2)	mg/L		0.5	11	5.9	7.6	8.7	9
Sulphate (SO4)	mg/L	500 AO	2	4	4.3	4	13	13
Turbidity	NTU	5 AO	0.1	0.3	ND	0.1	59	49
Conductivity	uS/cm	-	-	220	70	64	200	200
Anion Sum	me/L	-	-	2.19	0.622	0.58	2.11	2.04
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	1	95	13.6	12	67	63
Calculated TDS	mg/L	-	1	121	41.2	40	124	119
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1	ND	ND	ND	ND	ND
Cation Sum	me/L	-	-	2.07	0.659	0.57	2.29	2.15
Ion Balance (% Difference)	%	-	-	2.82	2.9	0.87	4.09	2.63
Langelier Index (@ 20C)	N/A	-	-	0.053	-2.86	-3.4	-0.765	-0.956
Langelier Index (@ 4C)	N/A	-	-	-0.198	-3.11	-3.65	-1.02	-1.21
Saturation pH (@ 20C)	N/A	-	-	7.94	9.6	9.73	8.19	8.27
Saturation pH (@ 4C)	N/A	-	_	8.19	9.85	9.98	8.44	8.52
Calcium (Ca)	mg/L	-	0.1	27	3.7	3.1	22	19
Magnesium (Mg)	mg/L	-	0.1	2.9	1.5	1.3	7.3	6.8
Phosphorus (P)	mg/L	_	0.1	ND	ND	ND	ND	ND
Potassium (K)	mg/L	-	0.1	1.9	0.9	1	1.7	1.7
Sodium (Na)	mg/L	200 AO	0.1	9.5	7.5	6.6	8.5	9.2
Bromide (Br)	mg/L	200 AO	0.5	ND	ND	ND	ND	ND
Fluoride (F)	mg/L	1.5	0.1	0.1	ND	ND	0.6	0.6
Metals	mg/L	1.0	0.1	0.1	ND	IND	0.0	0.0
Aluminum (Al)	ug/L	-	10	ND	25	73	ND	ND
Antimony (Sb)		6	2	ND ND	ND	ND	ND ND	ND ND
	ug/L	10	2	10	ND ND	ND ND	ND ND	ND ND
Arsenic (As) Barium (Ba)	ug/L	1000		7	7.4	ND 8		
	ug/L	1000	5				5	6
Beryllium (Be)	ug/L		2	ND	ND	ND	ND	ND
Bismuth (Bi)	ug/L	-	2	ND 10	ND	ND	ND	ND
Boron (B) Cadmium (Cd)	ug/L	5000	5 0.3	18 ND	6.9	7 ND	47 ND	51 ND
	ug/L	5			ND			
Chromium (Cr)	ug/L	50	1	ND ND	ND ND	ND ND	ND ND	ND ND
Cobalt (Co)	ug/L	1000 10						
Copper (Cu)	ug/L	1000 AO	2	ND	37 ND	ND ND	ND 4000	ND 4600
Iron (Fe)	ug/L	300 AO	50	77 ND	ND	ND	4900	4600
Lead (Pb)	ug/L	10	0.5	ND 400	ND	ND 40	ND	ND 50
Manganese (Mn)	ug/L	50 AO	2	160	13	10 ND	60	52
Molybdenum (Mo)	ug/L	-	2	ND	ND	ND	ND	ND
Mercury (Hg)	ug/L	1	0.01	ND	N.D.	ND	ND	ND
Nickel (Ni)	ug/L		2	ND	ND	ND	ND	ND
Selenium (Se)	ug/L	10	2	ND	ND	ND	ND	ND
Silver (Ag)	ug/L	-	0.5	ND 170	ND	ND	ND	ND
Strontium (Sr)	ug/L	-	5	170	19	20	36	35
Thallium (TI)	ug/L	-	0.1	ND	ND	ND	ND	ND
Tin (Sn)	ug/L	-	2	2	ND	ND	ND	ND
Titanium (Ti)	ug/L	-	2	ND	ND	ND	ND	ND
Uranium (U)	ug/L	20	0.1	1	ND	ND	ND	ND
Vanadium (V)	ug/L	-	2	ND	ND	ND	ND	ND
Zinc (Zn)	ug/L	5000 AO	5	ND	21	5	5	ND

Table C2: General Chemistry and Metal Results

Parameter	Units	Drinking Water	Detection Limit	Annapolis	Royal (062)	Hebro	on (063)	Margar	ee (064)
	Office	Guideline	Detection Limit	9-Nov-2005	26-Nov-2007	9-Jun-2005	17-Dec-2008	14-Dec-2006	10-Dec-2008
General Chemistry									
Total Alkalinity (Total as CaCO3)	mg/L	-	5	52	54	23	24	160	160
Chloride (CI)	mg/L	250 AO	1	6	6	49	57	10	8
Colour	TCU	15 AO	5	ND	ND	5.8	8	ND	ND
Hardness (CaCO3)	mg/L	500 AO	-	43	41	71	65	210	190
Nitrate + Nitrite	mg/L	10	0.05	ND	ND	ND	ND	ND	ND
Nitrite (N)	mg/L	1	0.01	ND	ND	ND	ND	ND	ND
Nitrate (N)	mg/L	10	0.05	ND	ND	ND	ND	ND	ND
Nitrogen (Ammonia Nitrogen)	mg/L	-	0.05	ND	ND	ND	0.05	0.13	0.12
Total Organic Carbon (C)	mg/L	-	0.5	ND	ND	1.2	1.6	3.6	ND
Orthophosphate (P)	mg/L	-	0.01	0.03	0.02	ND	0.01	ND	ND
pH	pН	6.5 - 8.5 AO		7.3	8.03	6.29	6.5	8.13	8.11
Reactive Silica (SiO2)	mg/L		0.5	14	12	17	16	12	16
Sulphate (SO4)	mg/L	500 AO	2	7	7	13	16	93	87
Turbidity	NTU	5 AO	0.1	0.2	15	150	45	0.2	0.7
Conductivity	uS/cm	-	-	130	140	270	310	510	510
Anion Sum	me/L	-	-	1.38	1.4	2.12	2.41	5.48	5.17
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	1	52	53	23.2	24	160	154
Calculated TDS	mg/L	-	1	89	88	169	174	311	295
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1	ND	ND	ND	ND	2	2
Cation Sum	me/L	-	-	1.44	1.42	3.38	3.14	5.5	4.95
Ion Balance (% Difference)	%	-	-	2.2	0.71	22.9	13.2	0.182	2.17
Langelier Index (@ 20C)	N/A	-	-	-1.15	-0.431	-2.47	-2.29	0.525	0.484
Langelier Index (@ 4C)	N/A	-	-	-1.41	-0.682	-2.72	-2.54	0.276	0.235
Saturation pH (@ 20C)	N/A	-	-	8.45	8.46	8.76	8.79	7.61	7.63
Saturation pH (@ 4C)	N/A	-		8.71	8.71	9.01	9.04	7.85	7.88
Calcium (Ca)	mg/L	-	0.1	15	14	18	16	41	41
Magnesium (Mg)	mg/L	-	0.1	1.6	1.5	6.3	6	26	21
Phosphorus (P)	mg/L		0.1	ND	ND	ND	0.1	ND	ND
Potassium (K)	mg/L	- : -	0.1	1	1.2	1.7	1.8	1.7	1.3
Sodium (Na)	mg/L	200 AO	0.1	13	13	20	20	28	27
Bromide (Br)	mg/L	200 AO	0.5	ND	ND	0.5	0.5	ND	ND
Fluoride (F)	mg/L	1.5	0.5	0.2	0.2	ND	ND	0.6	0.6
Metals	IIIg/L	1.0	0.1	0.2	0.2	IND	ND	0.0	0.0
						N.D.			115
Aluminum (Al)	ug/L	-	10	ND	ND	ND	ND	12	ND
Antimony (Sb)	ug/L	6	2	ND	ND	ND	ND	ND	ND
Arsenic (As)	ug/L	10	2	4	4	ND	ND	ND	ND
Barium (Ba)	ug/L	1000	5	52	66	14	17	21	19
Beryllium (Be)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Bismuth (Bi)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Boron (B)	ug/L	5000	5	12	12	8.8	10	450	490
Cadmium (Cd)	ug/L	5	0.3	ND	ND	ND	ND	ND	ND
Chromium (Cr)	ug/L	50	2	ND	ND	ND	ND	ND	ND
Cobalt (Co)	ug/L	-	1	ND	ND	ND	ND	ND	ND
Copper (Cu)	ug/L	1000 AO	2	ND	ND	ND	ND	ND	ND
Iron (Fe)	ug/L	300 AO	50	ND	ND	27000	26000	ND	ND
Lead (Pb)	ug/L	10	0.5	ND	1	ND	ND	ND	ND
Manganese (Mn)	ug/L	50 AO	2	110	93	440	460	5	ND
Molybdenum (Mo)	ug/L	-	2	4	4	ND	ND	ND	ND
Mercury (Hg)	ug/L	1	0.01		0.02		ND	ND	ND
Nickel (Ni)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Selenium (Se)	ug/L	10	2	ND	ND	ND	ND	ND	ND
Silver (Ag)	ug/L	-	0.5	ND	ND	ND	ND	ND	ND
Strontium (Sr)	ug/L	-	5	59	61	91	92	15000	14000
Thallium (TI)	ug/L	-	0.1	ND	ND	ND	ND	ND	ND
Tin (Sn)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Titanium (Ti)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Uranium (U)	ug/L	20	0.1	1.9	3.6	ND	ND	ND	ND
Vanadium (V)	ug/L	-	2	ND	ND	ND	ND	ND	ND
	- ug-	5000 AO		ND	ND	16			ND

Table C2: General Chemistry and Metal Results

Parameter	Units	Drinking Water	Detection Limit	Ingonish (065)	Dalem L	ake (069)	Amherst (071)		
	Office	Guideline	Detection Limit	25-Aug-2009	14-Dec-2006	11-Dec-2008	16-Dec-2006 8-Jan-2009		
General Chemistry									
Total Alkalinity (Total as CaCO3)	mg/L	-	5	13	63	65	120	120	
Chloride (CI)	mg/L	250 AO	1	9	38	38	33	32	
Colour	TCU	15 AO	5	ND	ND	ND	ND	ND	
Hardness (CaCO3)	mg/L	500 AO	-	18	120	100	83	74	
Nitrate + Nitrite	mg/L	10	0.05	0.15	ND	0.06	1.3	1.4	
Nitrite (N)	mg/L	1	0.01	ND	ND	ND	ND	0.01	
Nitrate (N)	mg/L	10	0.05	0.15	ND	0.06	1.3	1.4	
Nitrogen (Ammonia Nitrogen)	mg/L	-	0.05	ND	ND	ND	ND	ND	
Total Organic Carbon (C)	mg/L	-	0.5	0.6	2.6	ND	2.3	ND	
Orthophosphate (P)	mg/L	-	0.01	ND	0.01	ND	0.04	0.05	
pH	pН	6.5 - 8.5 AO	-	7.4	7.8	7.77	8.08	7.97	
Reactive Silica (SiO2)	mg/L		0.5	8.2	12	12	11	11	
Sulphate (SO4)	mg/L	500 AO	2	4	8	7	40	42	
Turbidity	NTU	5 AO	0.1	ND	0.3	1.2	ND	0.3	
Conductivity	uS/cm	-	-	65	260	260	430	390	
Anion Sum	me/L	-	-	0.6	2.51	2.54	4.3	4.26	
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	1	13	62	65	120	117	
Calculated TDS	mg/L	-	1	44	150	145	260	259	
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1	ND	ND	ND	1	1	
Cation Sum	me/L	-	-	0.73	2.77	2.45	4.55	4.46	
Ion Balance (% Difference)	%	-	-	9.77	4.97	1.8	2.89	2.29	
Langelier Index (@ 20C)	N/A	-	-	-2.12	-0.191	-0.263	0.17	0.007	
Langelier Index (@ 4C)	N/A	-	-	-2.37	-0.442	-0.514	-0.08	-0.242	
Saturation pH (@ 20C)	N/A	-	-	9.52	7.99	8.03	7.91	7.96	
Saturation pH (@ 4C)	N/A	-	-	9.77	8.24	8.28	8.16	8.21	
Calcium (Ca)	mg/L	-	0.1	4700	38	33	26	24	
Magnesium (Mg)	mg/L	-	0.1	1500	6.1	5.3	4.3	3.6	
Phosphorus (P)	mg/L	-	0.1	ND	ND	ND	ND	ND	
Potassium (K)	mg/L	-	0.1	790	1.3	1.2	1.3	1.2	
Sodium (Na)	mg/L	200 AO	0.1	8000	7.5	7.5	66	68	
Bromide (Br)	mg/L	-	0.5	ND	ND	ND	ND	ND	
Fluoride (F)	mg/L	1.5	0.1	ND	0.2	0.2	0.6	0.6	
Metals	1			,				•	
Aluminum (AI)	ua/L	-	10	6.6	ND	ND	ND	ND	
Antimony (Sb)	ug/L	6	2	ND	ND	ND	ND	ND	
Arsenic (As)	ug/L	10	2	ND	4	3	ND	ND	
Barium (Ba)	ug/L	1000	5	7.7	150	150	170	180	
Beryllium (Be)	ug/L	-	2	ND	ND	ND	ND	ND	
Bismuth (Bi)	ug/L	-	2	ND	ND	ND	ND	ND	
Boron (B)	ug/L	5000	5	ND	9	5	12	11	
Cadmium (Cd)	ug/L	5	0.3	ND ND	ND	ND	ND	ND	
Chromium (Cr)	ug/L	50	2	ND ND	ND	ND	ND	ND	
Cobalt (Co)	ug/L	-	1	ND ND	ND	ND	ND	ND	
Copper (Cu)	ug/L	1000 AO	2	ND	ND	ND	ND	ND	
Iron (Fe)	ug/L	300 AO	50	ND	180	160	ND	ND	
Lead (Pb)	ug/L	10	0.5	ND	ND	ND	ND	ND	
Manganese (Mn)	ug/L	50 AO	2	ND	330	350	3	ND	
Molybdenum (Mo)	ug/L	-	2	ND	ND	ND	50	56	
Mercury (Hg)	ug/L	1	0.01	ND	ND	ND	ND	ND	
Nickel (Ni)	ug/L		2	ND ND	ND	ND	ND	ND	
Selenium (Se)	ug/L ug/L	10	2	ND ND	ND	ND	ND	ND	
Silver (Aq)	ug/L ug/L	- 10	0.5	ND ND	ND ND	ND	ND	ND	
Strontium (Sr)	ug/L ug/L	-	5	27	77	58	58	58	
Thallium (TI)	ug/L ug/L		0.1	ND	ND	ND	ND	ND	
Tin (Sn)	ug/L ug/L	-	2	ND ND	ND ND	ND ND	ND ND	ND ND	
		-	2	ND ND	ND ND	ND ND	ND ND	ND ND	
Titanium (Ti)	ug/L								
Uranium (U)	ug/L	20	0.1	0.58	ND	ND	3.7	3.8	
Vanadium (V)	ug/L	-	2	ND	ND	ND	5	4	
Zinc (Zn)	ug/L	5000 AO	5	ND	ND	ND	ND	ND	

Table C2: General Chemistry and Metal Results

Dozomator	Lleite	Drinking Water	Detection Limit	Kelley R	liver (073)	Atlanta (074)	Sheffield Mills (075)	Fall River (076)	West Northfield (077
Parameter	Units	Guideline	Detection Limit	12-Jan-2007	9-Jun-2009	3-Sep-2007	10-Sep-2007	20-May-2008	12-Jun-2008
General Chemistry									
Total Alkalinity (Total as CaCO3)	mg/L	-	5	22	26	95	95	ND	57
Chloride (CI)	mg/L	250 AO	1	8	7	8	6	12	15
Colour	TCU	15 AO	5	ND	ND	ND	ND	42	7
Hardness (CaCO3)	mg/L	500 AO	-	13	14	75	98	13	80
Nitrate + Nitrite	mg/L	10	0.05	0.07	ND	0.74	0.78	0.14	ND
Nitrite (N)	mg/L	1	0.01	ND	ND	ND	ND	ND	ND
Nitrate (N)	mg/L	10	0.05	0.07	ND	0.74	0.78	0.12	ND
Nitrogen (Ammonia Nitrogen)	mg/L	-	0.05	ND	ND	ND	ND	0.07	ND
Total Organic Carbon (C)	mg/L	-	0.5	2.7	ND	ND	ND	1.1	ND
Orthophosphate (P)	mg/L	-	0.01	ND	ND	ND	ND	ND	ND
pH	pН	6.5 - 8.5 AO	-	7.22	7.1	8.08	7.99	6	8.1
Reactive Silica (SiO2)	mg/L		0.5	4.3	4.9	11	8.9	4	9.1
Sulphate (SO4)	mg/L	500 AO	2	4	4	4	3	14	32
Turbidity	NTU	5 AO	0.1	0,2	0.2	ND	ND	4.6	0.5
Conductivity	uS/cm	-	-	81	86	210	210	110	240
Anion Sum	me/L	-	_	0.765	0.81	2.26	2.17	0.69	2.31
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	1	22	26	94	94	ND	57
Calculated TDS	mg/L	-	1	46	51	135	124	54	139
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1	ND	ND	1	ND	ND	ND
Carb. Arkaimity (carc. as CaCO3) Cation Sum	me/L	-	-	0.746	0.86	2.47	2.31	0.95	2.31
Ion Balance (% Difference)	%	-	-	1.26	2.99	4.44	3.13	15.9	0
	N/A	-	-	-2.19	-2.21	0.116	0.147	15.9	-0.081
Langelier Index (@ 20C) Langelier Index (@ 4C)	N/A		- :	-2.19	-2.47	-0.135	-0.104	- :	-0.331
Saturation pH (@ 20C)	N/A N/A	-	- :	9.41	9.31	7.96	7.84	- :	8.18
Saturation pH (@ 4C)		-		9.66	9.57	8.22	8.09		8.43
Calcium (Ca)	mg/L		0.1	3.6	3.9	27	35	3.4	27
Magnesium (Mg)	mg/L		0.1	1	1.1	2.2	2.7	1.1	3
Phosphorus (P)	mg/L	-	0.1	ND	ND	ND	ND	ND	ND
Potassium (K)	mg/L	-	0.1	1	0.9	2.2	2.5	0.9	0.9
Sodium (Na)	mg/L	200 AO	0.1	11	13	21	6.8	8.1	16
Bromide (Br)	mg/L		0.5	ND	ND	ND	ND	0.5	ND
Fluoride (F)	mg/L	1.5	0.1	ND	ND	ND	ND	ND	1.1
Metals									
Aluminum (Al)	ug/L	-	10	ND	ND	ND	ND	45	ND
Antimony (Sb)	ug/L	6	2	ND	ND	ND	ND	ND	ND
Arsenic (As)	ug/L	10	2	ND	ND	ND	ND	ND	ND
Barium (Ba)	ug/L	1000	5	24	170	8	18	14	6
Beryllium (Be)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Bismuth (Bi)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Boron (B)	ug/L	5000	5	14	30	13	7	6	27
Cadmium (Cd)	ug/L	5	0.3	ND	ND	ND	ND	ND	ND
Chromium (Cr)	ug/L	50	2	ND	ND	ND	ND	ND	ND
Cobalt (Co)	ug/L	-	1	ND	ND	ND	ND	4	ND
Copper (Cu)	ug/L	1000 AO	2	ND	ND	ND	ND	ND	ND
Iron (Fe)	ug/L	300 AO	50	87	ND	ND	ND	8700	150
Lead (Pb)	ug/L	10	0.5	ND	ND	ND	ND	1.5	ND
Manganese (Mn)	ug/L	50 AO	2	20	2	ND	ND	770	150
Molybdenum (Mo)	ug/L	-	2	ND	ND	ND	ND	ND	6
Mercury (Hg)	ug/L	1	0.01	ND	ND	ND	ND	ND	0.01
Nickel (Ni)	ug/L	-	2	ND	ND	ND	ND	5	ND
Selenium (Se)	ug/L	10	2	ND	ND	2	ND	ND	ND
Silver (Ag)	ug/L	-	0.5	ND	ND ND	ND	ND	ND	ND
Strontium (Sr)	ug/L	-	5	20	22	280	420	11	99
Thallium (TI)	ug/L	-	0.1	ND	ND	ND ND	ND	ND	ND
Tin (Sn)	ug/L	-	2	ND	ND	ND	ND ND	ND	ND
Titanium (Ti)	ug/L	-	2	ND	ND ND	ND	ND ND	ND ND	ND ND
Uranium (U)	ug/L	20	0.1	ND	ND ND	21	8.4	ND	0.2
Vanadium (V)	ug/L		2	ND	ND ND	ND	ND	ND	ND
		F000 AC							
Zinc (Zn)	ug/L	5000 AO	5	ND	130	ND	ND	21	ND

Table C2: General Chemistry and Metal Results

	1	ı		Museus debeit I lbs (070)	Lauria Laka (070)	Ariania (000)	Coldbrook (004)	Lang Daint (002)	Totomogoupho (002)
Parameter	Units	Drinking Water	Detection Limit	Musquodoboit Hbr (078)	Lewis Lake (079)	Arisaig (080)	Coldbrook (081)	Long Point (082)	Tatamagouche (083)
		Guideline		22-May-2008	31-Jul-2008	8-Sep-2009	5-Aug-2009	12-Aug-2009	21-Jul-2008
General Chemistry									
Total Alkalinity (Total as CaCO3)	mg/L	-	5	81	62	240 (30)	37	99	210
Chloride (CI)	mg/L	250 AO	1	8	11	57	3	61	7
Colour	TCU	15 AO	5	5	6	7	ND	ND	25
Hardness (CaCO3)	mg/L	500 AO	-	21	21	10	33	130	20
Nitrate + Nitrite	mg/L	10	0.05	ND	ND	ND	0.16	0.10	ND
Nitrite (N)	mg/L	1	0.01	ND	ND	ND	ND	ND	ND
Nitrate (N)	mg/L	10	0.05	ND	ND	ND	0.16	0.10	ND
Nitrogen (Ammonia Nitrogen)	mg/L	-	0.05	0.16	ND	0.11	ND	ND	ND
Total Organic Carbon (C)	mg/L	-	0.5	ND	0.5	ND (5)	ND	ND	ND
Orthophosphate (P)	mg/L	-	0.01	ND	0.03	0.04	0.03	ND	ND
pH	pН	6.5 - 8.5 AO		7.78	7.8	8.63	7.36	7.64	9.12
Reactive Silica (SiO2)	mg/L	500.40	0.5	2.4	20 7	2.1 ND	11 ND	8.0	8 18
Sulphate (SO4)	mg/L	500 AO	2	9				29	
Turbidity	NTU uS/cm	5 AO	0.1	0.6 210	3.6 170	240 610	4.7 84	0.1 400	21 440
Conductivity Anion Sum		-	-	210	1.83	6.52	84 0.85	400	440
Bicarb. Alkalinity (calc. as CaCO3)	me/L	-	1	2.13 81	61	233	0.85 37	99	4.78 187
Calculated TDS	mg/L mg/L	-	1	119	124	353	54	246	270
		-	1	ND	ND	9	ND	ND	23
Carb. Alkalinity (calc. as CaCO3) Cation Sum	mg/L me/L	-	- 1	2.14	1.98	6.37	0.82	4.31	4.89
Ion Balance (% Difference)	%	-	-	0.23	3.94	1.16	1.8	0.12	1.14
Langelier Index (@ 20C)	N/A	-	-	-0.857	-0.889	0.109	-1.32	-0.111	0.784
Langelier Index (@ 200)	N/A	-	-	-1.11	-1.14	-140	-1.57	-0.361	0.534
Saturation pH (@ 20C)	N/A	-		8.64	8.69	8.52	8.68	7.75	8.34
Saturation pH (@ 4C)	N/A	-	-	8.89	8.94	8.77	8.93	8.00	8.59
Calcium (Ca)	mg/L	-	0.1	6.4	7.5	3.5	12	44	6.3
Magnesium (Mg)	mg/L	-	0.1	1.3	0.5	0.4	1.1	5.8	0.9
Phosphorus (P)	mg/L	-	0.1	ND	ND	ND	ND	ND	ND
Potassium (K)	mg/L	-	0.1	4.5	4.4	1.8	1.2	1.7	0.4
Sodium (Na)	mg/L	200 AO	0.1	37	33	140	2.9	37	100
Bromide (Br)	mg/L	-	0.5	ND	2.6	ND	ND	ND	ND
Fluoride (F)	mg/L	1.5	0.1	1.6	2.5	1.1	0.1	0.1	0.9
Metals									•
Aluminum (AI)	ug/L	-	10	ND	ND	53	ND	ND	100
Antimony (Sb)	ug/L	6	2	ND	ND	ND	ND	ND	ND
Arsenic (As)	ug/L	10	2	ND	18	ND	ND	ND	8
Barium (Ba)	ug/L	1000	5	5	72	36	10	100	68
Beryllium (Be)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Bismuth (Bi)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Boron (B)	ug/L	5000	5	120	35	74	7	19	61
Cadmium (Cd)	ug/L	5	0.3	ND	ND	ND	ND	ND	ND
Chromium (Cr)	ug/L	50	2	ND	ND	ND	ND	ND	ND
Cobalt (Co)	ug/L	-	1	ND	ND	ND	ND	ND	ND
Copper (Cu)	ug/L	1000 AO	2	ND	ND	ND	ND	ND	ND
Iron (Fe)	ug/L	300 AO	50	ND	140	59	ND	ND	150
Lead (Pb)	ug/L	10	0.5	ND	0.7	ND	ND	ND	ND
Manganese (Mn)	ug/L	50 AO	2	35	60	16	ND	2	160
Molybdenum (Mo)	ug/L	-	2	5	3	3	ND	ND	15
Mercury (Hg)	ug/L	1	0.01	0.01	ND	ND ND	ND	ND	0.01
Nickel (Ni)	ug/L	-	2	ND ND	ND	ND	ND	ND	ND ND
Selenium (Se)	ug/L	10	2	ND ND	ND	ND ND	ND ND	ND	ND NB
Silver (Ag)	ug/L	-	0.5	ND 20	ND 100	ND 62	ND 64	ND 200	ND 74
Strontium (Sr)	ug/L	-	5	39	100	62 ND	61	200	71 ND
Thallium (TI)	ug/L	-	0.1	ND ND	ND	ND	ND	ND	ND ND
Tin (Sn)	ug/L	-	2	ND ND	ND ND	ND ND	ND ND	ND	ND E
Titanium (Ti)	ug/L	-						ND 0.7	5
Uranium (U)	ug/L	20	0.1	ND ND	0.2	ND	0.2	0.7	11 ND
Vanadium (V)	ug/L	-	2	ND ND	ND	ND	ND	ND 40	ND
Zinc (Zn)	ug/L	5000 AO	5	ND	ND	ND	ND	10	6

Table C3: Volatile Organic Compound (VOC) Results (ug/L)

	Drinking		Greenwo	od (003)	Fraser B	rook (004)	Wilmot (005)
Parameter	Water	Detection Limit					
	Guideline		23-Nov-2005	18-Dec-2008	10-Dec-2004	03-Dec-2008	29-Nov-2006
CHLOROBENZENES							
1,2-Dichlorobenzene	200	0.5	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	-	1	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	5	1	ND	ND	ND	ND	ND
Chlorobenzene	80	1	ND	ND	ND	ND	ND
VOLATILES							
1,1,1-Trichloroethane	-	1	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	-	1	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	-	1	ND	ND	ND	ND	ND
1,1-Dichloroethane	-	2	ND	ND	ND	ND	ND
1,1-Dichloroethylene	14	2	ND	ND	ND	ND	ND
1,2-Dichloroethane	5	1	ND	ND	ND	ND	ND
1,2-Dichloropropane	-	1	ND	ND	ND	ND	ND
Benzene	5	1	ND	ND	ND	ND	ND
Bromodichloromethane	16	1	ND	ND	ND	ND	ND
Bromoform	100	1	ND	ND	ND	ND	ND
Bromomethane	-	8	ND	ND	ND	ND	ND
Carbon Tetrachloride	5	1	ND	ND	ND	ND	ND
Chloroethane	-	8	ND	ND	ND	ND	ND
Chloroform	100	1	ND	ND	ND	ND	ND
Chloromethane	-	8	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	-	2	ND	ND	ND	ND	ND
Dibromochloromethane	100	1	ND	ND	ND	ND	ND
Ethylbenzene	2.4 AO	1	ND	ND	ND	ND	ND
Ethylene Dibromide	-	1	ND	ND	ND	ND	ND
Methylene Chloride(Dichloromethane)	-	3	ND	ND	ND	ND	ND
o-Xylene	300 AO	1	ND	ND	ND	ND	ND
p+m-Xylene	300 AO	2	ND	ND	ND	ND	ND
Styrene	-	1	ND	ND	ND	ND	ND
Tetrachloroethylene	30	1	ND	ND	ND	ND	ND
Toluene	24 AO	1	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	-	1	ND	ND	ND	ND	ND
Trichloroethylene	5	1	ND	ND	ND	ND	ND
Trichlorofluoromethane (FREON 11)	-	8	ND	ND	ND	ND	ND
Vinyl Chloride	2	1	ND	ND	ND	ND	ND

Table C3: Volatile Organic Compound (VOC) Results (ug/L)

	Drinking		Wolfvil	e (010)	Monast	ery (028)	Point Aconi (030)	
Parameter	Water Guideline	Detection Limit	22-Dec-2004	10 Dec 2000	15-Dec-2006	00 Dec 2000	15-Sep-2005	10 Dec 2000
CHLOROBENZENES	Guideline		22-Dec-2004	16-Dec-2006	15-Dec-2006	09-Dec-2006	15-Sep-2005	10-Dec-2006
1.2-Dichlorobenzene	200	0.5	ND	ND	ND	ND	ND	ND
1.3-Dichlorobenzene	200	1	ND	ND	ND	ND	ND ND	ND
1.4-Dichlorobenzene	5	1	ND	ND	ND	ND	ND ND	ND
Chlorobenzene	80	1	ND	ND	ND	ND	ND ND	ND
VOLATILES	- 00		IND	IND	IND	IND	ND	ND
1.1.1-Trichloroethane	_	1	ND	ND	ND	ND	ND	ND
1.1.2.2-Tetrachloroethane	_	1	ND	ND	ND	ND	ND	ND
1.1.2-Trichloroethane		1	ND	ND	ND	ND	ND	ND
1.1-Dichloroethane	-	2	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	14	2	ND	ND	ND	ND	ND	ND
1.2-Dichloroethane	5	1	ND	ND	ND	ND	ND	ND
1.2-Dichloropropane	-	1	ND	ND	ND	ND	ND	ND
Benzene	5	1	ND	ND	ND	ND	ND	ND
Bromodichloromethane	16	1	ND	ND	ND	ND	ND	ND
Bromoform	100	1	ND	ND	ND	ND	ND	ND
Bromomethane	-	8	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	5	1	ND	ND	ND	ND	ND	ND
Chloroethane	-	8	ND	ND	ND	ND	ND	ND
Chloroform	100	1	ND	ND	ND	ND	ND	ND
Chloromethane	-	8	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	-	2	ND	ND	ND	ND	ND	ND
Dibromochloromethane	100	1	ND	ND	ND	ND	ND	ND
Ethylbenzene	2.4 AO	1	ND	ND	ND	ND	ND	ND
Ethylene Dibromide	-	1	ND	ND	ND	ND	ND	ND
Methylene Chloride(Dichloromethane)	-	3	ND	ND	ND	ND	ND	ND
o-Xylene	300 AO	1	ND	ND	ND	ND	ND	ND
p+m-Xylene	300 AO	2	ND	ND	ND	ND	ND	ND
Styrene	-	1	ND	ND	ND	ND	ND	ND
Tetrachloroethylene	30	1	ND	ND	ND	ND	ND	ND
Toluene	24 AO	1	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	-	1	ND	ND	ND	ND	ND	ND
Trichloroethylene	5	1	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane (FREON 11)	-	8	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	1	ND	ND	ND	ND	ND	ND

Table C3: Volatile Organic Compound (VOC) Results (ug/L)

	Drinking	5	Lawrencetown (043)	Durhai	m (045)	Kentville (048)	Sydne	Sydney (050)	
Parameter	Water Guideline	Detection Limit	05-Dec-2008	05-Oct-2005	21-Jan-2009	07-Nov-2007	15-Sep-2005	11-Dec-2008	
CHLOROBENZENES	Galadiirid		00 200 2000	00 00: 2000	21 0411 2000	07 1107 2007	10 COP 2000	11 200 2000	
1.2-Dichlorobenzene	200	0.5	ND	ND	ND	ND	ND	ND	
1.3-Dichlorobenzene		1	ND	ND	ND	ND	ND	ND	
1.4-Dichlorobenzene	5	1	ND	ND	ND	ND	ND	ND	
Chlorobenzene	80	1	ND	ND	ND	ND	ND	ND	
VOLATILES									
1.1.1-Trichloroethane	-	1	ND	ND	ND	ND	ND	ND	
1.1.2.2-Tetrachloroethane	-	1	ND	ND	ND	ND	ND	ND	
1.1.2-Trichloroethane	-	1	ND	ND	ND	ND	ND	ND	
1.1-Dichloroethane	-	2	ND	ND	ND	ND	ND	ND	
1,1-Dichloroethylene	14	2	ND	ND	ND	ND	ND	ND	
1,2-Dichloroethane	5	1	ND	ND	ND	ND	ND	ND	
1,2-Dichloropropane	-	1	ND	ND	ND	ND	ND	ND	
Benzene	5	1	ND	ND	ND	ND	ND	ND	
Bromodichloromethane	16	1	ND	ND	ND	ND	ND	ND	
Bromoform	100	1	ND	ND	ND	ND	ND	ND	
Bromomethane	-	8	ND	ND	ND	ND	ND	ND	
Carbon Tetrachloride	5	1	ND	ND	ND	ND	ND	ND	
Chloroethane	-	8	ND	ND	ND	ND	ND	ND	
Chloroform	100	1	ND	ND	ND	ND	ND	ND	
Chloromethane	-	8	ND	ND	ND	ND	ND	ND	
cis-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	ND	ND	
cis-1,3-Dichloropropene	-	2	ND	ND	ND	ND	ND	ND	
Dibromochloromethane	100	1	ND	ND	ND	ND	ND	ND	
Ethylbenzene	2.4 AO	1	ND	ND	ND	ND	ND	ND	
Ethylene Dibromide	-	1	ND	ND	ND	ND	ND	ND	
Methylene Chloride(Dichloromethane)	-	3	ND	ND	ND	ND	ND	ND	
o-Xylene	300 AO	1	ND	ND	ND	ND	ND	ND	
p+m-Xylene	300 AO	2	ND	ND	ND	ND	ND	ND	
Styrene	-	1	ND	ND	ND	ND	ND	ND	
Tetrachloroethylene	30	1	ND	ND	ND	ND	ND	ND	
Toluene	24 AO	1	ND	ND	ND	ND	ND	ND	
trans-1,2-Dichloroethylene		2	ND	ND	ND	ND	ND	ND	
trans-1,3-Dichloropropene	-	1	ND	ND	ND	ND	ND	ND	
Trichloroethylene	5	1	ND	ND	ND	ND	ND	ND	
Trichlorofluoromethane (FREON 11)		8	ND	ND	ND	ND	ND	ND	
Vinyl Chloride	2	1	ND	ND	ND	ND	ND	ND	

Table C3: Volatile Organic Compound (VOC) Results (ug/L)

	Drinking		North Gr	ant (054)	Stillwa	ter (055)	Sheet Harbour (056)
Parameter	Water	Detection Limit					
	Guideline		13-Dec-2006	22-Jul-2008	13-Dec-2006	04-Dec-2008	05-Dec-2008
CHLOROBENZENES							
1,2-Dichlorobenzene	200	0.5	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	-	1	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	5	1	ND	ND	ND	ND	ND
Chlorobenzene	80	1	ND	ND	ND	ND	ND
VOLATILES							
1,1,1-Trichloroethane	-	1	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	-	1	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	-	1	ND	ND	ND	ND	ND
1,1-Dichloroethane	-	2	ND	ND	ND	ND	ND
1,1-Dichloroethylene	14	2	ND	ND	ND	ND	ND
1,2-Dichloroethane	5	1	ND	ND	ND	ND	ND
1,2-Dichloropropane	-	1	ND	ND	ND	ND	ND
Benzene	5	1	ND	ND	ND	ND	ND
Bromodichloromethane	16	1	ND	ND	ND	ND	ND
Bromoform	100	1	ND	ND	ND	ND	ND
Bromomethane	-	8	ND	ND	ND	ND	ND
Carbon Tetrachloride	5	1	ND	ND	ND	ND	ND
Chloroethane	-	8	ND	ND	ND	ND	ND
Chloroform	100	1	ND	ND	ND	ND	ND
Chloromethane	-	8	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	-	2	ND	ND	ND	ND	ND
Dibromochloromethane	100	1	ND	ND	ND	ND	ND
Ethylbenzene	2.4 AO	1	ND	ND	ND	ND	ND
Ethylene Dibromide	-	1	ND	ND	ND	ND	ND
Methylene Chloride(Dichloromethane)	-	3	ND	ND	ND	ND	ND
o-Xvlene	300 AO	1	ND	ND	ND	ND	ND
p+m-Xylene	300 AO	2	ND	ND	ND	ND	ND
Styrene	-	1	ND	ND	ND	ND	ND
Tetrachloroethylene	30	1	ND	ND	ND	ND	ND
Toluene	24 AO	1	ND	ND	1	ND	ND
trans-1.2-Dichloroethylene	-	2	ND	ND	ND	ND	ND
trans-1.3-Dichloropropene	-	1	ND	ND	ND	ND	ND
Trichloroethylene	5	1	ND	ND	ND ND	ND	ND
Trichlorofluoromethane (FREON 11)	-	8	ND	ND	ND	ND	ND
Vinvl Chloride	2	1	ND	ND	ND ND	ND	ND

Table C3: Volatile Organic Compound (VOC) Results (ug/L)

Parameter	Drinking Water	Detection Limit	Hayden	Lake (059)	Metegh	an (060)	Annapolis	Royal (062)	Hebro	n (063)
i alametei	Guideline	Detection Limit	09-Jun-2005	16-Dec-2008	13-Dec-2006	17-Dec-2008	09-Nov-2005	26-Nov-2007	09-Jun-2005	17-Dec-2008
CHLOROBENZENES										
1,2-Dichlorobenzene	200	0.5	ND							
1,3-Dichlorobenzene	-	1	ND							
1,4-Dichlorobenzene	5	1	ND							
Chlorobenzene	80	1	ND							
VOLATILES										
1,1,1-Trichloroethane	-	1	ND							
1,1,2,2-Tetrachloroethane	-	1	ND							
1,1,2-Trichloroethane	-	1	ND							
1,1-Dichloroethane	-	2	ND							
1,1-Dichloroethylene	14	2	ND							
1,2-Dichloroethane	5	1	ND							
1,2-Dichloropropane	-	1	ND							
Benzene	5	1	ND							
Bromodichloromethane	16	1	ND							
Bromoform	100	1	ND							
Bromomethane	-	8	ND							
Carbon Tetrachloride	5	1	ND							
Chloroethane	-	8	ND							
Chloroform	100	1	3.2	ND	ND	ND	ND (2)	ND	ND	ND
Chloromethane	-	8	ND							
cis-1,2-Dichloroethylene	-	2	ND							
cis-1,3-Dichloropropene	-	2	ND							
Dibromochloromethane	100	1	ND							
Ethylbenzene	2.4 AO	1	ND							
Ethylene Dibromide	-	1	ND							
Methylene Chloride(Dichloromethane)	-	3	ND							
o-Xylene	300 AO	1	ND							
p+m-Xylene	300 AO	2	ND							
Styrene	-	1	ND							
Tetrachloroethylene	30	1	ND							
Toluene	24 AO	1	ND	ND	ND	ND	2	1	ND	ND
trans-1,2-Dichloroethylene	-	2	ND							
trans-1,3-Dichloropropene	-	1	ND							
Trichloroethylene	5	1	ND							
Trichlorofluoromethane (FREON 11)	-	8	ND							
Vinyl Chloride	2	1	ND							

Table C3: Volatile Organic Compound (VOC) Results (ug/L)

	Drinking		Margare	ee (064)	Ingonish (065)	Dalem La	ake (069)
Parameter	Water	Detection Limit					
	Guideline		14-Dec-2006	10-Dec-2008	25-Aug-2009	14-Dec-2006	11-Dec-2008
CHLOROBENZENES							
1,2-Dichlorobenzene	200	0.5	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	-	1	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	5	1	ND	ND	ND	ND	ND
Chlorobenzene	80	1	ND	ND	ND	ND	ND
VOLATILES							
1,1,1-Trichloroethane	-	1	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	-	1	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	-	1	ND	ND	ND	ND	ND
1,1-Dichloroethane	-	2	ND	ND	ND	ND	ND
1,1-Dichloroethylene	14	2	ND	ND	ND	ND	ND
1,2-Dichloroethane	5	1	ND	ND	ND	ND	ND
1,2-Dichloropropane	-	1	ND	ND	ND	ND	ND
Benzene	5	1	ND	ND	ND	ND	ND
Bromodichloromethane	16	1	ND	ND	ND	ND	ND
Bromoform	100	1	ND	ND	ND	ND	ND
Bromomethane	-	8	ND	ND	ND	ND	ND
Carbon Tetrachloride	5	1	ND	ND	ND	ND	ND
Chloroethane	-	8	ND	ND	ND	ND	ND
Chloroform	100	1	ND	ND	ND	ND	ND
Chloromethane	-	8	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	-	2	ND	ND	ND	ND	ND
Dibromochloromethane	100	1	ND	ND	ND	ND	ND
Ethylbenzene	2.4 AO	1	ND	ND	ND	ND	ND
Ethylene Dibromide	-	1	ND	ND	ND	ND	ND
Methylene Chloride(Dichloromethane)	-	3	ND	ND	ND	ND	ND
o-Xylene	300 AO	1	ND	ND	ND	ND	ND
p+m-Xylene	300 AO	2	ND	ND	ND	ND	ND
Styrene	-	1	ND	ND	ND	ND	ND
Tetrachloroethylene	30	1	ND	ND	ND	ND	ND
Toluene	24 AO	1	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	-	1	ND	ND	ND	ND	ND
Trichloroethylene	5	1	ND	ND	ND	ND	ND
Trichlorofluoromethane (FREON 11)	-	8	ND	ND	ND	ND	ND
Vinyl Chloride	2	1	ND	ND	ND	ND	ND

Table C3: Volatile Organic Compound (VOC) Results (ug/L)

Parameter	Drinking Water	Detection Limit	Amher	st (071)	Kelley Ri	ver (073)	Atlanta (074)	Sheffield Mills (075)
	Guideline		16-Dec-2006	08-Jan-2009	12-Jan-2007	09-Jun-2009	03-Sep-2007	10-Sep-2007
CHLOROBENZENES								
1,2-Dichlorobenzene	200	0.5	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	-	1	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	5	1	ND	ND	ND	ND	ND	ND
Chlorobenzene	80	1	ND	ND	ND	ND	ND	ND
VOLATILES								
1,1,1-Trichloroethane	-	1	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane		1	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	-	1	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	-	2	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	14	2	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	5	1	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	-	1	ND	ND	ND	ND	ND	ND
Benzene	5	1	ND	ND	ND	ND	ND	ND
Bromodichloromethane	16	1	ND	ND	ND	ND	ND	ND
Bromoform	100	1	ND	ND	ND	ND	ND	ND
Bromomethane	-	8	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	5	1	ND	ND	ND	ND	ND	ND
Chloroethane	-	8	ND	ND	ND	ND	ND	ND
Chloroform	100	1	ND	ND	ND	ND	ND	ND
Chloromethane	-	8	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	-	2	ND	ND	ND	ND	ND	ND
Dibromochloromethane	100	1	ND	ND	ND	ND	ND	ND
Ethylbenzene	2.4 AO	1	ND	ND	ND	ND	ND	ND
Ethylene Dibromide	-	1	ND	ND	ND	ND	ND	ND
Methylene Chloride(Dichloromethane)	-	3	ND	ND	ND	ND	ND	ND
o-Xylene	300 AO	1	ND	ND	ND	ND	ND	ND
p+m-Xylene	300 AO	2	ND	ND	ND	ND	ND	ND
Styrene	-	1	ND	ND	ND	ND	ND	ND
Tetrachloroethylene	30	1	ND	ND	ND	ND	ND	ND
Toluene	24 AO	1	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	-	1	ND	ND	ND	ND	ND	ND
Trichloroethylene	5	1	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane (FREON 11)	-	8	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	1	ND	ND	ND	ND	ND	ND

Table C3: Volatile Organic Compound (VOC) Results (ug/L)

Parameter	Drinking Water	Detection Limit	Fall River (076)	West Northfield (077)	Musquodoboit Hbr (078)	Lewis Lake (079)	Arisaig (080)	Coldbrook (081)
	Guideline		20-May-2008	12-Jun-2008	22-May-2008	31-Jul-2008	08-Sep-2009	05-Aug-2009
CHLOROBENZENES								, and the second
1,2-Dichlorobenzene	200	0.5	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	-	1	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	5	1	ND	ND	ND	ND	ND	ND
Chlorobenzene	80	1	ND	ND	ND	ND	ND	ND
VOLATILES								
1,1,1-Trichloroethane	-	1	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	-	1	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	-	1	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	-	2	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	14	2	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	5	1	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	-	1	ND	ND	ND	ND	ND	ND
Benzene	5	1	ND	ND	ND	ND	ND	ND
Bromodichloromethane	16	1	ND	ND	ND	ND	ND	ND
Bromoform	100	1	ND	ND	ND	ND	ND	ND
Bromomethane	-	8	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	5	1	ND	ND	ND	ND	ND	ND
Chloroethane	-	8	ND	ND	ND	ND	ND	ND
Chloroform	100	1	ND	ND	ND	ND	ND	ND
Chloromethane	-	8	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	-	2	ND	ND	ND	ND	ND	ND
Dibromochloromethane	100	1	ND	ND	ND	ND	ND	ND
Ethylbenzene	2.4 AO	1	ND	ND	ND	ND	ND	ND
Ethylene Dibromide	-	1	ND	ND	ND	ND	ND	ND
Methylene Chloride(Dichloromethane)	-	3	ND	ND	ND	ND	ND	ND
o-Xylene	300 AO	1	ND	ND	ND	ND	ND	ND
p+m-Xylene	300 AO	2	ND	ND	ND	ND	ND	ND
Styrene	-	1	ND	ND	ND	ND	ND	ND
Tetrachloroethylene	30	1	ND	ND	ND	ND	ND	ND
Toluene	24 AO	1	ND	ND	ND	ND	2	ND
trans-1,2-Dichloroethylene		2	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	-	1	ND	ND	ND	ND	ND	ND
Trichloroethylene	5	1	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane (FREON 11)	-	8	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	1	ND	ND	ND	ND	ND	ND

Table C3: Volatile Organic Compound (VOC) Results (ug/L)

	Drinking		Long Point (082)	Tatamagouche (083)
Parameter	Water	Detection Limit		
	Guideline		12-Aug-2009	21-Jul-2008
CHLOROBENZENES				
1,2-Dichlorobenzene	200	0.5	ND	ND
1,3-Dichlorobenzene	-	1	ND	ND
1,4-Dichlorobenzene	5	1	ND	ND
Chlorobenzene	80	1	ND	ND
VOLATILES				
1,1,1-Trichloroethane	-	1	ND	ND
1,1,2,2-Tetrachloroethane	-	1	ND	ND
1,1,2-Trichloroethane	-	1	ND	ND
1,1-Dichloroethane	-	2	ND	ND
1,1-Dichloroethylene	14	2	ND	ND
1,2-Dichloroethane	5	1	ND	ND
1,2-Dichloropropane	-	1	ND	ND
Benzene	5	1	ND	ND
Bromodichloromethane	16	1	ND	ND
Bromoform	100	1	ND	ND
Bromomethane	-	8	ND	ND
Carbon Tetrachloride	5	1	ND	ND
Chloroethane	-	8	ND	ND
Chloroform	100	1	ND	ND
Chloromethane	-	8	ND	ND
cis-1,2-Dichloroethylene	-	2	ND	ND
cis-1,3-Dichloropropene	-	2	ND	ND
Dibromochloromethane	100	1	ND	ND
Ethylbenzene	2.4 AO	1	ND	ND
Ethylene Dibromide	-	1	ND	ND
Methylene Chloride(Dichloromethane)	-	3	ND	ND
o-Xylene	300 AO	1	ND	ND
p+m-Xylene	300 AO	2	ND	ND
Styrene	-	1	ND	ND
Tetrachloroethylene	30	1	ND	ND
Toluene	24 AO	1	2	ND
trans-1,2-Dichloroethylene	-	2	ND	ND
trans-1,3-Dichloropropene	-	1	ND	ND
Trichloroethylene	5	1	ND	ND
Trichlorofluoromethane (FREON 11)	-	8	ND	ND
Vinyl Chloride	2	1	ND	ND

Table C4: Pesticide Results (ug/L)

Parameter	Drinking Water	Detection	Greenwo	ood (003)	Fraser Bro	ook (004)	Wolfville (010)		
	Guideline	Limit	23-Nov-2005	18-Dec-2008	10-Dec-2004	3-Dec-2008	22-Dec-2004	18-Dec-2008	
Herbicides									
Atrazine	5	0.2	ND	ND	ND	ND	ND	ND	
De-ethyl Atrazine		0.3	ND	ND	ND	ND	ND	ND	
Butylate	40	0.5	ND	ND	ND	ND	ND	ND	
Cyanazine	10	0.5	ND	ND	ND	ND	ND	ND	
Desmetryn	ļ	0.3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
Diphenylamine	-	0.1 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
Eptam Etholfluralia	ļ	0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
Ethalfluralin Hexazinone	-	0.5	ND ND	ND ND	ND ND	ND	ND	ND ND	
Metalaxyl	1	0.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
Metribuzin	80	0.3	ND ND	ND ND	ND ND	ND	ND	ND	
Metolachlor	50	0.3	ND ND	ND ND	ND	ND	ND ND	ND ND	
Pirimicarb	30	0.5	ND	ND	ND	ND	ND	ND	
Profluralin		0.5	ND	ND	ND	ND	ND	ND	
Prometryn		0.2	ND	ND	ND	ND	ND	ND	
Propazine	1	0.1	ND	ND	ND	ND	ND	ND	
Simazine	10	0.5	ND ND	ND ND	ND	ND	ND ND	ND ND	
Terbuthylazine	10	0.1	ND	ND	ND	ND	ND	ND ND	
Terbutryn	1	0.2	ND	ND	ND	ND	ND	ND	
Triallate	1	0.2	ND	ND	ND	ND	ND	ND	
Triadimefon		0.3	ND	ND	ND	ND	ND	ND	
Trifluralin	45	0.2	ND	ND	ND	ND	ND	ND	
Organochlorine Pesticides									
Alachlor		0.5	ND		ND	ND	ND		
Aldrin + Dieldrin	0.7	0.5	ND	ND	ND	ND	ND	ND	
BHC, alpha-	1	0.3	ND	ND	ND	ND	ND	ND	
BHC, beta-		0.3	ND	ND	ND	ND	ND	ND	
Captan		1	ND	ND	ND	ND	ND	ND	
Chlorbenside		0.1	ND	ND	ND	ND	ND	ND	
Chlordane, alpha-		0.5	ND	ND	ND	ND	ND	ND	
Chlordane, gamma-		0.5	ND	ND	ND	ND	ND	ND	
Chlorfenson (Ovex)		0.2	ND	ND	ND	ND	ND	ND	
Chlorothalonil (Daconil)		1	ND	ND	ND	ND	ND	ND	
Chlorpropham		0.2	ND	ND	ND	ND	ND	ND	
Dacthal (DCPA)		0.1	ND	ND	ND	ND	ND	ND	
4,4'-DDE		0.01	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	
DDT - orthopara (2,4')		0.01	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	
DDT - parapara (4,4')		0.01	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	
Diallate(e/z)		0.5	ND	ND	ND	ND	ND	ND	
Dichlobenil		0.2	ND	ND	ND	ND	ND	ND	
Dichloran		0.5	ND	ND	ND	ND	ND	ND	
Dichlofluanid		0.5	ND	ND	ND	ND	ND	ND	
Dicofol		0.2	ND	ND	ND	ND	ND	ND	
Endosulfan I		0.5	ND	ND	ND	ND	ND	ND	
Endosulfan II		0.5	ND	ND	ND	ND	ND	ND	
Endosulfan Sulphate		0.5	ND	ND	ND	ND	ND	ND	
Endrin	1	0.5	ND ND	ND ND	ND ND	ND	ND	ND	
Folpet	1	1	ND	ND	ND	ND	ND	ND	
Heptachlor		0.5	ND ND	ND ND	ND ND	ND	ND	ND	
Lindane (BHC), gamma-		0.5	ND ND	ND ND	ND ND	ND	ND	ND	
Methidathion Methoxychlor	900	0.3 0.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
Mirex	900	0.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
Nitrofen		0.3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
Permethrin-cis/trans	1	0.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
	1	0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
Procymidone Pronamide	1	0.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
Quintozene (Pentachloronitrobenzene)		0.2	ND ND	ND ND	ND -	- ND	- UND	ND ND	
Tecnazene	1	0.5	ND ND	ND ND	- ND	- ND	- ND	ND ND	
Tetradifon	1		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
Tolvlfluanid		0.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
Vinclozolin	1	0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
VITIGIOZUIIII	1	0.0	טאו	טאו	טאו	טאו	טאו	טאו	

Table C4: Pesticide Results (ug/L)

Parameter	Drinking Water	Detection	Monastery (028)	Point Ac	oni (030)	Lawrencetown (043)	Durha	m (045)
	Guideline	Limit	15-Dec-2006	15-Sep-2005	10-Dec-2008	5-Dec-2008	5-Oct-2005	21-Jan-2009
Herbicides								
Atrazine	5	0.2	ND	ND	ND	ND	ND	ND
De-ethyl Atrazine		0.3	ND	ND	ND	ND	ND	ND
Butylate	4.0	0.5	ND	ND	ND	ND	ND	ND
Cyanazine	10	0.5	ND	ND	ND	ND	ND	ND
Desmetryn		0.3	ND	ND	ND	ND	ND	ND
Diphenylamine		0.1	ND ND	ND ND	ND	ND ND	ND	ND
Eptam		0.5	ND	ND	ND	ND	ND	ND
Ethalfluralin		0.5	ND	ND	ND	ND	ND	ND
Hexazinone		0.1	ND	ND	ND	ND	ND	ND
Metalaxyl	00	0.3	ND	ND	ND	ND ND	ND	ND
Metribuzin	80	0.3	ND ND	ND ND	ND	ND ND	ND	ND
Metolachlor	50	0.2	ND	ND	ND	ND	ND	ND
Pirimicarb		0.5	ND	ND	ND	ND	ND	ND
Profluralin		0.5	ND	ND	ND	ND	ND	ND
Prometryn		0.2	ND	ND	ND	ND ND	ND	ND
Propazine	40	0.1	ND	ND ND	ND	ND	ND ND	ND
Simazine	10	0.5	ND ND	ND ND	ND	ND ND	ND	ND
Terbuthylazine		0.1	ND	ND	ND	ND	ND	ND
Terbutryn		0.2	ND	ND	ND	ND	ND	ND
Triallate		0.3	ND ND	ND ND	ND	ND ND	ND	ND
Triadimefon		0.3	ND	ND	ND	ND	ND	ND
Trifluralin	45	0.2	ND	ND	ND	ND	ND	ND
Organochlorine Pesticides								
Alachlor		0.5	ND	ND	-		ND	ND
Aldrin + Dieldrin	0.7	0.5	ND ND	ND	ND	ND	ND	ND
BHC, alpha-		0.3	ND ND	ND ND	ND	ND ND	ND	ND
BHC, beta-		0.3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Captan		1						
Chlorbenside		0.1 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlordane, alpha-		0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlordane, gamma- Chlorfenson (Ovex)		0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorothalonil (Daconil)		1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
		0.2	ND ND	ND ND	ND	ND ND	ND	ND
Chlorpropham Dacthal (DCPA)		0.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4.4'-DDE		0.01	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
DDT - orthopara (2,4')		0.01	ND (0.1)	ND (0.1) ND (0.2)	ND (0.1) ND (0.2)	ND (0.1) ND (0.2)	ND (0.1)	ND (0.1)
DDT - orthopara (2,4)		0.01	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)
Diallate(e/z)		0.01	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)
Dichlobenil		0.5	ND ND	ND ND	ND ND	ND ND	ND	ND
Dichloran		0.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dichlofluanid		0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dicofol		0.3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Endosulfan I		0.5	ND ND	ND ND	ND	ND ND	ND	ND
Endosulfan II		0.5	ND ND	ND ND	ND ND	ND ND	ND	ND
Endosulfan Sulphate		0.5	ND ND	ND ND	ND	ND ND	ND	ND
Endrin		0.5	ND	ND	ND	ND ND	ND	ND
Folpet		1	ND ND	ND	ND	ND ND	ND	ND
Heptachlor		0.5	ND ND	ND ND	ND	ND ND	ND	ND
Lindane (BHC), gamma-		0.5	ND ND	ND ND	ND ND	ND ND	ND	ND
Methidathion		0.3	ND ND	ND ND	ND ND	ND ND	ND	ND
Methoxychlor	900	0.3	- 140	ND	ND	ND ND	ND	ND
Mirex	300	0.1	ND	ND ND	ND ND	ND ND	ND	ND
Nitrofen		0.3	ND ND	ND ND	ND	ND ND	ND	ND
Permethrin-cis/trans		0.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND
Procymidone		0.3	ND ND	ND ND	ND ND	ND ND	ND ND	ND
Pronamide		0.2	ND ND	ND ND	ND ND	ND ND	ND	ND
Quintozene (Pentachloronitrobenzene)		0.2	-	ND	ND	ND ND	ND	ND
Tecnazene		0.5	ND	ND ND	ND	ND ND	ND	ND
Tetradifon		0.5	ND ND	ND ND	ND ND	ND ND	ND	ND
Tolvlfluanid		0.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND
		0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Vinclozolin								

Table C4: Pesticide Results (ug/L)

Parameter	Drinking Water	Detection	Kentvill	e (048)	Sydne	y (050)	North Gr	ant (054)
	Guideline	Limit	15-Jun-2005	7-Nov-2007	15-Sep-2005	11-Dec-2008	12-Dec-2006	22-Jul-2008
Herbicides			115 (1)					
Atrazine	5	0.2	ND (1)	ND	ND	ND	ND	ND
De-ethyl Atrazine		0.3	-	ND	ND	ND	ND	ND
Butylate	4.0	0.5	-	ND	ND	ND	ND	ND
Cyanazine	10	0.5	-	ND	ND	ND	ND	ND
Desmetryn	1	0.3	-	ND	ND	ND	ND	ND
Diphenylamine	ļ	0.1 0.5	-	ND ND	ND ND	ND ND	ND ND	ND ND
Eptam Etholis	1		-					
Ethalfluralin	1	0.5		ND	ND	ND	ND	ND
Hexazinone	1	0.1	-	ND	ND	ND	ND	ND
Metalaxyl	00	0.3	-	ND	ND	ND	ND	ND
Metribuzin	80	0.3	-	ND	ND	ND	ND	ND
Metolachlor	50	0.2	-	ND	ND	ND	ND	ND
Pirimicarb		0.5	-	ND	ND	ND	ND	ND
Profluralin		0.5	-	ND	ND	ND	ND	ND
Prometryn		0.2	-	ND	ND	ND	ND	ND
Propazine	ļ , .	0.1	-	ND	ND	ND	ND	ND
Simazine	10	0.5	-	ND	ND	ND	ND	ND
Terbuthylazine		0.1	-	ND	ND	ND	ND	ND
Terbutryn		0.2	-	ND	ND	ND	ND	ND
Triallate		0.3	-	ND	ND	ND	ND	ND
Triadimefon		0.3	-	ND	ND	ND	ND	ND
Trifluralin	45	0.2	-	ND	ND	ND	ND	ND
Organochlorine Pesticides								
Alachlor		0.5	-	ND	ND	ND	ND	ND
Aldrin + Dieldrin	0.7	0.5	-	ND	ND	ND	ND	ND (0.02)
BHC, alpha-		0.3	-	ND	ND	ND	ND	ND (0.1)
BHC, beta-		0.3	-	ND	ND	ND	ND	ND (0.1)
Captan		1	-	ND	ND	ND	ND	ND
Chlorbenside		0.1	-	ND	ND	ND	ND	ND
Chlordane, alpha-		0.5	-	ND	ND	ND	ND	ND (0.06)
Chlordane, gamma-		0.5	-	ND	ND	ND	ND	ND (0.06)
Chlorfenson (Ovex)		0.2	-	ND	ND	ND	ND	ND
Chlorothalonil (Daconil)		1	-	ND	ND	ND	ND	ND
Chlorpropham		0.2	-	ND	ND	ND	ND	ND
Dacthal (DCPA)		0.1	-	ND	ND	ND	ND	ND
4,4'-DDE		0.01	ND	ND (0.1)	ND (0.1)	ND (0.1)	ND	ND
DDT - orthopara (2,4')		0.01	ND	ND (0.2)	ND (0.2)	ND (0.2)	ND	ND
DDT - parapara (4,4')		0.01	ND	ND (0.2)	ND (0.2)	ND (0.2)	ND	ND
Diallate(e/z)		0.5	-	ND	ND	ND	ND	ND
Dichlobenil		0.2	-	ND	ND	ND	ND	ND
Dichloran		0.5	-	ND	ND	ND	ND	ND
Dichlofluanid		0.5	-	ND	ND	ND	ND	ND
Dicofol		0.2	-	ND	ND	ND	ND	ND
Endosulfan I		0.5	-	ND	ND	ND	ND	ND (0.2)
Endosulfan II		0.5	-	ND	ND	ND	ND	ND (0.2)
Endosulfan Sulphate		0.5	-	ND	ND	ND	ND	ND (0.2)
Endrin		0.5	-	ND	ND	ND	ND	ND (0.02)
Folpet		1	-	ND	ND	ND	ND	ND
Heptachlor	1	0.5	-	ND	ND	ND	ND	ND (0.1)
Lindane (BHC), gamma-		0.5	-	ND	ND	ND	ND	ND (0.1)
Methidathion		0.3	-	ND	ND	ND	ND	ND ND
Methoxychlor	900	0.1	-	ND	ND	ND	ND	ND
Mirex		0.3	-	ND	ND	ND	ND	ND
Nitrofen	1	0.2	-	ND	ND	ND	ND	ND
Permethrin-cis/trans	 	0.5		ND	ND	ND	ND	ND
Procymidone	1	0.3	 	ND ND	ND ND	ND ND	ND ND	ND ND
Pronamide	1	0.2	-	ND ND	ND	ND	ND ND	ND ND
Quintozene (Pentachloronitrobenzene)	1	0.2	-	ND	ND	ND	ND	ND ND
Tecnazene	 		-	ND ND	ND ND	ND ND	ND ND	ND ND
	1	0.5	-					
Tetradifon	1	0.2	-	ND	ND	ND	ND	ND
Tolylfluanid		0.5	-	ND	ND	ND	ND	ND
Vinclozolin	1	0.5	-	ND	ND	ND	ND	ND

Table C4: Pesticide Results (ug/L)

Parameter	Drinking Water	Detection	Stillwate	er (055)	Sheet Harbour (056)	Hayden	Lake (059)
	Guideline	Limit	12-Dec-2006	4-Dec-2008	5-Dec-2008	9-Jun-2005	16-Dec-2008
Herbicides							
Atrazine	5	0.2	ND	ND	ND	ND (2.5)	ND
De-ethyl Atrazine		0.3	ND	ND	ND	-	ND
Butylate		0.5	ND	ND	ND	-	ND
Cyanazine	10	0.5	ND	ND	ND	-	ND
Desmetryn		0.3	ND	ND	ND	-	ND
Diphenylamine		0.1	ND	ND	ND	-	ND
Eptam		0.5	ND	ND	ND	-	ND
Ethalfluralin		0.5	ND	ND	ND	-	ND
Hexazinone		0.1	ND	ND	ND	-	ND
Metalaxyl		0.3	ND	ND	ND	-	ND
Metribuzin	80	0.3	ND	ND	ND	-	ND
Metolachlor	50	0.2	ND	ND	ND	-	ND
Pirimicarb		0.5	ND	ND	ND	-	ND
Profluralin		0.5	ND	ND	ND	-	ND
Prometryn		0.2	ND	ND	ND	-	ND
Propazine	ļ	0.1	ND	ND	ND	-	ND
Simazine	10	0.5	ND	ND	ND	-	ND
Terbuthylazine	ļ	0.1	ND	ND	ND	-	ND
Terbutryn		0.2	ND	ND	ND	-	ND
Triallate	<u> </u>	0.3	ND	ND	ND	-	ND
Triadimefon		0.3	ND	ND	ND	-	ND
Trifluralin	45	0.2	ND	ND	ND	-	ND
Organochlorine Pesticides							
Alachlor		0.5	ND	ND	-	-	-
Aldrin + Dieldrin	0.7	0.5	ND	ND	ND	-	ND
BHC, alpha-		0.3	ND	ND	ND	-	ND
BHC, beta-		0.3	ND	ND	ND	-	ND
Captan		1	ND	ND	ND	-	ND
Chlorbenside		0.1	ND	ND	ND	-	ND
Chlordane, alpha-		0.5	ND	ND	ND	-	ND
Chlordane, gamma-		0.5	ND	ND	ND	-	ND
Chlorfenson (Ovex)		0.2	ND	ND	ND	-	ND
Chlorothalonil (Daconil)		1	ND	ND	ND	-	ND
Chlorpropham		0.2	ND	ND	ND	-	ND
Dacthal (DCPA)		0.1	ND	ND	ND	-	ND
4,4'-DDE		0.01	ND	ND (0.1)	ND (0.1)	ND	ND (0.1)
DDT - orthopara (2,4')		0.01	ND	ND (0.2)	ND (0.2)	ND	ND (0.2)
DDT - parapara (4,4')		0.01	ND	ND (0.2)	ND (0.2)	ND	ND (0.2)
Diallate(e/z)		0.5	ND	ND	ND	-	ND
Dichlobenil		0.2	ND	ND	ND	-	ND
Dichloran		0.5	ND	ND	ND	-	ND
Dichlofluanid		0.5	ND	ND	ND	-	ND
Dicofol	<u> </u>	0.2	ND	ND	ND	-	ND
Endosulfan I	1	0.5	ND	ND	ND ND	-	ND
Endosulfan II	1	0.5	ND	ND	ND	-	ND
Endosulfan Sulphate	1	0.5	ND	ND	ND ND		ND
Endrin Enlant	1	0.5	ND	ND	ND ND	- -	ND
Folpet	1	1	ND	ND	ND	-	ND
Heptachlor	 	0.5	ND	ND	ND ND	-	ND
Lindane (BHC), gamma-	1	0.5	ND	ND ND	ND ND	-	ND ND
Methidathion Methographer	000	0.3	ND	ND	ND ND		ND
Methoxychlor	900	0.1	ND	ND	ND ND	-	ND
Mirex	<u> </u>	0.3	ND	ND	ND	-	ND
Nitrofen		0.2	ND	ND	ND ND	-	ND
Permethrin-cis/trans	<u> </u>	0.5	ND	ND	ND ND	-	ND
Procymidone	<u> </u>	0.2	ND	ND	ND ND	-	ND
Pronamide	ļ	0.2	ND	ND	ND ND	-	ND
Quintozene (Pentachloronitrobenzene)	ļ	0.5	ND	ND	ND	-	ND
Tecnazene	<u> </u>	0.5	ND	ND	ND ND	-	ND
Tetradifon	<u> </u>	0.2	ND	ND	ND ND	-	ND
Tolylfluanid	 	0.5	ND	ND	ND	-	ND
Vinclozolin	<u> </u>	0.5	ND	ND	ND	-	ND

Table C4: Pesticide Results (ug/L)

Parameter	Drinking Water	Detection	Metegh	an (060)	Annapolis	Royal (062)	Hebro	in (063)
	Guideline	Limit	13-Dec-2006	17-Dec-2008	9-Nov-2005	26-Nov-2007	9-Jun-2005	17-Dec-2008
Herbicides	-	0.0	ND	NB	NB	ND	ND (0.5)	ND
Atrazine De-ethyl Atrazine	5	0.2	ND ND	ND ND	ND ND	ND ND	ND (2.5)	ND ND
	ļ		ND ND	ND ND	ND ND	ND ND	-	ND
Butylate	10	0.5 0.5	ND ND	ND ND	ND	ND	-	ND
Cyanazine Desmetryn	10		ND ND	ND ND	ND ND	ND ND	-	ND ND
	1	0.3 0.1	ND ND	ND ND	ND ND	ND ND	-	ND ND
Diphenylamine Eptam		0.1	ND ND	ND ND	ND ND	ND ND	-	ND ND
Ethalfluralin	-	0.5	ND	ND	ND	ND	-	ND
	-		ND	ND	ND	ND	-	ND
Hexazinone Metalaxyl		0.1	ND ND	ND ND	ND ND	ND ND	-	ND ND
	80		ND ND	ND ND	ND ND		-	ND ND
Metribuzin Metolachlor	50	0.3 0.2	ND ND	ND ND	ND ND	ND ND	-	ND ND
Pirimicarb	50	0.2	ND ND	ND ND	ND ND	ND ND	-	ND ND
	ļ							
Profluralin	1	0.5 0.2	ND ND	ND ND	ND ND	ND ND	-	ND ND
Prometryn Propaging		0.2	ND ND	ND ND	ND ND	ND ND	-	ND ND
Propazine Simpazino	10		ND ND				-	
Simazine Torbuthylazine	10	0.5 0.1	ND ND	ND ND	ND ND	ND ND	-	ND ND
Terbuthylazine	 	0.1	ND ND	ND ND	ND ND	ND ND	-	ND ND
Terbutryn Triallato			ND ND	ND ND	ND ND	ND ND	-	ND ND
Triallate Triadimoton	1	0.3	ND ND	ND ND	ND ND	ND ND	-	ND ND
Triadimefon Trifluralin	45	0.3	ND ND	ND ND	ND ND	ND ND	-	ND ND
	45	0.2	ND	ND	ND	ND	-	IND
Organochlorine Pesticides Alachlor	-	0.5	ND	ND	ND	ND	_	
Aldrin + Dieldrin	0.7	0.5	ND ND	ND ND	ND ND	ND ND	-	- ND
BHC, alpha-	0.7	0.3	ND	ND ND	ND	ND	-	ND
BHC, beta-		0.3	ND ND	ND ND	ND ND	ND ND	-	ND ND
Captan	-	1	ND ND	ND	ND ND	ND	-	ND
•	1	0.1	ND	ND	ND	ND	-	ND
Chlorbenside Chlordane, alpha-		0.1	ND ND	ND ND	ND ND	ND ND	-	ND ND
Chlordane, gamma-		0.5	ND	ND ND	ND	ND	-	ND
Chlorfenson (Ovex)		0.5	ND	ND ND	ND	ND	-	ND
Chlorothalonil (Daconil)	1	1	ND ND	ND ND	ND ND	ND ND	-	ND ND
, ,		0.2	ND	ND	ND	ND	-	ND
Chlorpropham Dacthal (DCPA)		0.2	ND	ND ND	ND	ND	-	ND
4.4'-DDE	1	0.01	ND ND	ND (0.1)	ND (0.1)	ND (0.1)	- ND	ND (0.1)
DDT - orthopara (2,4')		0.01	ND	ND (0.1) ND (0.2)	ND (0.1)	ND (0.1) ND (0.2)	ND ND	ND (0.1)
DDT - orthopara (2,4)		0.01	ND	ND (0.2)	ND (0.2)	ND (0.2)	ND	ND (0.2)
Diallate(e/z)		0.5	ND	ND (0.2)	ND (0.2)	ND (0.2)	- ND	ND (0.2)
Dichlobenil		0.5	ND	ND ND	ND	ND	-	ND
Dichloran	1	0.2	ND ND	ND ND	ND ND	ND ND	-	ND ND
Dichlofluanid	1	0.5	ND	ND ND	ND	ND	-	ND
Dicofol	1	0.5	ND ND	ND ND	ND ND	ND ND	-	ND ND
Endosulfan I	1	0.2	ND	ND	ND	ND	-	ND
Endosulfan II	1	0.5	ND ND	ND ND	ND ND	ND ND	-	ND ND
Endosulfan Sulphate	1	0.5	ND ND	ND ND	ND ND	ND ND	-	ND ND
Endosulian Sulphate Endrin	1	0.5	ND ND	ND ND	ND ND	ND ND	-	ND ND
Folpet	1	1	ND ND	ND	ND ND	ND ND	-	ND
Heptachlor	1	0.5	ND ND	ND ND	ND ND	ND ND	-	ND ND
Lindane (BHC), gamma-	1	0.5	ND ND	ND ND	ND ND	ND ND	-	ND ND
Methidathion	1	0.5	ND ND	ND ND	ND ND	ND ND		ND ND
Methoxychlor	900	0.3	ND	ND ND	ND	ND	-	ND
Mirex	900	0.1	ND ND	ND ND	ND ND	ND ND	-	ND ND
Nitrofen	1	0.3	ND ND	ND ND	ND ND	ND ND	-	ND ND
	1		ND ND	ND ND	ND ND	ND ND	-	ND ND
Permethrin-cis/trans Procymidone	1	0.5 0.2	ND ND	ND ND	ND ND	ND ND	-	ND ND
Procymidone Pronamide		0.2	ND ND	ND ND	ND ND	ND ND	-	ND ND
Quintozene (Pentachloronitrobenzene)	1	0.2	ND ND	ND ND	ND ND	ND ND	-	ND ND
	1		ND ND	ND ND	ND ND	ND ND	-	
Tecnazene Tetradifon		0.5					-	ND
Tetradifon	1	0.2	ND	ND	ND	ND	-	ND
Tolylfluanid	1	0.5	ND	ND	ND	ND	-	ND
Vinclozolin		0.5	ND	ND	ND	ND	-	ND

Table C4: Pesticide Results (ug/L)

Herbicides	Parameter	Drinking Water	Detection	Margare	ee (064)	Ingonish (065)	Dalem La	ake (069)
Alfazine		Guideline	Limit	14-Dec-2006	8-Dec-2008	25-Aug-2009	14-Dec-2006	11-Dec-2008
De-ethy Arrazine		-	0.0	ND	ND	ND	ND	ND
Butylate		5						ND
Cyanazine 10 0.5 ND ND ND ND ND Debrentym 0.3 ND								ND
Desmetryn		40						ND
Diphenylamine		10						ND
Eptam		-						ND
Einstiffuralin								ND ND
Hexazinone		-						
Metalaxy		-						ND
Metribuzin		-						ND
Metolachior 50		00						ND
Primicarb								ND
Profile		50						ND
Prometryn								ND
Propazine								ND
Simazine								ND
Terbutrylazine								ND
Terbutryn		10						ND
Triallate								ND
Triadimefon 0.3 ND ND ND ND Organochlorine Pesticides ND ND ND ND ND Alachlor 0.5 ND ND ND ND Aldrin + Dieldrin 0.7 0.5 ND ND ND (0.02) ND BHC, alpha- 0.3 ND ND ND (0.1) ND ND BHC, beta- 0.3 ND ND ND ND ND Captan 1 ND ND ND ND ND Chlordrane, alpha- 0.5 ND ND ND ND ND Chlordrane, agamma- 0.5 ND ND </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td>								ND
Triffuralin								ND
Organochlorine Pesticides								ND
Alachlor	Trifluralin	45	0.2	ND	ND	ND	ND	ND
Aldrin + Dieldrin 0.7 0.5 ND	Organochlorine Pesticides							
BHC, alpha-	Alachlor		0.5	ND	ND	ND	ND	ND
BHC, beta	Aldrin + Dieldrin	0.7	0.5	ND	ND	ND (0.02)	ND	ND
BHC, beta	BHC, alpha-		0.3	ND	ND	ND (0.1)	ND	ND
Captan				ND	ND		ND	ND
Chlorbenside 0.1 ND ND ND ND Chlordane, alpha- 0.5 ND ND ND (0.6) ND Chlordane, gamma- 0.5 ND ND ND ND ND Chlorfenson (Ovex) 0.2 ND ND ND ND ND Chlorfenson (Ovex) 0.2 ND ND ND ND ND Chlorfenson (Ovex) 0.2 ND ND ND ND ND ND Chlorfenson (Ovex) 0.2 ND	Captan		1	ND	ND		ND	ND
Chlordane, alpha-			0.1	ND	ND	ND	ND	ND
Chlordane, gamma- 0.5 ND ND ND (0.06) ND Chlorfenson (Ovex) 0.2 ND ND ND ND Chlorothalonil (Daconil) 1 ND ND ND ND Chlorpropham 0.2 ND ND ND ND ND Dacthal (DCPA) 0.1 ND								ND
Chlorfenson (Ovex)								ND
Chlorothalonil (Daconil)								ND
Chlorpropham								ND
Dacthal (DCPA)	, ,	1						ND
4,4"-DDE 0.01 ND ND (0.1) ND		+						ND
DDT - orthopara (2,4')		+						ND (0.1)
DDT - parapara (4,4")		 						ND (0.2)
Diallate(e/z) 0.5 ND ND ND ND Dichlobenil 0.2 ND ND ND ND ND Dichlofuan 0.5 ND ND ND ND ND Dichlofiuanid 0.5 ND ND ND ND ND Dicofol 0.2 ND ND ND ND ND ND Endosulfan I 0.5 ND ND ND ND (0.2) ND Endosulfan Sulphate 0.5 ND ND ND ND (0.2) ND Endrin 0.5 ND ND ND (0.2) ND ND ND (0.2) ND		-						ND (0.2)
Dichlobenii		+						ND (0.2)
Dichloran 0.5								ND ND
Dichloffluanid								ND ND
Dicofol 0.2								ND ND
Endosulfan 0.5 ND ND ND (0.2) ND								
Endosulfan II 0.5 ND ND ND (0.2) ND Endosulfan Sulphate 0.5 ND ND ND (0.2) ND Endrin 0.5 ND ND ND (0.2) ND Folpet 1 ND ND ND ND Heptachlor 0.5 ND ND ND (0.1) ND Lindane (BHC), gamma- 0.5 ND ND ND (0.1) ND Methidathion 0.3 ND ND ND ND ND Methoxychlor 900 0.1 ND ND ND ND ND Mirex 0.3 ND ND ND ND ND ND ND Nitrofen 0.2 ND N		\vdash						ND
Endosulfan Sulphate 0.5 ND ND ND (0.2) ND Endrin 0.5 ND ND ND (0.02) ND Folpet 1 ND ND ND ND Heptachlor 0.5 ND ND ND (0.1) ND Lindane (BHC), gamma- 0.5 ND ND ND (0.1) ND Methidathion 0.3 ND ND ND ND Methoxychlor 900 0.1 ND ND ND ND Mirex 0.3 ND ND ND ND ND Nitrofen 0.2 ND ND ND ND ND Permethrin-cis/trans 0.5 ND ND ND ND ND ND Procymidone 0.2 ND								ND ND
Endrin 0.5 ND ND ND (0.02) ND Folpet 1 ND ND ND ND Heptachlor 0.5 ND ND ND (0.1) ND Lindane (BHC), gamma- 0.5 ND ND ND (0.1) ND Methidathion 0.3 ND ND ND ND Methoxychlor 900 0.1 ND ND ND ND Mirex 0.3 ND ND ND ND ND Nitrofen 0.2 ND ND ND ND ND Permethrin-cis/trans 0.5 ND ND ND ND ND Procymidone 0.2 ND ND ND ND ND Pronamide 0.2 ND ND ND ND ND Quintozene (Pentachloronitrobenzene) 0.5 ND ND ND ND		-						ND
Folpet		\vdash						ND
Heptachlor	-							ND
Lindane (BHC), gamma- 0.5 ND ND ND (0.1) ND Methidathion 0.3 ND ND ND ND ND Methoxychlor 900 0.1 ND ND ND ND ND Mirex 0.3 ND								ND
Methidathion 0.3 ND ND ND ND Methoxychlor 900 0.1 ND ND ND ND ND Mirex 0.3 ND ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td></t<>								ND
Methoxychlor 900 0.1 ND ND ND ND Mirex 0.3 ND ND ND ND ND Nitrofen 0.2 ND ND ND ND ND Permethrin-cis/trans 0.5 ND ND ND ND ND Procymidone 0.2 ND ND ND ND ND Pronamide 0.2 ND ND ND ND ND Quintozene (Pentachloronitrobenzene) 0.5 ND ND ND ND Tecnazene 0.5 ND ND ND ND								ND
Mirex 0.3 ND ND ND ND Nitrofen 0.2 ND ND ND ND Permethrin-cis/trans 0.5 ND ND ND ND ND Procymidone 0.2 ND ND ND ND ND Pronamide 0.2 ND ND ND ND ND Quintozene (Pentachloronitrobenzene) 0.5 ND ND ND ND Tecnazene 0.5 ND ND ND ND		لسيسا						ND
Nitrofen 0.2 ND ND ND ND Permethrin-cis/trans 0.5 ND ND ND ND Procymidone 0.2 ND ND ND ND Pronamide 0.2 ND ND ND ND Quintozene (Pentachloronitrobenzene) 0.5 ND ND ND ND Tecnazene 0.5 ND ND ND ND		900						ND
Permethrin-cis/trans 0.5 ND ND ND Procymidone 0.2 ND ND ND Pronamide 0.2 ND ND ND Quintozene (Pentachloronitrobenzene) 0.5 ND ND ND Tecnazene 0.5 ND ND ND								ND
Procymidone 0.2 ND ND ND Pronamide 0.2 ND ND ND Quintozene (Pentachloronitrobenzene) 0.5 ND ND ND ND Tecnazene 0.5 ND ND ND ND ND								ND
Pronamide 0.2 ND ND ND Quintozene (Pentachloronitrobenzene) 0.5 ND ND ND ND Tecnazene 0.5 ND ND ND ND ND								ND
Quintozene (Pentachloronitrobenzene) 0.5 ND ND ND Tecnazene 0.5 ND ND ND ND								ND
Tecnazene 0.5 ND ND ND ND	Pronamide		0.2					ND
Tecnazene 0.5 ND ND ND ND	Quintozene (Pentachloronitrobenzene)		0.5	ND	ND	ND	ND	ND
								ND
	Tetradifon		0.2	ND	ND	ND	ND	ND
1								ND
0.5 ND ND ND ND ND ND ND N								ND

Table C4: Pesticide Results (ug/L)

Parameter	Drinking Water	Detection	Amhers	t (071)	Kelley Ri	ver (073)	Atlanta (074)	Sheffield Mills (075)
	Guideline	Limit	16-Dec-2006	8-Jan-2009	12-Jan-2007	9-Jun-2009	3-Sep-2007	10-Sep-2007
Herbicides								
Atrazine	5	0.2	ND	ND	ND	ND	ND	ND
De-ethyl Atrazine		0.3	ND	ND	ND	ND	ND	ND
Butylate		0.5	ND	ND	ND	ND	ND	ND
Cyanazine	10	0.5	ND	ND	ND	ND	ND	ND
Desmetryn		0.3	ND	ND	ND	ND	ND	ND
Diphenylamine		0.1	ND	ND	ND	ND	ND	ND
Eptam		0.5	ND	ND	ND	ND	ND	ND
Ethalfluralin		0.5	ND	ND	ND	ND	ND	ND
Hexazinone		0.1	ND	ND	ND	ND	ND	ND
Metalaxyl		0.3	ND	ND	ND	ND	ND	ND
Metribuzin	80	0.3	ND	ND	ND	ND	ND	ND
Metolachlor	50	0.2	ND	ND	ND	ND	ND	ND
Pirimicarb		0.5	ND	ND	ND	ND	ND	ND
Profluralin		0.5	ND	ND	ND	ND	ND	ND
Prometryn		0.2	ND	ND	ND	ND	ND	ND
Propazine	<u></u>	0.1	ND	ND	ND	ND	ND	ND
Simazine	10	0.5	ND	ND	ND	ND	ND	ND
Terbuthylazine		0.1	ND	ND	ND	ND	ND	ND
Terbutryn		0.2	ND	ND	ND	ND	ND	ND
Triallate		0.3	ND	ND	ND	ND	ND	ND
Triadimefon		0.3	ND	ND	ND	ND	ND	ND
Trifluralin	45	0.2	ND	ND	ND	ND	ND	ND
Organochlorine Pesticides								
Alachlor		0.5	ND	ND	ND	ND	ND	ND
Aldrin + Dieldrin	0.7	0.5	ND	ND	ND	ND (0.02)	ND	ND
BHC, alpha-		0.3	ND	ND	ND	ND (0.1)	ND	ND
BHC, beta-		0.3	ND	ND	ND	ND (0.1)	ND	ND
Captan		1	ND	ND	ND	ND	ND	ND
Chlorbenside		0.1	ND	ND	ND	ND	ND	ND
Chlordane, alpha-		0.5	ND	ND	ND	ND (0.06)	ND	ND
Chlordane, gamma-		0.5	ND	ND	ND	ND (0.06)	ND	ND
Chlorfenson (Ovex)		0.2	ND	ND	ND	ND	ND	ND
Chlorothalonil (Daconil)		1	ND	ND	ND	ND	ND	ND
Chlorpropham		0.2	ND	ND	ND	ND	ND	ND
Dacthal (DCPA)		0.1	ND	ND	ND	ND	ND	ND
4,4'-DDE		0.01	ND	ND	ND (0.1)	ND	ND	ND
DDT - orthopara (2,4')		0.01	ND	ND	ND (0.2)	ND	ND	ND
DDT - parapara (4,4')		0.01	ND	ND	ND (0.2)	ND	ND	ND
Diallate(e/z)		0.5	ND	ND	ND	ND	ND	ND
Dichlobenil		0.2	ND	ND	ND	ND	ND	ND
Dichloran		0.5	ND	ND	ND	ND	ND	ND
Dichlofluanid		0.5	ND	ND	ND	ND	ND	ND
Dicofol		0.2	ND	ND	ND	ND	ND	ND
Endosulfan I		0.5	ND	ND	ND	ND (0.2)	ND	ND
Endosulfan II		0.5	ND	ND	ND	ND (0.2)	ND	ND
Endosulfan Sulphate		0.5	ND	ND	ND	ND (0.2)	ND	ND
Endrin		0.5	ND	ND	ND	ND (0.02)	ND	ND
Folpet		1	ND	ND	ND	ND	ND	ND
Heptachlor		0.5	ND	ND	ND	ND (0.1)	ND	ND
Lindane (BHC), gamma-		0.5	ND	ND	ND	ND (0.1)	ND	ND
Methidathion		0.3	ND	ND	ND	ND	ND	ND
Methoxychlor	900	0.1	ND	ND	ND	ND	ND	ND
Mirex		0.3	ND	ND	ND	ND	ND	ND
Nitrofen		0.2	ND	ND	ND	ND	ND	ND
Permethrin-cis/trans		0.5	ND	ND	ND	ND	ND	ND
Procymidone		0.2	ND	ND	ND	ND	ND	ND
Pronamide		0.2	ND	ND	ND	ND	ND	ND
Quintozene (Pentachloronitrobenzene)		0.5	ND	ND	ND	ND	ND	ND
Tecnazene		0.5	ND	ND	ND	ND	ND	ND
	1	0.2	ND	ND	ND	ND	ND	ND
Tetradifon		0.2						
Tetradifon Tolylfluanid		0.5	ND	ND	ND	ND	ND	ND

Table C4: Pesticide Results (ug/L)

Parameter	Drinking Water	Detection	Fall River (076)	West Northfield (077)	Musquodoboit Hbr (078)	Lewis Lake (079)	Arisaig (080)	Coldbrook (081)
	Guideline	Limit	20-May-2008	12-Jun-2008	22-May-2008	31-Jul-2008	8-Sep-2009	5-Aug-2009
Herbicides								
Atrazine	5	0.2	ND	ND	ND	ND	ND	ND
De-ethyl Atrazine		0.3	ND	ND	ND	ND	ND	ND
Butylate		0.5	ND	ND	ND	ND	ND	ND
Cyanazine	10	0.5	ND	ND	ND	ND	ND	ND
Desmetryn		0.3	ND	ND	ND	ND	ND	ND
Diphenylamine		0.1	ND	ND	ND	ND	ND	ND
Eptam		0.5	ND	ND	ND	ND	ND	ND
Ethalfluralin		0.5	ND	ND	ND	ND	ND	ND
Hexazinone		0.1	ND	ND	ND	ND	ND	ND
Metalaxyl		0.3	ND	ND	ND	ND	ND	ND
Metribuzin	80	0.3	ND	ND	ND	ND	ND	ND
Metolachlor	50	0.2	ND	ND	ND	ND	ND	ND
Pirimicarb	- 00	0.5	ND	ND	ND	ND	ND	ND
Profluralin		0.5	ND	ND	ND ND	ND	ND	ND
Prometryn		0.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	1	0.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Propazine	10							
Simazine	10	0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Terbuthylazine		0.1	ND	ND	ND	ND	ND	ND
Terbutryn		0.2	ND	ND	ND	ND	ND	ND
Triallate		0.3	ND	ND	ND	ND	ND	ND
Triadimefon		0.3	ND	ND	ND	ND	ND	ND
Trifluralin	45	0.2	ND	ND	ND	ND	ND	ND
Organochlorine Pesticides								
Alachlor		0.5	ND	ND	ND	ND	ND	ND
Aldrin + Dieldrin	0.7	0.5	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.05)
BHC, alpha-		0.3	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
BHC, beta-		0.3	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
Captan		1	ND ND	ND ND	ND	ND ND	ND ND	ND
Chlorbenside		0.1	ND	ND	ND	ND	ND	ND
Chlordane, alpha-	1	0.5	ND (0.06)	ND (0.06)	ND (0.06)	ND (0.06)	ND (0.06)	ND (0.06)
Chlordane, gamma-	1	0.5	ND (0.06)	ND (0.06)	ND (0.06)	ND (0.06)	ND (0.06)	ND (0.06)
	1	0.2	ND (0.00)	ND (0.00)	ND (0.00)	ND (0.00)	ND (0.00)	ND (0.00)
Chlorfenson (Ovex) Chlorothalonil (Daconil)		1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorpropham		0.2	ND	ND	ND	ND	ND	ND
Dacthal (DCPA)		0.1	ND	ND	ND	ND	ND	ND
4,4'-DDE		0.01	ND	ND	ND	ND	ND	ND
DDT - orthopara (2,4')		0.01	ND	ND	ND	ND	ND	ND
DDT - parapara (4,4')		0.01	ND	ND	ND	ND	ND	ND
Diallate(e/z)		0.5	ND	ND	ND	ND	ND	ND
Dichlobenil		0.2	ND	ND	ND	ND	ND	ND
Dichloran		0.5	ND	ND	ND	ND	ND	ND
Dichlofluanid		0.5	ND	ND	ND	ND	ND	ND
Dicofol		0.2	ND	ND	ND	ND	ND	ND
Endosulfan I	1	0.5	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)
Endosulfan II	1	0.5	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)
Endosulfan Sulphate	1	0.5	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)
Endrin		0.5	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Folpet	†	1	ND (0.02)	ND	ND ND	ND	ND	ND (0.02)
Heptachlor	1	0.5	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
Lindane (BHC), gamma-	1	0.5	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
	1	0.5	ND (0.1)	ND (0.1)		ND (0.1)	ND (0.1)	ND (0.1)
Methidathion	000				ND ND			
Methoxychlor	900	0.1	ND	ND	ND	ND	ND	ND
Mirex		0.3	ND	ND	ND	ND	ND	ND
Nitrofen		0.2	ND	ND	ND	ND	ND	ND
Permethrin-cis/trans	1	0.5	ND	ND	ND	ND	ND	ND
Procymidone		0.2	ND	ND	ND	ND	ND	ND
Pronamide		0.2	ND	ND	ND	ND	ND	ND
Quintozene (Pentachloronitrobenzene)		0.5	ND	ND	ND	ND	ND	ND
Tecnazene	1	0.5	ND	ND	ND	ND	ND	ND
Tetradifon	1	0.2	ND	ND	ND	ND	ND	ND
Tolylfluanid		0.5	ND	ND	ND	ND	ND	ND
Vinclozolin	1	0.5	ND ND	ND	ND ND	ND	ND	ND

Table C4: Pesticide Results (ug/L)

Parameter Water Curient Curi		Drinking		Long Point (082)	Tatamagouche (083)
Herbicides	Parameter		Detection	Long Form (002)	ratamagodone (000)
Atrazine			Limit	12-Aug-2009	21-Jul-2008
De-ethyl Atrazine					
Butylate		5			
Desmetryn					
Desmetryn		40			
Diphenylamine		10			
Eptam					
Ethaditrusiin					
Hexazinone					
Metrialaxy					
Metribuzin					
Prifficiarb 0.5		80			
Profluralin				ND	ND
Prometryn	Pirimicarb		0.5	ND	ND
Propazine	Profluralin		0.5	ND	ND
Simazine	Prometryn		0.2		ND
Terbuthylazine					
Terbutryn		10			
Triallate 0.3 ND ND Triadimefon 0.3 ND ND Trifiluralin 45 0.2 ND ND Organochlorine Pesticides ND ND ND Alachior 0.5 ND (0.05) ND (0.02) BHC, alpha- 0.3 ND (0.1) ND (0.01) BHC, beta- 0.3 ND (0.1) ND (0.01) Captan 1 ND ND Chlordane, alpha- 0.5 ND (0.06) ND (0.06) Chlordane, gamma- 0.5 ND (0.06) ND (0.06) Chlordenson (Ovex) 0.2 ND ND Dactal (DCPA) 0.1 ND ND A,4-DBE 0.0 ND ND DDT - orthopara (2,4')					
Triadimefon 45 0.2 ND ND Organochlorine Pesticides ND ND ND Alachlor 0.5 ND ND ND Aldrin + Dieldrin 0.7 0.5 ND (0.05) ND (0.02) BHC, alpha- 0.3 ND (0.1) ND (0.1) ND (0.1) BHC, beta- 0.3 ND (0.1) ND (0.1) ND (0.1) Chlorfeas de Chiorenside 0.1 ND ND ND (0.06) ND (0.06) Chlordane, alpha- 0.5 ND (0.06) ND (0.06) ND (0.06) ND (0.06) Chlordrane, gamma- 0.5 ND (0.06)					
Trifluralin					
Drganochlorine Pesticides		45			
Alachlor		45	0.2	ND	ND
Aldrin + Dieldrin 0.7 0.5 ND (0.05) ND (0.02) BHC, alpha			0.5	ND	ND
BHC, alpha- 0.3		0.7			
BHC, beta-		0.7		ND (0.03)	
Captan					
Chlordane, alpha- 0.5 ND (0.06) ND (0.06) Chlordane, gamma- 0.5 ND (0.06) ND (0.06) Chlorentalonii (Daconii) 1 ND ND Chlorothalonii (Daconii) 1 ND ND Chloropham 0.2 ND ND Dacthal (DCPA) 0.1 ND ND A,4*DDE 0.01 ND ND DDT - orthopara (2,4*) 0.01 ND ND DDT - parapara (4,4*) 0.01 ND ND Dichlobenil 0.2 ND ND Dichlofloran 0.5 ND ND Dichlofluanid 0.5 ND ND Dicofol 0.2 ND ND Endosulfan I 0.5 ND (0.2) ND (0.2) Endosulfan II 0.5 ND (0.2) ND (0.2) Endosulfan Sulphate 0.5 ND (0.2) ND (0.2) Endosulfan Sulphate 0.5 ND (0.2) ND (0.2) Endosulfan Sulphate<					
Chlordane, alpha- 0.5 ND (0.06) ND (0.06) Chlordane, gamma- 0.5 ND (0.06) ND (0.06) Chlorothaloni (Daconii) 1 ND ND Chlorothalonii (Daconii) 1 ND ND Chlorothalonii (Daconii) 1 ND ND Chlorothalonii (Daconii) 1 ND ND Dacthal (DCPA) 0.1 ND ND A,4*DDE 0.01 ND ND DDT - orthopara (2,4*) 0.01 ND ND DDT - orthopara (2,4*) 0.01 ND ND DDT - parapara (4,4*) 0.01 ND ND Dichlobenii 0.2 ND ND Dichlobran 0.5 ND ND Dichlofluanid 0.5 ND ND Dicofol 0.2 ND ND Endosulfan I 0.5 ND (0.2) ND (0.2) Endosulfan II 0.5 ND (0.2) ND (0.2) Endosulfan Sulphate	Chlorbenside		0.1	ND	ND
Chlorfenson (Ovex)			0.5	ND (0.06)	ND (0.06)
Chlorothalonil (Daconil) 1 ND ND Chlorpropham 0.2 ND ND Dacthal (DCPA) 0.1 ND ND 4,4*-DDE 0.01 ND ND DDT - orthopara (2,4*) 0.01 ND ND DDT - parapara (4,4*) 0.01 ND ND Dicallate(e/z) 0.5 ND ND Dichlobenil 0.2 ND ND Dichlobran 0.5 ND ND Dichlofluarid 0.5 ND ND Dicofol 0.2 ND ND Endosulfan I 0.5 ND (0.2) ND (0.2) Endosulfan II 0.5 ND (0.2) ND (0.2) Endosulfan Sulphate 0.5 ND (0.2) ND (0.2) Endosulfan Sulphate 0.5 ND (0.2) ND (0.2) Endrin 0.5 ND (0.2) ND (0.2) Folpet 1 ND ND Heptachlor 0.5 ND (0.1)	Chlordane, gamma-		0.5	ND (0.06)	ND (0.06)
Chlorpropham 0.2 ND ND Dacthal (DCPA) 0.1 ND ND 4.4"-DDE 0.01 ND ND DDT - orthopara (2,4") 0.01 ND ND DDT - parapara (4,4") 0.01 ND ND Diallate(e/z) 0.5 ND ND Dichlobenil 0.2 ND ND Dichloran 0.5 ND ND Dichloffuanid 0.5 ND ND Dicofol 0.2 ND ND Endosulfan I 0.5 ND (0.2) ND (0.2) Endosulfan II 0.5 ND (0.2) ND (0.2) Endosulfan Sulphate 0.5 ND (0.2) ND (0.2) Endrin 0.5 ND (0.2) ND (0.2) Folpet 1 ND ND Heptachlor 1 ND ND Lindane (BHC), gamma- 0.5 ND (0.1) ND (0.1) Methoxychlor 900 0.1 ND					
Dacthal (DCPA)					
4,4"-DDE 0.01 ND ND DDT - orthopara (2,4") 0.01 ND ND DDT - parapara (4,4") 0.01 ND ND Diallate(e/z) 0.5 ND ND Dichlobenil 0.2 ND ND Dichlofuanid 0.5 ND ND Dichlofiuanid 0.5 ND ND Dicofol 0.2 ND ND Endosulfan I 0.5 ND (0.2) ND (0.2) Endosulfan Sulphate 0.5 ND (0.2) ND (0.2) Endrin 0.5 ND (0.02) ND (0.02) Folpet 1 ND ND Heptachlor 0.5 ND (0.1) ND (0.02) Heptachlor 0.5 ND (0.1) ND (0.1) Lindane (BHC), gamma- 0.5 ND (0.1) ND (0.1) Methidathion 0.3 ND ND Methoxychlor 900 0.1 ND ND Mirex 0.3 N					
DDT - orthopara (2,4')					
DDT - parapara (4,4")					
Diallate(e/z)					
Dichlobenil 0.2 ND ND ND					
Dichloran Dichloran Dichlofluanid Dich					
Dichloffluanid					
Dicofol Dico					
Endosulfan I 0.5 ND (0.2) ND (0.2) Endosulfan II 0.5 ND (0.2) ND (0.2) Endosulfan Sulphate 0.5 ND (0.2) ND (0.2) Endrin 0.5 ND (0.02) ND (0.02) Folpet 1 ND ND Heptachlor 0.5 ND (0.1) ND (0.1) Lindane (BHC), gamma- 0.5 ND (0.1) ND (0.1) Methidathion 0.3 ND ND Methoxychlor 900 0.1 ND ND Mirex 0.3 ND ND Nitrofen 0.2 ND ND Permethrin-cis/trans 0.5 ND ND Procymidone 0.2 ND ND Pronamide 0.2 ND ND Quintozene (Pentachloronitrobenzene) 0.5 ND ND Tetradifon 0.2 ND ND Tolyfluanid 0.5 ND ND					
Endosulfan II 0.5 ND (0.2) ND (0.2) Endosulfan Sulphate 0.5 ND (0.2) ND (0.2) Endrin 0.5 ND (0.02) ND (0.02) Folpet 1 ND ND Heptachlor 0.5 ND (0.1) ND (0.1) Lindane (BHC), gamma- 0.5 ND (0.1) ND (0.1) Methidathion 0.3 ND ND Methoxychlor 900 0.1 ND ND Mirex 0.3 ND ND ND Nitrofen 0.2 ND ND Permethrin-cis/trans 0.5 ND ND Proxymidone 0.2 ND ND Pronamide 0.2 ND ND Quintozene (Pentachloronitrobenzene) 0.5 ND ND Tetradifon 0.2 ND ND Tolyifluanid 0.5 ND ND					
Endosulfan Sulphate 0.5 ND (0.2) ND (0.2) Endrin 0.5 ND (0.02) ND (0.02) Folpet 1 ND ND Heptachlor 0.5 ND (0.1) ND (0.1) Lindane (BHC), gamma- 0.5 ND (0.1) ND (0.1) Methidathion 0.3 ND ND Methoxychlor 900 0.1 ND ND Mirex 0.3 ND ND ND Nitrofen 0.2 ND ND ND Permethrin-cis/trans 0.5 ND ND ND Prosymidone 0.2 ND ND ND Pronamide 0.2 ND ND ND Quintozene (Pentachloronitrobenzene) 0.5 ND ND ND Tetradifon 0.2 ND ND ND Tolylfluanid 0.5 ND ND ND					
Endrin 0.5 ND (0.02) ND (0.02) Folpet 1 ND ND Heptachlor 0.5 ND (0.1) ND (0.1) Lindane (BHC), gamma- 0.5 ND (0.1) ND (0.1) Methidathion 0.3 ND ND Methoxychlor 900 0.1 ND ND Mirex 0.3 ND ND ND Nitrofen 0.2 ND ND ND Permethrin-cis/trans 0.5 ND ND ND Procymidone 0.2 ND ND ND Pronamide 0.2 ND ND ND Quintozene (Pentachloronitrobenzene) 0.5 ND ND ND Tetradifon 0.2 ND ND ND ND Tolyfluanid 0.5 ND ND ND ND					
Heptachlor	Endrin		0.5	ND (0.02)	ND (0.02)
Lindane (BHC), gamma- 0.5 ND (0.1) ND (0.1) Methidathion 0.3 ND ND Methoxychlor 900 0.1 ND ND Mirex 0.3 ND ND ND Nitrofen 0.2 ND ND ND Permethrin-cis/trans 0.5 ND ND ND Procymidone 0.2 ND ND ND Pronamide 0.2 ND ND ND Quintozene (Pentachloronitrobenzene) 0.5 ND ND ND Tetradifon 0.2 ND ND ND Tolyffluanid 0.5 ND ND ND					
Methidathion 0.3 ND ND Methoxychlor 900 0.1 ND ND Mirex 0.3 ND ND Nitrofen 0.2 ND ND Permethrin-cis/trans 0.5 ND ND Procymidone 0.2 ND ND Pronamide 0.2 ND ND Quintozene (Pentachloronitrobenzene) 0.5 ND ND Tecnazene 0.5 ND ND Tetradifon 0.2 ND ND Tolyfluanid 0.5 ND ND					
Methoxychlor 900 0.1 ND ND Mirex 0.3 ND ND ND Nitrofen 0.2 ND ND ND Permethrin-cis/trans 0.5 ND ND ND Procymidone 0.2 ND ND ND Pronamide 0.2 ND ND ND Quintozene (Pentachloronitrobenzene) 0.5 ND ND Tecnazene 0.5 ND ND Tetradifon 0.2 ND ND Tolyffluanid 0.5 ND ND					
Mirex 0.3 ND ND Nitrofen 0.2 ND ND Permethrin-cis/trans 0.5 ND ND Procymidone 0.2 ND ND Pronamide 0.2 ND ND Quintozene (Pentachloronitrobenzene) 0.5 ND ND Tecnazene 0.5 ND ND Tetradifon 0.2 ND ND Tolylfluanid 0.5 ND ND					
Nitrofen 0.2 ND ND Permethrin-cis/trans 0.5 ND ND Procymidone 0.2 ND ND Pronamide 0.2 ND ND Quintozene (Pentachloronitrobenzene) 0.5 ND ND Tecnazene 0.5 ND ND Tetradifon 0.2 ND ND Tolyfluanid 0.5 ND ND		900			
Permethrin-cis/trans 0.5 ND ND Procymidone 0.2 ND ND Pronamide 0.2 ND ND Quintozene (Pentachloronitrobenzene) 0.5 ND ND Tecnazene 0.5 ND ND Tetradifon 0.2 ND ND Tolyffluanid 0.5 ND ND					
Procymidone 0.2 ND ND Pronamide 0.2 ND ND Quintozene (Pentachloronitrobenzene) 0.5 ND ND Tecnazene 0.5 ND ND Tetradifon 0.2 ND ND Tolylfluanid 0.5 ND ND					
Pronamide 0.2 ND ND Quintozene (Pentachloronitrobenzene) 0.5 ND ND Tecnazene 0.5 ND ND Tetradifon 0.2 ND ND Tolylfluanid 0.5 ND ND					
Quintozene (Pentachloronitrobenzene) 0.5 ND ND Tecnazene 0.5 ND ND Tetradifon 0.2 ND ND Tolyfluanid 0.5 ND ND		-			
Tecnazene 0.5 ND ND Tetradifon 0.2 ND ND Tolyffluanid 0.5 ND ND		-			
Tetradifon 0.2 ND ND Tolylfluanid 0.5 ND ND					
Tolylfluanid 0.5 ND ND					
Vinclozolin 0.5 ND ND	Vinclozolin		0.5	ND	ND

Table C4: Pesticide Results (ug/L)

Parameter	Drinking Water	Detection	Greenwo	ood (003)	Fraser Bro	ook (004)	Wolfvill	e (010)
1 diameter	Guideline	Limit	23-Nov-2005	18-Dec-2008	10-Dec-2004	3-Dec-2008	22-Dec-2004	18-Dec-2008
Organophosphorus Pesticides								
Aspon		0.2	ND	ND	ND	ND	ND	ND
Azinphos ethyl		0.5	ND ND	ND	ND	ND	ND	ND
Azinphos etryl	20	1	ND ND	ND	ND	ND	ND	ND
Bromacil	20	0.1	ND	ND	ND	ND	ND	ND
Benfluralin		0.1	ND	ND	ND	ND	ND	ND
Bromophos		0.1	ND	ND	ND	ND	ND	ND
Bromophos-ethyl		0.3	ND	ND	ND	ND	ND	ND
Carbophenothion		0.3	ND	ND	ND	ND	ND	ND
Chlorfenvinphos(e/z)	-	0.1	ND	ND	ND	ND	ND	ND
Chlormephos		0.5	ND	ND	ND	ND	ND	ND
Chlorpyrifos	90	0.2	ND	ND ND	ND ND	ND	ND	ND
Chlorpyriphos-methyl		0.1	ND	ND ND	ND ND	ND	ND	ND
Chlorthiophos		0.3	ND	ND	ND	ND	ND	ND
Cyanophos		0.2	ND	ND	ND	ND	ND	ND
Demeton		1	ND	ND	ND	ND	ND	ND
Diazinon	20	0.3	ND	ND	ND	ND	ND	ND
Dichlofenthion		0.2	ND	ND	ND	ND	ND	ND
Dichlorvos/Naled		0.1	ND	ND	ND	ND	ND	ND
Dicrotophos		0.5	ND	ND	ND	ND	ND	ND
Dimethoate	20	0.5	ND	ND	ND	ND	ND	ND
Dioxathion		1	ND	ND	ND	ND	ND	ND
Disulfoton (Di-Syston)		1	ND	ND	ND	ND	ND	ND
EPN		0.5	ND	ND	ND	ND	ND	ND
Ethion		0.2	ND	ND	ND	ND	ND	ND
Fenchlorphos (Ronnel)		0.1	ND	ND	ND	ND	ND	ND
Fenitrothion		0.5	ND	ND	ND	ND	ND	ND
Fensulfothion		0.1	ND	ND	ND	ND	ND	ND
Fenthion		0.1	ND	ND	ND	ND	ND	ND
Fonofos		0.1	ND	ND	ND	ND	ND	ND
Iodofenphos		0.1	ND	ND	ND	ND	ND	ND
Isofenphos		0.3	ND	ND	ND	ND	ND	ND
Malaoxon		1	ND	ND	ND	ND	ND	ND
Malathion	190	0.5	ND	ND	ND	ND	ND	ND
Mevinphos-cis/trans (Phosdrin)		0.1	ND	ND	ND	ND	ND	ND
Omethoate		1	ND	ND	ND	ND	ND	ND
Parathion	50	0.5	ND	ND	ND	ND	ND	ND
Parathion methyl		0.5	ND	ND	ND	ND	ND	ND
Phorate (Thimet)	2	0.5	ND	ND	ND	ND	ND	ND
Phosalone		0.2	ND	ND	ND	ND	ND	ND
Phosmet		0.2	ND	ND	ND	ND	ND	ND
Phosphamidon		0.2	ND	ND	ND	ND	ND	ND
Pirimiphos-ethyl		0.5	ND	ND	ND	ND	ND	ND
Pirimiphos-methyl		0.2	ND	ND	ND	ND	ND	ND
Profenophos		0.5	ND	ND	ND	ND	ND	ND
Pyrazophos		0.1	ND	ND	ND	ND	ND	ND
Quinalphos		0.3	ND	ND	ND	ND	ND	ND
Sulfotep		0.1	ND	ND	ND	ND	ND	ND
Terbufos	1	0.3	ND	ND	ND	ND	ND	ND
Tetrachlorvinphos (Stirophos)		0.2	ND	ND	-	-	-	ND
Other								
Hexachlorobenzene		0.2	ND	ND	ND	ND	ND	ND
Iprodione		1	-	-	-	-	-	-
Propiconazole		0.5	-	-	-	-		-

Table C4: Pesticide Results (ug/L)

Parameter	Drinking Water	Detection	Monastery (028)	Point Ac	oni (030)	Lawrencetown (043)	Durha	m (045)
	Guideline	Limit	15-Dec-2006	15-Sep-2005	10-Dec-2008	5-Dec-2008	5-Oct-2005	21-Jan-2009
Organophosphorus Pesticides								
Aspon		0.2	ND	ND	ND	ND	ND	ND
Azinphos ethyl	+	0.5	ND	ND ND	ND	ND	ND	ND
Azinphos etriyi	20	1	ND ND	ND ND	ND	ND ND	ND	ND
Bromacil	20	0.1	ND (1)	ND ND	ND	ND ND	ND	ND
Benfluralin	_	0.1	ND (1)	ND ND	ND	ND ND	ND	ND
Bromophos		0.1	ND ND	ND ND	ND ND	ND ND	ND	ND ND
		0.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromophos-ethyl								
Carbophenothion		0.3	ND	ND	ND	ND	ND	ND
Chlorfenvinphos(e/z)		0.1	ND	ND	ND	ND	ND	ND
Chlormephos		0.5	ND	ND	ND	ND	ND	ND
Chlorpyrifos	90	0.2	ND	ND	ND	ND	ND	ND
Chlorpyriphos-methyl		0.1	ND	ND	ND	ND	ND	ND
Chlorthiophos		0.3	ND	ND	ND	ND	ND	ND
Cyanophos		0.2	ND	ND	ND	ND	ND	ND
Demeton		1	ND	ND	ND	ND	ND	ND
Diazinon	20	0.3	ND	ND	ND	ND	ND	ND
Dichlofenthion		0.2	ND	ND	ND	ND	ND	ND
Dichlorvos/Naled		0.1	ND	ND	ND	ND	ND	ND
Dicrotophos		0.5	ND	ND	ND	ND	ND	ND
Dimethoate	20	0.5	ND	ND	ND	ND	ND	ND
Dioxathion		1	ND	ND	ND	ND	ND	ND
Disulfoton (Di-Syston)		1	ND	ND	ND	ND	ND	ND
EPN		0.5	ND	ND	ND	ND	ND	ND
Ethion		0.2	ND	ND	ND	ND	ND	ND
Fenchlorphos (Ronnel)		0.1	-	ND	ND	ND	ND	ND
Fenitrothion		0.5	ND	ND	ND	ND	ND	ND
Fensulfothion		0.1	ND	ND	ND	ND	ND	ND
Fenthion	+	0.1	ND	ND ND	ND	ND	ND	ND
Fonofos		0.1	ND	ND	ND	ND	ND	ND
Iodofenphos		0.1	ND	ND	ND	ND	ND	ND
Isofenphos		0.1	ND	ND ND	ND	ND ND	ND	ND
Malaoxon		1	ND	ND ND	ND	ND ND	ND	ND
Malathion	190	0.5	ND	ND ND	ND	ND	ND	ND ND
Mevinphos-cis/trans (Phosdrin)	190	0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Omethoate		1	ND ND	ND ND	ND	ND ND	ND	ND
	50				ND ND		ND ND	ND ND
Parathion	50	0.5	ND ND	ND		ND ND		
Parathion methyl	2	0.5	ND ND	ND ND	ND ND	ND	ND ND	ND ND
Phorate (Thimet)	2	0.5				ND ND		
Phosalone		0.2	ND	ND	ND	ND	ND	ND
Phosmet		0.2	ND	ND	ND	ND	ND	ND
Phosphamidon		0.2	ND	ND	ND	ND	ND	ND
Pirimiphos-ethyl		0.5	ND	ND	ND	ND	ND	ND
Pirimiphos-methyl		0.2	ND	ND	ND	ND	ND	ND
Profenophos		0.5	ND	ND	ND	ND	ND	ND
Pyrazophos		0.1	ND	ND	ND	ND	ND	ND
Quinalphos		0.3	ND	ND	ND	ND	ND	ND
Sulfotep		0.1	ND	ND	ND	ND	ND	ND
Terbufos	1	0.3	ND	ND	ND	ND	ND	ND
Tetrachlorvinphos (Stirophos)		0.2	-	ND	ND	ND	ND	ND
Other								
Hexachlorobenzene		0.2	ND	ND	ND	ND	ND	ND
Iprodione		1	-	-	-	-	-	-
Propiconazole		0.5	-	-	-		_	_

Table C4: Pesticide Results (ug/L)

Parameter	Drinking Water	Detection	Kentvill	e (048)	Sydne	y (050)	North Gr	ant (054)
i didilicioi	Guideline	Limit	15-Jun-2005	7-Nov-2007	15-Sep-2005	11-Dec-2008	12-Dec-2006	22-Jul-2008
Organophosphorus Pesticides								
Aspon		0.2	-	ND	ND	ND	ND	ND
Azinphos ethyl		0.5	-	ND	ND	ND	ND	ND
Azinphos methyl	20	1	-	ND	ND	ND	ND	ND
Bromacil		0.1	-	ND	ND	ND	ND	ND
Benfluralin		0.1	-	ND	ND	ND	ND	ND
Bromophos		0.1	-	ND	ND	ND	ND	ND
Bromophos-ethyl		0.3	-	ND	ND	ND	ND	ND
Carbophenothion		0.3	-	ND	ND	ND	ND	ND
Chlorfenvinphos(e/z)		0.1	-	ND	ND	ND	ND	ND
Chlormephos		0.5	-	ND	ND	ND	ND	ND
Chlorpyrifos	90	0.2	-	ND	ND	ND	ND	ND (0.01)
Chlorpyriphos-methyl		0.1	-	ND	ND	ND	ND	ND
Chlorthiophos		0.3	-	ND	ND	ND	ND	ND
Cyanophos		0.2	-	ND	ND	ND	ND	ND
Demeton		1	-	ND	ND	ND	ND	ND
Diazinon	20	0.3	ND (2)	ND	ND	ND	ND	ND (0.02)
Dichlofenthion		0.2	-	ND	ND	ND	ND	ND
Dichloryos/Naled	1	0.1	-	ND	ND	ND	ND	ND
Dicrotophos		0.5	_	ND	ND	ND	ND	ND
Dimethoate	20	0.5	_	ND	ND	ND	ND	ND
Dioxathion	20	1	-	ND	ND	ND	ND	ND
Disulfoton (Di-Syston)		1	_	ND	ND	ND	ND	ND
EPN		0.5	_	ND	ND	ND	ND	ND
Ethion		0.2	-	ND	ND	ND	ND	ND
Fenchlorphos (Ronnel)		0.1	-	ND	ND	ND	ND	ND
Fenitrothion		0.5	-	ND	ND	ND	ND	ND
Fensulfothion		0.1	-	ND	ND	ND	ND	ND
Fenthion		0.1	_	ND	ND	ND	ND	ND
Fonofos	+	0.1	-	ND	ND	ND	ND	ND
Iodofenphos	+	0.1	-	ND	ND	ND	ND	ND
Isofenphos	+	0.3	-	ND	ND	ND	ND	ND
Malaoxon	+	1	-	ND	ND	ND	ND	ND
Malathion	190	0.5	ND (2)	ND	ND	ND	ND	ND
Mevinphos-cis/trans (Phosdrin)	100	0.1	-	ND	ND	ND	ND	ND
Omethoate	+	1	-	ND	ND	ND	ND	ND
Parathion	50	0.5	ND (2)	ND	ND	ND	ND	ND
Parathion methyl		0.5	ND (2)	ND	ND	ND	ND	ND
Phorate (Thimet)	2	0.5	-	ND	ND	ND	ND	ND
Phosalone	-	0.2	-	ND	ND	ND	ND	ND
Phosmet	1	0.2	-	ND	ND	ND	ND	ND
Phosphamidon		0.2	-	ND	ND	ND	ND	ND
Pirimiphos-ethyl	1	0.5	-	ND	ND	ND	ND	ND
Pirimiphos-methyl	1	0.2	-	ND	ND	ND	ND	ND
Profenophos		0.5	-	ND	ND	ND	ND	ND
Pyrazophos	1	0.1	-	ND	ND	ND	ND	ND
Quinalphos		0.3	-	ND	ND	ND	ND	ND
Sulfotep		0.1	-	ND	ND	ND	ND	ND
Terbufos	1	0.3	-	ND	ND	ND	ND	ND
Tetrachlorvinphos (Stirophos)	- ' -	0.3	-	ND	ND ND	ND	ND ND	ND ND
Other	+	0.2	<u> </u>	ND	IND	IND	IND	IND
Hexachlorobenzene	1	0.2	_	ND	ND	ND	ND	ND
Iprodione	1	1		ND	IND -	IND -	IND -	ND ND
Propiconazole	-	0.5	-	ND	-	-	-	ND ND

Table C4: Pesticide Results (ug/L)

Parameter	Drinking Water	Detection	Stillwate	er (055)	Sheet Harbour (056)	Hayden	Lake (059)
	Guideline	Limit	12-Dec-2006	4-Dec-2008	5-Dec-2008	9-Jun-2005	16-Dec-2008
Organophosphorus Pesticides						-	
Aspon		0.2	ND	ND	ND	-	ND
Azinphos ethyl		0.5	ND ND	ND	ND ND	-	ND
Azinphos ethyl	20	1	ND ND	ND ND	ND ND	-	ND
	20				ND ND	-	ND ND
Bromacil		0.1	ND	ND			
Benfluralin		0.1	ND	ND	ND	-	ND
Bromophos		0.1	ND	ND	ND	-	ND
Bromophos-ethyl		0.3	ND	ND	ND	-	ND
Carbophenothion		0.3	ND	ND	ND	-	ND
Chlorfenvinphos(e/z)		0.1	ND	ND	ND	-	ND
Chlormephos		0.5	ND	ND	ND	-	ND
Chlorpyrifos	90	0.2	ND	ND	ND	-	ND
Chlorpyriphos-methyl		0.1	ND	ND	ND	-	ND
Chlorthiophos		0.3	ND	ND	ND	-	ND
Cyanophos		0.2	ND	ND	ND	-	ND
Demeton		1	ND	ND	ND	-	ND
Diazinon	20	0.3	ND	ND	ND	ND (5)	ND
Dichlofenthion		0.2	ND	ND	ND	-	ND
Dichlorvos/Naled		0.1	ND	ND	ND	-	ND
Dicrotophos		0.5	ND	ND	ND	-	ND
Dimethoate	20	0.5	ND	ND	ND ND	-	ND
Dioxathion	20	1	ND	ND	ND ND	-	ND
Disulfoton (Di-Syston)		1	ND ND	ND	ND ND	-	ND
EPN		0.5	ND ND	ND	ND ND	-	ND
Ethion		0.5	ND ND	ND	ND ND	-	ND
Fenchlorphos (Ronnel)		0.1	ND	ND	ND	-	ND
Fenitrothion		0.5	ND	ND	ND ND	-	ND
Fensulfothion		0.1	ND	ND	ND	-	ND
Fenthion		0.1	ND	ND	ND	-	ND
Fonofos		0.1	ND	ND	ND	-	ND
Iodofenphos		0.1	ND	ND	ND	-	ND
Isofenphos		0.3	ND	ND	ND	-	ND
Malaoxon		1	ND	ND	ND	-	ND
Malathion	190	0.5	ND	ND	ND	ND (5)	ND
Mevinphos-cis/trans (Phosdrin)		0.1	ND	ND	ND	-	ND
Omethoate		1	ND	ND	ND	-	ND
Parathion	50	0.5	ND	ND	ND	ND (5)	ND
Parathion methyl		0.5	ND	ND	ND	ND (5)	ND
Phorate (Thimet)	2	0.5	ND	ND	ND	- ` ′	ND
Phosalone		0.2	ND	ND	ND	-	ND
Phosmet		0.2	ND	ND	ND	-	ND
Phosphamidon		0.2	ND	ND	ND ND	-	ND
Pirimiphos-ethyl		0.5	ND	ND	ND ND	-	ND
Pirimiphos-methyl		0.2	ND ND	ND	ND ND	-	ND
Profenophos		0.5	ND ND	ND	ND ND	-	ND
Pyrazophos		0.1	ND	ND	ND ND	-	ND
Quinalphos		0.1	ND ND	ND ND	ND ND	-	ND
	_	0.3	ND ND		ND ND	<u> </u>	ND ND
Sulfotep	1	0.1	ND ND	ND ND	ND ND	-	ND ND
Terbufos	1						
Tetrachlorvinphos (Stirophos)	_	0.2	ND	ND	ND	-	ND
Other			L	ļ <u>.</u>	,		
Hexachlorobenzene		0.2	ND	ND	ND	-	ND
Iprodione		1	-	-	-	-	-
Propiconazole		0.5	-	-	-	-	-

Table C4: Pesticide Results (ug/L)

Parameter	Drinking Water	Detection	Metegh	an (060)	Annapolis	Royal (062)	Hebro	n (063)
	Guideline	Limit	13-Dec-2006	17-Dec-2008	9-Nov-2005	26-Nov-2007	9-Jun-2005	17-Dec-2008
Organophosphorus Pesticides								
Aspon		0.2	ND	ND	ND	ND	_	ND
Azinphos ethyl		0.5	ND	ND	ND	ND	-	ND
Azinphos methyl	20	1	ND	ND	ND	ND	_	ND
Bromacil		0.1	ND	ND	ND	ND	-	ND
Benfluralin		0.1	ND	ND	ND	ND	-	ND
Bromophos		0.1	ND	ND	ND	ND	-	ND
Bromophos-ethyl		0.3	ND	ND	ND	ND	-	ND
Carbophenothion		0.3	ND	ND	ND	ND	-	ND
Chlorfenvinphos(e/z)		0.1	ND	ND	ND	ND	-	ND
Chlormephos		0.5	ND	ND	ND	ND	-	ND
Chlorpyrifos	90	0.2	ND	ND	ND	ND	-	ND
Chlorpyriphos-methyl		0.1	ND	ND	ND	ND	-	ND
Chlorthiophos		0.3	ND	ND	ND	ND	-	ND
Cyanophos		0.2	ND	ND	ND	ND	-	ND
Demeton		1	ND	ND	ND	ND	-	ND
Diazinon	20	0.3	ND	ND	ND	ND	ND (5)	ND
Dichlofenthion		0.2	ND	ND	ND	ND		ND
Dichlorvos/Naled		0.1	ND	ND	ND	ND	-	ND
Dicrotophos		0.5	ND	ND	ND	ND	-	ND
Dimethoate	20	0.5	ND	ND	ND	ND	-	ND
Dioxathion		1	ND	ND	ND	ND	-	ND
Disulfoton (Di-Syston)		1	ND	ND	ND	ND	-	ND
EPN		0.5	ND	ND	ND	ND	-	ND
Ethion		0.2	ND	ND	ND	ND	-	ND
Fenchlorphos (Ronnel)		0.1	ND	ND	ND	ND	-	ND
Fenitrothion		0.5	ND	ND	ND	ND	-	ND
Fensulfothion		0.1	ND	ND	ND	ND	-	ND
Fenthion		0.1	ND	ND	ND	ND	-	ND
Fonofos		0.1	ND	ND	ND	ND	-	ND
lodofenphos		0.1	ND	ND	ND	ND	-	ND
sofenphos		0.3	ND	ND	ND	ND	-	ND
Malaoxon		1	ND	ND	ND	ND	-	ND
Malathion	190	0.5	ND	ND	ND	ND	ND (5)	ND
Mevinphos-cis/trans (Phosdrin)		0.1	ND	ND	ND	ND	-	ND
Omethoate		1	ND	ND	ND	ND	-	ND
Parathion	50	0.5	ND	ND	ND	ND	ND (5)	ND
Parathion methyl		0.5	ND	ND	ND	ND	ND (5)	ND
Phorate (Thimet)	2	0.5 0.2	ND ND	ND ND	ND ND	ND ND	-	ND ND
Phosalone	+							
Phosmet	+	0.2 0.2	ND ND	ND ND	ND ND	ND ND	-	ND ND
Phosphamidon Pirimiphos-ethyl		0.2	ND ND	ND ND	ND ND	ND ND	-	ND ND
Pirimiphos-ethyl	+	0.5	ND ND	ND ND	ND ND	ND ND	-	ND ND
Profenophos		0.2	ND ND	ND ND	ND ND	ND ND	-	ND ND
Pyrazophos	+	0.5	ND	ND	ND	ND	-	ND
Quinalphos	+	0.1	ND ND	ND	ND	ND	-	ND
Sulfotep	_	0.3	ND ND	ND	ND	ND		ND
Terbufos	1	0.1	ND ND	ND	ND	ND		ND
Tetrachlorvinphos (Stirophos)	 '	0.3	ND ND	ND	ND ND	ND ND	-	ND
Other	_	0.2	110	110	ND	110		ND
Hexachlorobenzene		0.2	ND	ND	ND	ND	_	ND
prodione		1	- ND	-	-	ND	-	- ND
Propiconazole	+	0.5				ND	-	

Table C4: Pesticide Results (ug/L)

Parameter	Drinking Water	Detection	Margare	ee (064)	Ingonish (065)	Ingonish (065) Dalem Lake (0		
	Guideline	Limit	14-Dec-2006	8-Dec-2008	25-Aug-2009	14-Dec-2006	11-Dec-2008	
Organophosphorus Pesticides	_							
Aspon	-	0.2	ND	ND	ND	ND	ND	
Azinphos ethyl	-	0.5	ND ND	ND	ND ND	ND	ND	
Azinphos etryl	20	1	ND ND	ND	ND ND	ND	ND	
Bromacil	20	0.1	ND	ND	ND ND	ND	ND	
Benfluralin		0.1	ND	ND	ND	ND	ND	
Bromophos		0.1	ND ND	ND ND	ND ND	ND ND	ND	
Bromophos-ethyl		0.1	ND ND	ND	ND ND	ND	ND	
Carbophenothion	-	0.3	ND ND	ND	ND ND	ND	ND	
Chlorfenvinphos(e/z)		0.3	ND	ND	ND ND	ND	ND	
Chlormephos		0.1	ND ND	ND	ND ND	ND	ND	
Chlorpyrifos	90	0.3	ND ND	ND ND	ND (0.01)	ND ND	ND ND	
Chlorpyriphos-methyl	90	0.2	ND ND	ND ND	ND (0.01)	ND ND	ND ND	
Chlorthiophos		0.1	ND ND	ND ND	ND ND	ND ND	ND ND	
Cyanophos	_	0.3	ND ND	ND ND	ND ND	ND ND	ND ND	
Demeton	_	1	ND ND	ND ND	ND ND	ND	ND	
Diazinon	20	0.3	ND ND	ND ND	ND (0.02)	ND ND	ND ND	
Diazinon Dichlofenthion	20	0.3	ND ND	ND ND	ND (0.02)	ND ND	ND ND	
Dichlorvos/Naled		0.2	ND ND	ND ND	ND ND	ND ND	ND	
Dicrotophos		0.1	ND ND	ND ND	ND ND	ND ND	ND ND	
Dimethoate	20	0.5	ND ND	ND	ND ND	ND	ND	
Dioxathion	20	1	ND ND	ND ND	ND ND	ND ND	ND ND	
Disulfoton (Di-Syston)		1	ND ND	ND ND	ND ND	ND	ND	
EPN		0.5	ND ND	ND ND	ND ND	ND ND	ND ND	
Ethion		0.3	ND ND	ND ND	ND ND	ND ND	ND ND	
Fenchlorphos (Ronnel)		0.2	ND ND	ND ND	ND ND	ND	ND	
enitrothion		0.1	ND ND	ND ND	ND ND	ND ND	ND ND	
ensulfothion		0.5	ND ND	ND ND	ND ND	ND	ND	
enthion		0.1	ND ND	ND ND	ND ND	ND ND	ND	
onofos		0.1	ND ND	ND	ND ND	ND ND	ND ND	
		0.1	ND ND	ND ND	ND ND	ND	ND	
odofenphos		0.1	ND ND	ND ND	ND ND	ND ND	ND ND	
sofenphos Malaoxon			ND ND	ND ND	ND ND	ND ND	ND ND	
Malathion	190	0.5	ND ND	ND ND	ND ND	ND ND	ND ND	
Mevinphos-cis/trans (Phosdrin)	190	0.5	ND ND	ND ND	ND ND	ND ND	ND ND	
Omethoate		1	ND ND	ND ND	ND ND	ND	ND	
Parathion	50	0.5	ND ND	ND ND	ND ND	ND ND	ND ND	
	50	0.5	ND ND	ND ND	ND ND	ND ND	ND ND	
Parathion methyl	0							
Phorate (Thimet) Phosalone	2	0.5	ND ND	ND ND	ND ND	ND ND	ND ND	
Phosmet		0.2	ND ND	ND ND	ND ND	ND ND	ND	
Phosphamidon		0.2	ND ND	ND ND	ND ND	ND ND	ND	
Pirimiphos-ethyl		0.5	ND ND	ND ND	ND ND	ND ND	ND ND	
Pirimiphos-methyl		0.2	ND ND	ND ND	ND ND	ND ND	ND ND	
Profenophos								
Pyrazophos		0.1	ND ND	ND ND	ND ND	ND ND	ND	
Quinalphos	_	0.3	ND	ND	ND	ND	ND	
Sulfotep		0.1	ND	ND	ND	ND	ND	
Terbufos	1	0.3	ND ND	ND	ND	ND	ND	
Tetrachlorvinphos (Stirophos)		0.2	ND	ND	ND	ND	ND	
Other		0.0		N/S	NE	NE	1.5	
Hexachlorobenzene		0.2	ND	ND	ND	ND	ND	
prodione		1	-	-	ND	-	-	
Propiconazole		0.5	-	-	ND	-	-	

Table C4: Pesticide Results (ug/L)

Parameter	Drinking Water	Detection	Amhers	Amherst (071)		ver (073)	Atlanta (074)	Sheffield Mills (075)
. diamoto.	Guideline	Limit	16-Dec-2006	8-Jan-2009	12-Jan-2007	9-Jun-2009	3-Sep-2007	10-Sep-2007
Organophosphorus Pesticides								
Aspon		0.2	ND	ND	ND	ND	ND	ND
Azinphos ethyl		0.5	ND ND	ND ND	ND ND	ND ND	ND	ND ND
Azinphos ettiyi Azinphos methyl	20	1	ND ND	ND ND	ND ND	ND ND	ND	ND ND
Bromacil	20	0.1	ND	ND	ND	ND	ND	ND
Benfluralin		0.1	ND ND	ND	ND	ND	ND	ND
Bromophos		0.1	ND ND	ND ND	ND	ND	ND	ND
Bromophos-ethyl		0.3	ND ND	ND ND	ND	ND	ND	ND
Carbophenothion		0.3	ND ND	ND ND	ND	ND	ND	ND
Chlorfenvinphos(e/z)		0.1	ND	ND	ND	ND	ND	ND
Chlormephos		0.5	ND	ND	ND	ND	ND	ND
Chlorpyrifos	90	0.2	ND ND	ND ND	ND	ND (0.01)	ND	ND
Chlorpyriphos-methyl	30	0.2	ND ND	ND ND	ND	ND	ND	ND
Chlorthiophos	+	0.1	ND	ND	ND	ND	ND	ND ND
Cyanophos	-	0.2	ND	ND	ND	ND	ND	ND
Demeton	+	1	ND ND	ND ND	ND	ND	ND	ND
Diazinon	20	0.3	ND ND	ND ND	ND ND	ND (0.02)	ND	ND ND
Dichlofenthion	20	0.3	ND ND	ND ND	ND ND	ND (0.02)	ND	ND ND
Dichlorvos/Naled		0.1	ND	ND	ND	ND	ND	ND
Dicrotophos		0.5	ND	ND	ND	ND	ND	ND
Dimethoate	20	0.5	ND	ND ND	ND	ND	ND	ND
Dioxathion	20	1	ND ND	ND ND	ND	ND	ND	ND
Disulfoton (Di-Syston)		1	ND	ND	ND	ND	ND	ND
EPN		0.5	ND	ND	ND	ND	ND	ND
Ethion		0.2	ND	ND ND	ND	ND	ND	ND
Fenchlorphos (Ronnel)		0.1	ND	ND ND	ND	ND	ND	ND
Fenitrothion		0.5	ND ND	ND ND	ND	ND	ND	ND
Fensulfothion		0.1	ND	ND	ND	ND	ND	ND
Fenthion		0.1	ND	ND ND	ND	ND	ND	ND
Fonofos		0.1	ND	ND ND	ND	ND	ND	ND
Iodofenphos		0.1	ND	ND ND	ND	ND	ND	ND
Isofenphos		0.3	ND	ND ND	ND	ND	ND	ND
Malaoxon		1	ND	ND	ND	ND	ND	ND
Malathion	190	0.5	ND	ND	ND	ND	ND	ND
Mevinphos-cis/trans (Phosdrin)	100	0.1	ND	ND ND	ND	ND	ND	ND
Omethoate		1	ND	ND ND	ND	ND	ND	ND
Parathion	50	0.5	ND	ND	ND	ND	ND	ND
Parathion methyl	30	0.5	ND	ND	ND	ND	ND	ND
Phorate (Thimet)	2	0.5	ND	ND ND	ND	ND ND	ND	ND ND
Phosalone		0.2	ND ND	ND ND	ND	ND	ND	ND ND
Phosmet		0.2	ND	ND ND	ND	ND	ND	ND
Phosphamidon		0.2	ND	ND	ND	ND	ND	ND
Pirimiphos-ethyl		0.5	ND	ND	ND	ND	ND	ND
Pirimiphos-methyl		0.2	ND ND	ND ND	ND	ND	ND	ND
Profenophos	+	0.5	ND ND	ND ND	ND ND	ND	ND	ND ND
Pyrazophos		0.1	ND	ND	ND	ND	ND	ND
Quinalphos		0.3	ND	ND	ND	ND	ND	ND
Sulfotep	+	0.3	ND	ND	ND	ND	ND	ND ND
Terbufos	1	0.1	ND ND	ND ND	ND ND	ND ND	ND	ND ND
Tetrachlorvinphos (Stirophos)	 	0.3	ND ND	ND ND	ND	ND	ND	ND ND
Other		0.2	IND	ND	IND	IND	IND	IND
Hexachlorobenzene		0.2	ND	ND	ND	ND	ND	ND
Iprodione	1	1	- IND	- ND	- ND	ND ND	- ND	- ND
Propiconazole	_	0.5	-		-	ND ND	-	-

Table C4: Pesticide Results (ug/L)

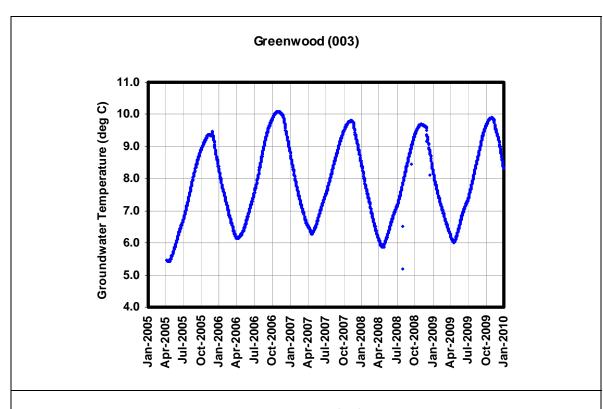
Parameter	Drinking Water	Detection	Fall River (076)	West Northfield (077)	Musquodoboit Hbr (078)	Lewis Lake (079)	Arisaig (080)	Coldbrook (081)
	Guideline	Limit	20-May-2008	12-Jun-2008	22-May-2008	31-Jul-2008	8-Sep-2009	5-Aug-2009
Owen out cout out of Besticides	_							
Organophosphorus Pesticides Aspon	_	0.2	ND	ND	ND	ND	ND	ND
		0.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Azinphos ethyl	20	0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Azinphos methyl Bromacil	20	0.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	_	0.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benfluralin	_	0.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromophos	_	0.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromophos-ethyl Carbophenothion	_	0.3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
		0.3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorfenvinphos(e/z)			ND ND		ND ND		ND ND	
Chlormephos		0.5		ND ND (0.04)		ND ND (0.04)		ND ND (0.04)
Chlorpyrifos	90	0.2	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)
Chlorpyriphos-methyl		0.1	ND ND	ND ND	ND ND	ND ND	ND	ND ND
Chlorthiophos	_	0.3 0.2	ND ND	ND	ND ND	ND ND	ND ND	ND ND
Cyanophos	-			ND				ND
Demeton	20	1	ND ND (0.00)	ND (0.00)	ND ND (0.00)	ND (0.00)	ND (0.00)	ND (0.00)
Diazinon	20	0.3	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Dichlofenthion		0.2	ND	ND	ND ND	ND ND	ND ND	ND
Dichlorvos/Naled		0.1	ND	ND	ND ND	ND	ND	ND
Dicrotophos		0.5	ND	ND		ND	ND	ND
Dimethoate	20	0.5	ND	ND	ND ND	ND ND	ND ND	ND
Dioxathion		1	ND	ND	ND ND	ND ND	ND ND	ND
Disulfoton (Di-Syston)		1	ND	ND	ND	ND	ND	ND
EPN		0.5	ND	ND	ND ND	ND	ND	ND
Ethion		0.2	ND	ND	ND	ND	ND	ND
Fenchlorphos (Ronnel)		0.1	ND	ND	ND ND	ND	ND ND	ND
Fenitrothion		0.5	ND	ND	ND ND	ND ND	ND ND	ND
Fensulfothion		0.1	ND	ND	ND ND	ND	ND ND	ND
Fenthion		0.1	ND	ND	ND ND	ND	ND	ND
Fonofos		0.1	ND	ND	ND	ND	ND	ND
Iodofenphos		0.1	ND	ND	ND	ND	ND	ND
Isofenphos		0.3	ND	ND	ND	ND	ND	ND
Malaoxon	400	1	ND	ND	ND	ND	ND	ND
Malathion	190	0.5	ND	ND	ND	ND	ND	ND
Mevinphos-cis/trans (Phosdrin)		0.1	ND	ND	ND	ND	ND	ND
Omethoate	==	1	ND	ND	ND	ND	ND	ND
Parathion	50	0.5	ND	ND	ND ND	ND	ND ND	ND
Parathion methyl	-	0.5	ND	ND	ND ND	ND	ND ND	ND
Phorate (Thimet)	2	0.5	ND ND	ND	ND ND	ND ND	ND ND	ND ND
Phosalone	-	0.2	ND	ND	ND	ND	ND	ND
Phosmet	-	0.2	ND	ND	ND ND	ND	ND	ND
Phosphamidon	-	0.2	ND	ND	ND ND	ND	ND	ND
Pirimiphos-ethyl	+	0.5	ND	ND	ND ND	ND	ND	ND
Pirimiphos-methyl	\rightarrow	0.2	ND ND	ND	ND ND	ND ND	ND ND	ND ND
Profenophos	+	0.5	ND	ND	ND	ND	ND	ND
Pyrazophos	+	0.1	ND	ND	ND ND	ND	ND ND	ND
Quinalphos	+	0.3	ND	ND	ND ND	ND ND	ND ND	ND
Sulfotep	+ .	0.1	ND	ND	ND ND	ND ND	ND ND	ND
Terbufos	1	0.3	ND	ND	ND ND	ND	ND	ND
Tetrachlorvinphos (Stirophos)		0.2	ND	ND	ND	ND	ND	ND
Other							.,-	
Hexachlorobenzene		0.2	ND	ND	ND	ND	ND	ND
Iprodione		11	ND	ND	ND	ND	ND	ND
Propiconazole		0.5	ND	ND	ND	ND	ND	ND

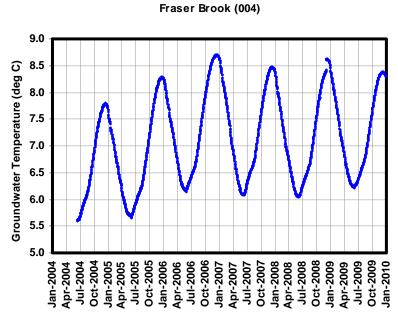
Table C4: Pesticide Results (ug/L)

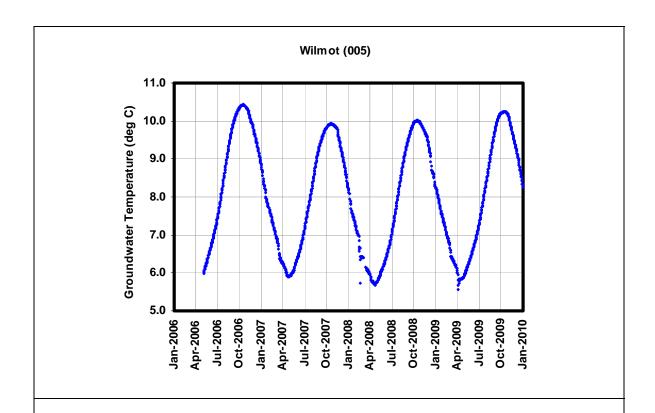
Parameter	Drinking Water	Detection Limit	Long Point (082)	Tatamagouche (083)
	Guideline	Limit	12-Aug-2009	21-Jul-2008
Organos bacubarus Bacticidas				
Organophosphorus Pesticides	-	0.2	ND	ND
Aspon				
Azinphos ethyl		0.5	ND	ND ND
Azinphos methyl	20	1	ND	ND
Bromacil		0.1	ND	ND
Benfluralin		0.1	ND	ND
Bromophos		0.1	ND	ND
Bromophos-ethyl		0.3	ND	ND
Carbophenothion		0.3	ND	ND
Chlorfenvinphos(e/z)		0.1	ND	ND
Chlormephos		0.5	ND	ND
Chlorpyrifos	90	0.2	ND (0.01)	ND (0.01)
Chlorpyriphos-methyl		0.1	ND	ND
Chlorthiophos		0.3	ND	ND
Cyanophos		0.2	ND	ND
Demeton		1	ND	ND
Diazinon	20	0.3	ND (0.02)	ND (0.02)
Dichlofenthion		0.2	ND	ND
Dichlorvos/Naled		0.1	ND	ND
Dicrotophos		0.5	ND	ND
Dimethoate	20	0.5	ND	ND
Dioxathion	20	1	ND ND	ND ND
Disulfoton (Di-Syston)		1	ND ND	ND ND
EPN		0.5	ND ND	ND ND
Ethion	_	0.3	ND ND	ND ND
Fenchlorphos (Ronnel)	_	0.2	ND ND	ND ND
Fenitrothion		0.5	ND ND	ND ND
Fensulfothion		0.1	ND ND	ND ND
Fenthion		0.1	ND	ND
Fonofos		0.1	ND	ND
Iodofenphos		0.1	ND	ND
Isofenphos		0.3	ND	ND
Malaoxon		1	ND	ND
Malathion	190	0.5	ND	ND
Mevinphos-cis/trans (Phosdrin)		0.1	ND	ND
Omethoate		1	ND	ND
Parathion	50	0.5	ND	ND
Parathion methyl		0.5	ND	ND
Phorate (Thimet)	2	0.5	ND	ND
Phosalone		0.2	ND	ND
Phosmet		0.2	ND	ND
Phosphamidon		0.2	ND	ND
Pirimiphos-ethyl		0.5	ND	ND
Pirimiphos-methyl		0.2	ND	ND
Profenophos		0.5	ND	ND
Pyrazophos		0.1	ND	ND
Quinalphos		0.3	ND	ND
Sulfotep		0.1	ND	ND
Terbufos	1	0.3	ND	ND ND
Tetrachlorvinphos (Stirophos)		0.2	ND	ND ND
Other				.,,,
Hexachlorobenzene		0.2	ND	ND
Iprodione		1	ND ND	ND ND
Propiconazole	-	0.5	ND ND	ND ND
гторкопадов		0.5	טא	שוו

Table C5: Tritium Results

Observation Well	Date Sampled	Tritium	Accuracy	Age Estimate
		Level (TU)	(+/- TU)	(Recent is >1952)
Wolfville (010)	22-Dec-2004	4.7	0.4	Mix/Recent
Hayden Lake (059)	9-Jun-2005	3.4	0.3	Mix
Hebron (063)	9-Jun-2005	4.6	0.4	Mix/Recent
Kentville (048)	15-Jun-2005	3.8	0.3	Mix
Point Aconi (030)	15-Sep-2005	3.62	0.34	Mix
Sydney (050)	15-Sep-2005	4.92	0.43	Mix/Recent
Durham (045)	5-Oct-2005	2.04	0.28	Mix
Annapolis Royal (062)	9-Nov-2005	0.27	0.17	Old
Greenwood (003)	23-Nov-2005	5.76	0.47	Recent
Meteghan (060)	12-Dec-2006	0.46	0.14	Old
North Grant (054)	13-Dec-2006	1.95	0.22	Mix
Stillwater (055)	13-Dec-2006	3.82	0.34	Mix
Margaree (064)	14-Dec-2006	0.41	0.14	Old
Dalem Lake (069)	14-Dec-2006	3.61	0.3	Mix
Monastery (028)	15-Dec-2006	0.94	0.17	Old
Amherst (071)	16-Dec-2006	4.0	0.32	Mix/Recent
Kelley River (073)	12-Jan-2007	3.78	0.32	Mix

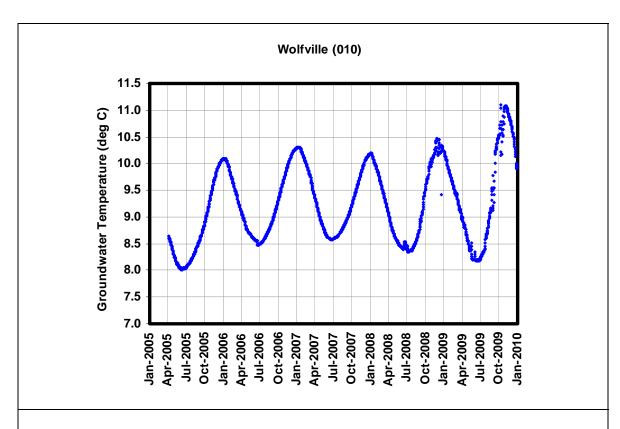

Age Estimate Guide	Tritium Level (TU)
Recent (recharged after 1952)	>5
Mixture of recent and old	1 to 5
Old (recharged before 1952)	<1
Source: Clark and Fritz, 1997	

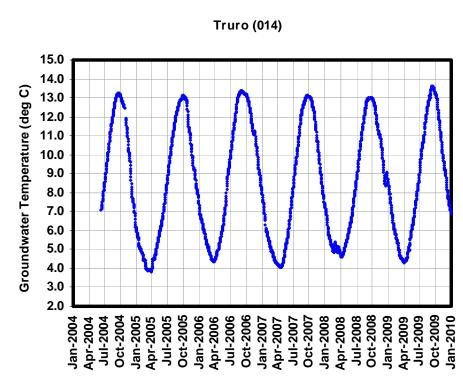

Table C6: Perchlorate Results

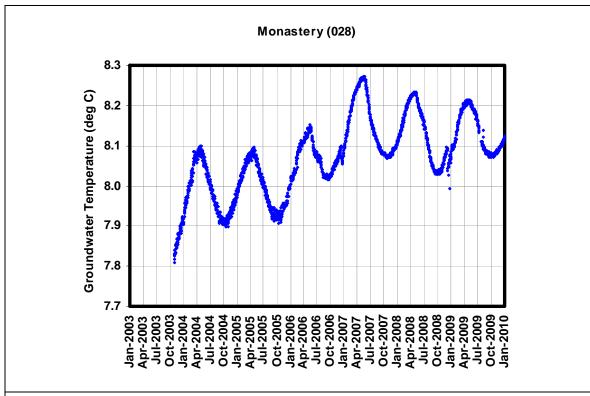

Observation Well	Date Sampled	Recommended Guidance	Detection Limit	Perchlorate Result
		Value (Health Canada, 2007)		
		(ug/L)	(ug/L)	(ug/L)
Fraser Brook (004)	10-Dec-2004	6	0.2	ND
Wolfville (010)	22-Dec-2004	6	0.2	ND
Hayden Lake (059)	9-Jun-2005	6	0.011	0.014
Hebron (063)	9-Jun-2005	6	0.011	ND
Kentville (048)	15-Jun-2005	6	0.011	0.05
Point Aconi (030)	15-Sep-2005	6	0.011	ND
Sydney (050)	15-Sep-2005	6	0.011	ND
Durham (045)	5-Oct-2005	6	0.011	ND
Annapolis Royal (062)	9-Nov-2005	6	0.011	ND
Greenwood (003)	23-Nov-2005	6	0.011	ND
Monastery (028)	15-Dec-2006	6	0.011	ND

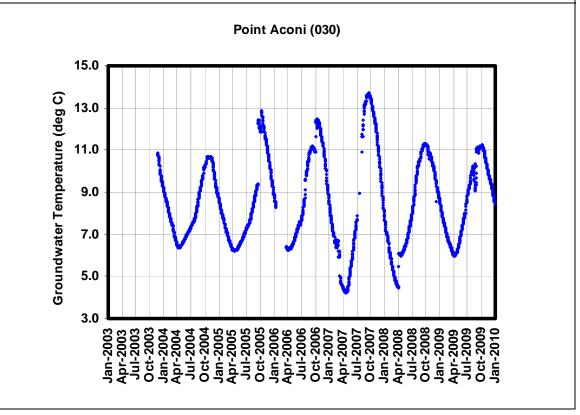
ND = Not Detected

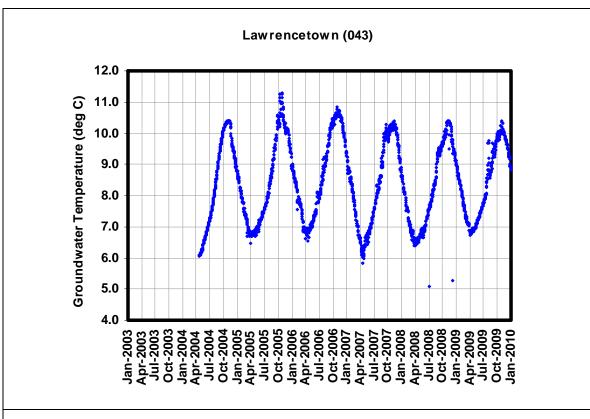
APPENDIX D GROUNDWATER TEMPERATURE GRAPHS

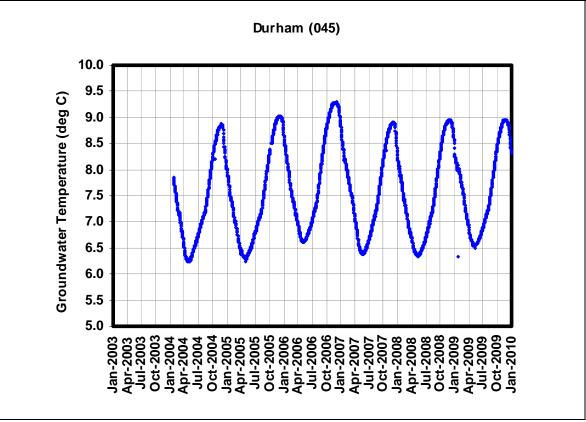


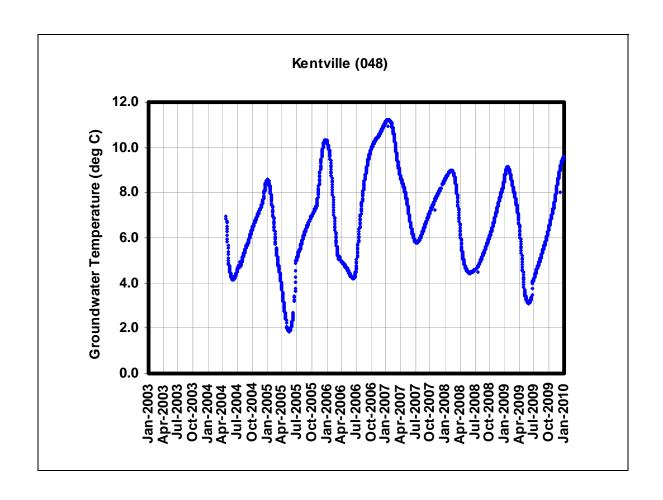


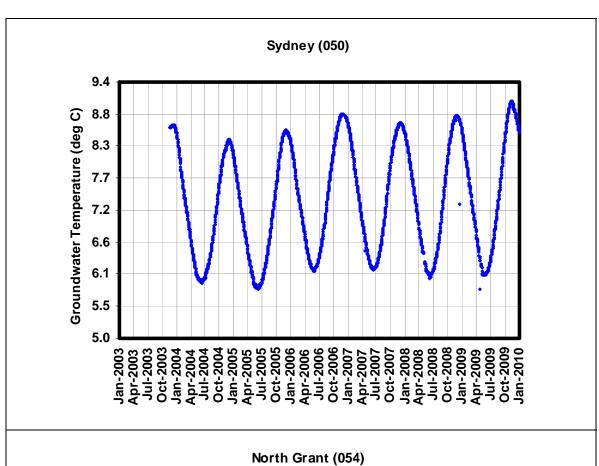


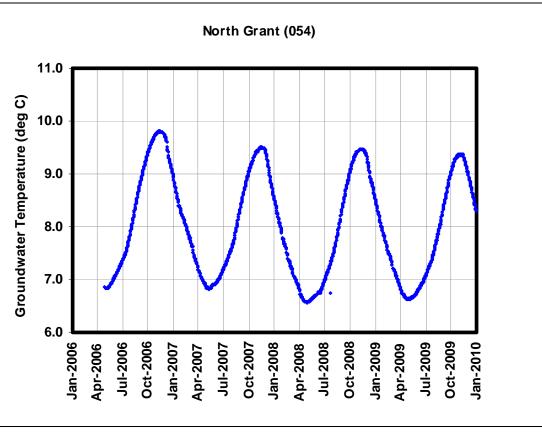

Murray Siding (007)

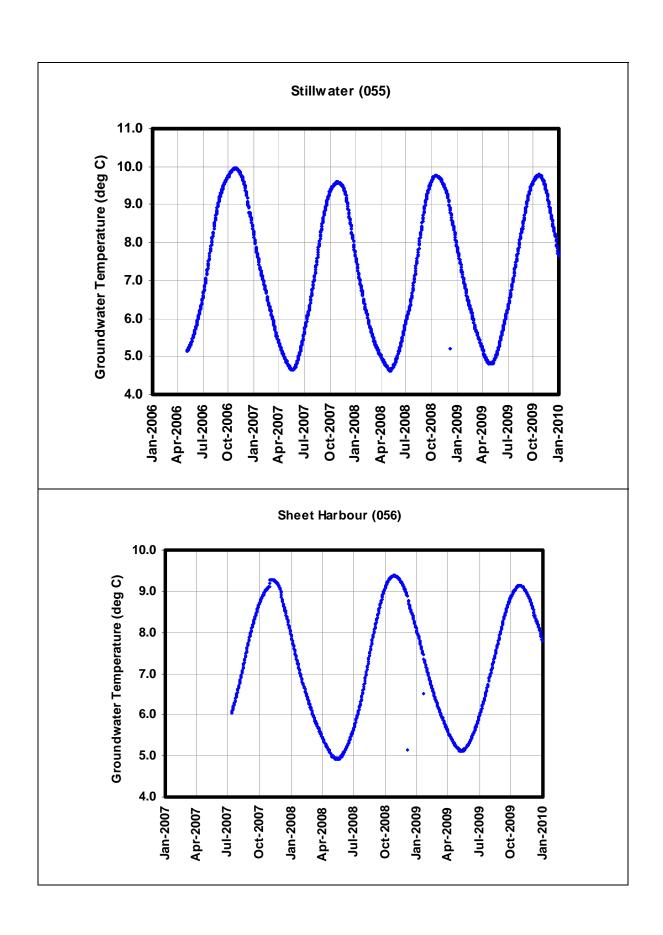

No temperature data available

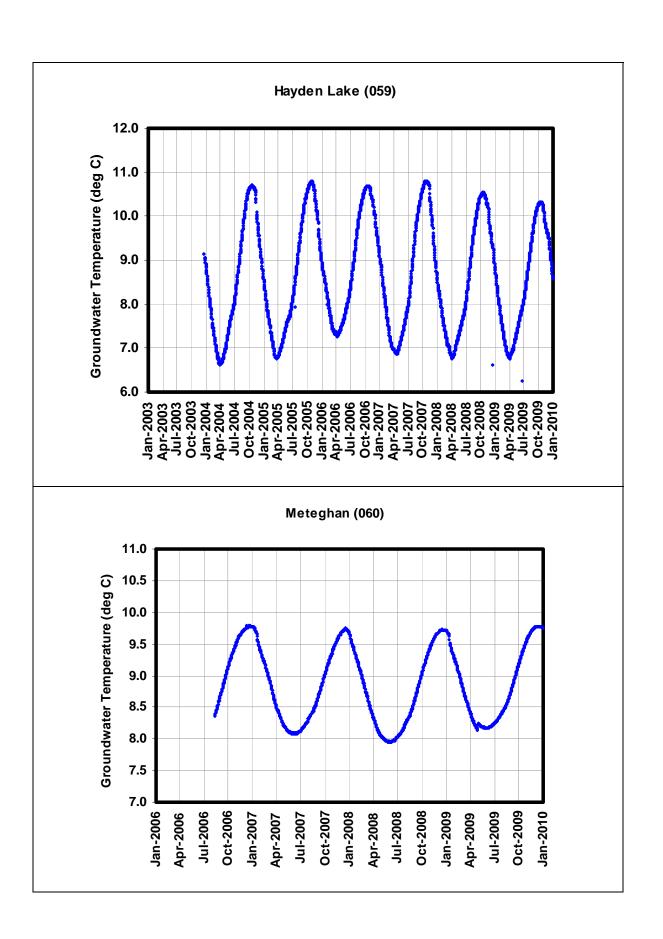


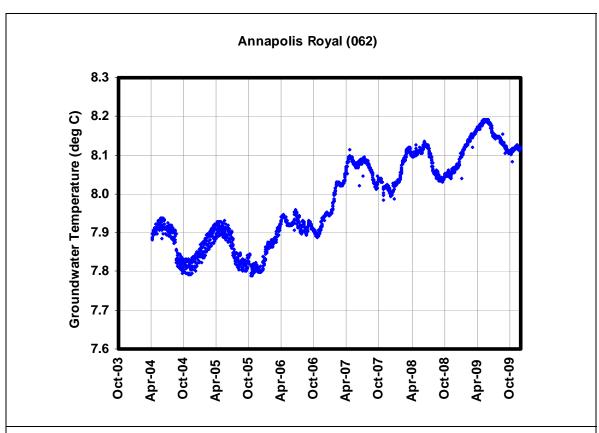


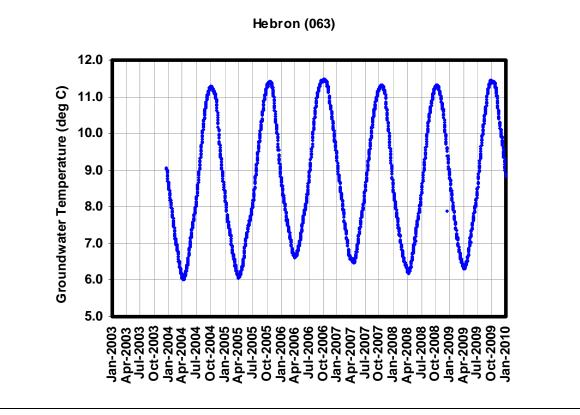


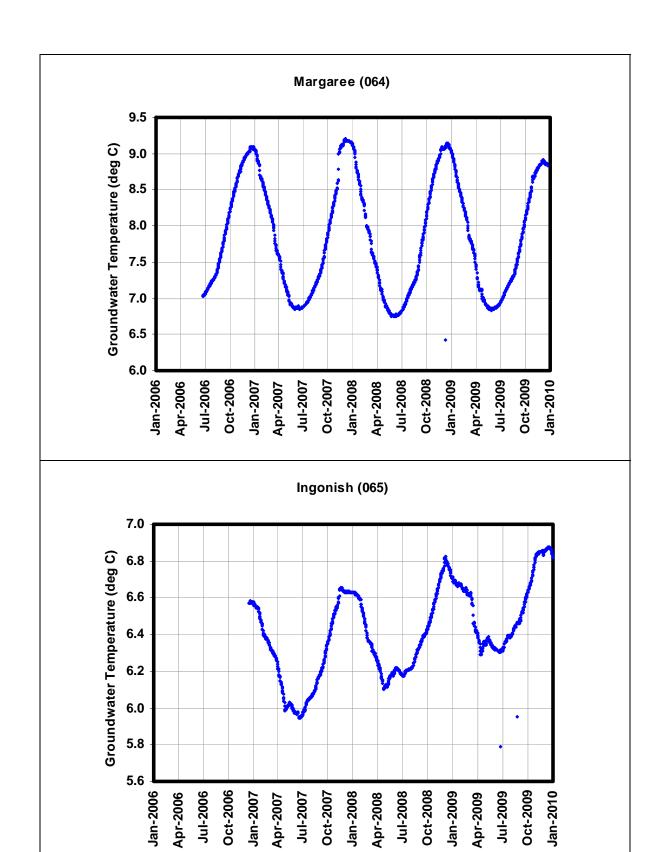


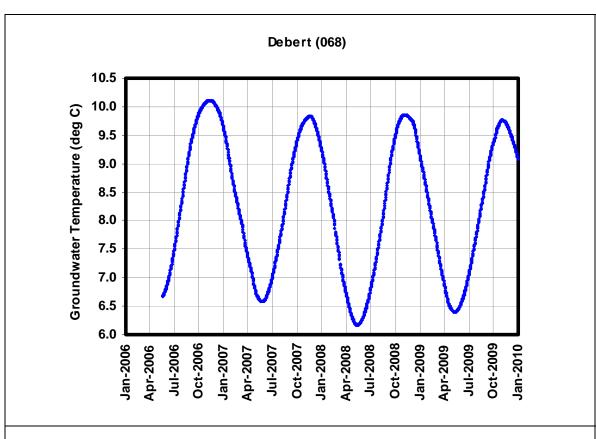


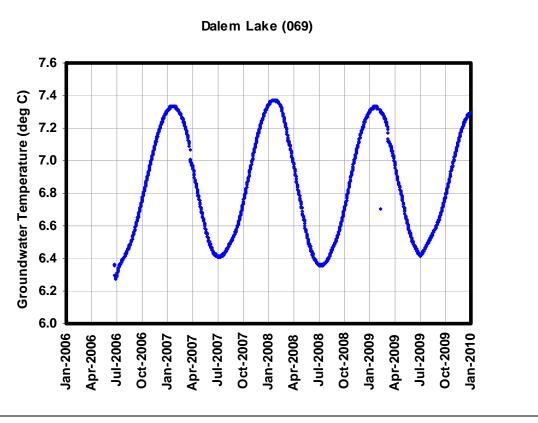


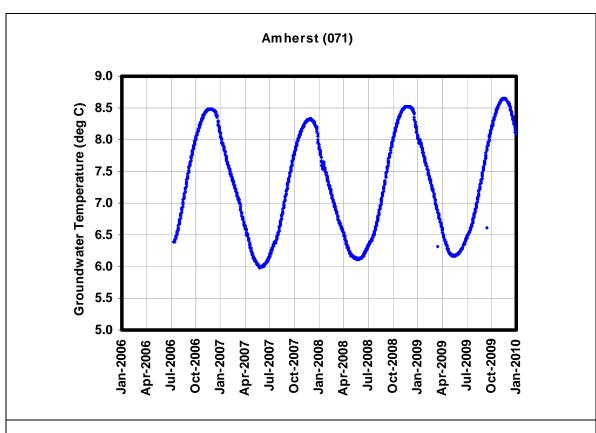


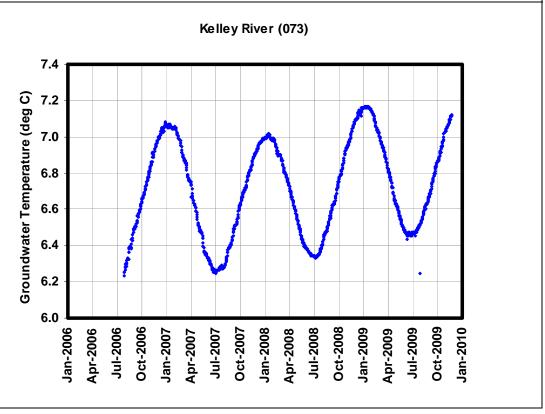


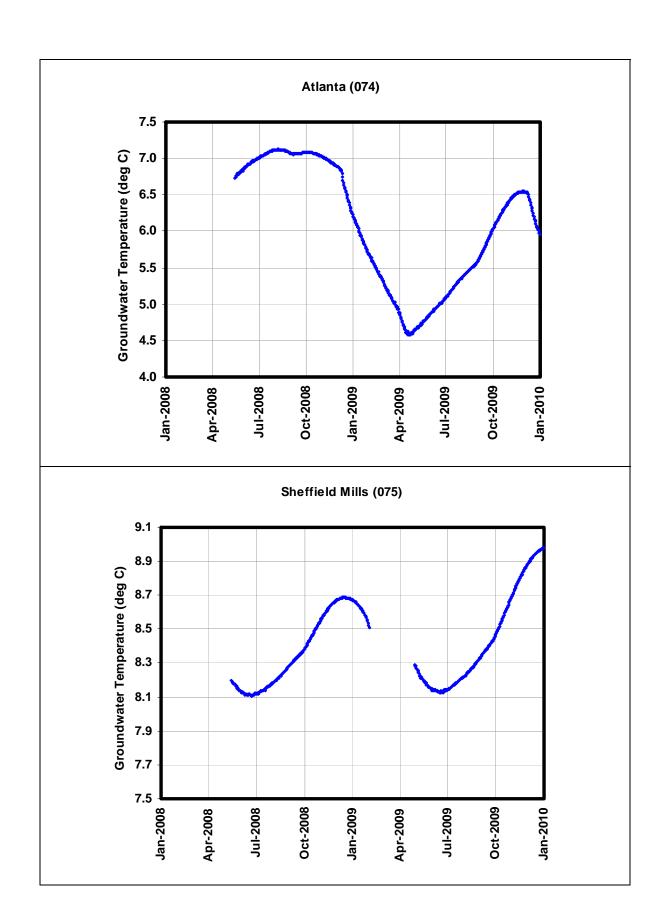


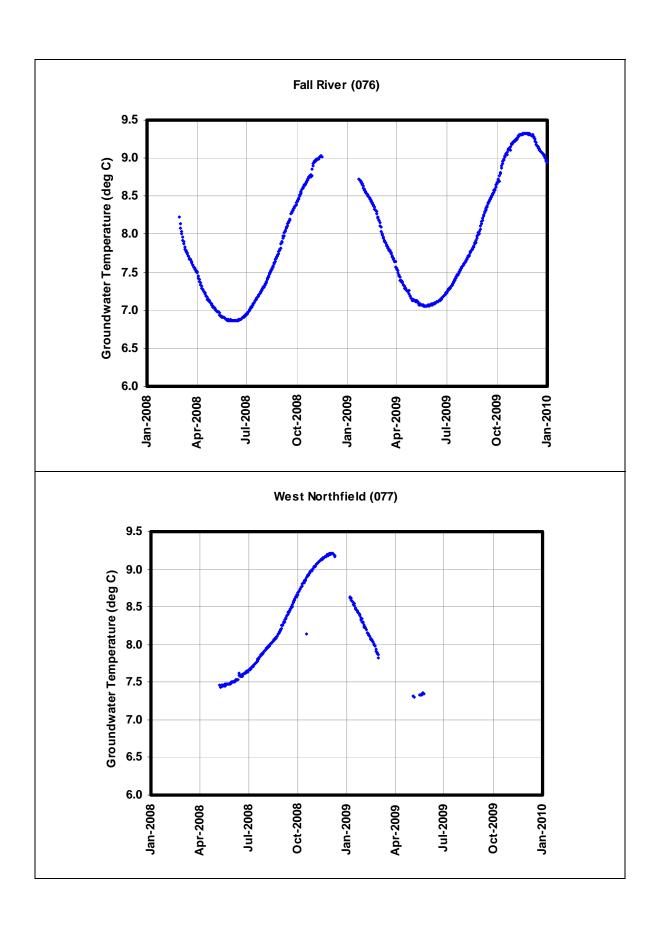




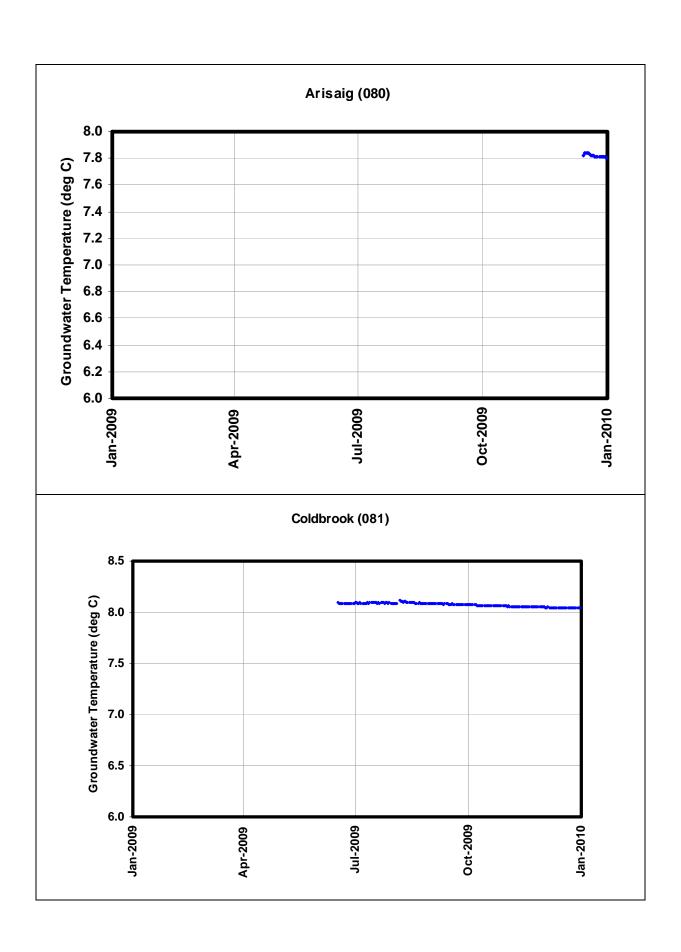


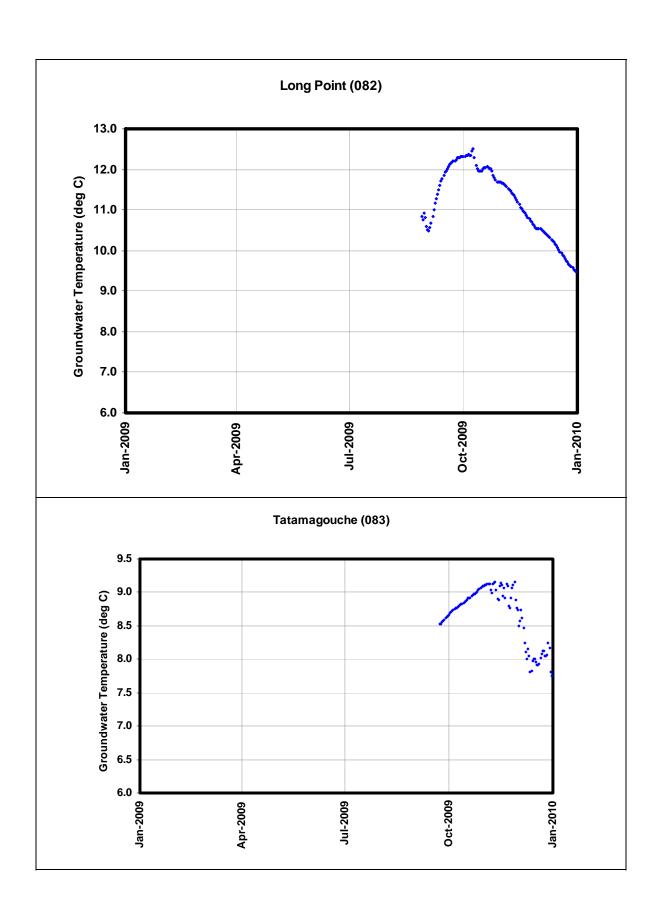












APPENDIX E WATER LEVEL TREND ANALYSIS

Table E1. Water Level Statistical Trend Analyses

Observation M. II	Well	First	Last	1	Mann-Ken	idall Statistics	4
Observation Well	Number	Year	Year	n ¹	S ²	Q ³ (cm/year)	Confidence Level ⁴
Greenwood	003	1966	2009	21	-1	0.0	<80%
Fraser Brook	004	1966	2009	20	85	0.4	99%
Wilmot	005	1966	2009	19	21	0.3	<80%
Murray Siding	007	1968	1990	13	-37	-2.5	95%
Wolfville	010	1969	2009	21	-139	-2.3	99%
Truro	014	1971	2009	17	32	2.5	<80%
Monastery	028	1976	2009	11	-14	-3.6	<80%
Point Aconi	030	1976	2009	17	1	0.0	<80%
Lawrencetown	043	1978	2009	13	-20	-2.3	<80%
Durham	045	1979	2009	24	69	1.8	90%
Kentville	048	1980	2009	16	-48	-0.8	95%
Sydney	050	1984	2009	16	-79	-5.8	99%
North Grant	054	1987	2009	8	NA	NA	NA
Stillwater	055	1987	2009	7	NA	NA	NA
Sheet Harbour	056	1987	2009	7	NA	NA	NA
Hayden Lake	059	1988	2009	15	34	0.9	80%
Meteghan	060	1987	2009	9	NA	NA	NA
Annapolis Royal	062	1990	2009	8	NA	NA	NA
Hebron	063	1990	2009	8	NA	NA	NA
Margaree	064	1990	2009	8	NA	NA	NA
Ingonish	065	1990	2009	7	NA	NA	NA
Debert	068	1993	2009	4	NA	NA	NA
Dalem Lake	069	1992	2009	6	NA	NA	NA
Amherst	071	1993	2009	3	NA	NA	NA
Kelley River	073	2006	2009	3	NA	NA	NA
Atlanta	074	2008	2009	1	NA	NA	NA
Sheffield Mills	075	2008	2009	1	NA	NA	NA
Fall River	076	2008	2009	1	NA	NA	NA
West Northfield	077	2008	2009	1	NA	NA	NA
Musquodoboit Hbr	078	2008	2009	1	NA	NA	NA
Lewis Lake	079	2008	2009	1	NA	NA	NA
Arisaig	080	2009	2009	<1	NA	NA	NA
Coldbrook	081	2009	2009	<1	NA	NA	NA
Long Point	082	2009	2009	<1	NA	NA	NA
Tatamagouche	083	2009	2009	<1	NA	NA	NA

Notes

- 1. n is the number of "usable" years. For a year of data to be considered a "usable", data must be available for at least 75% of the year, unless otherwise noted. Trend analyses were not completed for wells with less than 10 years of usable data.
- 2. S is the Mann-Kendall statistic, which is based on the differences between data values. Positive values indicate upward trends and negative values indicate downward trends (Gilbert, 1987).
- 3. Q is Sen's estimator of slope. Positive values indicate upward trends and negative values indicate downward trends (Gilbert, 1987).
- 4. The trend is considered to be statistically significant if the confidence level is at least 80%.
- 5. NA = Not Applicable (there were insufficient data to complete a trend analysis at this well).

APPENDIX F WELL LOCATION MAPS & SITE PHOTOGRAPHS

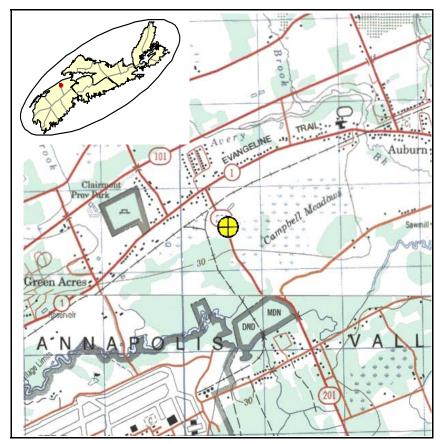


Figure F.1a: Greenwood (003) Well Location

Figure F.1b: Greenwood (003) Site Photograph

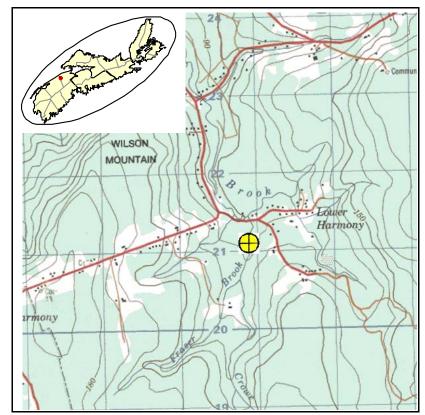


Figure F.2a: Fraser Brook (004) Well Location

Figure F.2b: Fraser Brook (004) Site Photograph

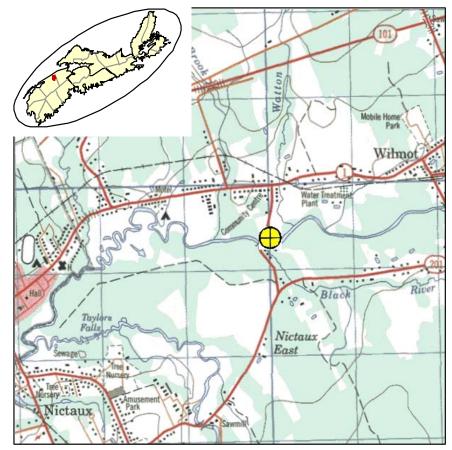


Figure F.3a: Wilmot (005) Well Location

Figure F.3b: Wilmot (005) Site Photograph

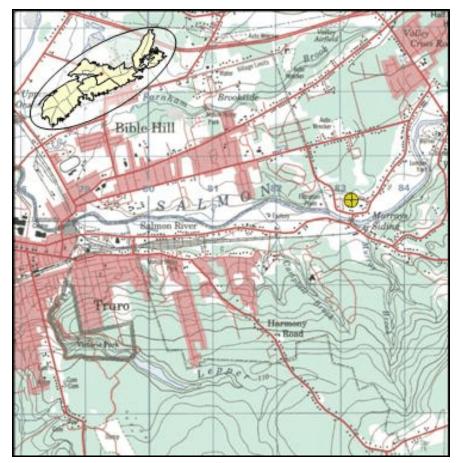


Figure F.4a: Murray Siding (007) Well Location

Figure F.4b: Murray Siding (007) Site Photograph

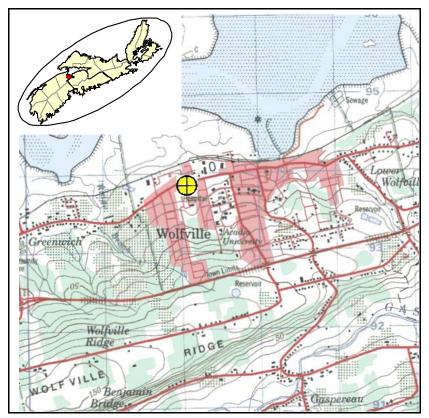


Figure F.5a: Wolfville (010) Well Location

Figure F.5b: Wolfville (010) Site Photograph

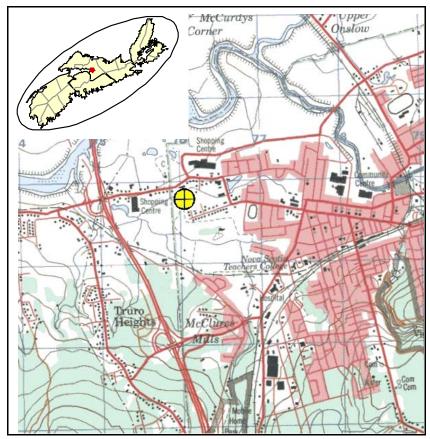


Figure F.6a: Truro (014) Well Location

Figure F.6b: Truro (014) Site Photograph

Figure F.7a: Monastery (028) Well Location

Figure F.7b: Monastery (028) Site Photograph

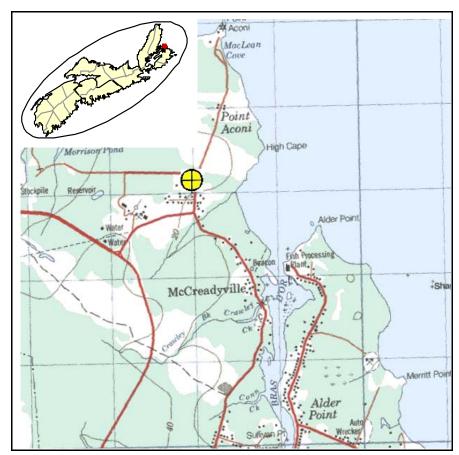


Figure F.8a: Point Aconi (030) Well Location

Figure F.8b: Point Aconi (030) Site Photograph

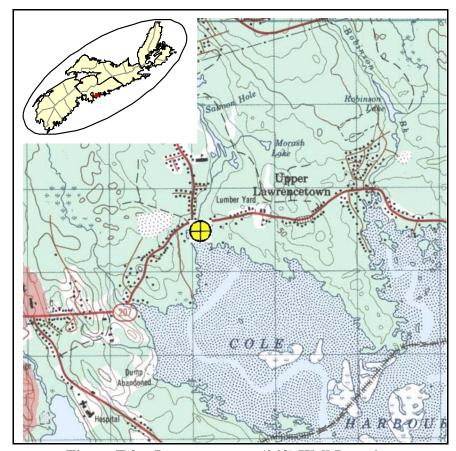


Figure F.9a: Lawrencetown (043) Well Location

Figure F.9b: Lawrencetown (043) Site Photograph

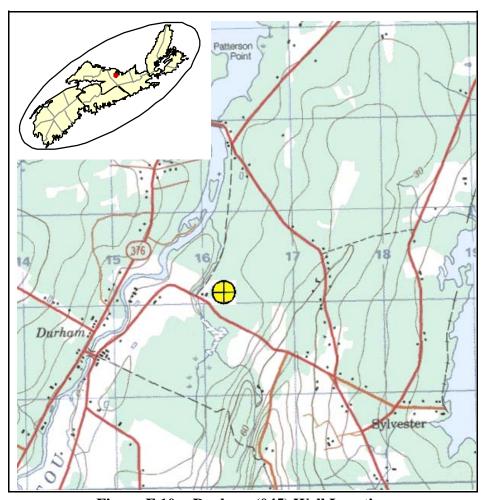


Figure F.10a: Durham (045) Well Location

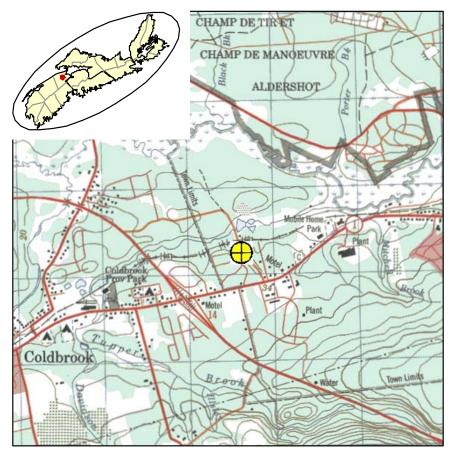


Figure F.11a: Kentville (048) Well Location

Figure F.11b: Kentville (048) Site Photograph

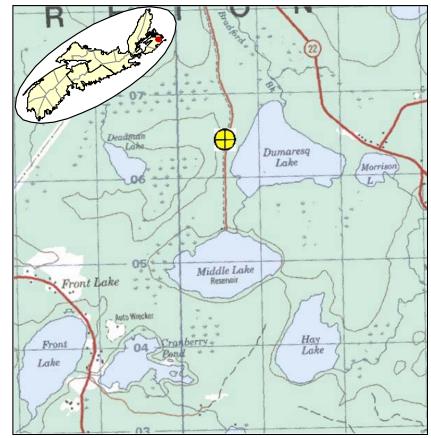
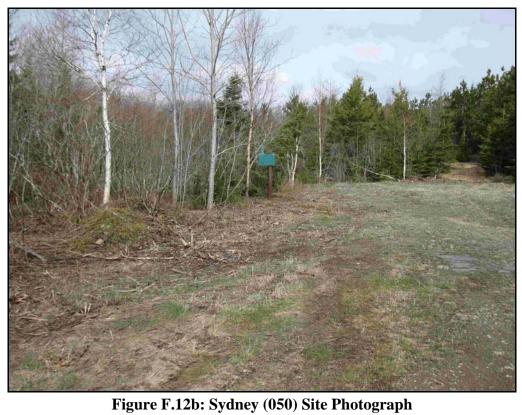



Figure F.12a: Sydney (050) Well Location

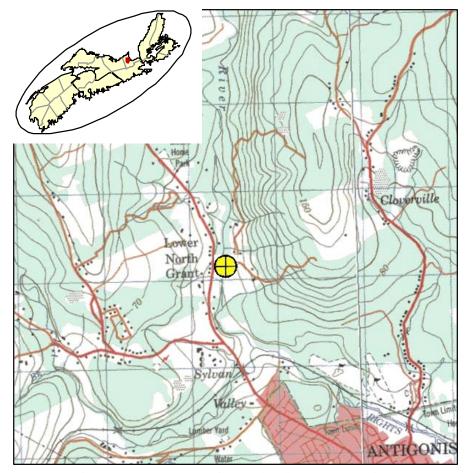


Figure F.13a: North Grant (054) Well Location

Figure F.13b: North Grant (054) Site Photograph

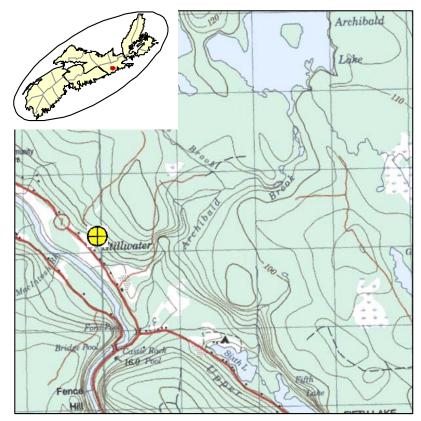


Figure F.14a: Stillwater (055) Well Location

Figure F.14b: Stillwater (055) Site Photograph

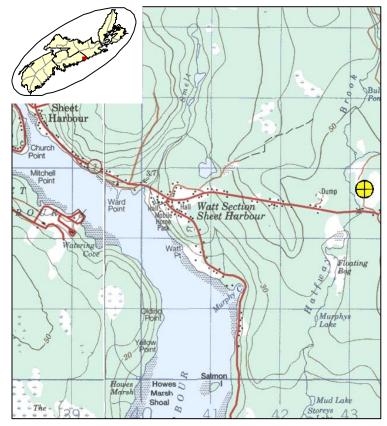


Figure F.15a: Sheet Harbour (056) Well Location

Figure F.15b: Sheet Harbour Site Photograph

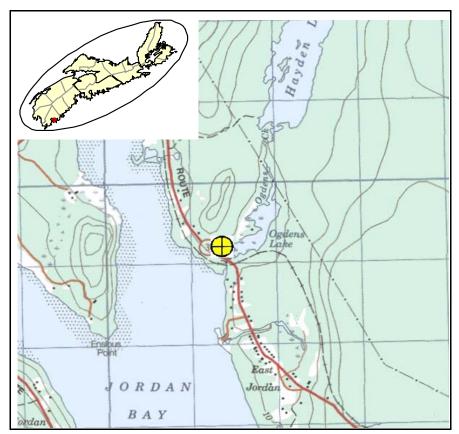


Figure F.16a: Hayden Lake (059) Well Location

Figure F.16b: Hayden Lake (059) Site Photograph

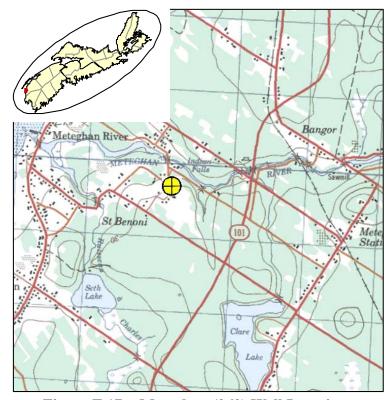


Figure F.17a: Meteghan (060) Well Location

Figure F.17b: Meteghan (060) Site Photograph

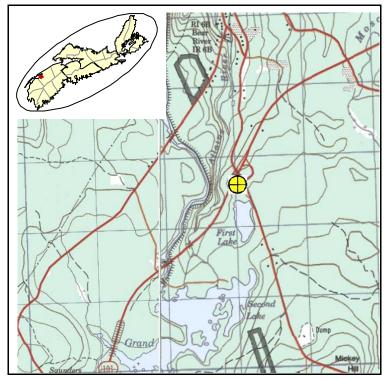


Figure F.18a: Annapolis Royal (062) Well Location

Figure F.18b: Annapolis Royal (062) Site Photograph

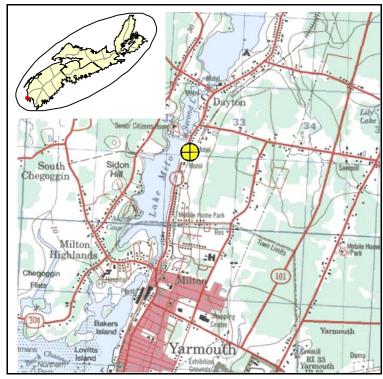


Figure F.19a: Hebron (063) Well Location

Figure F.19b: Hebron (063) Site Photograph

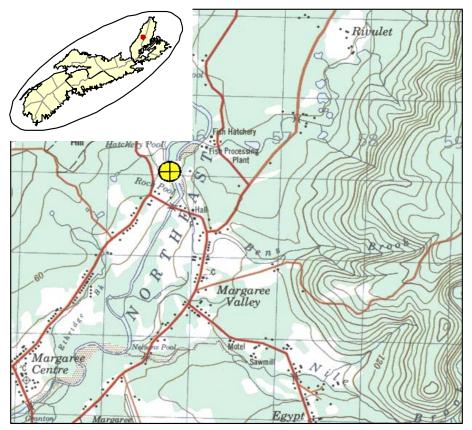


Figure F.20a: Margaree (064) Well Location

Figure F.20b: Margaree (064) Site Photograph

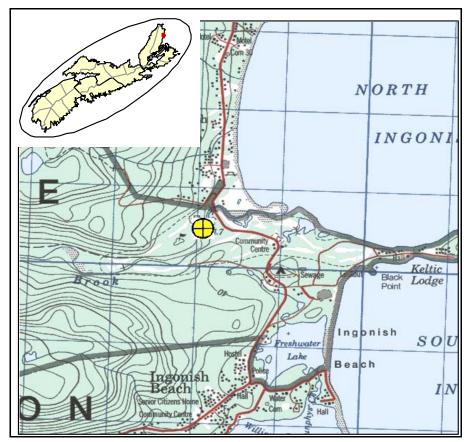


Figure F.21a: Ingonish (065) Well Location

Figure F.21b: Ingonish (065) Site Photograph

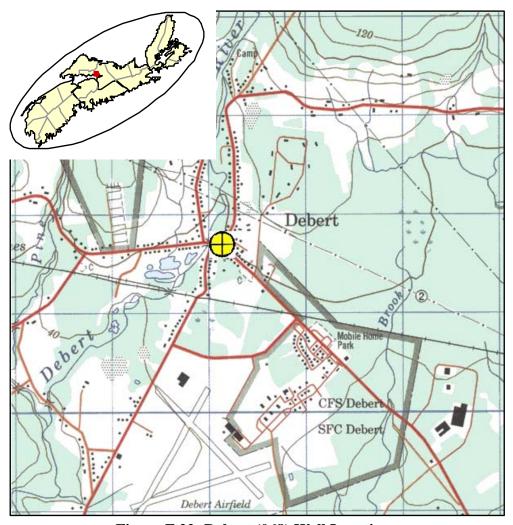


Figure F.22: Debert (068) Well Location

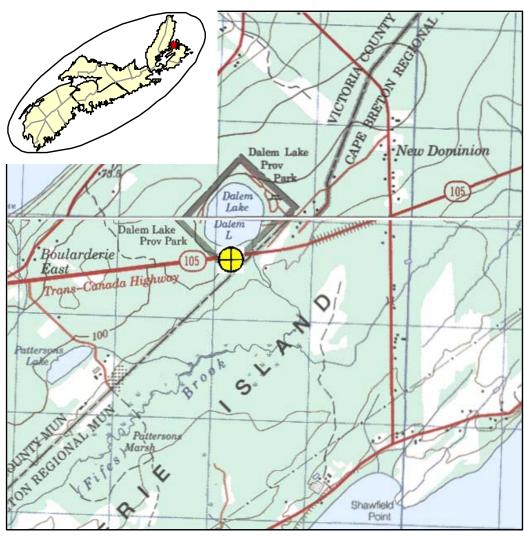


Figure F.23: Dalem Lake (069) Well Location

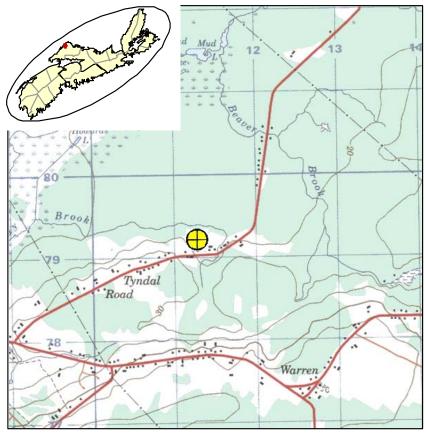


Figure F.24a: Amherst (071) Well Location

Figure F.24b: Amherst (071) Site Photograph

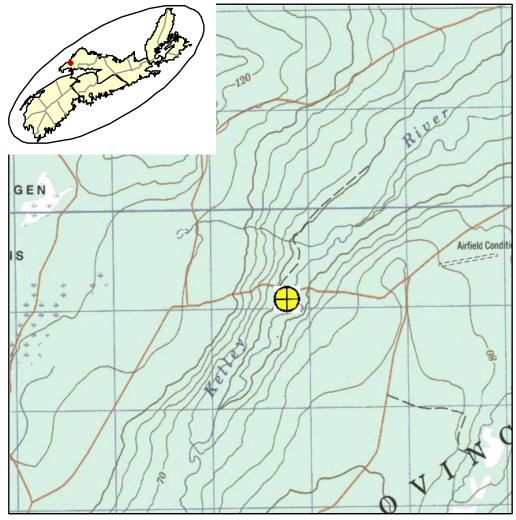


Figure F.25: Kelley River (073) Well Location

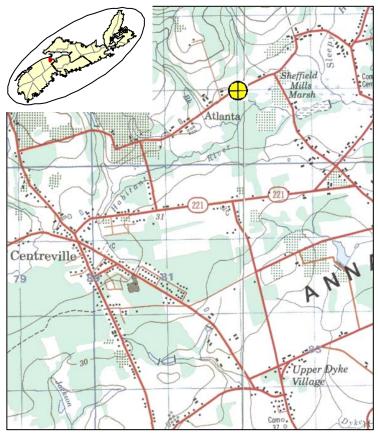


Figure F.26a: Atlanta (074) Well Location

Figure F.26b: Atlanta (074) Site Photo

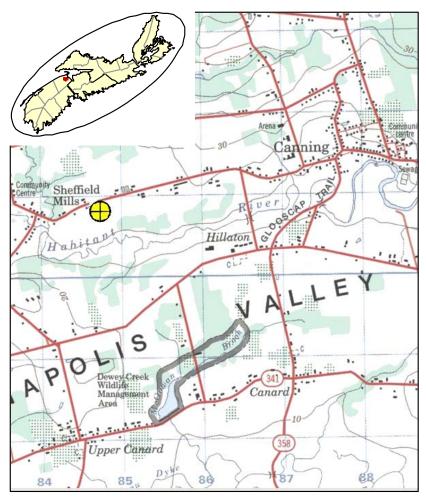


Figure F.27a: Sheffield Mills (075) Well Location

Figure F.27b: Sheffield Mills (075) Site Photograph

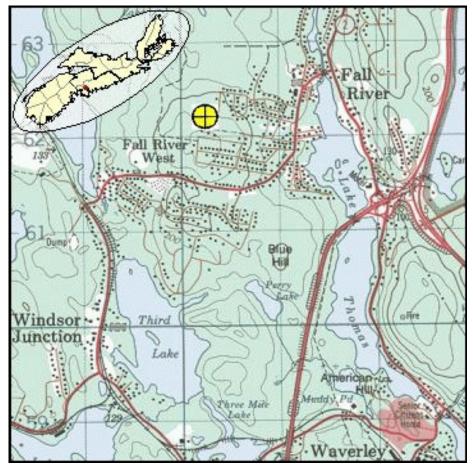


Figure F.28a: Fall River (076) Well Location

Figure F.28b: Fall River (076) Site Photograph

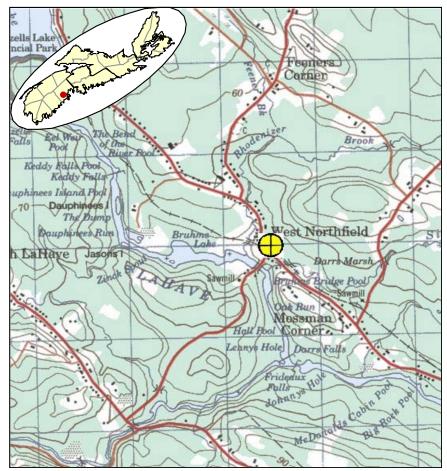


Figure F.29a: West Northfield (077) Well Location

Figure F.29b: West Northfield (077) Site Photo

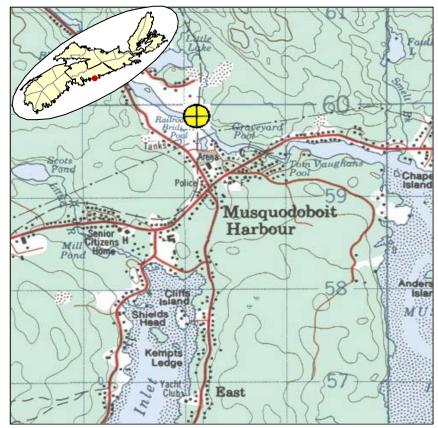


Figure F.30a: Musquodoboit Harbour (078) Well Location

Figure F.30b: Musquodoboit Harbour (078) Site Photograph

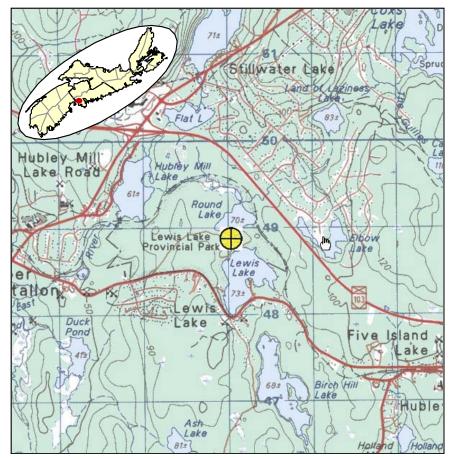


Figure F.31a: Lewis Lake (079) Well Location

Figure F.31b: Lewis Lake (079) Site Photograph

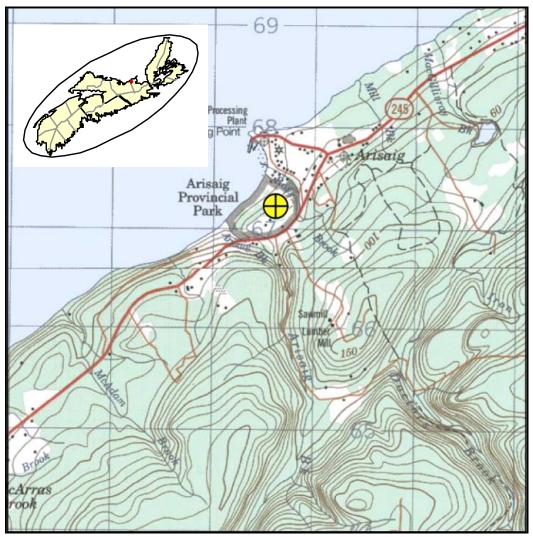


Figure F.32: Arisaig (080) Well Location

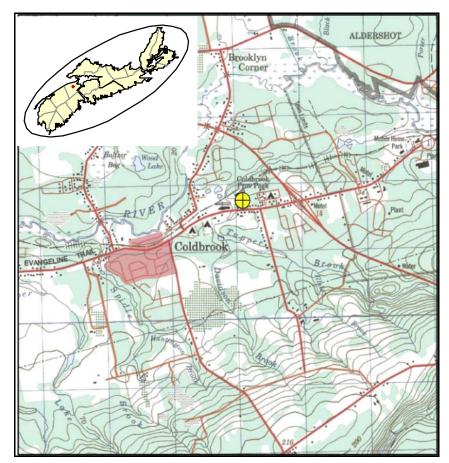


Figure F.33a: Coldbrook (081) Well Location

Figure F.33b: Coldbrook (081) Site Photograph

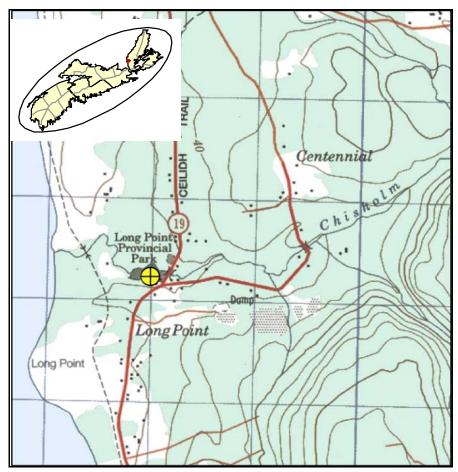


Figure F.34a: Long Point (082) Well Location

Figure F.34b: Long Point (082) Site Photograph

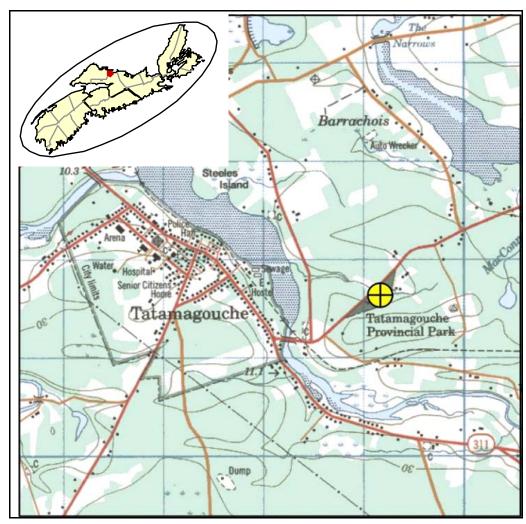


Figure F.35: Tatamagouche (083) Well Location