

NOVA SCOTIA
GROUNDWATER
OBSERVATION WELL
NETWORK

2009 REPORT

Prepared: December 2009

TABLE OF CONTENTS

			PAGE NO.				
EXE	ECUTIVE SUMMARY iii						
ACK	NOWL	VLEDGMENTSvTRODUCTION1Historical Background1Activities Completed in 20082Description of the Current Network3					
1.0	INTR						
	1.1						
	1.2						
	1.3	Description of the Current Network	3				
2.0	MET	THODS	6				
	2.1	Groundwater Level Monitoring	6				
		2.1.1 Field Methods					
		2.1.2 Data Assessment Methods	6				
	2.2	Groundwater Quality Monitoring	9				
		2.2.1 Field Methods					
		2.2.2 Data Assessment Methods	10				
3.0	RESU	ULTS	12				
	3.1	Greenwood (003)					
	3.2	Fraser Brook (004)					
	3.3	Wilmot (005)					
	3.4	Wolfville (010)					
	3.5	Truro (014)					
	3.6	Monastery (028)					
	3.7	Point Aconi (030)	31				
	3.8	Lawrencetown (043)	34				
	3.9	Durham (045)	38				
	3.10	Kentville (048)	41				
	3.11	Sydney (050)	45				
	3.12	North Grant (054)	48				
	3.13	Stillwater (055)	51				
	3.14	Sheet Harbour (056)	54				
	3.15	Charleston (058)	57				
	3.16	Hayden Lake (059)	60				
	3.17	Meteghan (060)					
	3.18	Annapolis Royal (062)	66				
	3.19	Hebron (063)					
	3.20	Margaree (064)	72				

3.22 Debert (068)	11/
3.22 Debert (068)	
3.22 Debert (068)	99
3.22 Debert (068)	
3.22 Debert (068) 3.23 Dalem Lake (069) 3.24 Amherst (071) 3.25 Kelley River (073)	
3.22 Debert (068) 3.23 Dalem Lake (069) 3.24 Amherst (071)	
3.22 Debert (068)	
3.22 Debert (068)	
, , ,	
3.21 Ingonish (065)	

APPENDICES

APPENDIX A: Well Logs

APPENDIX B: Groundwater Level Graphs
APPENDIX C: Groundwater Chemistry Results
APPENDIX D: Groundwater Temperature Graphs
APPENDIX E: Water Level Trend Analyses

EXECUTIVE SUMMARY

The Nova Scotia Groundwater Observation Well Network was established in 1965 to monitor groundwater levels across the province. The network currently monitors both groundwater levels and groundwater quality and the results are used to: manage groundwater resources; assess drought conditions; evaluate the impact of human activities on groundwater; and, evaluate long-term groundwater trends. At the beginning of 2008 the network included 27 observation wells and four additional wells were added during 2008, bringing the total number of active wells to 31 by the end of 2008. This report presents the monitoring results collected up to the end of 2008.

The observation wells are monitored with telemetric dataloggers that record water levels and groundwater temperature every hour and transmit the data to a central computer. The number of years of groundwater level data available at each observation well ranges from one to 42 years. Groundwater samples are collected from the wells periodically and tested for a number of parameters, including: general chemistry, metals, pesticides, volatile organic compounds (VOCs), tritium and perchlorate.

The groundwater level monitoring results indicate that eight of the 31 observation wells exhibit statistically significant groundwater level trends, with three having small upward trends and five having small downward trends. The downward trends tend to be larger than the upward trends, however, the size of the trends in all cases is relatively small. The maximum observed water level decline was approximately 1.0 m. Three of the five observation wells with downward trends are located in municipal wellfields and, therefore, groundwater level drops in these wells are expected to have been caused by wellfield pumping.

The groundwater quality monitoring results indicate that seven of the 31 wells exceeded health-based drinking water guidelines. The parameters that exceeded health-based guidelines included: arsenic (at four wells), fluoride (one well), lead (one well), nitrate (one well) and uranium (one well). Elevated levels of arsenic, fluoride and uranium are known to occur in groundwater in certain areas of the province due to their naturally-occurring presence in soil and bedrock. The elevated nitrate levels were observed in a well located in an agricultural area and are expected to be caused by human activity.

Sixteen of the 31 wells exceeded aesthetic drinking water guidelines, including the following parameters: manganese (at 12 wells), iron (seven wells), chloride (one well), pH (three wells) and turbidity (seven wells). The majority of these parameters are naturally-occurring water quality problems that are routinely encountered in water wells in Nova Scotia and elsewhere. Chloride was detected above background levels at three wells. It is expected that two of these wells have been impacted by road salt and one has been impacted by sea water intrusion.

The water quality results show that none of the observation wells exceeded drinking water guidelines for VOCs or pesticides. However, the VOC toluene was detected at low levels at (1 ug/L) in one of the observation wells. This well is located beside a road and, therefore, the presence of toluene may be due to gasoline runoff from the road. No pesticides were detected in any of the observation wells.

Of the 17 observation wells that have been tested for tritium, 13 wells contained either recent water (recharged after 1952) or a mix of recent and old water (recharged before and after 1952). Only four of the seventeen wells tested for tritium contained purely old water (recharged before1952). These results suggest that most of the wells draw water from aquifers are recharged relatively quickly. This is encouraging from a water quantity point of view because the aquifers are being regularly replenished with new water, however, it also indicates that the aquifers are vulnerable to contamination (i.e., contaminants released at the surface will be carried into the aquifer relatively quickly). This emphasizes the importance of source water protection in the province to ensure that groundwater is kept clean.

ACKNOWLEDGMENTS

This report was prepared by staff at Nova Scotia Environment. Both the report and the operation of the Nova Scotia Groundwater Observation Well Network have benefitted from the valuable input of many dedicated individuals. In particular, we gratefully acknowledge the cooperation of the many property owners with observation wells located on their properties. Their continued participation in the program is vital to the success of the network. In addition, staff from the Groundwater Resources Program at Nova Scotia Department of Natural Resources have made significant contributions to the planning and operation of the network, including siting of new observation wells, drilling supervision, groundwater sampling and performing pumping tests.

1.0 INTRODUCTION

The Nova Scotia Groundwater Observation Well Network was established in 1965 to monitor groundwater levels across the province. The size of the network has varied over the years, however, at the beginning of 2008 the network included 27 observation wells. Four wells were added to the network during 2008, bringing the total number of active wells to 31 by the end of 2008. The network is currently operated by Nova Scotia Environment (NSE) and is used for monitoring both groundwater levels and groundwater quality. The monitoring results are used to help manage groundwater resources, assess drought conditions, evaluate the impact of human activities on groundwater and evaluate long-term groundwater trends. This report presents the monitoring results up to the end of 2008.

1.1 Historical Background

When the observation well network was initially established in 1965, it consisted of wells that were installed as part of the International Hydrologic Decade (1965-1974) and as part of regional groundwater resource evaluation studies undertaken in Nova Scotia during the 1960's and 1970's. Most of these wells were constructed specifically for observation purposes or drilled as test holes and then converted to observation wells. During the 1970's and 80's the network continued to expand until it included as many as 40 active wells, but many of these were abandoned in the 1990's. By 2003, the network consisted of 11 active wells.

After 2003, the network began expanding again. Three wells were added between 2003 and 2005, bringing the total number of wells to 14. Ten observation wells were added to the network in 2006, bringing the total number of wells to 24. All of the wells added to the network up to the end of 2006 were existing wells that were once part of the historic network, but were no longer being actively monitored. In 2007, two new observation wells were drilled and one existing inactive observation well was added back into the network. For the two wells drilled in 2007, water level monitoring began in May of 2008. Therefore, the total number of observation wells being monitored by the end of 2007 was 25. In 2008, three new observation wells were drilled and a former provincial park water supply well was converted to an observation well, bringing the total number of active wells in the network to 31 by the end of 2008.

Up until the 1990's, groundwater levels in each well were monitored using mechanical Stevens F Type chart recorders, which recorded water level changes on a paper chart that was retrieved from the field on a monthly or quarterly basis. In the late 1990's the chart recorders began to be replaced with electronic dataloggers and in 2003 an initiative began to equip the entire network with telemetric dataloggers which are capable of transmitting the monitoring results by cell phone to a central computer.

Three reports have been previously published on the network:

- "Groundwater Hydrographs in Nova Scotia 1965-1981" (McIntosh, 1984);
- "Nova Scotia Groundwater Observation Well Network 2007 Report" (NS Environment and Labour, 2007); and
- "Nova Scotia Groundwater Observation Well Network 2008 Report" (NS Environment, 2008).

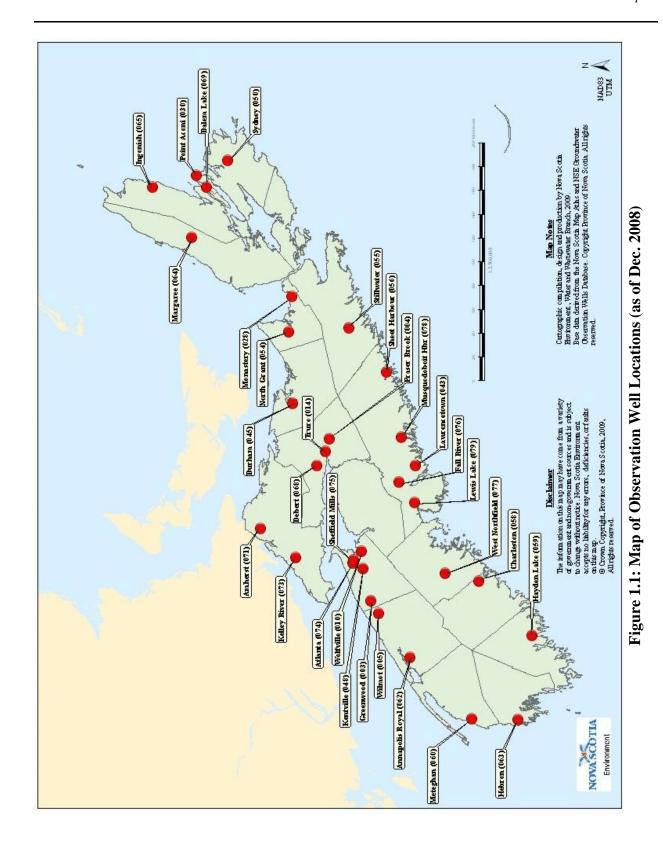
In 2006, a web page was launched to provides public access to the network's results. The website can be found at: http://www.gov.ns.ca/nse/groundwater/groundwaternetwork.asp. The webpage is updated with new groundwater level data on a quarterly basis. The majority of the historical hard copy water level data has been digitized and is available in spreadsheet format on the above referenced webpage.

1.2 Activities Completed in 2008

Four wells were added to the network in 2008, including: Fall River (076), West Northfield (077), Musquodoboit Harbour (078) and Lewis Lake (079). The first three of these are new observation wells that were drilled in 2008 by NSE and NSDNR. Lewis Lake (079) was a former water supply well located in Jerry Lawrence Provincial Park that was no longer in use.

Pumping tests were completed at the four wells referenced above. The pumping tests were short duration tests (< 4 hours), including steps tests and constant rate tests. Water quality sampling was carried out at 22 observation wells in 2008, including the four wells referenced above. Table C1 in Appendix C provides a complete list of the wells that were sampled in 2008.

1.3 Description of the Current Network


As of December 31st, 2008 the observation well network consisted of 31 wells. The wells are listed in Table 1.1 and the well locations are shown in Figure 1.1. As shown in Table 1.1, the number of years since monitoring began at each well is variable, but ranges from 1 year to 42 years and can be summarized as follows: wells with more than 40 years of data (3 wells); 30 years (5 wells); 20 years (9 wells); 10 years (7 wells); and less than 10 years (7 wells). Note that these figures do not necessarily reflect the number of years of monitoring data available for each well because there are data gaps in the records.

Currently, all of the observation wells in the network have dataloggers that record water levels and temperature every hour. The majority of wells also have telemetric systems that transmit the data by cell phone to a central computer. Groundwater samples are collected from the wells periodically and tested for a number of parameters, including general chemistry, metals, pesticides, volatile organic compounds, tritium and perchlorate. The wells are sampled at approximately two to five year intervals to monitor for changes in water quality. Most of the wells in the network have been sampled at least once, however, some wells have not been sampled due to technical limitations (such as old floats associated with former Stevens chart recorders that have become lodged in the well casing).

Note that the observation wells listed in Table 1.1 are named based on the nearest town or water body and the observation well number that is assigned to the well when it is added to the network. For example, "Truro (014)" is located in Truro and its network well ID number is 014. The three digit observation well ID numbers have been in use since the network was developed in 1965. They are unique and are not reused, even when a well is abandoned. Some of the observation wells in this report have been renamed since the initial 1984 network report in order to adhere to a consistent naming protocol. For example, "Truro (014)" was originally named "Truro 421" in the 1984 network report. The "421" was originally included in the well name because it was called "Department of Mines Test Hole 421" at the time of drilling. Because some of the original well names have changed, readers who wish to compare historical results from the 1984 network report with this report should cross-reference wells using the three digit observation well ID number.

Table 1.1: Wells in the NS Groundwater Observation Well Network (as of Dec 2008)

No.	Well Name	Well	County	Year Monitoring	Years Since
		ID#		Started	Monitoring Began
1	Greenwood (003)	003	Kings	1966	42
2	Fraser Brook (004)	004	Colchester	1966	42
3	Wilmot (005)	005	Annapolis	1966	42
4	Wolfville (010)	010	Kings	1969	39
5	Truro (014)	014	Colchester	1971	37
6	Monastery (028)	028	Antigonish	1976	32
7	Point Aconi (030)	030	Cape Breton	1976	32
8	Lawrencetown (043)	043	Halifax	1978	30
9	Durham (045)	045	Pictou	1979	29
10	Kentville (048)	048	Kings	1980	28
11	Sydney (050)	050	Cape Breton	1984	24
12	North Grant (054)	054	Antigonish	1987	21
13	Stillwater (055)	055	Guysborough	1987	21
14	Sheet Harbour (056)	056	Halifax	1987	21
15	Charleston (058)	058	Queens	1988	20
16	Hayden Lake (059)	059	Shelburne	1988	20
17	Meteghan (060)	060	Digby	1987	21
18	Annapolis Royal (062)	062	Digby	1990	18
19	Hebron (063)	063	Yarmouth	1990	18
20	Margaree (064)	064	Inverness	1990	18
21	Ingonish (065)	065	Victoria	1990	12
22	Debert (068)	068	Colchester	1993	15
23	Dalem Lake (069)	069	Victoria	1992	16
24	Amherst (071)	071	Cumberland	1993	15
25	Kelley River (073)	073	Cumberland	2006	2
26	Atlanta (074)	074	Kings	2008	<1
27	Sheffield Mills (075)	075	Kings	2008	<1
28	Fall River (076)	076	Halifax	2008	<1
29	West Northfield (077)	077	Lunenburg	2008	<1
30	Musquodoboit Harbour (078)	078	Halifax	2008	<1
31	Lewis Lake (079)	079	Halifax	2008	<1

Page 5

2.0 METHODS

2.1 Groundwater Level Monitoring

2.1.1 Field Methods

Each observation well in the network is equipped with a pressure transducer, temperature sensor and electronic datalogger that records water levels and water temperature every hour. There is also a second pressure transducer located above the water in each well that monitors atmospheric pressure so the water level measurements can be adjusted for atmospheric pressure changes. The majority of wells are also equipped with telemetric systems that transmit the monitoring data by cell phone to a central computer system once a week.

The wells are visited approximately every six months for field verification of the water level data and to change the telemetric system batteries. Water levels are verified in the field with a manual electronic water level tape.

After the raw water level data is collected, it goes through several adjustments before being added to the spreadsheet database. Data corrections are applied if the field measurement differs from the pressure transducer readings by more than 2.1 cm, which is the reported accuracy of the pressure transducers. If corrections are necessary, they are made by applying a linear adjustment between two field verified water levels. Next, the hourly water level data is averaged to obtain a single average daily water level for each day. Finally, the water level data are converted to a water level elevation (relative to mean sea level) using the elevation of the top of the well casing.

2.1.2 Data Assessment Methods

The water levels at each well were assessed for changes and long-term trends for the entire period on record, up to the end of 2008. The water level assessments were carried out by visual inspection of the water level graphs and statistical tests. The Mann-Kendall trend test (Gilbert, 1987) was used to determine if there was a trend in the water level data (i.e. upward trend, downward trend or no trend). This test is one of the most commonly used statistical methods to evaluate trends in environmental data and has been used in other studies in Nova Scotia to assess groundwater level trends (Rivard et al., in progress). The rate of annual change at each well was determined using the

Sen's slope estimator (Gilbert, 1987), a commonly-used linear slope estimator in environmental statistics.

The results of the statistical trend analyses are presented in Appendix E. Trend analyses were only completed for wells with four or more "usable" years of data. A year was considered usable if groundwater level data were available for at least 75% of the days in the year. A trend for a well was considered "statistically significant" if there was 10 or more "usable" years. Trends were considered "statistically significant" if there was at least an 80% confidence that the trend was real. Note that "statistically significant" means there is statistical evidence that there is a trend present, but it does not necessarily mean the trend is large.

If groundwater level changes or trends were identified, possible reasons for the change or trend were evaluated. Several factors can cause groundwater levels to fluctuate. The most common causes of groundwater level changes in Nova Scotia include: precipitation, seasonal variations, groundwater pumping and tidal effects. Each of these factors is discussed in further detail in the following paragraphs.

Fluctuations Due to Precipitation

Precipitation, such as rainfall or melting snow, will either run off into streams and surface water bodies, be intercepted by vegetation, or seep into the ground. The portion that seeps into the ground is known as groundwater recharge. Groundwater recharge is difficult to measure, however, it has been estimated that recharge rates in Nova Scotia typically range from about 8 to 25% of precipitation. Groundwater recharge causes the groundwater levels in an aquifer to rise, although there is usually a delay between the precipitation event and when the groundwater level rises. The amount of precipitation and groundwater recharge varies throughout the province. Nova Scotia weather stations show the following mean annual total precipitations at selected locations between 1971 and 2000: Greenwood 1127 mm, Halifax 1452 mm, Sydney 1505 mm, and Yarmouth 1274 mm (Environment Canada, 2007).

Long-term trends in precipitation due to climate change can result in corresponding trends in groundwater levels. In cases where observation wells showed a significant groundwater level trend, the nearest climate station data was also evaluated for precipitation trends to assess whether or not climate change could be affecting groundwater levels.

Seasonal Fluctuations

In Nova Scotia, the spring and fall tend to have the highest amounts of precipitation and the summers tend to be drier. This seasonal variation is reflected in groundwater levels in the province's aquifers, which usually have higher water levels in the spring and lower levels in the summer. The lower groundwater levels in the late months of summer are the result of several factors, including: decreased precipitation, increased evaporation and the increased interception of water by vegetation. The typical seasonal variation in groundwater levels in Nova Scotia aquifers is usually less than about three metres.

Season fluctuations in groundwater levels in Nova Scotia can often be observed in the three typical patterns they produce in observation well hydrographs. These usually include two wet seasons (spring and fall) with rising groundwater levels, and a dry season in the summer with declining groundwater levels, as described below:

- 1. Spring Recharge rising groundwater levels between March and May due to spring rainfall and melting snowpack . Maximum groundwater levels usually occur during this period.
- 2. Fall Recharge rising groundwater levels between October and December due to fall precipitation.
- 3. Summer Recession declining groundwater levels beginning in June and reaching minimum levels in September. Winter conditions of snowfall and frost can also limit recharge, resulting in a minor groundwater level recession in February.

Groundwater Pumping

The removal of water from an aquifer, by a well or wellfield, results in the lowering of the water level in the well and the surrounding aquifer. The lowering of groundwater levels as a result of pumping is referred to as drawdown. The amount of drawdown depends on how much is being pumped, the distance from the pumping well, and the characteristics of the aquifer (e.g., transmissivity, storativity, aquifer boundaries). In Nova Scotia, large wellfields in bedrock aquifers have been observed to cause groundwater drawdown in wells as far away as two to three kilometres.

Tidal Fluctuations

Aquifers and wells near the ocean can experience tidal fluctuations. Even though the water in a well may be fresh, the water level may rise and fall with the tide. The amount of water level fluctuation (i.e., amplitude) depends on the distance between the well and the ocean and aquifer properties. There is also a delay (i.e., time lag) between the rise or drop in the tide and the corresponding rise or drop in the well.

2.2 Groundwater Quality Monitoring

2.2.1 Field Methods

The observation wells have been tested for various parameters including: general chemistry, metals, volatile organic compounds (VOC), pesticides, tritium and perchlorate. The general chemistry, metals, VOC and pesticides analyses were carried out at Maxxam Analytics in Bedford, NS; the tritium analyses were carried out at the Environmental Isotope Laboratory, University of Waterloo, Waterloo, ON; and, the perchlorate analyses were carried out by the National Water Research Institute in Burlington, ON.

The groundwater samples were collected using either a disposable bailer or a submersible pump that was cleaned after each sample was collected. Prior to collecting the samples each well was purged by either removing three well volumes, or by purging until electrical conductivity (EC) and temperature (T) have become stable based on the following approach: 1) begin to purge the well; 2) record the EC and T values after purging 0.5 well volumes; 3) repeat EC and T measurements after purging 1 well volume; 4) continue purging and recording EC and T values at 0.5 well volume intervals until EC and T values are within 10% of previous values. If a well was pumped completely dry, purging was considered complete.

The groundwater samples were collected into laboratory supplied bottles, stored in a chilled cooler and delivered to the laboratory within the specified holding times. Samples for general chemistry and metals were filtered in the field using 0.45 micron filters. Samples collected for metals were also preserved in the field using nitric acid.

2.2.2 Data Assessment Methods

The groundwater sample results for general chemistry, metals, VOCs and pesticides were assessed by comparison to the Canadian Drinking Water Quality Guidelines. Tritium and perchlorate results were assessed separately, as described in the paragraphs below. Note that the observation wells in the network are not used for drinking water, however, the drinking water guidelines are the most commonly used guidelines applied to water wells and they provide a useful reference point to judge the general water quality at each well.

Tritium is a short-lived isotope of hydrogen with a half-life of 12.43 years that is commonly used to assess the relative age of groundwater and how vulnerable an aquifer is to contamination (Clark and Fritz, 1997). During the 1950's, hydrogen bomb testing caused tritium levels to become elevated above naturally-occurring background levels in the earth's atmosphere. The elevated tritium levels are picked up by precipitation and carried into aquifers as the precipitation infiltrates in to the ground. Groundwater with tritium levels of less than 1.0 Tritium Units (TU) is considered relatively old, being recharged before hydrogen bomb testing began in 1952. Groundwater with more than 5.0 TU is considered to be predominantly recent water, being recharged after 1952 (Clark and Fritz, 1997). Groundwater with tritium levels between 1.0 and 4.0 TU is considered to be a mix of recent and old water. Groundwater with tritium levels between 4.0 and 5.0 TU is considered to be a mix of mostly recent water with a small measure being old water.

Water wells with tritium levels less than 1.0 TU are considered to be recharged by older water and, therefore, are not as vulnerable to contamination as other wells. Water wells that contain recent water, or a mix of recent and old water, are more vulnerable to contamination because rapid recharge allows contaminants to move relatively quickly from the ground surface into the aquifer. Many of the wells in the observation well network have short casing lengths (i.e., less than seven metres) and long open-hole intervals that allow both shallow and deep groundwater to enter the well and, therefore, it is likely that these wells will contain a mix of recent and old water. This type of well construction is similar to the majority of water wells in Nova Scotia, which have a minimum casing length of 6.1 m, as required by the NS Well Construction Regulations.

Perchlorate is an emerging contaminant that has received significant attention since 1997 when it was found in several water supplies in the United States. It is a compound consisting of one chlorine

and four oxygen atoms that can exist as the solid salt of ammonium, potassium, or other metals, and it readily dissolves in water to produce the perchlorate ion (ClO_4^-) . Perchlorate has been used in products such as rocket fuels, munitions, explosives, fireworks, road flares, fertilizers and air bag inflation systems. It can also occur naturally at low levels in the environment.

Recent sampling has detected the presence of very low levels of perchlorate in some Canadian drinking water sources (Health Canada, 2007). Groundwater samples from the Nova Scotia Observation Well Network were tested for perchlorate in 2004/2005 in order to evaluate the occurrence of perchlorate in Nova Scotia groundwater. There is currently no national drinking water guideline for perchlorate either in Canada or in the United States, however, Health Canada recommends a drinking water guidance value of 6 ug/L. Therefore, the perchlorate results from the observation well network were assessed by comparison to the recommended Health Canada value of 6 ug/L. The perchlorate results are provided in Appendix C in this report and are discussed in further detail in previous annual reports on the Groundwater Observation Well Network (see NSEL, 2007).

In observation wells where elevated chloride levels were detected, an assessment of the possible source of salt was carried out by calculating the bromide (Br) to chloride (Cl) ratio. Wells were considered to have elevated chloride levels if chloride concentrations exceeded typical background levels for groundwater in coastal Nova Scotia (i.e., <50 mg/L). A commonly used guide for distinguishing salt sources in Nova Scotia is to calculate the ratio of Br(mg/L)/Cl(mg/L) x 10,000, and compare the result to the following three ranges:

- 1. Ratio <10 indicates road salt or halite brine;
- 2. Ratio >10 indicates formation brines;
- 3. Ratio = 35 indicates a sea water influence.

3.0 RESULTS

This section presents the monitoring results for each observation well. Please refer to the appendices for well logs, groundwater level graphs, groundwater chemistry tables, groundwater temperature graphs and trend analysis details.

3.1 Greenwood (003)

Well Description

The Greenwood (003) observation well is located near Greenwood, Kings County. It was constructed in 1966 as part of a regional groundwater resource evaluation project (Trescott, 1968) and was originally named "Nova Scotia Department of Mines Test Hole 88". The well is completed in an overburden aquifer comprised of outwash sand. It is 7.6 m deep and has 6.6 m of casing. The well location and construction information is shown in Table 3.1 and the well log is provided in Appendix A.

Table 3.1: Greenwood (003) Well Construction Information

Well Name	Greenwood (003)
Observation Well ID Number	003
NSE Well Log Number	661225
County	Kings
Nearest Community	Greenwood
UTM - Easting (m)	350680
UTM - Northing (m)	4985498
Year Monitoring Started	1966
Casing Depth (m, bgs)	6.6
Well Depth (m, bgs)	7.6
Elevation - top of casing (m, asl)	24.15
Geologic Unit	Pleistocene Outwash
Aquifer Material	Overburden - sand

Notes: bgs = below ground surface; asl = above sea level

The location of the Greenwood (003) observation well is shown in Figure 3.1a. It is situated in a rural area where land use is primarily agricultural or undeveloped. The well is located in a wooded area behind a house (see Figure 3.1b), with all other development at least a kilometre away. The nearest water well is a private well located approximately 120 m away.

Monitoring Results - Water Levels

The water level graphs for Greenwood (003) are shown in Figure B.1, Appendix B. This well has been monitored since 1966 and water levels have remained relatively consistent. The average water level elevation is approximately 21.8 m above sea level and the annual water level fluctuation is about 1 m. The depth to water in this well is approximately 2.4 m below ground surface. There is no visually obvious long-term water level trend and the statistical trend analysis for this well (Appendix E) indicates that there is no statistically significant trend present.

The 2008 water levels were within the normal range for this well during the majority of the year; however, historical high water levels were recorded in February, March, September and December of 2008.

Monitoring Results - Water Chemistry and Temperature

The Greenwood (003) well was sampled in 2005 and 2008. Water chemistry results are presented in Appendix C. The results for both samples indicate that no health-based drinking water guidelines were exceeded; however, both samples exceeded aesthetic drinking water guidelines for pH, turbidity, iron and manganese. The elevated turbidity levels are expected due to the high iron and manganese. Note that the ion balance error reported in the general chemistry analysis exceeds the generally acceptable level of 5% and, therefore, these results should be viewed with caution.

VOCs, pesticides and perchlorate were not detected at the Greenwood (003) well. The tritium level in this well was 5.76 TU, indicating that the water in this well is relatively recent (i.e., recharged after 1952). The average groundwater temperature at the Greenwood (003) well was 7.96 °C, with annual fluctuations between 5.5 and 10 °C. A graph of the average daily temperature is presented in Appendix D.

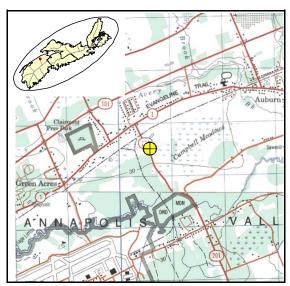


Figure 3.1a: Greenwood (003) Well Location

Figure 3.1b Greenwood (003) Site Photo

3.2 Fraser Brook (004)

Well Description

The Fraser Brook (004) observation well is located near Lower Harmony, Colchester County. It was constructed in 1966 as part of a water resources study (Hennigar, 1966) that was carried out under the International Hydrologic Decade Program. It was originally named "Test Hole 100" and was one in a series of test wells installed in the Fraser Brook watershed.

The well is completed in siltstone. It is 18.3 m deep and the casing extends to a depth of 9.3 m. Well location and construction information is provided in Table 3.2 and the well log is provided in Appendix A. A 24-hour pump test conducted at this well indicated a transmissivity of 4.8 m²/day and a safe yield of 42 m³/day (6.5 igpm) (McIntosh, 1984).

Table 3.2: Fraser Brook (004) Well Construction Information

Well Name	Fraser Brook (004)
Observation Well ID Number	004
NSE Well Log Number	661226
County	Colchester
Nearest Community	Lower Harmony
UTM - Easting	486889
UTM - Northing	5021100
Year Monitoring Started	1966
Casing Depth (m, bgs)	9.3
Well Depth (m, bgs)	18.3
Elevation - top of casing (m, asl)	109.27
Geologic Unit	Canso Group
Aquifer Material	Bedrock - siltstone

Notes: bgs = below ground surface; asl = above sea level

The location of the Fraser Brook (004) observation well is shown in Figure 3.2a. It is situated in a rural area where land use is primarily agricultural or undeveloped. The well was located in a wooded area (see Figure 3.2b), however, in 2005 the majority of the trees were removed due to damage sustained during Hurricane Juan in 2003. The nearest water well is a domestic well, located approximately 1,000 m away.

Monitoring Results - Water Levels

The water level graphs for Fraser Brook (004) are shown in Figure B.2, Appendix B. This well has been monitored since 1966. The average water level elevation at this well is approximately 104.9 m above sea level and the annual water level fluctuation is about 1 m. The depth to water in this well is approximately 4.4 m below ground surface. There is no visually obvious long-term water level trend, however, the statistical trend analysis for this well (Appendix E) indicates that there is a very small statistically significant upward trend about 0.3 cm/year. This is equivalent to a total rise of about 0.1 m since monitoring began at this well.

The 2008 water levels generally fluctuated within the typical range for this well; however, water levels exceeded historical highs in February, March, September and December.

Monitoring Results - Water Chemistry and Temperature

The Fraser Brook (004) well was sampled in 2004 and 2008. Water chemistry results are presented in Appendix C. The results indicate that arsenic exceeded the drinking water guideline in both water samples. No other parameters exceeded guidelines at this well. VOCs, pesticides and perchlorate were not detected. This well has not been tested for tritium.

The average groundwater temperature at the Fraser Brook (004) well was $7.0~^{\circ}\text{C}$, with annual fluctuations between 5.5 and $8.7~^{\circ}\text{C}$. A graph of the average daily temperature for this well is presented in Appendix D.

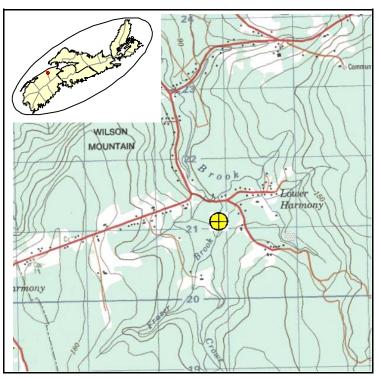


Figure 3.2a: Fraser Brook (004) Well Location

Figure 3.2b: Fraser Brook (004) Site Photograph

3.3 Wilmot (005)

Well Description

The Wilmot (005) observation well is located in Wilmot, Annapolis County. It was constructed May 1966 as part of a regional groundwater resource evaluation project (Trescott, 1968) and was originally named "Nova Scotia Department of Mines Test Hole 51". The well is completed in an overburden aquifer comprised of outwash gravel. It is 18.3 m deep and the casing depth extends to 6.4 m. The surficial geology of the area was classified as a stream alluvium deposit of the Quaternary Period. The alluvium deposit consisted of several feet of clay overlying fine to coarse gravel.

Table 3.3: Wilmot (005) Well Construction Information

Well Name	Wilmot (005)
Observation Well ID Number	005
NSE Well Log Number	661267
County	Annapolis
Nearest Community	Wilmot
UTM - Easting	340015
UTM - Northing	4979368
Year Monitoring Started	1966
Casing Depth (m, bgs)	6.4
Well Depth (m, bgs)	18.3
Elevation - top of casing (m, asl)	9.0
Geologic Unit	Pleistocene Outwash
Aquifer Material	Overburden - gravel

Notes: bgs = below ground surface; asl = above sea level

Well location and construction information is provided in Table 3.3 and the well log is provided in Appendix A. A 26 hour pump test conducted at a nearby wellfield situated in a similar geological unit indicated a transmissivity of 621 m²/day and storativity of 1.9 x 10⁻³ (McIntosh, 1984).

The location of the Wilmot (005) observation well is shown in Figure 3.3a. The well site, shown in

Figure 3.3b, is located south-west of Wilmot. It is situated in an actively farmed field, 100 m east of Baynard Road. South of the site, is a wooded area extending 75 m to the Annapolis River, where a hydrometric station measures surface water flow as part of the national hydrometric program. The nearest water well is a domestic well located approximately 150 m away.

Monitoring Results - Water Levels

The historical water level graphs for Wilmot (005) are shown in Figure B.3, Appendix B. This well has been monitored since 1966 and there is no visually obvious long-term water level trend. The trend analysis for this well (Appendix E) indicates that there is no statistically significant trend.

The average water level elevation at this well was approximately 6.7 m above sea level and the annual water level fluctuation was about 1.8 m. The depth to water in this well was approximately 2.0 m below ground surface.

The 2008 water levels generally fluctuated within the typical range for this well; however, water levels exceeded historical highs in February, March and December.

Monitoring Results - Water Chemistry and Temperature

The Wilmot (005) well was sampled in 2006. Water chemistry results are presented in Appendix C. The results indicate that health-based drinking water guidelines were exceeded for nitrate and aesthetic guidelines were exceeded for turbidity. VOCs were not detected. This well has not been tested for pesticides, perchlorate or tritium.

The average groundwater temperature at this well was 8.31 °C, with annual fluctuations between approximately 6.0 and 10.5 °C. A graph of the average daily temperature at this well is presented in Appendix D.

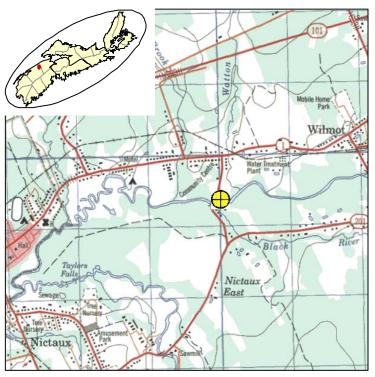


Figure 3.3a: Wilmot (005) Well Location

Figure 3.3b: Wilmot (005) Site Photograph

3.4 Wolfville (010)

Well Description

The Wolfville (010) observation well is located in Wolfville, Kings County. It was constructed in December 1968 as part of a regional groundwater resource evaluation project (Trescott, 1969) and was originally named "Nova Scotia Department of Mines Test Hole 398". This well has also been referred to as the "Wolfville 2" observation well. The well is completed in a sandstone aquifer. It is 17.7 m deep and penetrates 7.0 m into the bedrock. The casing depth extends to 22.7 m. Well location and construction information is provided in Table 3.4 and the well log is provided in Appendix A. A 29-day pump test was conducted at this well in 1969. The results indicated a transmissivity of 695 m²/day and storativity of 3x10-² (McIntosh, 1984).

Table 3.4: Wolfville (010) Well Construction Information

Well Name	Wolfville (010)
Observation Well ID Number	010
NSE Well Log Number	681252
County	Kings
Nearest Community	Wolfville
UTM - Easting	392093
UTM - Northing	4993838
Year Monitoring Started	1969
Casing Depth (m, bgs)	22.7
Well Depth (m, bgs)	24.1
Elevation - top of casing (m, asl)	5.20
Geologic Unit	Wolfville Formation
Aquifer Material	Bedrock - sandstone

Notes: bgs = below ground surface; asl = above sea level

The location of the Wolfville (010) observation well is shown in Figure 3.4a. The well is situated in a small park in the middle of a residential area (see Figure 3.4b). Land use in the vicinity of the well is urban. The wellfield for the Town of Wolfville, comprised of two pumping wells, is located approximately 750 m away.

Monitoring Results - Water Levels

The water level graphs for Wolfville (010) are shown in Figure B.4, Appendix B. This well has been monitored since 1969 and water levels appear to have declined slightly over time. From 1970 to 1975, the average water level elevation was approximately 1.1 m above sea level and the annual water level fluctuation was about 2 m. The average water level in 2008 was 0.4 m above sea level, with an annual fluctuation of 1 m. The depth to water in this well is approximately 4.6 m below ground surface.

The statistical trend analysis for this well (Appendix E) indicates that there is small downward trend in water levels, equivalent to approximately 2.5 cm/year. The total water level drop since monitoring began at this well is approximately 0.7 m. The reason for this decline has not been confirmed, however, it may be related to pumping at the Town of Wolfville's production wells which are located within 750 m from this well.

The 2008 water levels generally fluctuated within the typical range for this well; however, water levels were at previously observed historical lows during late May and the first few weeks of June.

Monitoring Results - Water Chemistry and Temperature

The Wolfville (010) well was sampled in 2004 and 2008. Water chemistry results are presented in Appendix C. The results indicate that no health-based drinking water guidelines were exceeded; however, turbidity, iron and manganese were above aesthetic drinking water guidelines in the 2008 sample. The elevated turbidity levels are expected due to the high iron and manganese. The iron and manganese levels from the 2008 sample have increased by approximately two orders of magnitude compared to the 2004 sample results. The reason for this increase has not been determined. VOCs, pesticides and perchlorate were not detected in this well.

The chloride level in this well was 78 mg/L in 2004 and 87 mg/L in 2008. Although these levels do not exceed the aesthetic objective of 250 mg/L, they are elevated above the typical background level

for groundwater in coastal Nova Scotia (<50 mg/L). For the 2004 sample results, the bromide/chloride ratio for this well was <10 (i.e., 0.06 mg/L/78mg/L x 10,000 =7.7). For the 2008 sample results, the bromide/chloride ratio for this well was 9.2. Both of these results indicate that the source of the chloride is road salt. Please see Section 2.2.4 for a discussion of how this ratio is used to assess salt sources.

The tritium level in this well was 4.7 TU (+/- 0.4), indicating that the water in this well is either a mix of old and recent water (i.e., recharge occurred before and after 1952) or is recent (i.e., recharged occurred after 1952).

The average groundwater temperature at the Wolfville (010) well was 9.15 °C, with annual fluctuations between 8.0 and 10.3 °C. A graph of the average daily temperature for this well is presented in Appendix D.

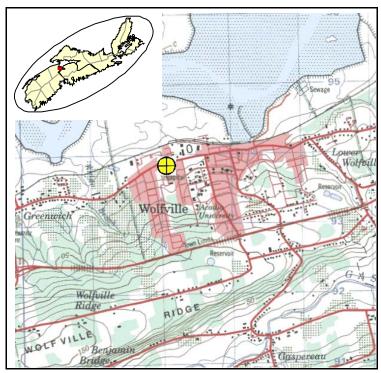


Figure 3.4a: Wolfville (010) Well Location

Figure 3.4b: Wolfville (010) Site Photograph

3.5 Truro (014)

Well Description

The Truro (014) observation well is located in Truro, Colchester County. It was constructed in November 1970 as part of a regional groundwater resource evaluation project (Hennigar, 1972) and was originally named "Nova Scotia Department of Mines Test Hole 421". It has also been referred to as the "Truro 421" observation well. The well is 91.4 m deep, penetrates 80.8 m into bedrock and the casing depth extends to 18.3 m. It is completed in a sandstone aquifer. Well location and construction information is provided in Table 3.5 and the well log is provided in Appendix A.

Table 3.5: Truro (014) Well Construction Information

Well Name	Truro (014)
Observation Well ID Number	014
NSE Well Log Number	701431
County	Colchester
Nearest Community	Truro
UTM - Easting	476052
UTM - Northing	5023778
Year Monitoring Started	1971
Casing Depth (m, bgs)	18.3
Well Depth (m, bgs)	91.4
Elevation - top of casing (m, asl)	9.83
Geologic Unit	Wolfville Formation
Aquifer Material	Bedrock - sandstone

Notes: bgs = below ground surface; asl = above sea level

The location of the Truro (014) observation well is shown in Figure 3.5a and a site photograph is shown in Figure 3.5b. It is situated in an urban area where the surrounding land is predominantly developed. The well is located within the Town of Truro Public Works yard and is adjacent to a golf course, several businesses and residences. The area is serviced by a municipal water supply and there are no other known water wells in the immediate vicinity.

Monitoring Results - Water Levels

The water level graphs for Truro (014) are shown in Figure B.5, Appendix B. This well has been monitored since 1971. The groundwater levels appear to have decreased slightly between 1971 and 1991. There is a data gap between 1991 and 2002 when no monitoring was carried out at this well; however, sometime after 1991 the groundwater levels in this well increased and have remained relatively consistent since 2003 when monitoring began again. The increased water level at this well is believed to be a result of the decommissioning of a municipal water supply well in 1994, which was located within a kilometre of the observation well. The trend analysis for this well (Appendix E) indicates that there is no statistically significant trend present when the entire data record from 1991 to 2008 is considered.

The average water level elevation between 1971 and 1991 ranged from about 6.5 to 7.5 m above sea level and the annual water level fluctuation was about 1.5 m. From 2003 to present, the average water level elevation was 7.9 m above sea level, with an annual water level fluctuation of about 1.2 m. The depth to water in this well has varied from approximately 2.0 m to 3.5 m below ground surface.

The 2008 water levels generally fluctuated within the typical range that has been observed at this well since 2003; however, the 2008 water levels exceeded historical highs in February, March, September and December.

Monitoring Results - Water Chemistry and Temperature

The Truro (014) well has not been sampled due to a partial blockage of the casing, caused by an old float device from a Stevens chart recorder that is lodged in the well. Therefore, detailed chemistry data are not available.

The average groundwater temperature at this well was 8.76 °C, with annual fluctuations between approximately 4.0 and 13.2 °C. A graph of the average daily temperature in this well is presented in Appendix D.

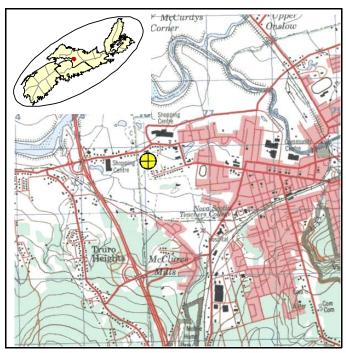


Figure 3.5a: Truro (014) Well Location

Figure 3.5b: Truro (014) Site Photograph

3.6 Monastery (028)

Well Description

The Monastery (028) observation well is located near Monastery, Antigonish County. The well was installed in January 1974 as part of a groundwater resource evaluation study (Strait of Canso Natural Environment Committee, 1975) and was originally named "Nova Scotia Department of Mines Test Hole 449". The well is completed in a sandstone aquifer. It is 158 m deep and the casing depth is unknown. Well location and construction information is provided in Table 3.6 and the well log is provided in Appendix A. A 50-hour pumping test was conducted at this well in 1974, indicating a transmissivity of 9.8 m²/day and a 20-year safe yield of 439 m³/day (67 igpm) (McIntosh, 1984).

Table 3.6: Monastery (028) Well Construction Information

Well Name	Monastery (028)
Observation Well ID Number	028
NSE Well Log Number	742420
County	Antigonish
Nearest Community	Monastery
UTM - Easting	606083
UTM - Northing	5052489
Year Monitoring Started	1976
Casing Depth (m, bgs)	NA
Well Depth (m, bgs)	158
Elevation - top of casing (m, asl)	23.12
Geologic Unit	Canso Group
Aquifer Material	Bedrock - sandstone

Notes: bgs = below ground surface; asl = above sea level

The location of the Monastery (028) well is shown in Figure 3.6a. It is situated in a rural area where land use is primarily agricultural. The well is located at the end of a hayfield (see Figure 3.6b), approximately 1,000 m from the ocean. The nearest water well is a domestic well located approximately 230 m away.

Monitoring Results - Water Levels

The water level graphs for Monastery (028) are shown in Figure B.6, Appendix B. This well has been monitored since 1979 and the average water level elevation has decreased from about 15.5 m (between 1979 and 1987) to approximately 13.5 m in 2006. The annual water level fluctuation also decreased over the same period from about 1.5 m to 1.0 m. However, the water level in this well rebounded to its 1980's elevation after the well was purged during a sampling event in December 2006. The water level then slowly declined again until it rebounded once more during a sampling event in December 2008. It is suspected that the decline in water levels at this well during the 1990's and early 2000's may have been due to a slow decline in well efficiency, perhaps caused by biofouling. The sampling process involves pumping water from the well, which may temporarily rehabilitate the well and allow water levels to rebound. The depth to water in this well has varied from approximately 7.8 m to 9.8 m below ground surface.

The statistical trend analysis for this well (Appendix E) indicates that there is small downward trend in water levels, equivalent to approximately 3.9 cm/year. This corresponds to a total water level drop of approximately 1.1 m. As discussed above, it is suspected that this decline is related to fouling of the well.

The 2008 water levels fluctuated within the typical range that has been observed at this well. Note that the water level rose by approximately 2 m on December 9th, 2008 when the well was sampled.

Monitoring Results - Water Chemistry and Temperature

The Monastery (028) well was sampled in 2006 and 2008. Water chemistry results are presented in Appendix C. The results indicate that no drinking water guidelines were exceeded in either of the samples. VOCs, pesticides and perchlorate were not detected.

The tritium level in this well was 0.94 TU (+/- 0.17), indicating that the water is relatively old (i.e., recharge occurred before 1952).

The average groundwater temperature at this well was 8.0 °C, with annual fluctuations between 7.8 and 8.3 °C. A graph of the average daily temperature in this well is presented in Appendix D.

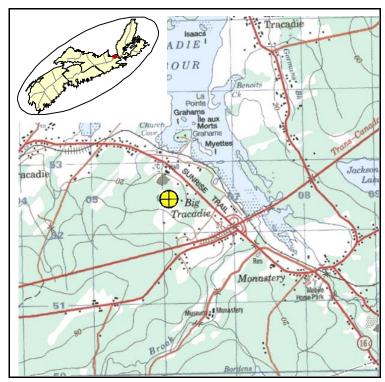


Figure 3.6a: Monastery (028) Well Location

Figure 3.6b: Monastery (028) Site Photograph

3.7 Point Aconi (030)

Well Description

The Point Aconi (030) observation well is located near Point Aconi, Cape Breton County. It was constructed in August 1976 to monitor groundwater levels at the Prince Mine, located about 2 km away. The well is completed in a sandstone aquifer. It is 30.5 m deep, penetrates 26.2 m into the bedrock and the casing depth extends to 12.8 m. Well location and construction information is provided in Table 3.7 and the well log is provided in Appendix A.

The location of the Point Aconi (030) well is shown in Figure 3.7a and a site photograph is shown in Figure 3.7b. It is situated in an urban area where the land use is primarily residential. There are several residences located within 300 m of the well, one of which is immediately adjacent to the well. The nearest water well is a domestic well located approximately 18 m away.

Table 3.7: Point Aconi (030) Well Construction Information

Well Name	Point Aconi (030)
Observation Well ID Number	030
NSE Well Log Number	761408
County	Cape Breton
Nearest Community	Point Aconi
UTM - Easting	707986
UTM - Northing	5133152
Year Monitoring Started	1976
Casing Depth (m, bgs)	12.8
Well Depth (m, bgs)	30.5
Elevation - top of casing (m, asl)	29.97
Geologic Unit	Inverness Formation
Aquifer Material	Bedrock - sandstone

The water level graphs for Point Aconi (030) are shown in Figure B.7, Appendix B. This well has been monitored since 1976. The average water level elevation at the Point Aconi (030) well is approximately 28 m above sea level and the annual water level fluctuation is about 3 m. The depth to water in this well is approximately 2.2 m below ground surface. There is no visually obvious long-term water level trend and the statistical trend analysis for this well (Appendix E) indicates that there is no statistically significant trend present.

The 2008 water levels fluctuated within the typical historical range for this well; however, water levels exceeded the historical high in August 2008 and dropped below the historical low in October 2008.

Monitoring Results - Water Chemistry and Temperature

The Point Aconi (030) well was sampled in 2005 and 2008. Water chemistry results are presented in Appendix C. The results indicate that no health-based drinking water guidelines were exceeded. Manganese was above the aesthetic drinking water guideline in the 2005 sample but was below the guideline in the 2008 sample. VOCs, pesticides and perchlorate were not detected.

The tritium level in this well was 3.62 TU (+/- 0.34), indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at the Point Aconi (030) was 8.65 °C, with annual fluctuations between 4.0 and 14.0 °C. A graph of the average daily temperature in this well is presented in Appendix D.

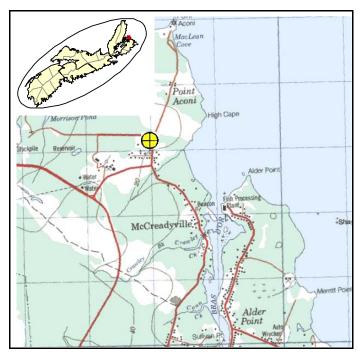


Figure 3.7a: Point Aconi (030) Well Location

Figure 3.7b: Point Aconi (030) Site Photograph

3.8 Lawrencetown (043)

Well Description

The Lawrencetown (043) observation well is located near Upper Lawrencetown, Halifax County. It was constructed in March 1977 as part of a saltwater intrusion investigation in the Lawrencetown area (Cross, 1980) and was originally named "Nova Scotia Department of the Environment, Test Hole L3". It has also been referred to as the "Lawrencetown L3" observation well. Three other test wells were drilled near this well (i.e., Lawrencetown L1, L2 and L4) but were decommissioned in August 1994 by sealing the entire length of the wells with alternating layers of bentonite and sand.

Table 3.8: Lawrencetown (043) Well Construction Information

Well Name	Lawrencetown (043)
Observation Well ID Number	043
NSE Well Log Number	771538
County	Halifax
Nearest Community	Upper Lawrencetown
UTM - Easting	464172
UTM - Northing	4947712
Year Monitoring Started	1978
Casing Depth (m, bgs)	44.2
Well Depth (m, bgs)	53
Elevation - top of casing (m, asl)	4.73
Geologic Unit	Goldenville Formation
Aquifer Material	Bedrock - quartzite

Notes: bgs = below ground surface; asl = above sea level

The Lawrencetown (043) well is completed in a fractured bedrock aquifer comprised of quartzite. It is 53.0 m deep, penetrates 49.4 m into the bedrock and the casing depth extends to 44.2 m. Well location and construction information is provided in Table 3.8 and the well log is provided in Appendix A. A 1.5-hour pump test was conducted at this well in 1977 and the results indicated a transmissivity of 2.8 m²/day a safe yield rate of 95 m³/day (14.5 igpm) (McIntosh, 1984).

The location of the Lawrencetown (043) observation well is shown in Figure 3.8a. It is situated in

a rural area where land use is primarily residential. The well is located within 100 m of the ocean (see Figure 3.8b) and the there are two domestic wells nearby, both located approximately 50 m away.

Monitoring Results - Water Levels

The water level graphs for Lawrencetown (043) are shown in Figure B.8, Appendix B. This well has been monitored since 1978 and a visual inspection of the historical water level graph indicates that water levels has declined by approximately 1.0 m since monitoring began. The decline is expected to be caused by a nearby domestic well (located 50 m away). The statistical trend analysis for this well (Appendix E) indicates that there is small downward trend in water levels, equivalent to approximately 2.4 cm/year. This corresponds to a total water level drop of approximately 0.7 m since monitoring began.

The average water level elevation at the Lawrencetown (043) well for the monitoring period 1978-1992 was approximately 3.6 m above sea level and the annual water level fluctuation was about 0.6 m. Between 2002 and 2008, the average water level declined to approximately 2.8 m above sea level, with a 1.0 m annual fluctuation. The depth to water in this well has varied from 1.1 m to 1.6 m below ground surface and the hourly water level data shows tidal fluctuations of approximately 0.3 m. There is also a daily drawdown and subsequent recovery of approximately 0.8 m at this well, which likely reflects domestic water use patterns associated with a nearby domestic well.

The 2008 water levels fluctuated within the typical historical range for this well; however, water levels dropped below the historical lows in April, June and July, 2008.

Monitoring Results - Water Chemistry and Temperature

The Lawrencetown (043) well was sampled in 2004 and 2008. The water chemistry results are presented in Appendix C. The results indicate that arsenic concentrations exceeded the health-based drinking water guideline in both samples. VOCs and pesticides were not detected. Tritium results reported from a previous study (Bottomley, 1983) were non-detect, indicating this water is relatively old (i.e., recharged prior to 1952).

It should also be noted that the chloride level in this well (150 mg/L in 2004 and 180 mg/L in 2008) is elevated above the typical background level for groundwater in coastal Nova Scotia (<50 mg/L),

although it is below the aesthetic objective of 250 mg/L. The ocean is less than about 100 m from this well and, therefore, the elevated chloride level is probably due to seawater influence. The bromide/chloride ratio at this well also indicates a seawater influence. The bromide/chloride ratio at this well was 35 (i.e., $0.53 \text{ mg/L}/150 \text{ mg/L} \times 10,000 = 35$). Please see Section 2.2.4 for a discussion of how this ratio is used to assess salt sources.

The average groundwater temperature at the Lawrencetown (043) well was 8.48 °C, with annual fluctuations between approximately 6.0 and 11.0 °C. A graph of the average daily temperature in this well is presented in Appendix D.

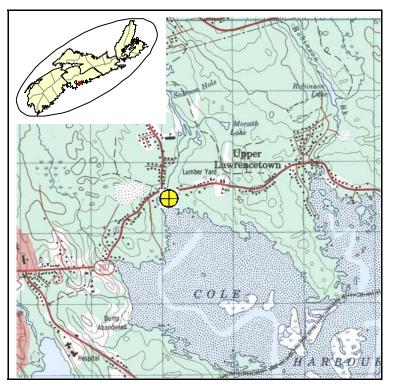


Figure 3.8a: Lawrencetown (043) Well Location

Figure 3.8b: Lawrencetown (043) Site Photograph

3.9 Durham (045)

Well Description

The Durham (045) observation well is located near Durham, Pictou County. It was constructed in July 1978 as part of a regional groundwater resource evaluation project (Gibb and McMullin, 1980) and was originally named "Nova Scotia Department of the Environment Test Hole Durham 3". The well is completed in a sandstone and shale aquifer. It is 75.3 m deep, penetrates 69.2 m into the bedrock and the casing depth is unknown. Well location and construction information is provided in Table 3.9 and the well log is provided in Appendix A. A 72-hour pump test was conducted at this well in 1978, indicating a transmissivity of 14 m²/day and storativity of 3.2 x 10⁻⁴ (McIntosh, 1984).

The location of the Durham (045) observation well is shown in Figure 3.9a. It is situated in a rural area, where the land use is primarily agricultural. The well is located in a wooded area, about 3 m from the edge of a hayfield. The nearest water well is a domestic well located approximately 500 m away.

Table 3.9: Durham (045) Well Construction Information

Well Name	Durham (045)
Observation Well ID Number	045
NSE Well Log Number	782683
County	Pictou
Nearest Community	Durham
UTM - Easting	516224
UTM - Northing	5052105
Year Monitoring Started	1979
Casing Depth (m, bgs)	NA
Well Depth (m, bgs)	75.3
Elevation - top of casing (m, asl)	14.88
Geologic Unit	Boss Point Formation
Aquifer Material	Bedrock - sandstone/shale

The water level graphs for Durham (045) are shown in Figure B.9, Appendix B. This well has been monitored since 1979. The water levels appear to have risen slightly since monitoring began and the amount of annual water level fluctuation has varied. The trend analysis for this well (Appendix E) indicates that there is a small upward trend, equivalent to about 2.4 cm/year. This is equivalent to a total rise of about 0.7 m since monitoring began at this well.

The average water level elevation at the Durham (045) well is approximately 11.3 m above sea level and the annual water level fluctuation is between 2.0 and 3.0 m. However, from 1979 to 1989 the average water level was approximately 11.0m, then from 1989 to 2004 average water levels rose slightly, to approximately 11.6 m. Since 2004 the average water levels decreased slightly. The depth to water in this well is approximately 3.5 to 4.0 m below ground surface.

The 2008 water levels fluctuated within the typical historical range for this well; however, water levels exceeded the historical highs in September, 2008.

Monitoring Results - Water Chemistry and Temperature

The Durham (045) well was sampled in 2005 and 2009. Water chemistry results are presented in Appendix C. The results indicate that no drinking water guidelines were exceeded. VOCs, pesticides and perchlorate were not detected.

The tritium level in this well was 2.04 TU, indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average annual groundwater temperature at the Durham (045) well was 7.6 °C, with annual fluctuations between 6.2 and 9.2 °C. A graph of the hourly temperature in this well is presented in Appendix D.

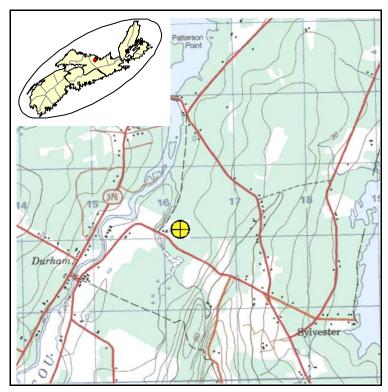


Figure 3.9a: Durham (045) Well Location

3.10 Kentville (048)

Well Description

The Kentville (048) observation well is located near Kentville, Kings County. The well was constructed in May 1977 as part of a water supply investigation for the Kentville Industrial Park (Callan, 1977) and was previously named the "Kentville Industrial Park" observation well. The well is completed in a sandstone aquifer. It is 106.7 m deep and the casing depth extends to 30.5 m. Well location and construction information is provided in Table 3.10 and the well log is in Appendix A. A 72-hour pump test was conducted at this well in June 1977 and the results indicated a transmissivity of 84 m²/day and a storativity of 3 x 10⁻⁴ (Callan, 1977).

Table 3.10: Kentville (048) Well Construction Information

Well Name	Kentville (048)
Observation Well ID Number	048
NSE Well Log Number	772021
County	Kings
Nearest Community	Kentville
UTM - Easting	377628
UTM - Northing	4992245
Year Monitoring Started	1980
Casing Depth (m, bgs)	30.5
Well Depth (m, bgs)	106.7
Elevation - top of casing (m, asl)	12.79
Geologic Unit	Wolfville Formation
Aquifer Material	Bedrock - sandstone

Notes: bgs = below ground surface; asl = above sea level

The location of the Kentville (048) observation well is shown in Figure 3.10a. It is situated in a wooded area (see Figure 3.10b) and the surrounding land use includes an industrial park (Annapolis Valley Regional Industrial Park), residential properties and undeveloped land. This well lies within the wellhead protection area for the Town of Kentville wellfield, which includes seven production wells. The wellfield was initially developed in the late 1970's to supply the nearby industrial park

and was expanded to become the primary water supply for the Town of Kentville in 2002. The nearest production well is located approximately 150 m away from the Kentville (048) observation well.

Monitoring Results - Water Levels

The water level graphs for Kentville (048) are shown in Figure B.10, Appendix B. This well has been monitored since 1980 and the water level appears to have dropped slightly since monitoring began. The trend analysis for this well (Appendix E) indicates that there is a small downward trend, equivalent to about 1 cm/year. The total drop in water level since monitoring began at this well is approximately 0.6 m.

The average water level elevation at the Kentville (048) well has ranged between 6.7 and 7.5 m above sea level and the annual water level fluctuation is approximately 0.8 m. The depth to water in this well is approximately 5.9 m below ground surface.

The 2008 water levels fluctuated within the typical historical range for this well; however, water levels were near the historical lows during January, February, July and November 2008.

Monitoring Results - Water Chemistry and Temperature

The Kentville (048) well was sampled in 2005 and 2007. Water chemistry results are presented in Appendix C. In 2005, no drinking water guidelines were exceeded. In 2007, lead exceeded the health-based drinking water guideline, and chloride and iron exceeded the aesthetic drinking water guidelines. No pesticides or VOC's were detected.

The chloride level in this well was at 230 mg/L in 2005, which is elevated above the typical background level for groundwater in coastal Nova Scotia (<50 mg/L). In 2007, the chloride level in this well increased to 270 mg/L, which exceeded the aesthetic objective of 250 mg/L. The well is located approximately 15 km from the ocean and, therefore, the elevated chloride levels are not expected to be caused by sea water. The bromide/chloride ratio at this well indicated the salt source is likely to be road salt. The bromide/chloride ratio at this well was 7.4 (i.e., 0.2 mg/L/270 mg/L x 10,000 = 7.4). Please see Section 2.2.4 for a discussion of how this ratio is used to assess salt sources.

The perchlorate level in this well was 0.05 ug/L, which is below the recommended Health Canada

guidance value of 6 ug/L. The tritium level in this well was 3.8 TU (+/- 0.3), indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at the Kentville (048) well was 6.94 °C, with annual fluctuations between 2.0 and 11.0 °C. A graph of the average daily temperature in this well is presented in Appendix D.

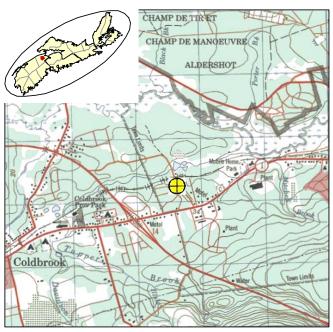


Figure 3.10a: Kentville (048) Well Location

Figure 3.10b: Kentville (048) Site Photograph

3.11 Sydney (050)

Well Description

The Sydney (050) observation well is located near Sydney, Cape Breton County. It was constructed in 1977 as part of a regional water resource study in the Sydney Coalfield (Baechler, 1986) and has also been referred to as the "Sydney Watershed " observation well. The well is completed in a sandstone aquifer and is 100.6 m deep with a casing depth extending to 6.1 m. Well location and construction information is provided in Table 3.11 and the well log is provided in Appendix A. A 72-hour pump test was conducted at this well in the 1980's and the results indicated a transmissivity of 71 m²/day (Baechler, 1986).

Table 3.11: Sydney (050) Well Construction Information

Well Name	Sydney (050)
Observation Well ID Number	050
NSE Well Log Number	771077
County	Cape Breton
Nearest Community	Sydney
UTM - Easting	720589
UTM - Northing	5106450
Year Monitoring Started	1984
Casing Depth (m, bgs)	6.7
Well Depth (m, bgs)	100.6
Elevation - top of casing (m, asl)	64.10
Geologic Unit	South Bar Formation
Aquifer Material	Bedrock - sandstone

Notes: bgs = below ground surface; asl = above sea level

The location of the Sydney (050) observation well is shown in Figure 3.11. It is situated in a rural area where land use is primarily residential and undeveloped land. The well is located with in the Sydney wellfield, which consists of 11 production wells. The wellfield, which began operating in 1996, pumps an average of 16,000 m³/day and is the largest municipal wellfield in Nova Scotia. The nearest production well is approximately 200 m from the Sydney (050) observation well.

The water level graphs for Sydney (050) are shown in Figure B.11, Appendix B. This well has been monitored since 1984. The water levels appear to have decreased when the Sydney wellfield began pumping in 1996 and then stabilized. The trend analysis for this well (Appendix E) indicates that there is a downward trend, equivalent to approximately 5.5 cm/year. The total drop in water level since monitoring began at this well is approximately 1.2 m.

The average water level elevation at this well from 1984 to 1994 (i.e., before the wellfield began pumping) was approximately 59.9 m above sea level and the annual water level fluctuation varied between 0.7 m and 1.0 m. Between 2004 and 2008 the average water level elevation was approximately 58.7 m above sea level, with an annual water level fluctuation of up to approximately 3 m. The depth to water in this well is between 4.5 and 5.0 m below ground surface.

The 2008 water levels were within the historically observed water level range for this well.

Monitoring Results - Water Chemistry and Temperature

The Sydney (050) well was sampled in 2005 and 2008. Water chemistry results are presented in Appendix C. The results indicate that no health-based drinking water guidelines were exceeded; however, manganese was above the aesthetic drinking water guideline in both samples. VOCs, pesticides and perchlorate were not detected.

The tritium level in this well was 4.92 TU (+/- 0.43), indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at the Sydney (050) well was 7.30°C, with annual fluctuations between approximately 5.8 and 8.8 °C. A graph of the average daily temperature in this well is presented in Appendix D.

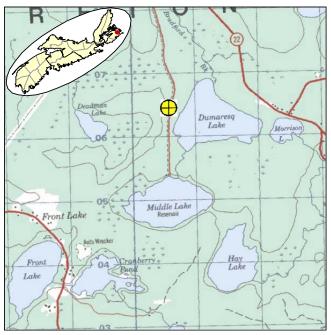


Figure 3.11: Sydney (050) Well Location

3.12 North Grant (054)

Well Description

The North Grant (054) observation well is located in Lower North Grant, Antigonish County. This well was constructed in 1987 to expand the NS Groundwater Observation Well Network. The well is completed in slate and is 39.0 m deep and the casing extends to a depth of 13.1 m. Well location and construction information is provided in Table 3.12 and the well log is provided in Appendix A.

The location of the North Grant (054) observation well is shown in Figure 3.12a. The well is situated approximately 15 km northwest of the town of Antigonish, and approximately 3.0 m from the side of North Grant Road (see Figure 3.12b). It is located approximately 100 m from the Wrights River, and there is a domestic drilled well located within 150 m.

Table 3.12: North Grant (054) Well Construction Information

Well Name	North Grant (054)
Observation Well ID Number	054
NSE Well Log Number	871262
County	Antigonish
Nearest Community	Lower North Grant
UTM - Easting	576403
UTM - Northing	5055139
Year Monitoring Started	1987
Casing Depth (m, bgs)	13.1
Well Depth (m, bgs)	39.0
Elevation - top of casing (m, asl)	21.7
Geologic Unit	Horton Group
Aquifer Material	Bedrock - shale/slate

The water level graphs for North Grant (054) are shown in Figure B.12, Appendix B. This well has been monitored since 1987, however, there is a gap in the monitoring data between 1997 and 2006. Water levels at this well appear to have declined since 1997. From 1987 to 1997, the average water level elevation was approximately 19.8 m above sea level and the annual water level fluctuation was about 0.9 m. The average water level elevation for the period between April 2006 and 2008 was slightly lower, at 19.4 m above sea level, and the annual water level fluctuation for this period was approximately 0.8 m. The depth to water in this well is approximately 1.1 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

The 2008 water levels were within the typical historical range for this well for about half of the year, and close to the historical lows for about half of the year.

Monitoring Results - Water Chemistry and Temperature

The North Grant (054) well was sampled in 2006 and 2008. Water chemistry results are presented in Appendix C. The results indicate that no drinking water guidelines were exceeded in 2006; however, the 2008 sample exceeded health-based guidelines for arsenic and aesthetic guidelines for turbidity and iron. VOCs and pesticides were not detected.

The tritium level in this well was 1.95 TU (+/- 0.22), indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at this well was 8.23 °C, with annual fluctuations between approximately 6.8 and 9.8 °C. A graph of the average daily temperature at this well is presented in Appendix D.

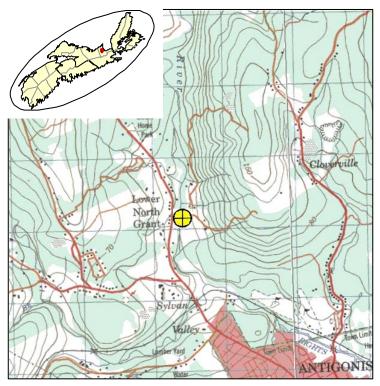


Figure 3.12a: North Grant (054) Well Location

Figure 3.12b: North Grant (054) Site Photograph

3.13 Stillwater (055)

Well Description

The Stillwater (055) observation well is located in Stillwater, Guysborough County. This well was constructed in 1987 to expand the NS Groundwater Observation Well Network. It is completed in fractured bedrock comprised of greywacke. The well is 36.0 m deep and the casing extends to 13.4 m depth. Well location and construction information are provided in Table 3.13 and the well log is provided in Appendix A.

The location of the Stillwater (055) observation well is shown in Figure 3.13. The well is located in a wooded area off Route #7 on Department of Natural Resources' property adjacent to a gravel road leading to a rifle range. The nearest water well is a domestic drilled well located within 250 m. The St. Mary's River is approximately 750 m away, and the well is located 2 km from an Environment Canada Hydrometric Station on St. Mary's River.

Table 3.13: Stillwater (055) Well Construction Information

Well Name	Stillwater (055)
Observation Well ID Number	055
NSE Well Log Number	871263
County	Guysborough
Nearest Community	Stillwater
UTM - Easting	579938
UTM - Northing	5004212
Year Monitoring Started	1987
Casing Depth (m, bgs)	13.4
Well Depth (m, bgs)	36.0
Elevation - top of casing (m, asl)	26.9
Geologic Unit	Goldenville Formation
Aquifer Material	Bedrock - greywacke

The water level graphs for Stillwater (055) are shown in Figure B.13, Appendix B. This well has been monitored since 1987; however, monitoring stopped in the summer of 1995 and did not resume until May 2006. Water levels appear to have remained relatively consistent over time. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

From 1987 to 1995, the average water level elevation at this well was approximately 25.0 m above sea level and the annual water level fluctuation was about 1.1 m. The average water level elevation for the period between May 2006 and 2008 was slightly higher, at 25.1 m above sea level, and the annual water level fluctuation for this period was up to 1.4 m. The depth to water in this well is approximately 1.9 m below ground surface.

The 2008 water levels fluctuated within the typical historical range for this well; however, water levels exceeded historical highs during February, March and August 2008.

Monitoring Results - Water Chemistry and Temperature

The Stillwater (055) well was sampled in 2006 and 2008. Water chemistry results are presented in Appendix C. The results indicate that no drinking water guidelines were exceeded in 2006, however, the aesthetic guideline for manganese was exceeded in 2008. One VOC (toluene) was measured at the detection limit of 1 ug/L in 2006 but it was not detected in 2008. No pesticides were detected at this well.

The tritium level in this well was 3.82 TU (+/- 0.34), indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at this well was 7.53°C, with annual fluctuations between approximately 4.5 and 10.0 °C. A graph of the average daily temperature in this well is presented in Appendix D.

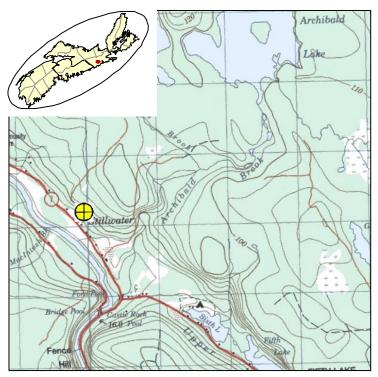


Figure 3.13: Stillwater (055) Well Location

3.14 Sheet Harbour (056)

Well Description

The Sheet Harbour (056) observation well is located in Sheet Harbour, Halifax County. The well was constructed in 1987 to expand the NS Groundwater Observation Well Network. The well is completed in a bedrock aquifer and is 46.4 m deep with 7.01 m of casing. Well location and construction information is provided in Table 3.14 and the well log is provided in Appendix A.

The location of the Sheet Harbour (056) observation well is shown in Figure 3.14a. It is situated in a rural area where the surrounding land is predominantly undeveloped. The well is located in a field, 50 m north of Route #7 (see Figure 3.14b). It is located approximately 5.0 m from the East Halfway Brook and there is a domestic drilled well within 35 m of the observation well.

Table 3.14: Sheet Harbour (056) Well Construction Information

Well Name	Sheet Harbour (056)
Observation Well ID Number	056
NSE Well Log Number	871264
County	Halifax
Nearest Community	Sheet Harbour
UTM - Easting	543176
UTM - Northing	4972468
Year Monitoring Started	1987
Casing Depth (m, bgs)	7.01
Well Depth (m, bgs)	46.4
Elevation - top of casing (m, asl)	38.06
Geologic Unit	Goldenville Formation
Aquifer Material	Bedrock - Quartzite

The water level graphs for Sheet Harbour (056) are shown in Figure B.14, Appendix B. Based on a visual inspection of the historical water level graph, the water level at this well appears to have increased over time by approximately 1 m. The average water level elevation at this well was as follows: 35.9 m (1987 to 1993); 36.2 m (1994 to 1999); and 36.9 m (2007 to 2008). The depth to water in this well is currently approximately 0.3 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

The 2008 water levels remained at, or close to, the historical highs for this well.

Monitoring Results - Water Chemistry and Temperature

The Sheet Harbour (056) well was sampled in 2008. Water chemistry results are presented in Appendix C. The results indicate that no drinking water guidelines were exceeded; however, arsenic was detected at 10 ug/L, which is equal to, but does not exceed the drinking water guideline fro arsenic. In addition, the aesthetic guideline for manganese was exceeded. No VOCs or pesticides were detected at this well.

The average groundwater temperature at this well was 8.18°C, with annual fluctuations between approximately 6.0 and 9.3 °C. A graph of the average daily temperature in this well is presented in Appendix D.

Figure 3.14a: Sheet Hbr (056) Well Location

Figure 3.14b: Sheet Hbr (056) Site Photo

3.15 Charleston (058)

Well Description

The Charleston (058) observation well is located near Riversdale, Queens County. This well was constructed in 1987 to expand the NS Groundwater Observation Well Network. The well is completed in slate and is 12.2 m deep, with an unknown casing depth. Well location and construction information is provided in Table 3.15 and the well log is provided in Appendix A.

The location of the Charleston (058) observation well is shown in Figure 3.15. It is situated in a rural area where the surrounding land is predominantly undeveloped. The well is located on a property that was used as a satellite tracking station until the mid-1990's. The nearest water well is a domestic well located approximately 150 m away.

Table 3.15: Charleston (058) Well Construction Information

Well Name	Charleston (058)
Observation Well ID Number	058
NSE Well Log Number	870190
County	Queens
Nearest Community	Riversdale
UTM - Easting	366778
UTM - Northing	4894476
Year Monitoring Started	1988
Casing Depth (m, bgs)	NA
Well Depth (m, bgs)	12.2
Elevation - top of casing (m, asl)	15.07
Geologic Unit	Halifax Formation
Aquifer Material	Bedrock - slate

The water level graphs for Charleston (058) are shown in Figure B.15, Appendix B. This well has been monitored since 1988 and water levels appear to have remained relatively constant. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

The average water level elevation at the Charleston (058) well is approximately 12.7 m above sea level and the annual water level fluctuation is about 0.5 m. The depth to water in this well is approximately 2.3 m below ground surface.

The 2008 water levels were within the historically observed water level range for this well, however, historical highs were exceeded in January, February, March and April. Note that this well was vandalized in June 2008 and, therefore, the data after June are missing.

Monitoring Results - Water Chemistry and Temperature

The Charleston (058) well has not been sampled and, therefore, water chemistry results are not available. The temperature at this well has been monitored since August 2006, and typically ranges between approximately 6.5 and 11.5 °C. The average groundwater temperature is approximately 9.2 °C. A graph of the temperature in this well is presented in Appendix D.

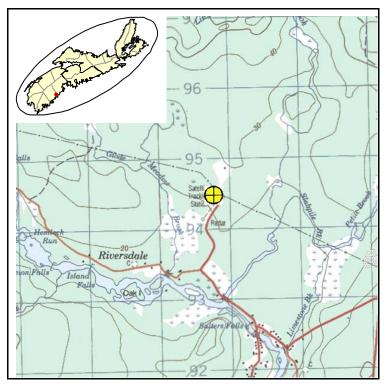


Figure 3.15: Charleston (058) Well Location

3.16 Hayden Lake (059)

Well Description

The Hayden Lake (059) observation well is located near East Jordan, Shelburne County. The well was constructed in 1987 to expand the NS Groundwater Observation Well Network. It is completed in fractured bedrock comprised of greywacke. The well is 48.8 m deep and the casing extends to 6.1 m depth. Well location and construction information is provided in Table 3.16 and the well log is provided in Appendix A.

The location of the Hayden Lake (059) observation well is shown in Figure 3.16. It is situated in a rural area where the surrounding land is primarily undeveloped. The well is located adjacent to the Hayden Lake Water Treatment Plant, which supplies the Town of Lockeport. The nearest water well is a domestic well located approximately 300 m away.

Table 3.16: Hayden Lake (059) Well Construction Information

Well Name	Hayden Lake (059)
Observation Well ID Number	059
NSE Well Log Number	870189
County	Shelburne
Nearest Community	East Jordan
UTM - Easting	321365
UTM - Northing	4849195
Year Monitoring Started	1988
Casing Depth (m, bgs)	6.1
Well Depth (m, bgs)	48.8
Elevation - top of casing (m, asl)	2.94
Geologic Unit	Goldenville Formation
Aquifer Material	Bedrock - greywacke

The water level graphs for Hayden Lake (059) are shown in Figure B.16, Appendix B. This well has been monitored since 1988 and water levels appear to have risen slightly over time and the amount of annual fluctuation appears to have decreased. The statistical trend analysis for this well (Appendix D) indicates that there is a very small upward trend, equivalent to approximately 1.2 cm/year. This corresponds to a total water level rise of approximately 0.2 m since monitoring began at this well.

The average water level elevation at the Hayden Lake (059) well is approximately 1.7 m above sea level and the annual water level fluctuation is between 1.0 and 1.5 m. The depth to water in this well is approximately 1.3 m below ground surface.

The 2008 water levels were within the historically observed water level range for this well.

Monitoring Results - Water Chemistry and Temperature

The Hayden Lake (059) well was sampled in 2005 and 2008. Water chemistry results are presented in Appendix C. The results indicate that no health-based drinking water guidelines were exceeded; however, the pH level in the 2008 sample did not meet the aesthetic drinking water guideline.

Note that one VOC (chloroform) was detected below the drinking water guideline in 2005; however, it was not detected in the 2008 sample. Chloroform is produced when chlorine reacts with organic matter and may have been present in this well as a result of chlorine use and storage at the nearby water treatment plant.

Perchlorate was detected at very low levels (0.014 ug/L), but was far below the recommended Health Canada guidance value of 6 ug/L. No pesticides were detected at this well.

The tritium level in this well was 3.4 TU, indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at the Hayden Lake (059) well was 8.7 °C, with annual fluctuations between 6.8 and 10.8 °C. A graph of the average daily temperature is presented in Appendix D.

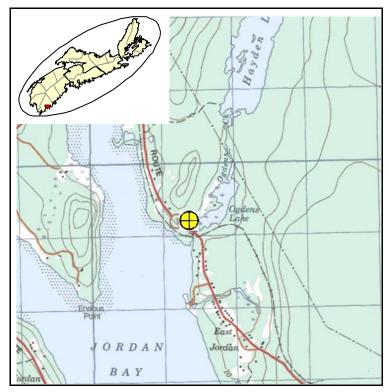


Figure 3.16: Hayden Lake (059) Well Location

3.17 Meteghan (060)

Well Description

The Meteghan (060) observation well is located near the community of Meteghan River, Digby County. The well was constructed in March 1987 to expand the NS Groundwater Observation Well Network. The well is completed in slate aquifer and is 61.0 m deep with 12.19 m of casing. Well location and construction information is provided in Table 3.17 and the well log is provided in Appendix A.

The location of the Meteghan (060) observation well is shown in Figure 3.17a. The well is situated on the lawn of a private property (see Figure 3.17b), located 100 m south of the Meteghan River. The nearest water well is a domestic dug well approximately 30 m away.

Table 3.17: Meteghan (060) Well Construction Information

Well Name	Meteghan (060)
Observation Well ID Number	060
NSE Well Log Number	870188
County	Digby
Nearest Community	Meteghan River
UTM - Easting	250890
UTM - Northing	4900628
Year Monitoring Started	1987
Casing Depth (m, bgs)	12.19
Well Depth (m, bgs)	61.0
Elevation - top of casing (m, asl)	13.8
Geologic Unit	Halifax Formation
Aquifer Material	Bedrock-slate

The water level graphs for Meteghan (060) are shown in Figure B.17, Appendix B. This well has been monitored since mid December 1987 and water levels appear to have decreased slightly over time (i.e., dropped by 0.3 m). From the end of 1987 until the end of 1992 the average water level elevation was approximately 9.42 m above sea level. From 1993 to the spring of 1999, the average water level elevation was approximately 9.15 m above sea level. The average water level elevation for the period when monitoring resumed in August 2006 to the end 2008 was again lower, at 9.10 m. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well. The depth to water in this well is approximately 4.0 m below ground surface.

The 2008 water levels were within the historical range for this well.

Monitoring Results - Water Chemistry and Temperature

The Meteghan (060) well was sampled in 2006 and 2008. Water chemistry results are presented in Appendix C. The results indicate that no health-based drinking water guidelines were exceeded; however, aesthetic drinking water guidelines were exceeded for turbidity, iron and manganese in both the 2006 and 2008 samples. The elevated turbidity is expected due to the high iron and manganese levels. VOCs and pesticides were not detected.

The tritium level in this well was 0.46 TU (+/-0.14), indicating that the water in this well is old water (i.e., recharge occurred before 1952).

The average groundwater temperature at this well was 8.96 °C, with annual fluctuations between approximately 8.0 and 9.8 °C. A graph of the average daily temperature in this well is presented in Appendix D.

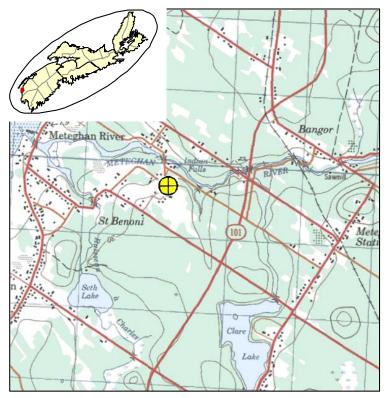


Figure 3.17a: Meteghan (060) Well Location

Figure 3:17b: Meteghan(060) Site Photograph

3.18 Annapolis Royal (062)

Well Description

The Annapolis Royal (062) observation well is located near Lake La Rose, Annapolis County. The well was constructed in December 1989 to expand the NS Groundwater Observation Well Network. The well is completed in granite and is 62.8 m deep with 24.3 m of casing. Well location and construction information is provided in Table 3.18 and the well log is provided in Appendix A.

The location of the Annapolis Royal (062) observation well is shown in Figure 3.18. It is situated in a rural area where the surrounding land is primarily undeveloped. The well is located 500 m from Lake La Rose, the former water supply for the Town of Annapolis Royal. The nearest water well is a domestic well located approximately 1,000 m away.

Table 3.18: Annapolis Royal (062) Well Construction Information

Well Name	Annapolis Royal (062)
Observation Well ID Number	062
NSE Well Log Number	891722
County	Annapolis
Nearest Community	Lake La Rose
UTM - Easting	303029
UTM - Northing	4952588
Year Monitoring Started	1990
Casing Depth (m, bgs)	24.3
Well Depth (m, bgs)	62.8
Elevation - top of casing (m, asl)	121.06
Geologic Unit	Liscomb Complex
Aquifer Material	Bedrock - granite

The water level graphs for Annapolis Royal (062) are shown in Figure B.18, Appendix B. This well has been monitored since 1990 and water levels have remained relatively constant. The average water level elevation at the Annapolis Royal (062) well is approximately 109.5 m above sea level and the annual water level fluctuation is about 1.3 m. The depth to water in this well is about 11.5 m below ground surface. There were insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis.

The 2008 water levels were generally within the historically observed water level range for this well, however, historical highs were exceeded in February, March, September and December.

Monitoring Results - Water Chemistry and Temperature

The Annapolis Royal (062) well was sampled in 2005 and 2007. Water chemistry results are presented in Appendix C. The results indicate that no health-based drinking water guidelines were exceeded; however, turbidity (2007) and manganese (2005 and 2007) exceeded the aesthetic drinking water guidelines. One VOC, toluene, was detected at 2 ug/L in 2005 and at 1 ug/L in 2007. These toluene levels are below the aesthetic drinking water guideline of 24 ug/L. This well is located beside a road and, therefore, the toluene, which is a chemical found in gasoline, may be due to runoff from the road. Pesticides and perchlorate were not detected.

The tritium level in this well was measured in 2005 and found to be 0.27 TU, (+/- 0.17), indicating the water in the well is relatively old (i.e., recharge occurred before 1952).

The average groundwater temperature at the Annapolis Royal (062) well was 7.92 °C, with annual fluctuations between 7.8 and 8.1 °C. A graph of the average daily temperature in this well is presented in Appendix D.

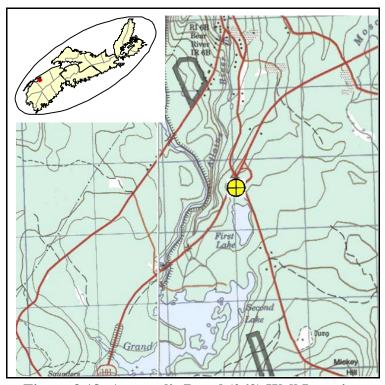


Figure 3.18: Annapolis Royal (062) Well Location

3.19 Hebron (063)

Well Description

The Hebron (063) observation well is located near Dayton, Yarmouth County. The well was constructed in 1989 to expand the NS Groundwater Observation Well Network. The well is completed in slate and is 45.7 m deep with 12.2 m of casing. Well location and construction information is provided in Table 3.19 and the well log is provided in Appendix A.

The location of the Hebron (063) observation well is shown in Figure 3.19. It is situated in a rural area and the surrounding land use is primarily residential. The well is located approximately 100 m from Lake Milo and 1,000 m from the ocean. The nearest water well is a domestic well located approximately 90 m away.

Table 3.19: Hebron (063) Well Construction Information

Well Name	Hebron (063)
Observation Well ID Number	063
NSE Well Log Number	891721
County	Yarmouth
Nearest Community	Dayton
UTM - Easting	250697
UTM - Northing	4862322
Year Monitoring Started	1990
Casing Depth (m, bgs)	12.2
Well Depth (m, bgs)	45.7
Elevation - top of casing (m, asl)	23.89
Geologic Unit	Whiterock Formation
Aquifer Material	Bedrock - slate

The water level graphs for Hebron (063) are shown in Figure B.19, Appendix B. This well has been monitored since 1990 and water levels have been relatively constant, although there appears to be a slight increase in the average water level (up by about 0.3 m) since the 1990's. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

The average water level elevation at the Hebron (063) well has varied from approximately 3.0 m to 3.3 m above sea level and the annual water level fluctuation is about 1.5 m. The depth to water in this well is about 2.5 m below ground surface and the hourly water level data shows tidal fluctuations of approximately 0.05 m.

The 2008 water levels were generally within the historically observed water level range for this well, however, historical highs were exceeded in February, March and December.

Monitoring Results - Water Chemistry and Temperature

The Hebron (063) well was sampled in 2005 and 2008. Water chemistry results are presented in Appendix C. The results indicate that no health-based drinking water guidelines were exceeded; however, the aesthetic drinking water guidelines were exceeded for turbidity, iron and manganese. In addition, the low pH in this well did not meet the aesthetic guideline in the 2005 sample and was equal to the guideline in the 2008 sample. The elevated turbidity levels in this well are expected due to the high iron and manganese levels. Note that the ion balance error reported in the general chemistry analysis was 23% in 2005 and 13% in 2008, which exceeds the generally acceptable level of 5% and, therefore, these results should be viewed with caution. VOCs, pesticides and perchlorate were not detected at this well.

The tritium level in this well was 4.6 TU, indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at the Hebron (063) well was 8.8 °C, with annual fluctuations between 6.0 and 11.5 °C. A graph of the average daily temperature in this well is provided in Appendix D.

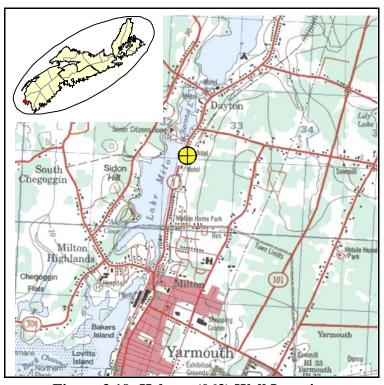


Figure 3.19: Hebron (063) Well Location

3.20 Margaree (064)

Well Description

The Margaree (064) observation well is located near the community of Margaree Valley, Inverness County. The well was constructed in January 1990 to expand the NS Groundwater Observation Well Network. The well is completed in a bedrock aquifer and is 45.7 m deep with 12.2 m of casing. Well location and construction information is provided in Table 3.20 and the well log is provided in Appendix A.

The location of the Margaree (064) observation well is shown in Figure 3.20a. The well is situated 1.5 km northwest of the town of Margaree Valley. It is located at the end of a field (see Figure 3.20b), 25 m from the northeast branch of the Margaree River, where Nova Scotia Environment has a surface water quality station and Environment Canada has a hydrometric station that measures river water levels. The land surrounding the well is used for growing hay.

Table 3.20: Margaree (064) Well Construction Information

Well Name	Margaree (064)
Observation Well ID Number	064
NSE Well Log Number	902524
County	Inverness
Nearest Community	Margaree Valley
UTM - Easting	655717
UTM - Northing	5137031
Year Monitoring Started	1990
Casing Depth (m, bgs)	12.2
Well Depth (m, bgs)	45.7
Elevation - top of casing (m, asl)	46.5
Geologic Unit	Windsor Group
Aquifer Material	Bedrock-conglomerate

The water level graphs for Margaree (064) are shown in Figure B.20, Appendix B. This well has been monitored since 1990 and water levels appear to have remained relatively consistent over time. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

From 1990 until 1998 the average water level elevation was 42.87 m above sea level. The average water level elevation for the period when monitoring resumed in 2006 to the end of 2008 was 42.71 m above sea level. The depth to water in this well is approximately 3.5 m below ground surface.

The 2008 water levels at this observation well were near historical lows for most of the year, however, historical highs were exceeded in February, March and September.

Monitoring Results - Water Chemistry and Temperature

The Margaree (064) well was sampled in 2006 and 2008. Water chemistry results are presented in Appendix C. The results indicate that no drinking water guidelines were exceeded. VOCs and pesticides were not detected. The tritium level in this well was 0.41 TU (+/- 0.14), indicating that the water in this well is old water (i.e., recharge occurred before 1952).

The average groundwater temperature at this well was 7.80 °C, with annual fluctuations between approximately 6.8 and 9.1 °C. A graph of the average daily temperature in this well is presented in Appendix D.

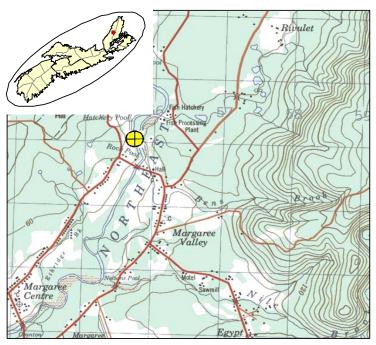


Figure 3.20a: Margaree (064) Well Location

Figure 3.20b: Margaree (064) Site Photograph

3.21 Ingonish (065)

Well Description

The Ingonish (065) observation well is located near the community of Ingonish Beach, Victoria County. The well was constructed in December 1989 to expand the NS Groundwater Observation Well Network. The well is completed in a bedrock aquifer and is 45.7 m deep with 12.2 m of casing. Well location and construction information is provided in Table 3.21 and the well log is provided in Appendix A.

The location of the Ingonish (065) observation well is shown in Figure 3.21a. The well is situated on the Highlands Links golf course, within the Cape Breton Highlands Park. It is located 1.5 km south of Ingonish Centre and is approximately 30 m north west of Clyde Burn Brook. The well is in a forested area, adjacent to a small storage building (see site photograph in Figure 3.21b).

Table 3.21: Ingonish (065) Well Construction Information

Well Name	Ingonish (065)
Observation Well ID Number	065
NSE Well Log Number	892288
County	Victoria
Nearest Community	Ingonish Beach
UTM - Easting	698083
UTM - Northing	5170473
Year Monitoring Started	1990
Casing Depth (m, bgs)	12.2
Well Depth (m, bgs)	45.7
Elevation - top of casing (m, asl)	7.0
Geologic Unit	Early Devonion Granodiorite
Aquifer Material	Bedrock - granodiorite

The water level graphs for Ingonish (065) are shown in Figure B.21, Appendix B. This well has been monitored since November 1990 and water levels appear to have remained relatively consistent over time. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

The average water level elevation at this well is approximately 2.2 m above sea level with annual fluctuations up to approximately 3 m. The depth to water in this well is approximately 4.4 m below ground surface.

The 2008 water levels were generally within the historically observed water level range for this well, although the historical highs were exceeded several times throughout the year.

Monitoring Results - Water Chemistry

The Ingonish (065) well has not been sampled and, therefore, water chemistry results are not available. The average groundwater temperature at this well is approximately 6.24 °C, with annual fluctuations between 5.94 and 6.65 °C. A graph of the average daily temperature in this well is presented in Appendix D.

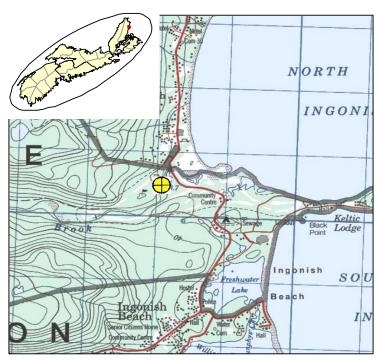


Figure 3.21a: Ingonish (065) Well Location

Figure 3.21b: Ingonish (065) Site Photograph

3.22 Debert (068)

Well Description

The Debert (068) observation well is located near the community of Debert, Colchester County. The well was constructed in August 1983 as a domestic water supply and was added to the NS Observation Well Network in 1993 to expand the network. The well is completed in a bedrock aquifer comprised of conglomerate. It is 46.6 m deep and has 7.9 m of casing. Well location and construction information is provided in Table 3.22 and the well log is provided in Appendix A.

The location of the Debert (068) observation well is shown in Figure 3.22. The well is situated within the Debert Industrial Park, north of Highway 104. It is located in a cleared area beside a parking lot.

Table 3.22: Debert (068) Well Construction Information

Well Name	Debert (068)
Observation Well ID Number	068
NSE Well Log Number	832002
County	Colchester
Nearest Community	Debert
UTM - Easting	466921
UTM - Northing	5028483
Year Monitoring Started	1993
Casing Depth (m, bgs)	7.9
Well Depth (m, bgs)	46.6
Elevation - top of casing (m, asl)	28.4
Geologic Unit	Wolfville Formation
Aquifer Material	Bedrock-conglomerate

The water level graphs for Debert (068) are shown in Figure B.22, Appendix B. Monitoring began at this well in 1993; however, there is a gap in monitoring data between 1996 and 2006. The average water level in this well appears to have increased by approximately 1.5 m between 2006 and 2008. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

From June 1993 until June 1995 the average water level elevation was approximately 24.0 m above sea level, with an annual variation of up to approximately 3.2 m. The average water level elevation in 2008 was 25.5 m above sea level. The depth to water in this well is approximately 4.0 m below ground surface.

The 2008 water levels at this well remained at the historical high level throughout the year.

Monitoring Results - Water Chemistry and Temperature

The Debert (068) well has not been sampled and, therefore, water chemistry results are not available. The average groundwater temperature at this well is approximately 8.54 °C, with annual fluctuations between approximately 6.5 and 10.0 °C. A graph of the daily average temperature in this well is presented in Appendix D.

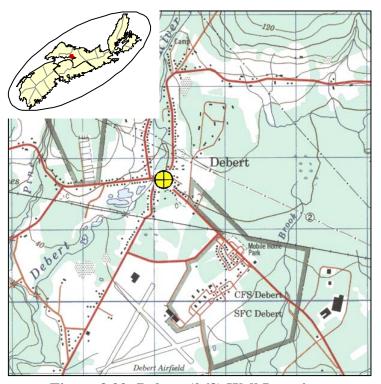


Figure 3.22: Debert (068) Well Location

3.23 Dalem Lake (069)

Well Description

The Dalem Lake (069) observation well is located near the community of New Dominion, Victoria County. This well was drilled circa 1992 by NSE to expand the Groundwater Observation Well Network. The well is completed in a sandstone aquifer and is 61.0 m deep with 12.4 m of casing. Well location and construction information is provided in Table 3.23.

The location of the Dalem Lake (069) observation well is shown in Figure 3.23. The well is located approximately 75 m south of the 105 Trans Canada Highway. There are no other wells in the nearby area and the surrounding land has recently been logged.

Table 3.23: Dalem Lake (069) Well Construction Information

Well Name	Dalem Lake (069)
Observation Well ID Number	069
NSE Well Log Number	943326
County	Victoria
Nearest Community	New Dominion
UTM - Easting	698221
UTM - Northing	5124576
Year Monitoring Started	1992
Casing Depth (m, bgs)	12.4
Well Depth (m, bgs)	61.0
Elevation - top of casing (m, asl)	93.8
Geologic Unit	South Bar Formation
Aquifer Material	Bedrock - sandstone

The water level graphs for Dalem Lake (069) are shown in Figure B.23, Appendix B. This well has been monitored since 1992 and water levels have remained relatively consistent. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

The average water level elevation at this well up to the end of 2008 was 86.79 m above sea level, with approximately 1 m of annual water level fluctuation. The depth to water in this well during this period was approximately 5.5 m below ground surface.

The 2008 water levels were essentially within the historically observed range for this well.

Monitoring Results - Water Chemistry and Temperature

The Dalem Lake (069) well was sampled in 2006 and 2008. Water chemistry results are presented in Appendix C. The results indicate that no health-based drinking water guidelines were exceeded; however, manganese was above the aesthetic guideline in both the 2006 and the 2008 samples. VOCs and pesticides were not detected.

The tritium level in this well was 3.61 TU (+/- 0.30), indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at this well was 6.83 °C, with annual fluctuations between approximately 6.4 and 7.3 °C. A graph of the average daily temperature in this well is presented in Appendix D.

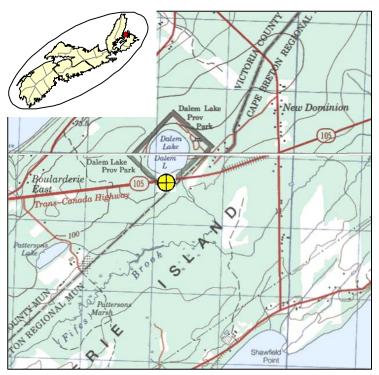


Figure 3.23: Dalem Lake (069) Well Location

3.24 Amherst (071)

Well Description

The Amherst (071) observation well is located near the Town of Amherst, Cumberland County. It was drilled in July 1986 as a test well for the Town of Amherst's wellfield and was originally named "Test Hole No. 86-9". The well is completed in a sandstone aquifer and is 116.5 m deep with 5.8 m of casing. Well location and construction information is provided in Table 3.24 and the well log is provided in Appendix A.

The location of the Amherst (071) observation well is shown in Figure 3.24. The well is situated in a field approximately 175 m northwest of Route 66 (Tyndal Road). There are two domestic wells within 125 m of this observation well and the Town of Amherst's wellfield is located nearby.

Table 3.24: Amherst (071) Well Construction Information

Well Name	Amherst (071)
Observation Well ID Number	071
NSE Well Log Number	862667
County	Cumberland
Nearest Community	Amherst
UTM - Easting	411279
UTM - Northing	5079213
Year Monitoring Started	1993
Casing Depth (m, bgs)	5.8
Well Depth (m, bgs)	116.5
Elevation - top of casing (m, asl)	17.8
Geologic Unit	Balfron Formation
Aquifer Material	Bedrock - sandstone

The water level graphs for Amherst (071) are shown in Figure B.24, Appendix B. Monitoring began at this well in 1993 and water levels appear to have remained relatively consistent; however, there is no data for the period between 1996 and 2006 and, therefore, the variability of the water level at this well is somewhat uncertain. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

The average water level elevation at this well between 1993 and 2008 was approximately 14.9 m above sea level, with an annual fluctuation of approximately 2 m. The depth to water in this well is approximately 2.5 m below ground surface.

The 2008 water levels were essentially within the historically observed range for this well.

Monitoring Results - Water Chemistry and Temperature

The Amherst (071) well was sampled in 2006 and 2009. Water chemistry results are presented in Appendix C. The results indicate that no drinking water guidelines were exceeded. VOCs and pesticides were not detected.

The tritium level in this well was 4.0 TU (+/- 0.32), indicating that the water in this well is either a mix of old and recent water (i.e., recharge occurred before and after 1952) or is recent water (i.e., recharge occurred after 1952).

The average groundwater temperature at this well was 7.35°C, with annual fluctuations between approximately 6.0 and 8.5 °C. A graph of the average daily temperature in this well is presented in Appendix D.

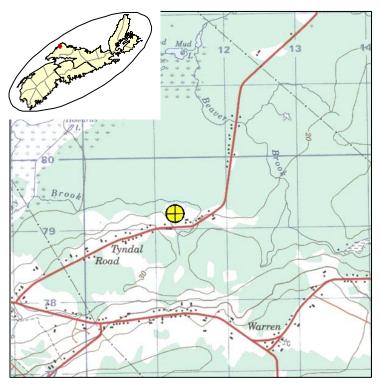


Figure 3.24: Amherst (071) Well Location

3.25 Kelley River (073)

Well Description

The Kelley River (073) observation well is located near the community of River Herbert, Cumberland County. This well was drilled as part of a hydrogeological investigation of the Kelley River Basin in 1972 (Hennigar, 1974). This well is referred to as "Observation well No.2" In the report entitled "Hydrogeology of the Kelley River IHD Benchmark Basin Cumberland County, NS" (Hennigar, 1974). The well is completed in a sandstone aquifer and is approximately 11.6 m deep with 4.2 m of casing. Well location and construction information is provided in Table 3.25 and the well log is provided in Appendix A.

Table 3.25: Kelley River (073) Well Construction Information

Well Name	Kelley River (073)
Observation Well ID Number	073
NSE Well Log Number	721858
County	Cumberland
Nearest Community	River Herbert
UTM - Easting	386806
UTM - Northing	5049171
Year Monitoring Started	2006
Casing Depth (m, bgs)	4.2
Well Depth (m, bgs)	11.6
Elevation - top of casing (m, asl)	33.1
Geologic Unit	Malagash Formation
Aquifer Material	Bedrock - sandstone

Notes: bgs = below ground surface; asl = above sea level

The location of the Kelley River (073) observation well is shown in Figure 3.25. The well is located within the Chignecto Game Sanctuary, 13 km from the Boars Back Ridge Road. It is in a wooded area and is located 18 m from Nova Scotia Environment's surface water quality station and Environment Canada's hydrometric station on Kelley River.

The water level graphs for Kelley River (073) are shown in Figure B.25, Appendix B. This well has been monitored since 2006 and water levels appear to have remained relatively consistent. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

The average water level elevation up to the end of 2008 was 31.6 m above sea level, with an annual fluctuation of approximately 1.2 m. The depth to water was approximately 1.5 m below ground surface.

The 2008 water levels were similar to historically observed water levels at this well.

Monitoring Results - Water Chemistry and Temperature

The Kelley River (073) well was sampled in 2007. Water chemistry results are presented in Appendix C. The results indicate that no drinking water guidelines were exceeded. VOCs and pesticides were not detected.

The tritium level in this well was 3.78 TU (+/- 0.32), indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at this well was 6.63 °C, with annual fluctuations between approximately 6.2 and 7.1 °C. A graph of the average daily temperature in this well is presented in Appendix D.

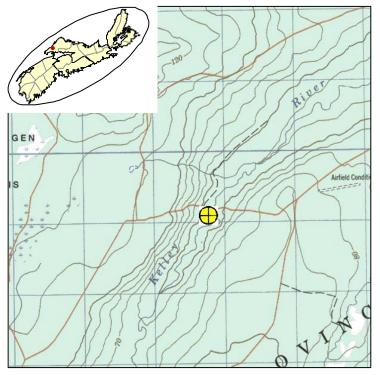


Figure 3.25: Kelley River (073) Well Location

3.26 Atlanta (074)

Well Description

The Atlanta (074) observation well is located near the community of Atlanta, Kings County. The well was constructed in 2007 as part of a aquifer evaluation project completed by Nova Scotia Department of Environment and Labour. The well is completed in a sandstone aquifer and is 53.4 m deep with 36.0 m of casing. Well location and construction information is provided in Table 3.26 and the well log is provided in Appendix A. A 72-hour pump test conducted at this well in 2007 indicated a transmissivity of 105 m²/day, hydraulic conductivity of 5.7 m/day and a safe yield of 1227 m³/day (188 igpm).

Table 3.26: Atlanta (074) Well Construction Information

Well Name	Atlanta (074)
Observation Well ID Number	074
NSE Well Log Number	070613
County	Kings
Nearest Community	Atlanta
UTM - Easting	381956
UTM - Northing	5000758
Year Monitoring Started	2008
Casing Depth (m, bgs)	36.0
Well Depth (m, bgs)	53.4
Elevation - top of casing (m, asl)	NA
Geologic Unit	Blomidon Formation
Aquifer Material	Bedrock - sandstone

Notes: bgs = below ground surface; asl = above sea level

The location of the Atlanta (074) observation well is shown in Figure 3.26a. The well is located approximately 250 m south of Bains Road and is surrounded by undeveloped land in a wooded area. It is located 150 m from the nearest domestic well and 150 m from the Habitant River.

The water level graphs for Atlanta (074) are shown in Figure B.26, Appendix B. This well has been monitored since May 2008. The average water level elevation up to the end of 2008 was 8.50 m above sea level, with an annual fluctuation of approximately 0.34 m. The depth to water was approximately 1.1 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The Atlanta (074) well was sampled in 2007. Water chemistry results are presented in Appendix C. The results indicate that the health-based drinking water guideline was exceeded for uranium. VOCs and pesticides were not detected. The average groundwater temperature at this well from May 2008 until the end of 2008 was 7.0 °C. A graph of the average daily temperature in this well is presented in Appendix D.

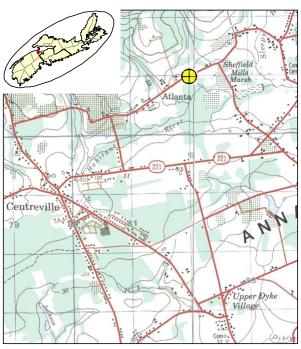


Figure 3.26a: Atlanta (074) Well Location

Figure 3.26b: Atlanta (074) Site Photo

3.27 Sheffield Mills (075)

Well Description

The Sheffield Mills (075) observation well is located near the community of Sheffield Mills, Kings County. The well was constructed in 2007 as part of a aquifer evaluation project completed by Nova Scotia Department of Environment and Labour. The well is completed in a sandstone aquifer and is 53.4 m deep with 19.2 m of casing. Well location and construction information is provided in Table 3.27 and the well log is provided in Appendix A. A 72-hour pump test conducted at this well in 2007 indicated a transmissivity of 72.4 m²/day, hydraulic conductivity of 5.7 m/day and a safe yield of 371 m³/day (57 igpm).

Table 3.27: Sheffield Mills (075) Well Construction Information

Well Name	Sheffield Mills (075)
Observation Well ID Number	075
NSE Well Log Number	070618
County	Kings
Nearest Community	Sheffield Mills
UTM - Easting	384693
UTM - Northing	5000590
Year Monitoring Started	2008
Casing Depth (m, bgs)	19.2
Well Depth (m, bgs)	53.4
Elevation - top of casing (m, asl)	NA
Geologic Unit	Wolfville Formation
Aquifer Material	Bedrock - sandstone

Notes: bgs = below ground surface; asl = above sea level

The location of the Sheffield Mills (075) observation well is shown in Figure 3.27a. The well is located south of Highway 221 in an active agricultural field which is used for growing vegetables (see Figure 3.27b). It is located 165 m from the Habitant River and there are several houses with domestic wells located within 300 m.

The water level graphs for Sheffield Mills (075) are shown in Figure B.27, Appendix B. This well has been monitored since May 2008. The average water level elevation up to the end of 2008 was 8.01 m above sea level, with an annual fluctuation of approximately 0.57 m. The depth to water was approximately 4.4 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The Sheffield Mills (075) well was sampled in 2007. Water chemistry results are presented in Appendix C. The results indicate that no drinking water guidelines were exceeded. VOCs and pesticides were not detected. The average groundwater temperature at this well from April 2008 until the end of 2008 was 8.4 °C. A graph of the average daily temperature in this well is presented in Appendix D.

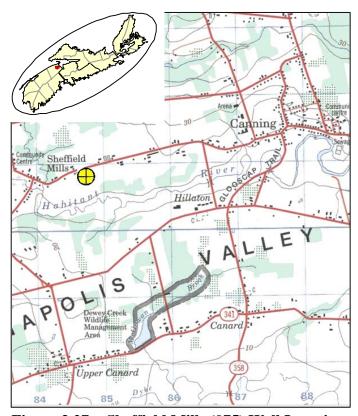


Figure 3.27a: Sheffield Mills (075) Well Location

Figure 3.27b: Sheffield Mills (075) Site Photograph

3.28 Fall River (076)

Well Description

The Fall River (076) observation well is located in the community of Fall River, Halifax County. The well was constructed in February 2008 by NSE and NSDNR to expand the Groundwater Observation Well Network. The well is completed in a slate aquifer and is 61.0 m deep with 13.1 m of casing. Well location and construction information is provided in Table 3.28 and the well log is provided in Appendix A. A 4-hour constant rate pumping test was conducted at this well in 2008 by NSDNR (Kennedy et al., 2009). The results indicated a transmissivity of 0.07 m²/day, hydraulic conductivity of 1.21 X 10⁻³ m/day and an estimated safe yield of 2.13 m³/day (0.3 igpm).

Table 3.28: Fall River (076) Well Construction Information

Well Name	Fall River (076)
Observation Well ID Number	076
NSE Well Log Number	080824
County	Halifax
Nearest Community	Fall River
UTM - Easting	450243
UTM - Northing	4962226
Year Monitoring Started	2008
Casing Depth (m, bgs)	13.1
Well Depth (m, bgs)	61.0
Elevation - top of casing (m, asl)	108.67
Geologic Unit	Halifax Formation
Aquifer Material	Bedrock - slate

Notes: bgs = below ground surface; asl = above sea level

The location of the Fall River(076) observation well is shown in Figure 3.28a and a photograph of the well is shown in Figure 3.28b. The well is located in a ball field in a subdivision development and is within 100 m of the nearest domestic well.

The water level graphs for Fall River (076) are shown in Figure B.28, Appendix B. This well has been monitored since March 2008. The average water level elevation since monitoring began was 104.3 m above sea level and the depth to water was approximately 3.4 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The Fall River (076) well was sampled in 2008. Water chemistry results are presented in Appendix C. The results indicate that no health-based drinking water guidelines were exceeded, however, three aesthetic drinking water guidelines were exceeded, including pH, iron and manganese. VOCs and pesticides were not detected.

The average groundwater temperature at this well since monitoring began was 7.79 °C, with fluctuates between approximately 6.9 and 9.0 °C. A graph of the average daily temperature in this well is presented in Appendix D.

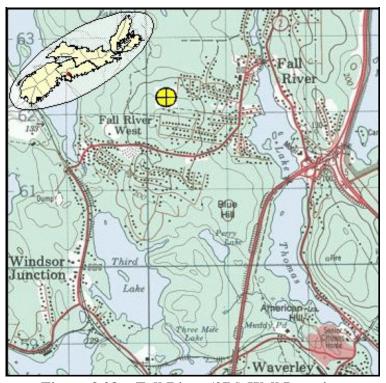


Figure 3.28a: Fall River (076) Well Location

Figure 3.28b: Fall River (076) Site Photograph

3.29 West Northfield (077)

Well Description

The West Northfield (077) observation well is located adjacent to the LaHave River in the community of West Northfield, Lunenburg County. The well was constructed in March 2008 by NSE to expand the Groundwater Observation Well Network. The well is completed in a slate aquifer and is 48.8 m deep with 12.8 m of casing. Well location and construction information is provided in Table 3.29 and the well log is provided in Appendix A. A 5-hour pumping test (i.e., step-test) was conducted at this well in 2008 by NSDNR (Kennedy et al., 2009). The results indicated a transmissivity of 0.44 m²/day, hydraulic conductivity of 1.44 X 10⁻² m/day and an estimated safe yield of 10.53 m³/day (1.6 igpm).

Table 3.29: West Northfield (077) Well Construction Information

Well Name	West Northfield (077)
Observation Well ID Number	077
NSE Well Log Number	080132
County	Lunenburg
Nearest Community	West Northfield
UTM - Easting	373416
UTM - Northing	4922807
Year Monitoring Started	2008
Casing Depth (m, bgs)	12.8
Well Depth (m, bgs)	48.8
Elevation - top of casing (m, asl)	50.84
Geologic Unit	Halifax Formation
Aquifer Material	Bedrock - slate

Notes: bgs = below ground surface; asl = above sea level

The location of the West Northfield (077) observation well is shown in Figure 3.29a and a photograph of the well is shown in Figure 3.29b. The well is located adjacent to the LaHave River (within 50 m of the river) beside a bridge that crosses the LaHave. It is located within 100 m from the nearest domestic well. Note that surface water flow data is also collected at this location of the

LaHave River as part of the Canada/Nova Scotia Hydrometric Program.

Monitoring Results - Water Levels

The water level graphs for Fall River (077) are shown in Figure B.29, Appendix B. This well has been monitored since May 2008. The average water level elevation since monitoring began was 49.50 m above sea level and the depth to water was approximately 0.3 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The West Northfield (077) well was sampled in 2008. Water chemistry results are presented in Appendix C. The results indicate that no health-based drinking water guidelines were exceeded, however, the aesthetic drinking water guideline for manganese was exceeded. VOCs and pesticides were not detected.

The average groundwater temperature since monitoring began at this well was 8.31 °C, with fluctuations between approximately 7.4 and 9.0°C. A graph of the average daily temperature in this well is presented in Appendix D.

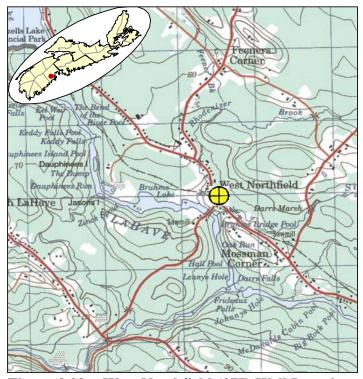


Figure 3.29a: West Northfield (077) Well Location

Figure 3.29b: West Northfield (077) Site Photo

3.30 Musquodoboit Harbour (078)

Well Description

The Musquodoboit Harbour (078) observation well is located adjacent to the Musquodoboit River in the community of Musquodoboit Harbour, Halifax County. The well was constructed in March 2008 by NSE and NSDNR to expand the Groundwater Observation Well Network. The well is completed in a slate aquifer and is 61.0 m deep with 27.1 m of casing.

Well location and construction information is provided in Table 3.30 and the well log is provided in Appendix A. A 1.5-hour constant rate pumping test was conducted at this well in 2008 by NSDNR (Kennedy et al., 2009). The results indicated a transmissivity of 0.010 m²/day, hydraulic conductivity of 1.5 X 10⁻⁴ m/day and an estimated safe yield of 0.31 m³/day (0.05 igpm). Note that this well is completed in bedrock, however, there is a sand and gravel layer that is approximately 25 m thick which overlies the bedrock at this location. During drilling, it was estimated that the yield of this overlying sand and gravel aquifer was approximately 1,300 m³/day (200 igpm).

Table 3.30: Musquodoboit Harbour (078) Well Construction Information

Well Name	Musquodoboit Harbour (078)
Observation Well ID Number	078
NSE Well Log Number	080861
County	Halifax
Nearest Community	Musquodoboit Harbour
UTM - Easting	488125
UTM - Northing	4959880
Year Monitoring Started	2008
Casing Depth (m, bgs)	27.1
Well Depth (m, bgs)	61.0
Elevation - top of casing (m, asl)	7.71
Geologic Unit	Halifax Formation
Aquifer Material	Bedrock - slate

The location of the Musquodoboit Harbour (078) observation well is shown in Figure 3.30a and a photograph of the well is shown in Figure 3.30b. The well is located on the edge of a ball field near a wetland and the Musquodoboit River (within 200 m of the river). It is located within 300 m from the nearest domestic well.

Monitoring Results - Water Levels

The water level graphs for Musquodoboit Harbour (078) are shown in Figure B.30, Appendix B. This well has been monitored since May 2008. The average water level elevation since monitoring began was 4.94 m above sea level and the depth to water was approximately 1.8 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The Musquodoboit Harbour (078) well was sampled in 2008. Water chemistry results are presented in Appendix C. The results indicate that no drinking water guidelines were exceeded. VOCs and pesticides were not detected.

The average groundwater temperature at this well since monitoring began was 7.60 °C, with fluctuations between approximately 6.2 and 8.8°C. A graph of the average daily temperature in this well is presented in Appendix D.

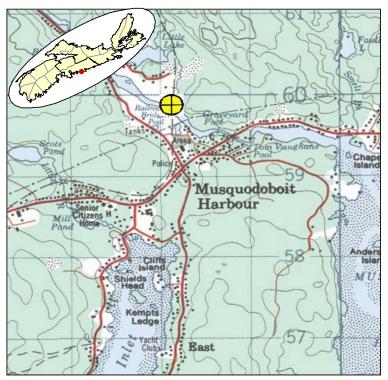


Figure 3.30a: Musquodoboit Harbour (078) Well Location

Figure 3.30b: Musquodoboit Hbr (078) Site Photograph

3.31 Lewis Lake (079)

Well Description

The Lewis Lake (079) observation well is located in the Jerry Lawrence Provincial Park near the community of Lewis Lake, Halifax County. The well was constructed in 1969 as a water supply for the park and was converted to an observation well in 2008 because it was no longer in use as a water supply well.

The well is completed in a granite aquifer and is 77.0 m deep with 7.6 m of casing. Well location and construction information is provided in Table 3.31 and the well log is provided in Appendix A. A 3 hour pumping test (i.e., step-test) was conducted at this well in 2008 by NSDNR (Kennedy et al., 2009). The results indicated a transmissivity of 1.53 m²/day, hydraulic conductivity of 2.70 X 10^{-2} m/day and an estimated safe yield of 57.31 m³/day (8.8 igpm).

Table 3.31: Lewis Lake (079) Well Construction Information

Well Name	Lewis Lake (079)
Observation Well ID Number	079
NSE Well Log Number	690090
County	Halifax
Nearest Community	Lewis Lake
UTM - Easting	433048
UTM - Northing	4948873
Year Monitoring Started	2008
Casing Depth (m, bgs)	7.6
Well Depth (m, bgs)	77.0
Elevation - top of casing (m, asl)	82
Geologic Unit	Late Devonian Granite
Aquifer Material	Bedrock - granite

Notes: bgs = below ground surface; asl = above sea level

The location of the Lewis Lake (079) observation well is shown in Figure 3.31a and a photograph of the well is shown in Figure 3.31b. The well is located in a forested area within 100 m of Lewis Lake. The nearest domestic well is approximately 1,000 m away.

Monitoring Results - Water Levels

The water level graphs for Lewis Lake (079) are shown in Figure B.31, Appendix B. This well has been monitored since November 2008. The average water level elevation since monitoring began was 79.80 m above sea level and the depth to water was approximately 2.7 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The Lewis Lake (079) well was sampled in 2008. Water chemistry results are presented in Appendix C. The results indicate that health-based drinking water guidelines were exceeded for arsenic and fluoride, and aesthetic drinking water guidelines were exceeded for manganese. VOCs and pesticides were not detected.

The average groundwater temperature at this well since monitoring began was 8.10 °C. A graph of the average daily temperature in this well is presented in Appendix D.

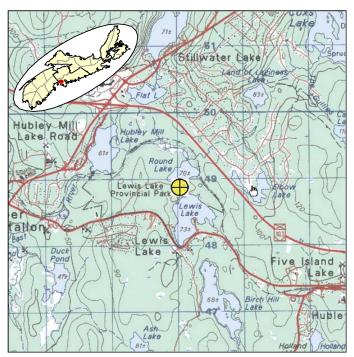


Figure 3.31a: Lewis Lake (079) Well Location



Figure 3.31b: Lewis Lake (079) Site Photograph

4.0 SUMMARY & CONCLUSIONS

4.1 Groundwater Levels

Table 4.1 presents a summary of groundwater level trends for each observation well and further details are provided in Appendix E. Trend analyses were only carried out on wells with at least ten years of "useable" water level data. A year was considered useable if data were available for at least 75% of the year. Twelve of the observation wells had enough water level data available to complete trend analyses. The remaining 19 wells had either been monitored for less than ten years, or had data gaps that caused some years of monitoring data to be unuseable. Trends were considered statistically significant if the confidence level was greater than 80%.

The results indicate that eight of the wells exhibit statistically significant groundwater level trends, with three having small upward trends and five having small downward trends. The downward trends are larger than the upward trends, however, the size of the trends in all cases is relatively small.

Upward trends were observed at the following wells: Fraser Brook (004), Durham (045) and Hayden Lake (059). The largest upward trend was 2.4 cm/year at the Durham(045) observation well, which resulted in a total rise of approximately 0.7 m over the entire monitoring period at this well. The reason for the upward trends at these wells has not been determined, however, possible reasons include: increased precipitation; greater infiltration rates due to changes in land use; and, reduction in evapotranspiration rates.

Downward trends were observed at the following wells: Wolfville (010), Monastery (028), Lawrencetown (043), Kentville (048) and Sydney (050). The largest downward trend was 5.5 cm/year at the Sydney (050) observation well, which resulted in a total decline of approximately 1.0 m since monitoring began. The reason for the downward trends at these wells has not been confirmed, however, three of these observation wells are located in municipal wellfields and, therefore, groundwater levels in these areas are expected to have dropped due to wellfield pumping.

Table 4.1: Summary of Groundwater Level Trends

Well Name	Year Monitoring Started	No. of Usable Years ¹	Average Yearly Water Level Change (cm/year) ²	Total Water Level Change Since Monitoring Began (m)	Water Level Trend ³
Greenwood (003)	1966	20	NA	NA	No Trend
Fraser Brook (004)	1966	19	0.3	0.1	Up
Wilmot (005)	1969	18	NA	NA	No Trend
Wolfville (010)	1969	20	-2.5	-0.7	Down
Truro (014)	1971	16	NA	NA	No Trend
Monastery (028)	1976	10	-3.9	-1.1	Down
Point Aconi (030)	1976	16	NA	NA	No Trend
Lawrencetown (043)	1978	12	-2.4	-0.7	Down
Durham (045)	1979	23	2.4	0.7	Up
Kentville (048)	1980	15	-1	-0.6	Down
Sydney (050)	1984	14	-5.5	-1	Down
North Grant (054)	1987	7	NA	NA	Insufficient Data
Stillwater (055)	1987	6	NA	NA	Insufficient Data
Sheet Harbour (056)	1987	6	NA	NA	Insufficient Data
Charleston (058)	1988	5	NA	NA	Insufficient Data
Hayden Lake (059)	1988	14	1.2	0.2	Up
Meteghan (060)	1987	8	NA	NA	Insufficient Data
Annapolis Royal (062)	1990	7	NA	NA	Insufficient Data
Hebron (063)	1990	7	NA	NA	Insufficient Data
Margaree (064)	1990	7	NA	NA	Insufficient Data
Ingonish (065)	1990	6	NA	NA	Insufficient Data
Debert (068)	1993	<4	NA	NA	Insufficient Data
Dalem Lake (069)	1992	5	NA	NA	Insufficient Data
Amherst (071)	1993	<4	NA	NA	Insufficient Data

Well Name	Year Monitoring Started	No. of Usable Years ¹	Average Yearly Water Level Change (cm/year) ²	Total Water Level Change Since Monitoring Began (m)	Water Level Trend ³
Kelley River (073)	2006	<4	NA	NA	Insufficient Data
Atlanta (074)	2008	<4	NA	NA	Insufficient Data
Sheffield Mills (075)	2008	<4	NA	NA	Insufficient Data
Fall River (076)	2008	<4	NA	NA	Insufficient Data
West Northfield (077)	2008	<4	NA	NA	Insufficient Data
Musquodoboit Hbr (078)	2008	<4	NA	NA	Insufficient Data
Lewis Lake (079)	2008	<4	NA	NA	Insufficient Data

Notes:

- 1. For a year to be considered a "useable" year, data must be available for at least 75% of the year.
- 2. Positive (+) values indicate upward trend and negative (-) values indicate downward trend.
- 3. The trend is considered to be statistically significant if the confidence level is 80% or more.
- 5. Insufficient data means there are less than 10 useable years of data available.

4.2 Groundwater Quality

Table 4.2 presents a summary of the groundwater quality results for each of the network's observation wells. Detailed chemistry results are available in Appendix C. The results indicate that seven of the 31 wells exceeded health-based drinking water guidelines. The parameters that exceeded health-based guidelines included: arsenic (at four wells), fluoride (one well), lead (one well), nitrate (one well) and uranium (one well). Most of these exceedances (including arsenic, fluoride and uranium) are associated with naturally-occurring contaminants that are known to occur in groundwater in certain areas of the province due to the presence of naturally-occurring minerals in the soil and bedrock. The nitrate exceedance that was observed at a well which is located in an agricultural area and is likely to be caused by human activity.

Sixteen of the 31 wells exceeded aesthetic drinking water guidelines. The parameters that exceeded aesthetic drinking water guidelines included: manganese (at 12 wells), iron (at seven wells), chloride (at one well), pH (at three wells) and turbidity (at seven wells). The majority of these parameters are

naturally-occurring water quality problems that are commonly encountered in water wells in Nova Scotia and elsewhere. Note that chloride was detected above background levels at three wells, including one well where the chloride level was above the aesthetic drinking water guideline. Based on the chemistry and location of these wells, it is expected that two of these wells have been impacted by road salt and one has been impacted by sea water intrusion.

The water quality results show that none of the observation wells exceeded drinking water guidelines for VOCs or pesticides. However, one VOC (toluene) was detected at one observation well at low levels (i.e., 1 ug/L). The source of the toluene at this well has not been determined; however, the well is located beside a road so it may be due to gasoline runoff from the road. No pesticides were detected in any of the observation wells.

The groundwater temperature data collected at each observation well (see Appendix D) shows that all of the observation wells experience seasonal temperature fluctuations. The peak groundwater temperatures usually occur between September and January and the lowest temperatures usually occur between March and June. The temperature range at each observation well is variable, however, the typical range is between 6°C and 10°C, with a typical average temperature of approximately 8°C.

Of the 17 observation wells that have been tested for tritium, 13 wells contained either recent water (recharged after 1952) or a mix of recent and old water (recharged before and after 1952). Only four of the seventeen wells tested for tritium contained purely old water (recharged before1952). These results suggest that most of the wells draw water from aquifers are recharged relatively quickly. This is encouraging from a water quantity point of view because the aquifers are being regularly replenished with new water, however, it also indicates that the aquifers are vulnerable to contamination (i.e., contaminants released at the surface will be carried into the aquifer relatively quickly). This emphasizes the importance of source water protection in the province to ensure that groundwater is kept clean.

Table 4.2: Summary of Groundwater Quality Results

Well Name	Parameters Exceeding Health-Based Drinking Water Guidelines	Parameters Exceeding Aesthetic Drinking Water Guidelines	Comments
Greenwood (003)	None	pH, Turbidity, Iron, Manganese	None
Fraser Brook (004)	Arsenic	None	None
Wilmot (005)	Nitrate	Turbidity	None
Wolfville (010)	None	Turbidity, Iron, Manganese	Chloride exceeds background
Truro (014)	Not sampled	Not sampled	Not sampled
Monastery (028)	None	None	None
Point Aconi (030)	None	None	None
Lawrencetown (043)	Arsenic	None	Chloride exceeds background
Durham (045)	None	None	None
Kentville (048)	Lead	Chloride, Iron	None
Sydney (050)	None	Manganese	None
North Grant (054)	Arsenic	Turbidity, Iron	None
Stillwater (055)	None	Manganese	None
Sheet Harbour (056)	None	Manganese	Arsenic was detected at a level equal to the guideline (10 ug/L)
Charleston (058)	Not sampled	Not sampled	Not sampled
Hayden Lake (059)	None	pН	None
Meteghan (060)	None	Turbidity, Iron, Manganese,	None
Annapolis Royal (062)	None	Turbidity, Manganese	Toluene detected below guidelines
Hebron (063)	None	Turbidity, Iron, Manganese	None
Margaree (064)	None	None	None

Well Name	Parameters Exceeding Health-Based Drinking Water Guidelines	Parameters Exceeding Aesthetic Drinking Water Guidelines	Comments
Ingonish (065)	Not sampled	Not sampled	Not sampled
Debert (068)	Not sampled	Not sampled	Not sampled
Dalem Lake (069)	None	Manganese	None
Amherst (071)	None	None	None
Kelley River (073)	None	None	None
Atlanta (074)	Uranium	None	None
Sheffield Mills (075)	None	None	None
Fall River (076)	None	Iron, Manganese, pH	None
West Northfield (077)	None	Manganese	None
Musquodoboit Hbr (078)	None	None	None
Lewis Lake (079)	Arsenic, Fluoride	Manganese	None

Note: Some wells have been sampled multiple times. This table summarizes the most recent sample results.

5.0 REFERENCES

Baechler, F.E. 1986. Regional Water Resources Sydney Coalfield, Nova Scotia. Department of the Environment, Halifax.

Bottomley, D.J. 1983. Origins of Some Arseniferous Groundwaters in Nova Scotia and New Brunswick, Canada. Canada Journal of Hydrology, 69: 223-257.

Callan, D.M. 1977. Groundwater Exploration and Testing Programme - Annapolis Valley Industrial Park, Kentville, N.S.

Clark I.D. and P. Fritz. 1997. Environmental Isotopes in Hydrogeology. Lewis Publishers, Boca Raton.

Cross, H.J. 1980. Report on Test Drilling, Upper Lawrencetown, Halifax County, Nova Scotia. Department of the Environment, Water Planning and Management Division, Halifax.

Environment Canada. 2007. Canadian Climate Normals Online. http://climate.weatheroffice.ec.gc.ca

Gibb, J.E., and K.A. McMullin. 1980. Regional Water Resources, Pictou County, Nova Scotia. Nova Scotia Department of the Environment.

Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. John Wiley & Sons.

Health Canada. 2007. Perchlorate and Human Health.

(Website: http://www.hc-sc.gc.ca/ewh-semt/water-eau/drink-potab/perchlorate_e.html)

Hennigar, T.W. 1966. Report on the geology and hydrology of the Fraser Brook Watershed, IHD-IWB-RB-23.

Hennigar, T.W. 1972. Hydrogeology of the Truro Area, Nova Scotia. Province of Nova Scotia Department of Mines, Groundwater Section report 72-1.

Hennigar, T.W. 1974. Hydrogeology of the Kelley River IHD Benchmark Basin, Cumberland County, Nova Scotia. Province of Nova Scotia Department of Environment.

Kennedy, G.W., K. G. Garroway and J. M. Drage. 2009. Hydrogeology program in Nova Scotia. Minerals Resources Branch Report of Activities 2008. Nova Scotia Department of Natural Resources. Report ME 2009-1.

McIntosh, J.R. 1984. Groundwater Hydrographs in Nova Scotia 1965-1981. Nova Scotia Department of the Environment.

NS Environment and Labour. 2007. Nova Scotia Groundwater Observation Well Network - 2007 Report. Nova Scotia Department of Environment and Labour.

NS Environment. 2008. Nova Scotia Groundwater Observation Well Network - 2008 Report. Nova Scotia Department of Environment.

Rivard, C., D. Paradis, S.J. Paradis, A. Bolduc, R.H. Morin, S. Liao, S. Pullan, Gauthier, M.-J., S. Trepanier, A. Blackmore, I. Spooner, C. Deblonde, R. Fernandes, S. Castonguay, Y. Michaud, J. Drage, and C. Paniconi. In progress. Canadian Groundwater Inventory: Regional Hydrogeological Characterization of the Annapolis-Cornwallis Valley Aquifers. Geological Survey of Canada.

Strait of Canso Natural Environment Committee. 1975. Strait of Canso Natural Environment Inventory Water Resources

Trescott, P.C. 1968. Groundwater Resources and Hydrogeology of the Annapolis-Cornwallis Valley, Nova Scotia. Nova Scotia Department of Mines, Memoir 6.

Trescott, P.C. 1969. Wolfville aquifer evaluation, Kings County, Nova Scotia. Province of Nova Scotia Department of Mines, Groundwater Section Report 69-1.

APPENDIX A WELL LOGS

Table A-1: Summary of Observation Well Construction Information

Well#	Address	Community	County	Date	Well Depth	Casing Depth	Depth to Bedrock	Depth to Static Level	Water Yield	Driller	Type of Well
					(ft)	(ft)	(ft)	(ft)	(igpm)		
661225	NS OBS WELL - GREENWOOD (003)	GREENWOOD	KINGS	20-Jun-66	25	21.5				1	DRILLED
661226	NS OBS WELL - FRASER BROOK (004)	LOWER HARMONY	COLCHESTER	11-Jul-66	60		2		5	1	DRILLED
661267	NS OBS WELL - WILMOT (005)	WILMOT	ANNAPOLIS	18-May-66	60	21				1	DRILLED
681252	NS OBS WELL - WOLFVILLE (010)	WOLFVILLE	KINGS	17-Dec-68	79	74.5	35			1	DRILLED
701431	NS OBS WELL - TRURO (014)	TRURO	COLCHESTER	16-Nov-70	300	60	35			1	DRILLED
742420	NS OBS WELL - MONASTERY (028)	MONASTERY	ANTIGONISH	01-Jan-74	520				40	1	DRILLED
761408	NS OBS WELL - POINT ACONI (030)	POINT ACONI	CAPE BRETON	11-Aug-76	100	42	14		10	45	DRILLED
771538	NS OBS WELL - LAWRENCETOWN (043)	UPPER LAWRENCETOWN	HALIFAX	16-Mar-77	175	145	10	4	8	83	DRILLED
772021	NS OBS WELL - KENTVILLE (048)	KENTVILLE	KINGS	20-May-77	400	100	95		150	20	DRILLED
771077	NS OBS WELL - SYDNEY (050)	SYDNEY	CAPE BRETON	09-Mar-77	330	22	13		250	45	DRILLED
782683	NS OBS WELL - DURHAM (045)	DURHAM	PICTOU	01-Jul-78	247		20		100	4	DRILLED
832002	NS OBS WELL - DEBERT (068)	DEBERT	COLCHESTER	13-Aug-83	153	26		112	10	6	DRILLED
871262	NS OBS WELL - NORTH GRANT (054)	LOWER NORTH GRANT	ANTIGONISH	30-Mar-87	150	43		14	20	2	DRILLED
871263	NS OBS WELL - STILLWATER (055)	STILLWATER	GUYSBOROUGH	01-Apr-87	118	44		30	4.5	2	DRILLED
871264	NS OBS WELL - SHEET HARBOUR (056)	BEAVER HARBOUR	HALIFAX	06-Apr-87	150	23		10	0.7	2	DRILLED
870189	NS OBS WELL - HAYDEN LAKE (059)	EAST JORDAN	SHELBURNE	31-Mar-87	160	20	10		3.7	210	DRILLED
870188	NS OBS WELL - METEGHAN (060)	METEGHAN RIVER	DIGBY	31-Mar-87	200	40			0.7	210	DRILLED
870190	NS OBS WELL - CHARLESTON (058)	RIVERSDALE	QUEENS	01-Apr-87	40		20	6		210	DRILLED
891721	NS OBS WELL - HEBRON (063)	DAYTON	YARMOUTH	19-Dec-89	150	40	3		45	210	DRILLED
891722	NS OBS WELL - ANNAPOLIS ROYAL (062)	LAKE LA ROSE	ANNAPOLIS	20-Dec-89	205	80	71		0.5	210	DRILLED
892288	NS OBS WELL - INGONISH (065)	INGONISH	VICTORIA	12-Dec-89	150	40			100	45	DRILLED
902524	NS OBS WELL - MARGAREE (064)	MARGAREE VALLEY	INVERNESS	16-Jan-90	150	40			10	45	DRILLED
943326	NS OBS WELL - DALEM LAKE (069)	NEW DOMINION	VICTORIA	01-Jan-92	200	40.5					DRILLED
862667	NS OBS WELL - AMHERST (071)	AMHERST	CUMBERLAND	29-Jul-86	382	20	15			32	DRILLED
721858	NS OBS WELL - KELLEY RIVER (073)	RIVER HEBERT	CUMBERLAND	01-Dec-71	50	13.6					DRILLED
070613	NS OBS WELL - ATLANTA (074)	ATLANTA	KINGS	29-Aug-07	175	118	112		100	307	DRILLED
070618	NS OBS WELL - SHEFFIELD MILLS (075)	SHEFFIELD MILLS	KINGS	29-Aug-07	175	63	16		60	307	DRILLED
080824	NS OBS WELL - FALL RIVER (076)	FALL RIVER	HALIFAX	28-Feb-08	200	43	3.5	12	1.5	695	DRILLED
080132	NS OBS WELL - WEST NORTHFIELD (077)	WEST NORTHFIELD	LUNENBURG	06-Mar-08	160	42	24		7	307	DRILLED
080861	NS OBS WELL - MUSQUODOBOIT HBR (078)	MUSQUODOBOIT HARBOUR	HALIFAX	06-Mar-08	200	89	81		0.5	734	DRILLED
690090	NS OBS WELL - LEWIS LAKE (079)	LEWIS LAKE	HALIFAX	11-Jun-69	250	25	20		6	3	DRILLED

NSEL Well No.

Well Type

661225 DRILLED

	1	
Certified Well Contractor		Well Owner/Contractor Information
Name MINES	Well Drilled For:	Owner NS DEPT. OF MINES
Certificate No. 1	or Contractor/Bui	lder/Consultant, etc.
Company N. S. DEPARTMENT OF MINE	Civic Address of	Well NS OBS WELL - GREENWOOD (003)
IN. S. DEI AKTIMENT OF MINES	Lot Number	Subdivision
	County KINGS	Postal Code
	Nearest Commu	nity in Altlas/Map Book ATLAS GREENWOOD
	Well Location	
NS Atlas or Map Book Reference :	NTS Map Reference :	GPS (WGS84 UTM) :
Atlas or Map Book	Map Sheet 21H2	Northing (m) 4985498
Map Page No.	Reference Map B	Easting (m) 350680
Reference Letter	Tract No. 7	Property (PID)
Reference Number		
Roamer Letter	Claim M	Well Location Sketch Available
Roamer Number		
Depth in feet Prime	ary Lithology	Secondary Lithology
From To Colour 1 Description 1	Lithology 1 Colour 2	Description 2 Lithology 2 Water Found
0 25 FINE GRAINED	SAND	COARSE GRAIN SAND
Well Construction Information		
	Dug Well Information	Water Yield
Total depth below surface (ft) 25	Dug Well Information Depth of liner (crock) (ft)	Water Yield Estimated Yield (igpm)
Total depth below surface (ft) 25 Depth to bedrock (ft)		
	Depth of liner (crock) (ft)	Estimated Yield (igpm) Method
Depth to bedrock (ft) Water bearing fractures encountered at (ft):	Depth of liner (crock) (ft) Reservoir material	Estimated Yield (igpm) Method Rate (igpm)
Depth to bedrock (ft) Water bearing fractures encountered at (ft): Outer Well Casing:	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd)	Estimated Yield (igpm) Method Rate (igpm) Duration (hrs)
Depth to bedrock (ft) Water bearing fractures encountered at (ft):	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size	Estimated Yield (igpm) Method Rate (igpm) Duration (hrs) Depth to water at end of test (ft)
Depth to bedrock (ft) Water bearing fractures encountered at (ft): Outer Well Casing:	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material	Estimated Yield (igpm) Method Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft)
Depth to bedrock (ft) Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) To (ft) 22	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft)	Estimated Yield (igpm) Method Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft)
Depth to bedrock (ft) Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) Diameter (in) Length of casing above ground:	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft)	Estimated Yield (igpm) Method Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs)
Depth to bedrock (ft) Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) Diameter (in) To (ft) 4.5	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft)	Estimated Yield (igpm) Method Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft)
Depth to bedrock (ft) Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) 0 To (ft) 22 Diameter (in) 4.5 Length of casing above ground: (ft) (in) Driveshoe make	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	Estimated Yield (igpm) Method Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow
Depth to bedrock (ft) Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) Diameter (in) Length of casing above ground: (ft) (in)	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	Estimated Yield (igpm) Method Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow Well Status/Water Use/Date Completed
Depth to bedrock (ft) Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) 0 To (ft) 22 Diameter (in) 4.5 Length of casing above ground: (ft) (in) Driveshoe make	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	Estimated Yield (igpm) Method Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL
Depth to bedrock (ft) Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) 0 To (ft) 22 Diameter (in) 4.5 Length of casing above ground: (ft) (in) Driveshoe make	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	Estimated Yield (igpm) Method Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow Well Status/Water Use/Date Completed Final status of well Water use MONITORING
Depth to bedrock (ft) Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) 0 To (ft) 22 Diameter (in) 4.5 Length of casing above ground: (ft) (in) Driveshoe make	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	Estimated Yield (igpm) Method Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL

NSEL Well No.

661226 DRILLED

Well Type

Environment and Labour

Certified Well Contractor			V	Vell Owner/	Contractor Inforr	mation
Continued Well Contractor			v	. 5.1 0 111101/1	22711140101 1111011	
Name		Well Drilled Fo	: Owner		NS D	DEPT. OF MINES
Certificate No. 1		or Contractor/I	uilder/Co	onsultant, et	c.	
Company N. S. DEPARTMENT OF MINE	S	Civic Address	of Well	NS OBS WE	LL - FRASER B	ROOK (004)
		Lot Number		Subdivisio	n	
		County COL	HESTER	₹	Posta	I Code
		Nearest Comm	unity in A	Altlas/Map B	ook ATLAS	LOWER HARMONY
	Well	Location			-	,
NS Atlas or Map Book Reference :	NTS Map Reference			GPS (\	NGS84 UTM) :	
Atlas or Map Book	Map Sheet	11E6	7	Northir		5021100
Map Page No.	Reference Map	A	=	Easting	g (m)	486889
Reference Letter	Tract No.	81	_		ty (PID)	
Reference Number	<u> </u>		-			Aveilable
Roamer Letter	Claim	J		well Lo	ocation Sketch A	Available
Roamer Number						
Depth in feet Prim	nary Lithology			Secondary	/ Lithology	
From To Colour 1 Description 1	Lithology 1	Colour 2	Desc	cription 2	Lithology	2 Water Found
0 2 REDDISH SANDY	TILL					
	OU TOTONE	ODAY	LAVED	^	OII TOTONE	
6 60 REDDISH LAMINATED	SILTSTONE	GRAY	LAYER	S	SILTSTONE	
	SILTSTONE	GRAY	LAYER	S	SILTSTONE	
	SILTSTONE	GRAY	LAYER	S	SILTSTONE	
	SILTSTONE Dug Well Ir		LAYER	S	SILTSTONE	Yield
6 60 REDDISH LAMINATED		nformation	LAYER			
6 60 REDDISH LAMINATED Well Construction Information	Dug Well Ir	nformation ock) (ft)	LAYER	Est	Water	
6 60 REDDISH LAMINATED Well Construction Information Total depth below surface (ft) 60	Dug Well Ir Depth of liner (cro	nformation ock) (ft)	LAYER	Est Met	Water imated Yield (igp	om) 6.5
Well Construction Information Total depth below surface (ft) Depth to bedrock (ft) 2	Dug Well Ir Depth of liner (cro Reservoir materia	nformation Dock) (ft)	LAYER	Est Mei Rat	Water imated Yield (igp thod e (igpm)	PUMP TEST 5
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing:	Dug Well Ir Depth of liner (cro Reservoir materia Reservoir vol. (cu	nformation Dock) (ft)	LAYER	Est Mer Rat Dur	Water imated Yield (igp thod e (igpm) ration (hrs)	PUMP TEST 5
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft):	Dug Well Ir Depth of liner (cro Reservoir materia Reservoir vol. (cu Reservoir materia	nformation Dock) (ft)	LAYER	Est Mei Rat Dur Dep	Water imated Yield (igp thod e (igpm) ation (hrs) oth to water at er	PUMP TEST 5 24 and of test (ft)
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing:	Dug Well Ir Depth of liner (cro Reservoir materia Reservoir vol. (cu Reservoir materia Apron Material	nformation pck) (ft) al i.yd) al size	LAYER	Est Mei Rat Dur Dep Tot	Water imated Yield (ign thod e (igpm) ration (hrs) oth to water at er al drawdown (ft)	PUMP TEST 5 24 nd of test (ft) 29.5
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) To (ft)	Dug Well Ir Depth of liner (cro Reservoir materia Reservoir vol. (cu Reservoir materia Apron Material Apron depth (ft)	nformation pck) (ft) al i.yd) al size	LAYER	Est Mei Rat Dur Dep Tot: Wa	Water imated Yield (iggathod e (igpm) ration (hrs) oth to water at er al drawdown (ft) ter level recover	PUMP TEST 5 24 nd of test (ft) 29.5 ed to (ft)
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) To (ft) Diameter (in) 6 Length of casing above ground:	Dug Well Ir Depth of liner (cro Reservoir material Reservoir wol. (cu Reservoir material Apron Material Apron depth (ft) Apron thickness (nformation pck) (ft) al i.yd) al size	LAYER	Est Met Rat Dur Dep Tot Wa Rec	Water imated Yield (ign thod e (igpm) ration (hrs) oth to water at er al drawdown (ft)	PUMP TEST 5 24 nd of test (ft) 29.5 ed to (ft)
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) To (ft) Diameter (in) 6 Length of casing above ground:	Dug Well Ir Depth of liner (cro Reservoir materia Reservoir vol. (cu Reservoir materia Apron Material Apron depth (ft) Apron thickness (Apron width (ft)	nformation pck) (ft) al i.yd) al size	LAYER	Est Met Rat Dur Dep Tot Wa Rec Dep	Water imated Yield (ign thod e (igpm) ration (hrs) oth to water at er al drawdown (ft) ter level recover	PUMP TEST 5 24 nd of test (ft) 29.5 ed to (ft)
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) To (ft) Diameter (in) 6 Length of casing above ground: (ft) (in)	Dug Well Ir Depth of liner (cro Reservoir materia Reservoir vol. (cu Reservoir materia Apron Material Apron depth (ft) Apron thickness (Apron width (ft) Apron volume (cu Bottom material	nformation pck) (ft) al i.yd) al size	LAYER	Est Met Rat Dur Dep Tot Wa Rec Dep Ove	Water imated Yield (ign thod e (igpm) ration (hrs) oth to water at er al drawdown (ft) ter level recover covery time (hrs) oth to static level	PUMP TEST 5 24 nd of test (ft) 29.5 ed to (ft)
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) To (ft) 5 Length of casing above ground: (ft) (in) Driveshoe make	Dug Well Ir Depth of liner (cro Reservoir materia Reservoir vol. (cu Reservoir materia Apron Material Apron depth (ft) Apron thickness (Apron width (ft) Apron volume (cu Bottom material	nformation pck) (ft) al i.yd) al size		Est Met Rat Dur Dep Tot Wa Rec Dep Ove	Water imated Yield (ignated Yield (i	pump TEST 5 24 and of test (ft) 29.5 ed to (ft)
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) To (ft) 5 Length of casing above ground: (ft) (in) Driveshoe make	Dug Well Ir Depth of liner (cro Reservoir materia Reservoir vol. (cu Reservoir materia Apron Material Apron depth (ft) Apron thickness (Apron width (ft) Apron volume (cu Bottom material	nformation pck) (ft) al i.yd) al size		Est Met Rat Dur Dep Tot: Wa Rec Ove	Water imated Yield (ignated Yield (i	PUMP TEST 5 24 nd of test (ft) 29.5 ed to (ft) (ft) se/Date Completed
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) To (ft) 5 Length of casing above ground: (ft) (in) Driveshoe make	Dug Well Ir Depth of liner (cro Reservoir materia Reservoir vol. (cu Reservoir materia Apron Material Apron depth (ft) Apron thickness (Apron width (ft) Apron volume (cu Bottom material	nformation pck) (ft) al i.yd) al size	F	Est Met Rat Dur Dep Tot: Wa Rec Ove	Water imated Yield (ignated Yield (i	PUMP TEST 5 24 nd of test (ft) 29.5 ed to (ft) (ft) se/Date Completed

(Summary Log)

NSE Well No.

661267 DRILLED

Well Type

Certified Well Contractor		Well Ow	ner/Contractor Information
Name MINES Certificate No. 1 Company N. S. DEPARTMENT OF MINES NS Atlas or Map Book Reference: Atlas or Map Book Map Page No. Reference Letter Reference Number Roamer Letter Roamer Number	Or Circle Lo Co Ne Well Loca NTS Map Reference :	Contractor/Builder/Consultar vic Address of Well NS OBS t Number Subdi Dunty ANNAPOLIS earest Community in Altlas/M tion G 21A14 No D Ea	NS DEPT. OF MINES Int, etc. S WELL - WILMOT (005) ivision Postal Code
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) 0 To (ft) 21 Diameter (in) 4.5 Length of casing above ground: (ft) (in) Driveshoe make	Dug Well Inform Depth of liner (crock) (the Reservoir material of Reservoir vol. (cu.yd) Reservoir material size of Apron Material of Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	it)	Water Yield Estimated Yield (igpm) Method Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow
Comments NS OBSERVATION WELL - WILM	MOT (005)	Final sta Water us Method	Well Status/Water Use/Date Completed atus of well OBSERVATION WELL se MONITORING of drilling 18-May-66

NSEL Well No.

681252 DRILLED

Well Type

Environment and Labour

Certified Well Contractor			Well Owner/Contractor Information
Name MINES Certificate No. 1 Company N. S. DEPARTMENT OF MINES NS Atlas or Map Book Reference : Atlas or Map Book	5	Civic Address of Lot Number County KINGS Nearest Commu	uilder/Consultant, etc. of Well NS OBS WELL - WOLFVILLE (010) Subdivision
Map Page No. Reference Letter Reference Number Roamer Letter Roamer Number	Reference Map Tract No. Claim	В 78 К	Easting (m) 392086 Property (PID) Well Location Sketch Available
From To Colour 1 Description 1 0 3 RED CLAYEY 3 15 FINE GRAINED 15 35 RED CLAYEY 35 79 RED	Lithology 1 TILL SAND TILL SAND TILL SANDSTONE	Colour 2	Secondary Lithology Description 2 Lithology 2 Water Found GRAVEL L
Well Construction Information Total depth below surface (ft) 79 Depth to bedrock (ft) 35 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) 75 Diameter (in) 4.5 Length of casing above ground: (ft) (in) Driveshoe make	Dug Well Infor Depth of liner (crock) Reservoir material Reservoir wol. (cu.yd Reservoir material si Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd Bottom material) (ft)	Water Yield Estimated Yield (igpm) Method Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow
Comments NS OBSERVATION WELL - WOL	FVILLE (010)		Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL Water use MONITORING Method of drilling Date well completed 17-Dec-68

NSEL Well No.

Environment and Labour

(Summary Log)

701431 DRILLED Well Type

Certified Well Contractor			Well Owner/C	Contractor Information	
Name MINES Certificate No. 1 Company N. S. DEPARTMENT OF MINE NS Atlas or Map Book Reference : Atlas or Map Book Map Page No. Reference Letter Reference Number Roamer Letter Roamer Number	SS	Civic Address of Lot Number County COLCH Nearest Commun	Owner Ider/Consultant, etc Well NS OBS WEL Subdivision HESTER Inity in Altlas/Map Bo GPS (W Northing Easting Propert	NS DEPT. LL - TRURO (014) Postal Code ook ATLAS TR VGS84 UTM) : g (m)	OF MINES URO 5023778 476052
Depth in feet Prin	Lithology 1	Colour 2	Secondary Description 2	Lithology 2	Water Found
0 20 20 35 35 300	GRAVEL GLACIAL TILL SHALE		SEAM :	SANSTONE	
Well Construction Information	Dug Well Inf	ormation		Water Yield	
Total depth below surface (ft) 300 Depth to bedrock (ft) 35 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) 0 To (ft) 60 Diameter (in) 6 Length of casing above ground: (ft) (in) Driveshoe make	Depth of liner (crock Reservoir material Reservoir wol. (cu.y Reservoir material Apron Material Apron depth (ft) Apron thickness (ft Apron width (ft) Apron volume (cu.y Bottom material	ck) (ft)	Meth Rate Dura Depi Tota Wate Reco Depi Ove	mated Yield (igpm) nod e (igpm) ation (hrs) th to water at end of the control o	(ft)
Comments NS OBSERVATION WELL - TRI	JRO (014)		Final status of Water use Method of dril Date well com	MONITORING	ON WELL

NSEL Well No.

742420 DRILLED

Well Type

Environment and Labour

Certified W	/ell Contractor				Well Owner/0	Contractor Inforn	nation
001111100111							
Name MINES			Well D	rilled For:	Owner	NS D	PEPT. OF MINES
Certificate No. 1			or Con	tractor/Bu	ilder/Consultant, etc)	
Company N. S. DEPARTME	ENT OF MINES		Civic A	ddress of	Well NS OBS WE	LL - MONASTE	RY (028)
			Lot Nu	mber	Subdivision	n	
			County	/ ANTIG	ONISH	Postal	Code
			ĺ	-			MONASTERY
			ineares	st Commu	nity in Altlas/Map Bo	JOK ATLAS	MONASTERY
		-	Location				
NS Atlas or Map Book Reference	ce :	NTS Map Reference				VGS84 UTM) :	
Atlas or Map Book		Map Sheet	11F	12	Northin	g (m)	5052489
Map Page No.		Reference Map	Α		Easting	g (m)	606083
Reference Letter		Tract No.	91		Proper	ty (PID)	
Reference Number		Claim			Well Lo	cation Sketch A	vailable
Roamer Letter		<u></u>					
Roamer Number							
Depth in feet	Primar	ry Lithology			Secondary	Lithology	
	Description 1	Lithology 1		Colour 2	Description 2	Lithology	2 Water Found
0 1 C	LAYEY	TILL					
						CHALE & CON	CLOM
1 520		SANDSTONE				SHALE & CON	GLOM
						SHALE & CON	GLOM
						SHALE & CON	GLOM
			formation	1		SHALE & CONG	
1 520		SANDSTONE		1			Yield
1 520 Well Construction Informa	ation	SANDSTONE Dug Well In	ck) (ft)			Water mated Yield (igp	Yield
Well Construction Informa Total depth below surface (ft)	ation 520	Dug Well In Depth of liner (cros	ck) (ft)		Esti Met	Water mated Yield (igp	Yield
Well Construction Informa Total depth below surface (ft) Depth to bedrock (ft)	ation 520	Dug Well In Depth of liner (cro-	ck) (ft)		Esti Met Rate	Water mated Yield (igp hod e (igpm)	Yield (67) (40)
Well Construction Informa Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encounted Outer Well Casing:	ation 520 ered at (ft):	Dug Well In Depth of liner (cro Reservoir material Reservoir vol. (cu.	ck) (ft)		Esti Met Rate	Water mated Yield (igp hod e (igpm) ation (hrs)	Yield (bm) 67 (40) (50)
Well Construction Informa Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encounte	ation 520 ered at (ft):	Dug Well In Depth of liner (cro- Reservoir material Reservoir vol. (cu. Reservoir material	ck) (ft)		Esti Met Rate Dura Dep	Water mated Yield (igp hod e (igpm) ation (hrs)	Yield om) 67 40 50 nd of test (ft)
Well Construction Informa Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encounted Outer Well Casing:	ation 520 ered at (ft):	Dug Well In Depth of liner (cro Reservoir material Reservoir vol. (cu. Reservoir material Apron Material	ck) (ft) I .yd) I size		Esti Met Rate Dura Dep Tota	Water mated Yield (igp hod e (igpm) ation (hrs) th to water at er al drawdown (ft)	Yield om) 67 40 50 and of test (ft)
Well Construction Informa Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encounted Outer Well Casing: From (ft) To (ation 520 ered at (ft):	Dug Well In Depth of liner (cro- Reservoir material Reservoir vol. (cu. Reservoir material Apron Material Apron depth (ft)	ck) (ft) I .yd) I size		Esti Met Rate Dura Dep Tota Wat	Water mated Yield (igp hod e (igpm) ation (hrs) water at eral drawdown (ft) er level recovered.	Yield om) 67 40 50 nd of test (ft) ed to (ft)
Well Construction Informa Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encounte Outer Well Casing: From (ft) Diameter (in) Length of casing above ground:	ation 520 ered at (ft):	Dug Well In Depth of liner (cro Reservoir material Reservoir wol. (cu. Reservoir material Apron Material Apron depth (ft) Apron thickness (f	ck) (ft) I Lyd) I size		Esti Met Rate Dura Dep Tota Wat Rec	Water mated Yield (igp hod e (igpm) ation (hrs) oth to water at er al drawdown (ft) er level recovers	Yield om) 67 40 50 and of test (ft)
Well Construction Informa Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encounte Outer Well Casing: From (ft) Diameter (in)	ation 520 ered at (ft):	Dug Well In Depth of liner (cro- Reservoir material Reservoir vol. (cu. Reservoir material Apron Material Apron depth (ft) Apron thickness (f	ck) (ft) I Lyd) I size		Esti Met Rate Dura Dep Tota Wat Rec	Water mated Yield (igp hod e (igpm) ation (hrs) water at eral drawdown (ft) er level recovered.	Yield om) 67 40 50 and of test (ft)
Well Construction Information Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encounted Outer Well Casing: From (ft) Diameter (in) Length of casing above ground: (ft) (in) Driveshoe make	ation 520 ered at (ft):	Dug Well In Depth of liner (cro- Reservoir material Reservoir material Apron Material Apron depth (ft) Apron thickness (f Apron width (ft) Apron volume (cu. Bottom material	ck) (ft) I Lyd) I size		Esti Met Rate Dura Dep Tota Wat Rec Dep Ove	Water mated Yield (igp hod e (igpm) ation (hrs) ation (hrs) at drawdown (ft) er level recovery time (hrs) oth to static level erflow	Yield om) 67 40 50 and of test (ft)
Well Construction Information Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encounted Outer Well Casing: From (ft) Diameter (in) Length of casing above ground: (ft) (in)	ation 520 ered at (ft):	Dug Well In Depth of liner (cro- Reservoir material Reservoir material Apron Material Apron depth (ft) Apron thickness (f Apron width (ft) Apron volume (cu. Bottom material	ck) (ft) I Lyd) I size		Esti Met Rate Dura Dep Tota Wat Rec Dep Ove	Water mated Yield (igp hod e (igpm) ation (hrs) ation (hrs) at drawdown (ft) er level recovery time (hrs) oth to static level erflow	Yield Om) 67 40 50 nd of test (ft) ed to (ft) (ft) se/Date Completed
Well Construction Information Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encounted Outer Well Casing: From (ft) Diameter (in) Length of casing above ground: (ft) (in) Driveshoe make	ation 520 ered at (ft):	Dug Well In Depth of liner (cro- Reservoir material Reservoir material Apron Material Apron depth (ft) Apron thickness (f Apron width (ft) Apron volume (cu. Bottom material	ck) (ft) I Lyd) I size		Esti Met Rate Dura Dep Tota Wat Rec Dep Ove	Water mated Yield (igp hod e (igpm) ation (hrs) whater at er al drawdown (ft) er level recovers overy time (hrs) with to static level erflow Status/Water Us	Yield om) 67 40 50 and of test (ft) 67 (ft) 69 EVATION WELL
Well Construction Information Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encounted Outer Well Casing: From (ft) Diameter (in) Length of casing above ground: (ft) (in) Driveshoe make	ation 520 ered at (ft):	Dug Well In Depth of liner (cro- Reservoir material Reservoir material Apron Material Apron depth (ft) Apron thickness (f Apron width (ft) Apron volume (cu. Bottom material	ck) (ft) I Lyd) I size		Esti Met Rate Dura Dep Tota Wat Rec Dep Ove	Water mated Yield (igp hod e (igpm) ation (hrs) oth to water at er al drawdown (ft) er level recovery time (hrs) oth to static level erflow Status/Water Us MONITO	Yield om) 67 40 50 and of test (ft) 67 (ft) 69 EVATION WELL

NSEL Well No.

761408 DRILLED

Well Type

Environment and Labour

Certified Well Contractor			Well Owner/Contractor Information
Name MCDONALD, IAN Certificate No. 45 Company ISLAND WELL DRILLERS NS Atlas or Map Book Reference: Atlas or Map Book MAP Map Page No. 43	Well Lo NTS Map Reference : Map Sheet	Civic Address of Lot Number County CAPE Nearest Commu cation	CAPE BRETON DEVELOPMEN uilder/Consultant, etc. of Well NS OBS WELL - POINT ACONI (030) Subdivision BRETON Postal Code unity in Altlas/Map Book ATLAS POINT ACONI GPS (WGS84 UTM): Northing (m) 5133152
Reference Letter A Reference Number 1 Roamer Letter O Roamer Number 13	Reference Map Tract No. Claim	70	Property (PID) Well Location Sketch Available
Prima From To Colour 1 Description 1 0 14 14 100	Lithology Lithology 1 SHALE & CLAY SANDSTONE	Colour 2	Secondary Lithology Description 2 Lithology 2 Water Found
Well Construction Information Total depth below surface (ft) 100 Depth to bedrock (ft) 14 Water bearing fractures encountered at (ft): 70	Dug Well Information Depth of liner (crock Reservoir material Reservoir vol. (cu.yd Reservoir material si Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd Bottom material) (ft)	Water Yield Estimated Yield (igpm) 10 Method PUMPED Rate (igpm) 10 Duration (hrs) 1 Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow
Comments NS OBSERVATION WELL - POIN	NT ACONI (030)		Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL Water use MONITORING Method of drilling ROTARY Date well completed 11-Aug-76

NSEL Well No.

771538 DRILLED

Well Type

Environment and Labour

Elivironinient dila Eaboui			
Certified Well Contractor			Well Owner/Contractor Information
Name EDWARDS, HARRY A. Certificate No. 83 Company H. J. EDWARDS WELL DRILLII	or C Civi Lot	c Address of Number Inty HALIF	Owner NS DEPT. OF ENVIRONMENT iilder/Consultant, etc. Well NS OBS WELL - LAWRENCETOWN (043) Subdivision AX Postal Code nity in Altlas/Map Book ATLAS UPPER
			LAWRENCETOWN
	Well Location	on	
NS Atlas or Map Book Reference :	NTS Map Reference :		GPS (WGS84 UTM) :
Atlas or Map Book MAP	Map Sheet		Northing (m) 4947712
Map Page No. 24	Reference Map		Easting (m) 464172
Reference Letter D			
Reference Number 3	Tract No.		Property (PID)
Roamer Letter N	Claim		Well Location Sketch Available
Roamer Number 11	•		
Depth in feet Prima	ary Lithology		Secondary Lithology
From To Colour 1 Description 1 0 5 5 12 12 152 GRAY 152 165 DARK GRA 165 174 GREENISH	Lithology 1 SAND & GRAVEL & BOU BOULDER & ROCK QUARTZITE SLATE QUARTZITE	Colour 2	Description 2 Lithology 2 Water Found SLATE QUARTZ VEINS SLATE
Well Construction Information	Dug Well Informa	tion	Water Yield
Total depth below surface (ft) 175 Depth to bedrock (ft) 10 Water bearing fractures encountered at (ft):	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd)		Estimated Yield (igpm) 14.5 Method Rate (igpm) 8
152 155	Reservoir material size		Duration (hrs)
Outer Well Casing:	Apron Material	·	Depth to water at end of test (ft)
From (ft) 0 To (ft) 145	Apron depth (ft)		Total drawdown (ft)
Diameter (in) 6	Apron thickness (ft)		Water level recovered to (ft)
Length of casing above ground :	Apron width (ft)		Recovery time (hrs)
(ft) (in)	Apron volume (cu.yd)		Depth to static level (ft)
Driveshoe make UNKNOWN	Bottom material		Overflow
Comments NS OBSERVATION WELL - LAW	/RENCETOWN (043)		Well Status/Water Use/Date Completed
	(0.0)		Final status of well OBSERVATION WELL Water use MONITORING Method of drilling ROTARY Date well completed 16-Mar-77

NSEL Well No.

782683 DRILLED

Well Type

Environment and Labour (Summary Log)

Certified Well Contractor		Well Owner/Contractor Information				
Certified Well Contractor		Well Owner/Somilation Information				
Name STEWART, EDMUND	Well Drilled	For: Owner NS DEPT. OF ENVIRONMENT				
Certificate No. 4	or Contract	or/Builder/Consultant, etc.				
Company E. D. STEWART LTD.	Civic Addre	ss of Well NS OBS WELL - DURHAM (045)				
<u> </u>	Lot Numbe	Subdivision				
	County	CTOU Postal Code				
		mmunity in Altlas/Map Book ATLAS DURHAM				
		THE PORT OF				
	Well Location					
NS Atlas or Map Book Reference :	NTS Map Reference :	GPS (WGS84 UTM) :				
Atlas or Map Book	Map Sheet 11E10	Northing (m) 5052105				
Map Page No.	Reference Map	Easting (m) 516224				
Reference Letter	Tract No.	Property (PID)				
Reference Number Roamer Letter	Claim	Well Location Sketch Available				
Roamer Number						
	ary Lithology	Secondary Lithology				
From To Colour 1 Description 1 0 20 SANDY	Lithology 1 Colou	r 2 Description 2 Lithology 2 Water Found				
20 247 RED	SANDSTONE & SHALE GRAY	SANDSTONE & SHA				
Well Construction Information	Dug Well Information	Water Yield				
Total depth below surface (ft) 247	Depth of liner (crock) (ft)	Estimated Yield (igpm) 100				
Depth to bedrock (ft)	Reservoir material	Method PUMPED				
Water bearing fractures encountered at (ft):	Reservoir vol. (cu.yd)	Rate (igpm) 100				
	Reservoir material size	Duration (hrs) 72				
Outer Well Casing:	Apron Material	Depth to water at end of test (ft)				
From (ft) To (ft)	Apron depth (ft)	Total drawdown (ft)				
Diameter (in)	Apron thickness (ft)	Water level recovered to (ft)				
Length of casing above ground :	Apron width (ft)	Recovery time (hrs)				
(ft) (in)	Apron volume (cu.yd)	Depth to static level (ft)				
Driveshoe make	Bottom material	Overflow				
Comments NS OBSERVATION WELL - DUR	HAM (045)	Well Status/Water Use/Date Completed				
		Final status of well OBSERVATION WELL				
		Water use MONITORING				
		Method of drilling				
		Date well completed 01-Jul-78				

NSEL Well No.

Environment and Labour

(Summary Log)

772021 DRILLED Well Type

Certified Well Contractor		Well Owner/Contractor Information				
Name HOPPER, RUSSELL	V	Well Drilled For: Ov	wner	NS DEPT. OF DEVELOPMENT		
Certificate No. 20	0	or Contractor/Builder/Consultant, etc.				
Company HOPPER BROS. LTD.	c	Civic Address of W	/ell NS OBS WELL - KENT	TVILLE (048)		
,		Lot Number	Subdivision			
	C	County KINGS		Postal Code		
	N	Nearest Community	y in Altlas/Map Book	LAS KENTVILLE		
	Well Loc	cation				
NS Atlas or Map Book Reference :	NTS Map Reference :		GPS (WGS84 U⁻	ГМ) :		
Atlas or Map Book	Map Sheet	21A2	Northing (m)	4992245		
Map Page No.	Reference Map	Α	Easting (m)	377628		
Reference Letter	Tract No.	71	Property (PID)			
Reference Number	Claim		Well Location Sk	etch Available		
Roamer Letter Roamer Number	,					
	ary Lithology		Secondary Lithology			
From To Colour 1 Description 1 0 55 FINE GRAINED	Lithology 1	Colour 2	Description 2 Lith EDIUM GRAINE SAND	ology 2 Water Found		
55 60 MEDIUM GRAIN	-		DARSE GRAIN SAND			
60 95	GRAVEL			V		
95 380 GRAY 380 400 BROWN ARGILLACEOU	SANDSTONE METASEDIMENT	PURPLE IN	TERBEDDED SHALE			
			1			
Well Construction Information	Dug Well Inform			Water Yield		
Total depth below surface (ft) 400	Depth of liner (crock)	(ft)	Estimated Yie			
Depth to bedrock (ft) 95	Reservoir material		Method	PUMPED		
Water bearing fractures encountered at (ft):	Reservoir vol. (cu.yd)		Rate (igpm)	150		
Outer Well Casing:	Reservoir material siz Apron Material	ze	Duration (hrs)	72		
From (ft) 0 To (ft) 100	Apron depth (ft)			er at end of test (ft) 122		
Diameter (in) 8	Apron thickness (ft)		Total drawdov			
Length of casing above ground :	Apron width (ft)			ecovered to (ft)		
	Apron volume (cu.yd))	Recovery time			
(ft) (in) Driveshoe make	Bottom material		Depth to station	C level (II)		
	T.(II.L.E.(0.40)			ater Use/Date Completed		
Comments NS OBSERVATION WELL - KEN	I VILLE (048)			BSERVATION WELL		
				ONITORING		
I I						
			Method of drilling			

NSEL Well No.

Environment and Labour

(Summary Log)

771077 DRILLED Well Type

Certified Well Contracto	Well Owner/Contractor Information						
Name MCDONALD, IAN Certificate No. 45 Company ISLAND WELL DRILLERS NS Atlas or Map Book Reference: Atlas or Map Book MAP Map Page No. Reference Letter A	Well L NTS Map Reference Map Sheet Reference Map	or Co Civic Lot N Cour Near Location e:	Address of Number CAPE Test Commun 1K1	Owner illder/Consultant, etc Well NS OBS WE Subdivisio BRETON nity in Altlas/Map Be GPS (V	NS D C. LL - SYDNEY (C n Postal ook ATLAS WGS84 UTM) : ng (m) g (m)	DEPT. OF ENVIRONMENT	
Reference Number 5	Tract No.	(66	Proper	ty (PID)		
Roamer Letter J	Claim			Well Lo	ocation Sketch A	vailable	
Roamer Number 13							
Depth in feet Prin	nary Lithology			Secondary	/ Lithology		
From To Colour 1 Description 1 0 13 13 330	Lithology 1 BOULDER & GRAVE COAL &SHALE & SA		Colour 2	Description 2	Lithology	2 Water Found	
Well Construction Information	Dug Well In	formati	ion		Water	Yield	
Total depth below surface (ft) 330 Depth to bedrock (ft) 13 Water bearing fractures encountered at (ft):	Depth of liner (crook Reservoir material Reservoir vol. (cu.	Method PUMPED					
63	Reservoir material	size	rtate (igpin)				
Outer Well Casing:	Apron Material				Depth to water at end of test (ft)		
From (ft) 6 To (ft) 22	Apron depth (ft)			Tota	Total drawdown (ft)		
Diameter (in) 6	Apron thickness (ft Apron width (ft)	^{t)}			ter level recover		
Length of casing above ground :	Apron volume (cu.	.yd)			Recovery time (hrs)		
(ft) (in) UNKNOWN	Bottom material			Depth to static level (ft) Overflow			
Comments NS OBSERVATION WELL - SY	ONEY (050)			Well	Status/Water Us	se/Date Completed	
				Final status of	of well OBSER	VATION WELL	
				Water use	MONITO		
				Method of dri	-		
ļ				Date well cor	npleted	09-Mar-77	

NSEL Well No.

Well Type

871262 DRILLED

Environment and Labour

Environment and Edbour						
Certified Well Contractor			Well Owner/Co	ontractor Information		
Name CHISHOLM, WAYNE	Well D	Well Drilled For: Owner NS DEPT. OF ENVIRONMENT				
Certificate No. 2	or Con	tractor/Buil	der/Consultant, etc.			
Company G. W. REID WELL DRILLING LTD.	Civic A	ddress of V	Well NS OBS WEL	L - NORTH GRANT (054)	
	Lot Nu	mber	Subdivision			
	County	ANTIGO	NISH	Postal Code		
	Neares	t Commun	ity in Altlas/Map Boo	ok LOW	VER NORTH GRANT	
	Well Location			•		
NS Atlas or Map Book Reference :	NTS Map Reference :		GPS (W	GS84 UTM) :		
Atlas or Map Book	Map Sheet		Northing	(m) 5	055139	
Map Page No. 29	Reference Map		Easting ((m)	576403	
Reference Letter C	Tract No.		Property	(PID)		
Reference Number 4	Claim			cation Sketch Availabl	e	
Roamer Letter M						
Roamer Number 12						
Depth in feet Primary L	Lithology		Secondary L	ithology		
From To Colour 1 Description 1 0 34 MI	Lithology 1 C	Colour 2	Description 2	Lithology 2	Water Found	
	HALE		S	SLATE		
Well Construction Information	Dug Well Information	ı		Water Yield		
Total depth below surface (ft) 150	Depth of liner (crock) (ft)		Estim	nated Yield (igpm)		
Depth to bedrock (ft)	Reservoir material		Metho	od AIR LI	FT	
Water bearing fractures encountered at (ft)	Reservoir vol. (cu.yd)		Rate	(igpm)	20	
Out of Mall Opening as	Reservoir material size		Durat	tion (hrs)		
Outer Well Casing: From (ft) To (ft) 43	Apron Material		Depth	n to water at end of te	st (ft)	
	Apron depth (ft)		Total	drawdown (ft)		
Diameter (in) 6	Apron thickness (ft) Apron width (ft)		Wate	r level recovered to (f	t)	
Length of casing above ground :	Apron volume (cu.yd)			very time (hrs)		
(ft) (in)	Bottom material			n to static level (ft)	14	
Driveshoe make	,		Overf			
Comments NS OBSERVATION WELL NORTH G	GRANT (054)			tatus/Water Use/Date		
			Final status of Water use	well OBSERVATION OTHER	N VVELL	
			Method of drilli			
			Date well comp		30-Mar-87	

NSEL Well No. DRILLED

871263

Well Type

Environment and Labour

Certified Wel	Il Contractor	Well Owner/Contractor Information				
Name CHISHOLM, WAYN Certificate No. 2 Company G. W. REID WELL NS Atlas or Map Book Reference Atlas or Map Book	DRILLING LTD. Well	Civic Address of Lot Number County GUYSB Nearest Commun	Owner NS DEPT. OF ENVIRONMENT ilder/Consultant, etc. Well NS OBS WELL - STILLWATER (055) Subdivision			
Map Page No. 30 Reference Letter C Reference Number 4 Roamer Letter P Roamer Number 12	Reference Map Tract No. Claim		Easting (m) 579938 Property (PID) Well Location Sketch Available			
Depth in feet	Primary Lithology Description 1 Lithology 1 MUD ROCK BEDROCK	Colour 2	Secondary Lithology Description 2 Lithology 2 Water Found GRAVEL			
- M. II.O. 1. 11. 15. 11	. [5 1// 1//		W. L. Verli			
Well Construction Information Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered Outer Well Casing: From (ft) Diameter (in) Length of casing above ground: (ft) (in) Driveshoe make	Depth of liner (cro Reservoir materia ed at (ft) Reservoir vol. (cu Reservoir materia Apron Material	ock) (ft)	Water Yield Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 4.5 Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) 30 Overflow			
Comments NS OBSERVATION	WELL STILLWATER (055)		Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL Water use MONITORING Method of drilling Date well completed 01-Apr-87			

NSEL Well No.

871264

Well Type

DRILLED

Environment and Labour

Certified Well Contractor			Well Owner/C	Contractor Information	n	
Name CHISHOLM, WAYNE Certificate No. 2 Company G. W. REID WELL DRILLING L		Civic Address of Lot Number County HALIF	ilder/Consultant, etc Well NS OBS WEI Subdivision	LL - SHEET HARBO		
	Well Lo					
NS Atlas or Map Book Reference :	NTS Map Reference	9:	-	VGS84 UTM) :		
Atlas or Map Book	Map Sheet		Northin	g (m)	4972468	
Map Page No. 28	Reference Map		Easting	ı (m)	543176	
Reference Letter E	Tract No.		Propert	y (PID)		
Reference Number 2	Claim		 Well Lo	cation Sketch Availa	able	
Roamer Letter H	<u> </u>		J			
Roamer Number 14						
Depth in feet Prima	ary Lithology		Secondary			
From To Colour 1 Description 1	Lithology 1	Colour 2	Description 2	Lithology 2	Water Found	
0 8 8 18	GRAVEL ROCK					
18 150	BEDROCK					
Well Construction Information	Dug Well Info	ormation		Water Yield		
Total depth below surface (ft) 150	Depth of liner (croc					
Depth to bedrock (ft)	Reservoir material					
Water bearing fractures encountered at (ft)	Reservoir vol. (cu.y					
	Reservoir material	rate (igpin)				
Outer Well Casing:	Apron Material			th to water at end of	test (ft)	
From (ft) To (ft) 23	Apron depth (ft)			al drawdown (ft)	toot (it)	
Diameter (in) 6	Apron thickness (ft))		er level recovered to	(ft)	
Length of casing above ground :	Apron width (ft)			overy time (hrs)		
(ft) (in)	Apron volume (cu.y	yd)	. Dep	th to static level (ft)	10	
Driveshoe make	Bottom material		Ove	rflow		
Comments NS OBSERVATION WELL SHEE	T HARBOUR (056)		Well	Status/Water Use/Da	ate Completed	
•	ζ/		Final status o	f well OBSERVATION	ON WELL	
			Water use	OTHER		
			Method of dril	lling		
			Date well com	npleted	06-Apr-87	

NSEL Well No.

870190 DRILLED

Well Type

Environment and Labour

Cei	Well Owner/Contractor Information							
001	rtified Well Contractor		Well Owner/Contractor Information					
Name MOWAT, DONALD				Well Drilled For: Owner NS DEPT. OF ENVIRONMENT				
Certificate No. 210			or Con	tractor/Bu	uilder/Consultant, et	с.		
Company MOWAT'S	S WELL DRILLING LT	D.	Civic A	ddress of	Well NS OBS WE	LL - CHARLEST	TON (058)	
,			Lot Nur	mber 🗀	Subdivisio	on		
			County	QUEE	NS	Postal	Code	
			Neares	t Commu	ınity in Altlas/Map B	ook ATLAS	RIVERSDALE	
		Well L	ocation					
NS Atlas or Map Book R	Reference :	NTS Map Reference):		GPS (WGS84 UTM) :		
Atlas or Map Book	MAP	Map Sheet			Northi	ng (m)	4894476	
Map Page No.	15	Reference Map			Eastin	g (m)	366778	
Reference Letter	В	Tract No.			Prope	rty (PID)		
Reference Number	5	Claim			Well L	ocation Sketch A	vailable 🗆	
Roamer Letter	M	,						
Roamer Number	12							
Depth in feet	Prima	ary Lithology	Secondary Lithology					
From To Colou	ur 1 Description 1	Lithology 1	С	colour 2	Description 2	Lithology	2 Water Found	
0 20		CLAY				BOULDER		
		SLATE						
20 40		SLATE				GRANITE	Ш	
		SLATE						
		SLATE						
	n Information	SLATE Dug Well Info	ormation				Yield	
20 40					Est	GRANITE		
20 40 Well Construction		Dug Well Info		·	†	GRANITE Water		
Well Construction Total depth below surface	e (ft) 40 20	Dug Well Info	ck) (ft)		Me	Water imated Yield (igp	om)	
Well Construction Total depth below surface Depth to bedrock (ft) Water bearing fractures e	e (ft) 40 20	Dug Well Info Depth of liner (croc Reservoir material	ck) (ft)		Me Rat	Water imated Yield (igp thod te (igpm)	om)	
Well Construction Total depth below surface Depth to bedrock (ft) Water bearing fractures e 19 35 Cuter Well Casing:	e (ft) 40 20 encountered at (ft):	Dug Well Info Depth of liner (croc Reservoir material Reservoir vol. (cu.y	ck) (ft)		Me Rat Dui	Water imated Yield (igp thod te (igpm) ration (hrs)	AIR LIFT	
Well Construction Total depth below surface Depth to bedrock (ft) Water bearing fractures e 19 35 Outer Well Casing: From (ft)	e (ft) 40 20	Dug Well Info Depth of liner (crock Reservoir material Reservoir vol. (cu.y Reservoir material Apron Material Apron depth (ft)	ck) (ft)		Me Rat Dui Dej	Water imated Yield (igp thod te (igpm)	AIR LIFT and of test (ft)	
Well Construction Total depth below surface Depth to bedrock (ft) Water bearing fractures e 19 35 Cuter Well Casing:	e (ft) 40 20 encountered at (ft):	Dug Well Info Depth of liner (crock Reservoir material Reservoir vol. (cu.y Reservoir material Apron Material Apron depth (ft) Apron thickness (ft)	ck) (ft)		Me Rat Dui Dej Tot	Water imated Yield (igp thod te (igpm) ration (hrs) oth to water at er	AIR LIFT and of test (ft)	
Well Construction Total depth below surface Depth to bedrock (ft) Water bearing fractures e 19 35 Outer Well Casing: From (ft)	e (ft) 40 20 encountered at (ft): To (ft) 6	Dug Well Info Depth of liner (crock Reservoir material Reservoir vol. (cu.y Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft)	ck) (ft)		Me Rat Dui Dej Tot	Water imated Yield (igporthod lie (igpm) ration (hrs) oth to water at er al drawdown (ft)	AIR LIFT and of test (ft) ed to (ft)	
Well Construction Total depth below surface Depth to bedrock (ft) Water bearing fractures e 19 35 Outer Well Casing: From (ft) Diameter (in)	e (ft) 40 20 encountered at (ft): To (ft) 6	Dug Well Info Depth of liner (crock Reservoir material Reservoir vol. (cu.y Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft)	ck) (ft)		Me Rat Dui Dej Tot Wa	Water imated Yield (igp thod te (igpm) ration (hrs) oth to water at er al drawdown (ft) ter level recovered.	AIR LIFT and of test (ft) ed to (ft)	
Well Construction Total depth below surface Depth to bedrock (ft) Water bearing fractures e 19 35 Outer Well Casing: From (ft) Diameter (in) Length of casing above g	e (ft) 40 20 encountered at (ft): To (ft) 6	Dug Well Info Depth of liner (crock Reservoir material Reservoir vol. (cu.y Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft)	ck) (ft)		Me Rat Dui Dej Tot Wa Rec	Water imated Yield (igp thod ration (hrs) oth to water at er al drawdown (ft) ter level recovery time (hrs)	AIR LIFT and of test (ft) ed to (ft)	
Well Construction Total depth below surface Depth to bedrock (ft) Water bearing fractures e 19 35 Outer Well Casing: From (ft) Diameter (in) Length of casing above g (ft) (in) Driveshoe make	e (ft) 40 20 encountered at (ft): To (ft) 6	Dug Well Info Depth of liner (crock Reservoir material Reservoir vol. (cu.y Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.y Bottom material	ck) (ft)		Me Rat Dui Dej Tot Wa Red Dej	Water imated Yield (igporthod lee (igpm) eration (hrs) ooth to water at eral drawdown (ft) ter level recovers time (hrs) ooth to static level erflow	AIR LIFT and of test (ft) ed to (ft) (ft) 6 se/Date Completed	
Well Construction Total depth below surface Depth to bedrock (ft) Water bearing fractures e 19 35 Outer Well Casing: From (ft) Diameter (in) Length of casing above g (ft) (in) Driveshoe make	To (ft) 6 around:	Dug Well Info Depth of liner (crock Reservoir material Reservoir vol. (cu.y Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.y Bottom material	ck) (ft)		Me Rat Dui Dej Tot Wa Red Dej	Water imated Yield (ignormal imated Yield (ig	AIR LIFT and of test (ft) ed to (ft) (ft) 6 se/Date Completed	
Well Construction Total depth below surface Depth to bedrock (ft) Water bearing fractures e 19 35 Outer Well Casing: From (ft) Diameter (in) Length of casing above g (ft) (in) Driveshoe make	To (ft) 6 around:	Dug Well Info Depth of liner (crock Reservoir material Reservoir vol. (cu.y Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.y Bottom material	ck) (ft)		Me Rat Dut Del Tot Wa Rec Del Ove Well Final status of Water use	Water imated Yield (igporthod lee (igpm) eration (hrs) oth to water at eral drawdown (ft) ter level recovery time (hrs) oth to static level erflow Status/Water Us MONITO	AIR LIFT and of test (ft) ed to (ft) (ft) 6 se/Date Completed	
Well Construction Total depth below surface Depth to bedrock (ft) Water bearing fractures e 19 35 Outer Well Casing: From (ft) Diameter (in) Length of casing above g (ft) (in) Driveshoe make	To (ft) 6 around:	Dug Well Info Depth of liner (crock Reservoir material Reservoir vol. (cu.y Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.y Bottom material	ck) (ft)		Me Rat Dui Dej Tot Wa Rec Dej Ove	Water imated Yield (ignormated	AIR LIFT and of test (ft) ed to (ft) (ft) 6 se/Date Completed	

NSEL Well No.

Well Type

870189 DRILLED

Environment and Labour

	2								
	Certified Well Contractor					Well Owner/Contractor Information			
Name M	me MOWAT, DONALD Well Drilled Fo					Owner NS DEPT. OF ENVIRONMENT			
Certificate No.	210			or Cor	ntractor/Bu	ilder/Consultant, etc.			
I '=		LL DRILLING LT	n.	Civic /	Address of	Well NS OBS WELL - HAYDEN LAKE (059)			
Jepa	3		2.	Lot Nu	umber	Subdivision			
				County					
				Neare	st Commu	nity in Altlas/Map Book ATLAS EAST JORDAN			
			Well	Location					
NS Atlas or Map	Book Refere	ence :	NTS Map Referenc	ce :	_	GPS (WGS84 UTM) :			
Atlas or Map Boo	ok M/	AP	Map Sheet			Northing (m) 4849195			
Map Page No.	1	10	Reference Map			Easting (m) 321365			
Reference Letter		С	Tract No.			Property (PID)			
Reference Numb		5	Claim			Well Location Sketch Available			
Roamer Letter		G	<u> </u>						
Roamer Number		7							
Depth in feet		Prima	ary Lithology]	Secondary Lithology			
From To	Colour 1	Description 1	Lithology 1		Colour 2	Description 2 Lithology 2 Water Found			
0 10		<u> </u>	CLAY			BOULDER			
10 160			GREYWACKE						
i [
 									
Well Cons	struction Infor	rmation	Dug Well In	nformatio	on .	Water Yield			
Total depth below		160	Depth of liner (cro			Estimated Yield (igpm) 3.7			
Depth to bedrock		10	Reservoir materia			Method AIR LIFT			
Water bearing fra		ntered at (ft):	Reservoir vol. (cu		$\overline{}$				
30			Reservoir materia			Rate (igpm) 3.7			
Outer Well Casing	g:		Apron Material			Duration (hrs)			
From (ft) 0	To	o (ft) 20	Apron depth (ft)	H		Depth to water at end of test (ft)			
Diameter (in)		6	Apron thickness (f	(ft)		Total drawdown (ft)			
Length of casing a	above ground	۷٠	Apron width (ft)			Water level recovered to (ft)			
	200.0 g	··.	Apron volume (cu	ı.yd)		Recovery time (hrs)			
(ft)	/:m\		Apron volume (cu			Donth to static level (ft)			
Driveshoe make	(in)		Bottom material			Depth to static level (ft)			
			Bottom material			Overflow			
Comments NS		ION WELL - HAYI	Bottom material			Overflow Well Status/Water Use/Date Completed			
Comments NS		ON WELL - HAYI	Bottom material	<u>_</u>		Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL			
Comments NS		ON WELL - HAYI	Bottom material	<u></u>		Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL Water use MONITORING			
Comments NS		ON WELL - HAYI	Bottom material	<u></u>		Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL			

(Summary Log)

NSE Well No.

Well Type

870188 DRILLED

Certified Well Contractor						Well Owner/Contractor Information								
Certificate No.	MOWAT, E 210 MOWAT'S p Book Re	OONALD WELL DRILL				or Cont Civic A Lot Nur County Neares	ddress of mber DIGBY	uilde f We		c. LL - ME	TEGHAN (060) ode	ENVIRONMI HAN RIVEF	
Map Page No. Reference Lette Reference Num Roamer Letter Roamer Numbe	nber	4 A 4 F		Reference Map Tract No.					Easting Propert Well Lo	ty (PID)	Sketch Ava		890	
Depth in fee From To 0 4 20	Colour	1 Descri	ption 1	y Lithology Lithology 1 GRAVEL SLATE		C	Colour 2		Secondary Description 2		gy ithology 2		Water Foun	d
								_						
Total depth below Depth to bedrood Water bearing from 180 Outer Well Casin From (ft) Diameter (in) Length of casing (ft) Driveshoe make	w surface k (ft) actures en ng: g above gro	countered at	6	Dug Well Depth of liner (cr Reservoir materi Reservoir vol. (cr Reservoir materi Apron Material Apron depth (ft) Apron thickness Apron width (ft) Apron volume (cr Bottom material	rock) ial [:u.yd) ial siz (ft) [:u.yd)	(ft)			Meti Rate Dura Dep Tota Wat Rec Dep Ove	hod e (igpm) ation (hi th to wa al drawd er level overy tii th to sta	<u> </u>	of test (to (ft)		
Comments NS	S OBSERV	YATION WELL	L METEG	HAN (060)					Final status o Water use Method of dril Date well con	f well	OBSERVA MONITORI	TION W		

NSEL Well No.

891722 DRILLED

Well Type

Environment and Labour

Certified Well Contractor		Well Owner/Contractor Information				
Name MOWAT, DONALD Certificate No. 210 Company MOWAT'S WELL DRILLING LT NS Atlas or Map Book Reference: Atlas or Map Book MAP Map Page No. 8 Reference Letter A Reference Number 4	Well Local NTS Map Reference: Map Sheet Reference Map Tract No.	vic Address of t Number punty ANNAF earest Commun	Ider/Consultant, etc. Well NS OBS WELL - ANNAPOL Subdivision POLIS Post nity in Altlas/Map Book ATLAS GPS (WGS84 UTM) : Northing (m) Easting (m) Property (PID)	4952588 303029		
Roamer Letter H	Claim		Well Location Sketch	Available		
Roamer Number 14 Depth in feet Prim	ary Lithology		Secondary Lithology			
From To Colour 1 Description 1 0 71 71 205	Lithology 1 CLAY GRANITE	Colour 2	Description 2 Lithology BOULDER	y 2 Water Found		
Well Construction Information	Dug Well Inform	ation	Wate	r Yield		
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft): 120 Outer Well Casing: From (ft) Diameter (in) Cuter the following of t	Depth of liner (crock) (f Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	it)	Estimated Yield (ig Method Rate (igpm) Duration (hrs) Depth to water at e Total drawdown (ff Water level recove Recovery time (hrs Depth to static level Overflow	apm) 0.5 AIR LIFT 0.5 end of test (ft) ered to (ft) s) el (ft)		
Comments NS OBSERVATION WELL - ANN	IAPOLIS ROYAL (062)		Final status of well OBSEF	Jse/Date Completed RVATION WELL ORING 20-Dec-89		

NSEL Well No.

891721 DRILLED

Well Type

Environment and Labour (Summary Log)

Certified Well Contractor		Well Owner/Contractor Information				
Name MOWAT, DONALD		Well Drilled For: Owner NS DEPT. OF ENVIRONMENT				
Certificate No. 210	or Co	or Contractor/Builder/Consultant, etc.				
Company MOWAT'S WELL DRILLING I	TD. Civic	Civic Address of Well NS OBS WELL - HEBRON (063)				
		lumber	Subdivision			
	Cour	nty YARM				
		County YARMOUTH Postal Code Nearest Community in Altlas/Map Book ATLAS DAYTON				
			Tilly iii Allias/Map Boo	IN INTERS IDAT	TON	
	Well Location	n				
NS Atlas or Map Book Reference :	NTS Map Reference :		GPS (WGS84 UTM) :			
Atlas or Map Book MAP	Map Sheet		Northing	Northing (m) 4862322		
Map Page No. 5	Reference Map		Easting ((m)	250697	
Reference Letter A Reference Number 3	Tract No.		Property	Property (PID)		
Roamer Letter F	Claim		Well Loc	ation Sketch Availabl	le 🗌	
Roamer Number 14	r					
		7	Casandamil	ide a la au.		
	mary Lithology		Secondary L			
From To Colour 1 Description 0 3 3 140 140 144 144 150	1 Lithology 1 TOPSOIL SLATE QUARTZITE SHALE	Colour 2	Description 2	Lithology 2	Water Found	
Well Construction Information	Dug Well Informati	on		Water Yield		
Total depth below surface (ft) 150	Depth of liner (crock) (ft)		Estim	Estimated Yield (igpm) 45		
Depth to bedrock (ft)	Reservoir material		Metho	Method AIR LIFT		
Water bearing fractures encountered at (ft): Reservoir vol. (cu.)					45	
57 150 Reservoir material		size (igpin)				
Outer Well Casing: Apron Material		Duration (hrs) Depth to water at end of test (ft)			act (ft)	
From (ft) To (ft) Apron depth (ft)		Total drawdown (ft)			,st (it)	
Diameter (in) 6	Apron thickness (ft)			r level recovered to (f	ft)	
Length of casing above ground : Apron width (ft)		Recovery time (hrs)				
(ft) (in)	Apron volume (cu.yd)		_ Depth	to static level (ft)		
Driveshoe make	Bottom material		Overf	low		
Comments NS OBSERVATION WELL - HEBRON (063)		Well S	Well Status/Water Use/Date Completed			
			Final status of	well OBSERVATIO	N WELL	
			Water use	MONITORING		
			Method of drilling	ng		
			Date well comp	oleted	19-Dec-89	

(Summary Log)

NSE Well No.

Well Type

902524

DRILLED

Certified Well Contractor			Well Owner/0	Contractor Info	rmation	
Name MCDONALD, IAN		Well Drilled For: Owner NS DEPT. OF ENVIRONMENT				
Certificate No. 45		or Contractor/Builder/Consultant, etc.				
Company ISLAND WELL DRILLERS		Civic Address of Well NS OBS WELL - MARGAREE (064)				
Lot Number			Subdivisio	n		
		County INVERNESS Postal Code				
		,	nity in Altlas/Map B			
			They in 7 states in the	- J	INVITORITEE VALLE	
NO All NO A D I D (Well Lo		0.00 4	A/OOO / LITA		
NS Atlas or Map Book Reference :	NTS Map Reference	:	-	GPS (WGS84 UTM) : Northing (m) 5137031		
Atlas or Map Book	Map Sheet		-		5137031	
Map Page No. 38 Reference Letter A	Reference Map		Easting	g (m)	655717	
Reference Number 1	Tract No.		Proper	ty (PID)		
Roamer Letter L	Claim		Well Lo	ocation Sketch	Available	
Roamer Number 12						
Double in fact	ary Lithology		Casandan	. Likha la au		
		Colour	Secondary		Water Found	
From To Colour 1 Description 1	Lithology 1 GRAVEL	Colour 2	Description 2	Lithology TILL	y 2 Water Found	
9 150	CONGLOMERATE					
			•			
Well Construction Information	Dug Well Info			Water Yield		
Total depth below surface (ft) 150	Depth of liner (crock	k) (ft)	Esti	Estimated Yield (igpm)		
Depth to bedrock (ft)	Reservoir material	L	Met	thod	AIR LIFT	
Water bearing fractures encountered at (ft): Reservoir vol. (cu.yd)		d)	Rate (igpm) 10			
Reservoir material size		size	Duration (hrs)			
Outer Well Casing:	Apron Material		Dep	Depth to water at end of test (ft)		
From (ft) To (ft) 40	Apron depth (ft)		. Tota	Total drawdown (ft)		
Diameter (in) 6	Apron thickness (ft)		. Wa	Water level recovered to (ft)		
Length of casing above ground :	Apron width (ft)		. Red	Recovery time (hrs)		
(ft) (in)	Apron volume (cu.yd) Bottom material		Dep	Depth to static level (ft)		
Driveshoe make	Bottom material		Ove	erflow		
Comments NOFRACTUREINCREASEDFR80'- NS OBSERVATION WELL MARGAREE (064)		Well	Status/Water I	Use/Date Completed		
			Final status of	of well		
			Water use			
			Mothod of dr	Method of drilling Date well completed 16-Jan-90		
				·	16-Jan-90	

(Summary Log)

NSE Well No.

892288

DRILLED Well Type

Certified Well Contractor		vveii Owner/Contracto	or Information		
Name MCDONALD, IAN Certificate No. 45 Company ISLAND WELL DRILLERS NS Atlas or Map Book Reference: Atlas or Map Book Map Page No. 42 Reference Letter A Reference Number 2 Roamer Letter F Roamer Number 10	or Contra Civic Add Lot Numb County Nearest C Well Location NTS Map Reference : Map Sheet Reference Map Tract No. Claim	VICTORIA Community in Altlas/Map Book GPS (WGS84 I Northing (m) Easting (m) Property (PID) Well Location S	DEPT. OF ENVIRONMENT ONISH (065) Postal Code INGONISH JTM): 5170473 698083 Sketch Available		
Depth in feet Prima From To Colour 1 Description 1 0 30 33 30 33 33 33 150 33	Lithology 1 Col GRAVEL GRANITE GRANITE	Secondary Litholog our 2 Description 2 Lit BOULD	thology 2 Water Found		
Mall Canadau attan Information	Due 14/-11 Info-		Water Yield		
Well Construction Information Total depth below surface (ft) 150 Depth to bedrock (ft) Water bearing fractures encountered at (ft): 44 149 1 149 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dug Well Information Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	Method Rate (igpm) Duration (hr. Depth to wa Total drawdo Water level Recovery tir Depth to sta Overflow	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow		
Comments NS OBSERVATION WELL INGO	NISH (065)	_	DBSERVATION WELL 12-Dec-89		

NSE Well No.

832002

Environment	(Summa	ary Log)		Well Type	DRILLED
Certified Well Contractor			Well Owner/Contracto	r Information	
Name JOHNSON, GREGORY I. Certificate No. 6 Company HUB WELL DRILLING LTD. NS Atlas or Map Book Reference : Atlas or Map Book Map Page No. Reference Letter	Well L NTS Map Reference Map Sheet Reference Map Tract No.	Lot Number County COLCHES Nearest Community cocation	er/Consultant, etc. NS OBS WELL - DEB Subdivision	Postal Code DEBERT	
Reference Number					
Roamer Letter Roamer Number	Claim		Well Location S	ketch Available [
Depth in feet Prima	ary Lithology		Secondary Litholog	V	
From To Colour 1 Description 1 0 18 18 153	CLAY CONGLOMERATE	Colour 2	Description 2 Litl SAND /L		ater Found
Well Construction Information	Dug Well In	formation		Water Yield	
Total depth below surface (ft) 153	Depth of liner (crod		Estimated Yi		
Depth to bedrock (ft) Water bearing fractures encountered at (ft): 112 Outer Well Casing: From (ft) To (ft) Diameter (in) 4	Reservoir material Reservoir vol. (cu.y Reservoir material Apron Material Apron depth (ft) Apron thickness (ft)	yd) size	Method Rate (igpm) Duration (hrs Depth to wat Total drawdo	er at end of test (ft)	10
	Apron width (ft)	.,	Water level r	recovered to (ft)	
Length of casing above ground : (ft) (in) Driveshoe make	Apron volume (cu.	yd)	Recovery tim Depth to stat Overflow		112
Comments NS OBSERVATION WELL DEBE	RT (068)		Well Status/W	Vater Use/Date Com	pleted
			<u> </u>	VATER SUPPLY WE DOMESTIC	ELL

Date well completed

13-Aug-83

(Summary Log)

NSE Well No.

Well Type

943326 DRILLED

Certified Well Contractor Well Owner/Contractor Information Well Drilled For: Owner NS DEPT. OF ENVIRONMENT Name or Contractor/Builder/Consultant, etc. Certificate No. Civic Address of Well NS OBS WELL - DALEM LAKE (069) Company ISLAND WELL DRILLERS Subdivision Lot Number County VICTORIA Postal Code DALEM LAKE Nearest Community in Altlas/Map Book ATLAS Well Location NS Atlas or Map Book Reference: NTS Map Reference: GPS (WGS84 UTM): 5124576 Atlas or Map Book MAP Map Sheet Northing (m) Map Page No. 38 Reference Map 698221 Easting (m) Reference Letter Ε Property (PID) Tract No. Reference Number 2 Claim Well Location Sketch Available Roamer Letter O Roamer Number 12 Depth in feet Primary Lithology Secondary Lithology Water Yield Well Construction Information **Dug Well Information** Total depth below surface (ft) 200 Depth of liner (crock) (ft) Estimated Yield (igpm) Depth to bedrock (ft) Reservoir material Method Water bearing fractures encountered at (ft): Reservoir vol. (cu.yd) Rate (igpm) Reservoir material size Duration (hrs) Outer Well Casing: Apron Material Depth to water at end of test (ft) From (ft) 0 To (ft) 41 Apron depth (ft) Total drawdown (ft) Apron thickness (ft) Diameter (in) 6 Water level recovered to (ft) Apron width (ft) Length of casing above ground: Recovery time (hrs) Apron volume (cu.yd) Depth to static level (ft) (in) Bottom material Driveshoe make Overflow Well Status/Water Use/Date Completed NS OBSERVATION WELL - DALEM LAKE (069) Comments Final status of well OBSERVATION WELL MONITORING Water use Method of drilling Date well completed 01-Jan-94

(Summary Log)

NSE Well No.

862667

Well Type DRILLED

	Cert	ified Well Contra	actor			Well Owner/	Contractor Informatio	n	
				■ \\/a'' D''':	L Com Origina	. —	TOWN OF	AMUEDOT	_
Name	CHAPPEL	L, WALTER			For: Owner			AMHERST	
Certificate No.	32			or Contract	or/Builder/C	onsultant, et	C		
Company	WALTER (CHAPPELL WEL	LL DRILLING LTD.	Civic Addre	ess of Well	NS OBS WE	LL - AMHERST (071)	
•	P			Lot Numbe	r 🗀	Subdivisio	n		
							<u> </u>		=
				County	UMBERLAN	אט	Postal Cod	,	
				Nearest Co	mmunity in	Altlas/Map B	ook ATLAS A	MHERST	
			We	ell Location					
NS Atlas or I	Map Book Re	eference ·	NTS Map Refere			GPS (WGS84 UTM):		
Atlas or Map		MAP	Map Sheet			Northir		5079213	
		18							
Map Page N			Reference Map			Easting	g (m)	411279	
Reference Lo		В	Tract No.			Proper	ty (PID)		
Reference N		2	Claim			Well I	ocation Sketch Availa	——— ıble □	
Roamer Lett	er	G	O.W.III			**************************************	occion onoton / walle		
Roamer Nun	nber	8							
Depth in	feet		Primary Lithology			Secondary	/ Lithology		
	o Colour			Colou	ır 2 Des	scription 2	Lithology 2	Water Found	П
0	15	2 50011911	TILL	23/00					
15	45		SANDSTONE						
45	101 REDDIS	Н	SHALE	BROW	N				
101	109 BROWN	FINE GRAI	NED SANDSTONE						
109	114 REDDIS	H FINE GRAI	NED						
114	124 REDDIS	H FINE GRAI	NED SANDSTONE		MEDIL	JM GRAINE			Ш
124	127 BROWN	I FINE GRAI	NED SHALE						
	130		SHALE				SANDSTONE		
130	157 REDDIS	H MEDIUM G	GRAIN SANDSTONE	RED	COAR	SE GRAINE			
	161 GRAYIS		SRAIN SANDSTONE		COAR	SE GRAINE			
	165 REDDIS		SHALE	BROW	N				
	166 BROWN		MUDSTONE						
	196 GRAYIS		SRAIN SANDSTONE						
	198 REDDIS		SHALE				SANDSTONE		
	202 REDDIS		SILTSTONE						
	206 BROWN		SHALE					<u> </u>	
	211 BROWN		SILTSTONE				0	<u> </u>	
	227 BROWN		SILTSTONE				SHALE		
	235 REDDIS		SHALE	0055	110				
	258 BROWN		SILTSTONE	GREEI	NIS				
	262 REDDIS		GRAIN SANDSTONE						
	263 REDDIS		SHALE						
	277 REDDIS		SRAIN SANDSTONE						
	281 REDDIS		SHALE						
	294 BROWN		SILTSTONE						
	296 BROWN		SHALE				CHALE		
	358 BROWN						SHALE		1
358	370 REDDIS	пΙ	SANDSTONE		1				
370	378 GRAYIS	ш	SANDSTONE						

Well Construction Information Dug Well Information		Water Yield		
Total depth below surface (ft) 382	Depth of liner (crock) (ft)	Estimated Yield (igpm)		
Depth to bedrock (ft)	Reservoir material	Method		
Water bearing fractures encountered at (ft): 140 Outer Well Casing: From (ft) To (ft) 20	Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft)	Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft)		
Diameter (in) 6 Length of casing above ground: (ft) (in) Driveshoe make	Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow		
Comments NS OBSERVATION WELL - AMH	IERST (071)	Well Status/Water Use/Date Completed Final status of well TEST HOLE Water use MONITORING Method of drilling Date well completed 29-Jul-86		

(Summary Log)

NSE Well No.

Well Type

721858 DRILLED

Certified Well Contractor		Well Owner/Contractor Information
Name Certificate No. Company NS Atlas or Map Book Reference: Atlas or Map Book MAP Map Page No. Reference Letter Roamer Letter Roamer Number	Lot Number County CUMBER	wner NS DEPT. OF ENVIRONMENT er/Consultant, etc. fell NS OBS WELL - KELLEY RIVER (073) Subdivision
Well Construction Information	Dug Well Information	Water Yield
Total depth below surface (ft) 38	Depth of liner (crock) (ft)	Estimated Yield (igpm)
Depth to bedrock (ft)	Reservoir material	Method
Water bearing fractures encountered at (ft):	Reservoir vol. (cu.yd)	
	Reservoir material size	Rate (igpm)
Outer Well Casing:	Apron Material	Duration (hrs)
From (ft) 0 To (ft) 14	Apron depth (ft)	Depth to water at end of test (ft)
Diameter (in)	Apron thickness (ft)	Total drawdown (ft)
Length of casing above ground :	Apron width (ft)	Water level recovered to (ft)
	Apron volume (cu.yd)	Recovery time (hrs)
(ft) (in)	Bottom material	Depth to static level (ft) Overflow
Driveshoe make	<u></u>	
Comments NS OBSERVATION WELL - KEL	LEY RIVER (073)	Well Status/Water Use/Date Completed
		Final status of well OBSERVATION WELL
		Water use MONITORING
		Method of drilling
<u> </u>		Date well completed 01-Jul-72

NSE Well No.

070613

29-Aug-07

Date well completed

Environment	(Summa	ary Log)		Well Type	DRILLED
Certified Well Contractor				Well Owner/Contractor Information	
Name ROGERS, KIRK Certificate No. 307 Company K. D. ROGERS WELL DRILLIN	G LTD.	Civic Add Lot Numb	ctor/Build lress of W per KINGS	wner NS DEPT. OF ENVIRO	
	Well L	ocation			
NS Atlas or Map Book Reference : Atlas or Map Book ATLAS Map Page No. 46 Reference Letter Z Reference Number 2 Roamer Letter H Roamer Number 6	NTS Map Reference Map Sheet Reference Map Tract No. Claim	; :		GPS (WGS84 UTM): Northing (m) 5000758 Easting (m) 381956 Property (PID) 55045942 Well Location Sketch Available	
Depth in feet Prim	ary Lithology			Secondary Lithology	
From To Colour 1 Description 1 0 112 112 175	Lithology 1 SAND SANDSTONE	Col	our 2	Description 2 Lithology 2 Water	
Well Construction Information	Dug Well Int	formation		Water Yield	
Total depth below surface (ft) 175	Depth of liner (croc			Estimated Yield (igpm)	
Depth to bedrock (ft) Water bearing fractures encountered at (ft): 115	Reservoir material Reservoir vol. (cu.y Reservoir material Apron Material Apron depth (ft) Apron thickness (ft Apron width (ft) Apron volume (cu.y Bottom material	yd) size		Method AIR LIFT Rate (igpm) 10 Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) 1	0
Comments NS OBSERVATION WELL - ATL. FRACTURES 115-175 FT. DIST 200+'. WELL LOC EDGE OF WC GROUND.	TO PRÒP ĹINE 300+', V			Final status of well OBSERVATION WELL Water use MONITORING Method of drilling ROTARY	

(Summary Log)

NSE Well No.

Well Type

070618

DRILLED

Certified Well Contractor			Well Owner/C	Contractor Information	
Name ROGERS, KIRK Certificate No. 307 Company K. D. ROGERS WELL DRILLIN NS Atlas or Map Book Reference :	Well NTS Map Referenc	Civic Address of Lot Number County KINGS Nearest Commu	Owner ilder/Consultant, etc Well NS OBS WE Subdivision nity in Altlas/Map Bo	NS DEPT. NS DEPT. Postal Code Pok ATLAS SHI	B0P 1H0 EFFIELD MILLS
Atlas or Map Book Map Page No. Reference Letter V Reference Number Roamer Letter D Roamer Number 6	Map Sheet Reference Map Tract No. Claim		- 1	°`'	384693
Prim From To Colour 1 Description 1 0 16 16 175	Lithology SAND SANDSTONE	Colour 2	Secondary Description 2	Lithology 2	Water Found
Well Construction Information	Dug Well In	nformation	T	Water Yield	
Total depth below surface (ft) 175 Depth to bedrock (ft) 16 Water bearing fractures encountered at (ft): 60 175	Depth of liner (cro Reservoir materia Reservoir vol. (cu. Reservoir materia Apron Material Apron depth (ft) Apron thickness (f Apron width (ft) Apron volume (cu. Bottom material	ock) (ft)	Meti Rate Dura Dep Tota Wat Rec Dep	mated Yield (igpm) hod AIR L e (igpm) ation (hrs) th to water at end of te al drawdown (ft) er level recovered to (overy time (hrs) th to static level (ft)	60 1 est (ft) ft) 20 24
Comments NS OBSERVATION WELL - SHE FRACTURES 60-175 FT. WELL FT ABOVE GROUND.	FFIELD MILLS (075) LOC AT EDGE OF FIEL	LD. WELLHEAD 4	Final status o Water use Method of dri Date well con	MONITORING ROTARY	N WELL

(Summary Log)

080824 NSE Well No. Wel

II Туре	DRILLED

Name JACOBS, BYRON Well Drilled For. Owner NS DEPT. OF ENVIRONMENT & or Contractor/Builder/Consultant, etc. Civic Address of Well SS OSS WELL - FALL RIVER (076); TAMARACK Civic Address of Well NS OSS WELL - FALL RIVER (076); TAMARACK Civic Address of Well NS OSS WELL - FALL RIVER (076); TAMARACK Civic Address of Well NS OSS WELL - FALL RIVER (076); TAMARACK Civic Address of Well NS OSS WELL - FALL RIVER (076); TAMARACK Civic Address of Well NS OSS WELL - FALL RIVER (076); TAMARACK Civic Address of Well NS OSS WELL - FALL RIVER (076); TAMARACK Nearest Community in Attas/Map Book ATLAS FALL RIVER Northing (m) 4962226 Map Page No. SS Reference Map Sheet Northing (m) 4962226 Map Page No. SS Reference Map Easting (m) 450243 Reference Number 4 Colaim Property (PID) 40372922 Mater Found Method Method	Certified Well Contractor		Wel	Owner/Contractor Information	
Well Location	Name JACOBS, BYRON Certificate No. 695		Well Drilled For: Owner or Contractor/Builder/Constitution Civic Address of Well DRI Lot Number 65 S	NS DEPT. OF ENVIR	
Notation			Nearest Community in Allia	S/Map Book ATLAS FALL RIVER	
Total depth below surface (ft) 200 Depth of liner (crock) (ft)	Atlas or Map Book ATLAS Map Page No. 58 Reference Letter Y Reference Number 4 Roamer Letter F Roamer Number 5 Depth in feet Prima From To Colour 1 Description 1 0 4	NTS Map Reference Map Sheet Reference Map Tract No. Claim Well Construction S ary Lithology Lithology 1	e : ketch Available	Northing (m) 496 Easting (m) 45 Estimated GPS Accuracy (m, +/-) Property (PID) 40372922 Well Location Sketch Available	50243
Total depth below surface (ft) 200 Depth of liner (crock) (ft)					
	Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft): 18	Depth of liner (cro- Reservoir material Reservoir vol. (cu. Reservoir material Apron Material Apron depth (ft) Apron thickness (f Apron width (ft) Apron volume (cu. Bottom material 6); WB FRACT 18' 5 (c) : NEAR BALLFIELD OI DLE FOR CASING, 6" E E SHOE. LOT FROM P	ck) (ft) yd) I size tt) GPM, 41' 0.5 GPM, FF TALISMAN DR. BOREHOLE, OL. Wat Metl	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow Well Status/Water Use/Date Completed to the completed of the	1 95 12 ted

Environment

(Summary Log)

NSE Well No. 080132 DRILLED Well Type

Certified Well Contractor			Well Owner/Contractor Information
Name ROGERS, KIRK Certificate No. 307 Company K. D. ROGERS WELL DRILLING NS Atlas or Map Book Reference: Atlas or Map Book ATLAS	G	Civic Address of W Lot Number County LUNENB Nearest Communit	Owner NS DEPT. OF ENVIRONMENT & Ider/Consultant, etc. Well NS OBS WELL - WEST NORTHFIELD (077); BRUHM ROAD Subdivision
Map Page No. 73 Reference Letter Z Reference Number 2 Roamer Letter A Roamer Number 1	Reference Map Tract No. Claim Well Construction Ske	etch Available	Easting (m) Stimated GPS Accuracy (m, +/-) Property (PID) 60200029 Well Location Sketch Available
From To Colour 1 Description 1 0 10 10 24 24 160	SAND & SILT SLATE	Colour 2	Secondary Lithology Description 2 Lithology 2 Water Found
Well Construction Information Total depth below surface (ft) 160 Depth to bedrock (ft) 24 Water bearing fractures encountered at (ft): 124 Outer Well Casing: From (ft) 0 To (ft) 42 Diameter (in) 6 Length of casing above ground: (ft) 3 (in) Driveshoe make MEDIUM	Dug Well Info Depth of liner (crock Reservoir material Reservoir vol. (cu.yo Reservoir material s Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yo Bottom material	s) (ft)	Water Yield Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 7 Duration (hrs) 1 Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) 32 Recovery time (hrs) 1 Depth to static level (ft) Overflow
Comments: NS OBS WELL - WEST NORTHF 100+ FT. ADDRESS HWY #10 (P		F-SITE SEPTIC:	Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL Water use MONITORING Method of drilling ROTARY Date well completed 06-Mar-08

NSE Well No. 080861

Environment		(Summ	nary Log)			Well	Туре	DRILLED
_	Certified Well Contractor			Well	Owner/Contra	actor Information	on	
Certificate No. 734	BS, LARRY NOSE WELL DRILLING			or: Owner // /Builder/Consu s of Well NS C	DBS WELL - N			D78); 104
				Su LIFAX munity in Altlas	,			OBOIT
		Woll	Location)I—	W. (1.2.2.2.)	
NS Atlas or Map Book Atlas or Map Book Map Page No. Reference Letter Reference Number Roamer Letter Roamer Number	ATLAS 59 Y 5 D 1	NTS Map Reference Map Sheet Reference Map Tract No. Claim Well Construction S	ce:		Property (PII		4(m, +/-)	59880 88125 50
Depth in feet	Prim	ary Lithology		Se	econdary Litho	ology		
From To C 0 66 66 81 81 200	Olour 1 Description 1 COARSE GRAII	Lithology 1 N SAND SEE COMMENTS	Colour	2 Descript	ion 2	Lithology 2	Wat	er Found
Well Construc	tion Information	Dug Well In	nformation			Water Yiel	ld	
Total depth below sure Depth to bedrock (ft) Water bearing fracture 66 81 95 Outer Well Casing: From (ft) 0 Diameter (in) Length of casing above (ft) 1 (in) Driveshoe make HI	To (ft) 89 6 ground:	Depth of liner (cro Reservoir materia Reservoir vol. (cu. Reservoir materia Apron Material Apron depth (ft) Apron thickness (f Apron width (ft) Apron volume (cu. Bottom material	al size		Method Rate (igp Duration Depth to the control of t	m)	to (ft)	0.5
WELL S BENTOI CASING 200 FT I	S WELL - MUSQUODOBC KETCH: CASED OFF SA NITE SEAL ABOVE DRIV S. WELL LOC SKETCH: V NOT GIVEN. ADDRESS FROM POL.	ND WITH CÓBBLES W E SHOE; 6" BOREHOL	VITH 200 GPM; LE BELOW	Final Wate Meth	status of well	MONITORIN	TION WELL	

(Summary Log)

NSE Well No. Well Type

690090 DRILLED

Certified Well Contractor		Well Owner/Contractor Information				
					25.44120.0.50250	
Name BOWMASTER		Well Drilled For: Ow		NS DEPT. C	OF LANDS & FORES	
Certificate No. 3		or Contractor/Builde				
Company WILLIAM BOWMAST	ER, SR.	Civic Address of We	NS OBS WELL	- LEWIS LAKE (079)	
		Lot Number	Subdivision			
		County HALIFAX		Postal Code		
		Nearest Community	/ in Altlas/Map Book	LEW	/IS LAKE	
	\Mall I	_ocation				
NS Atlas or Map Book Reference :	NTS Map Reference		GPS (MG	S84 UTM) :		
Atlas or Map Book MAP	Map Sheet	.	Northing (4948873	
Map Page No. 20	= _		- '			
Reference Letter D	Reference Map		Easting (r		433048	
Reference Number 5	Tract No.		Estimated	GPS Accuracy (m, -	+/-) 50	
Roamer Letter H	Claim		Property (PID)		
Roamer Number 8	Well Construction S	ketch Available	Well Loca	tion Sketch Available	⊖ □	
Depth in feet	Primary Lithology		Secondary Li	thology		
From To Colour 1 Des	scription 1 Lithology 1	Colour 2	Description 2	Lithology 2	Water Found	
0 20						
20 250	GRANITE					
Well Construction Information	n Dug Well In	formation		Water Yield		
Well Construction Information Total depth below surface (ft)			Estima	Water Yield		
Total depth below surface (ft)	250 Depth of liner (cro	ck) (ft)		ited Yield (igpm)		
	Depth of liner (crost	ck) (ft)	Method	ited Yield (igpm)		
Total depth below surface (ft) Depth to bedrock (ft)	250 Depth of liner (cro- 20 Reservoir material at (ft): Reservoir vol. (cu.	ck) (ft)		ited Yield (igpm)	6	
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered	250 Depth of liner (cross Reservoir material at (ft): Reservoir vol. (cu. Reservoir material	ck) (ft)	Methoo Rate (i Duratio	gpm) gpm hon (hrs)	1.5	
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered	250 Depth of liner (cross Reservoir material Reservoir vol. (cu. Reservoir material Apron Material	ck) (ft)	Method Rate (i Duratio Depth	gpm) on (hrs) tted Yield (igpm) to water at end of tee	1.5	
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered 240	250 Depth of liner (cro- Reservoir material at (ft): Reservoir vol. (cu. Reservoir material Apron Material	yd) size	Method Rate (i Duratio Depth Total d	gpm) on (hrs) to water at end of tes	1.5 st (ft) 27	
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered 240 250 000 Outer Well Casing: From (ft) 6 To (ft) Diameter (in)	250 Depth of liner (cross Reservoir material at (ft): Reservoir vol. (cu. Reservoir material Apron Material Apron depth (ft)	yd) size	Method Rate (i Duratio Depth Total d Water	gpm) on (hrs) to water at end of testrawdown (ft)	1.5 st (ft) 27	
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered 240	250 Depth of liner (cross Reservoir material Apron Material Apron depth (ft) Apron thickness (f	ck) (ft)	Method Rate (i Duration Depth Total of Water Recove	gpm) on (hrs) to water at end of testrawdown (ft) level recovered to (ft	1.5 st (ft) 27	
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered 240 250 To (ft) Outer Well Casing: From (ft) 6 To (ft) Diameter (in) Length of casing above ground: (ft) (in)	250 Depth of liner (cross Reservoir material at (ft): Reservoir vol. (cu. Reservoir material Apron Material Apron depth (ft) Apron thickness (f Apron width (ft)	ck) (ft)	Method Rate (i Duratio Depth Total of Water Recove Depth	gpm) on (hrs) to water at end of testrawdown (ft) level recovered to (ft ery time (hrs) to static level (ft)	1.5 st (ft) 27	
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered 240 250 To (ft) Outer Well Casing: From (ft) 6 To (ft) Diameter (in) Length of casing above ground: (ft) (in) Driveshoe make UNKNOWN	250 Depth of liner (cross Reservoir material Apron Material Apron depth (ft) Apron width (ft) Apron volume (cu. Bottom material	ck) (ft) yd) size t) yd)	Method Rate (i Duration Depth Total of Water Recover Depth Overflo	gpm) on (hrs) to water at end of testrawdown (ft) level recovered to (ft) ery time (hrs) to static level (ft)	1.5 st (ft) 27	
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered 240 250 To (ft) Outer Well Casing: From (ft) 6 To (ft) Diameter (in) Length of casing above ground: (ft) (in) Driveshoe make UNKNOWN Comments: NS OBS WELL - LEWIS	250 Depth of liner (cross Reservoir material Apron Material Apron depth (ft) Apron width (ft) Apron volume (cu. Bottom material	ck) (ft) yd) size t) water supply	Method Rate (i Duration Depth Total of Water Recover Depth Overflo	gpm) on (hrs) to water at end of testrawdown (ft) level recovered to (ft ery time (hrs) to static level (ft)	1.5 st (ft) 27	
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered 240 250 To (ft) Outer Well Casing: From (ft) 6 To (ft) Diameter (in) Length of casing above ground: (ft) (in) Driveshoe make UNKNOWN Comments: NS OBS WELL - LEWIS	250 Depth of liner (cross Reservoir material Apron Material Apron depth (ft) Apron width (ft) Apron volume (cu. Bottom material	ck) (ft) yd) size t) water supply	Method Rate (i Duration Depth Total of Water Recover Depth Overflo	gpm) on (hrs) to water at end of test lrawdown (ft) level recovered to (ft ery time (hrs) to static level (ft) ow atus/Water Use/Date	1.5 st (ft) 27 t) Completed	
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered 240 250 To (ft) Outer Well Casing: From (ft) 6 To (ft) Diameter (in) Length of casing above ground: (ft) (in) Driveshoe make UNKNOWN Comments: NS OBS WELL - LEWIS	250 Depth of liner (cross Reservoir material Apron Material Apron depth (ft) Apron width (ft) Apron volume (cu. Bottom material	ck) (ft) yd) size t) water supply	Method Rate (i Duration Depth Total of Water Recover Depth Overflot Well Sta	gpm) on (hrs) to water at end of testrandown (ft) level recovered to (ft) ery time (hrs) to static level (ft) ow atus/Water Use/Date	1.5 st (ft) 27 t) Completed	
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered 240 250 To (ft) Outer Well Casing: From (ft) 6 To (ft) Diameter (in) Length of casing above ground: (ft) (in) Driveshoe make UNKNOWN Comments: NS OBS WELL - LEWIS	250 Depth of liner (cross Reservoir material Apron Material Apron depth (ft) Apron width (ft) Apron volume (cu. Bottom material	ck) (ft) yd) size t) water supply	Method Rate (i Duration Depth Total of Water Recove Depth Overfloo Well Sta	gpm) on (hrs) to water at end of testrawdown (ft) level recovered to (ft) ery time (hrs) to static level (ft) ow atus/Water Use/Date rell OBSERVATION	1.5 st (ft) 27 t) Completed	
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered 240 250 To (ft) Outer Well Casing: From (ft) 6 To (ft) Diameter (in) Length of casing above ground: (ft) (in) Driveshoe make UNKNOWN Comments: NS OBS WELL - LEWIS	250 Depth of liner (cross Reservoir material Apron Material Apron depth (ft) Apron width (ft) Apron volume (cu. Bottom material	ck) (ft) yd) size t) water supply	Method Rate (i Duration Depth Total of Water Recove Depth Overfloo Well Sta	gpm) on (hrs) to water at end of testrandown (ft) level recovered to (ft) ery time (hrs) to static level (ft) ow atus/Water Use/Date yell OBSERVATION MONITORING	1.5 st (ft) 27 t) Completed	
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered 240 250 To (ft) Outer Well Casing: From (ft) 6 To (ft) Diameter (in) Length of casing above ground: (ft) (in) Driveshoe make UNKNOWN Comments: NS OBS WELL - LEWIS	250 Depth of liner (cross Reservoir material Apron Material Apron depth (ft) Apron width (ft) Apron volume (cu. Bottom material	ck) (ft) yd) size t) water supply	Method Rate (i Duration Depth Total of Water Recove Depth Overfloo Well Sta	gpm) on (hrs) to water at end of testrandown (ft) level recovered to (ft) ery time (hrs) to static level (ft) ow atus/Water Use/Date yell OBSERVATION MONITORING	1.5 st (ft) 27 t) Completed	
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered 240 250 Outer Well Casing: From (ft) 6 To (ft) Diameter (in) Length of casing above ground: (ft) (in) Driveshoe make UNKNOWN Comments: NS OBS WELL - LEWIS	250 Depth of liner (cross Reservoir material Apron Material Apron depth (ft) Apron width (ft) Apron volume (cu. Bottom material	ck) (ft) yd) size t) water supply	Method Rate (i Duration Depth Total of Water Recove Depth Overfloo Well Sta	gpm) on (hrs) to water at end of testrandown (ft) level recovered to (ft) ery time (hrs) to static level (ft) ow atus/Water Use/Date yell OBSERVATION MONITORING	1.5 st (ft) 27 t) Completed	
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered 240 250 To (ft) Outer Well Casing: From (ft) 6 To (ft) Diameter (in) Length of casing above ground: (ft) (in) Driveshoe make UNKNOWN Comments: NS OBS WELL - LEWIS	250 Depth of liner (cross Reservoir material Apron Material Apron depth (ft) Apron width (ft) Apron volume (cu. Bottom material	ck) (ft) yd) size t) water supply	Method Rate (i Duration Depth Total of Water Recove Depth Overfloo Well Sta	gpm) on (hrs) to water at end of testrandown (ft) level recovered to (ft) ery time (hrs) to static level (ft) ow atus/Water Use/Date yell OBSERVATION MONITORING	1.5 st (ft) 27 t) Completed	

APPENDIX B GROUNDWATER LEVEL GRAPHS

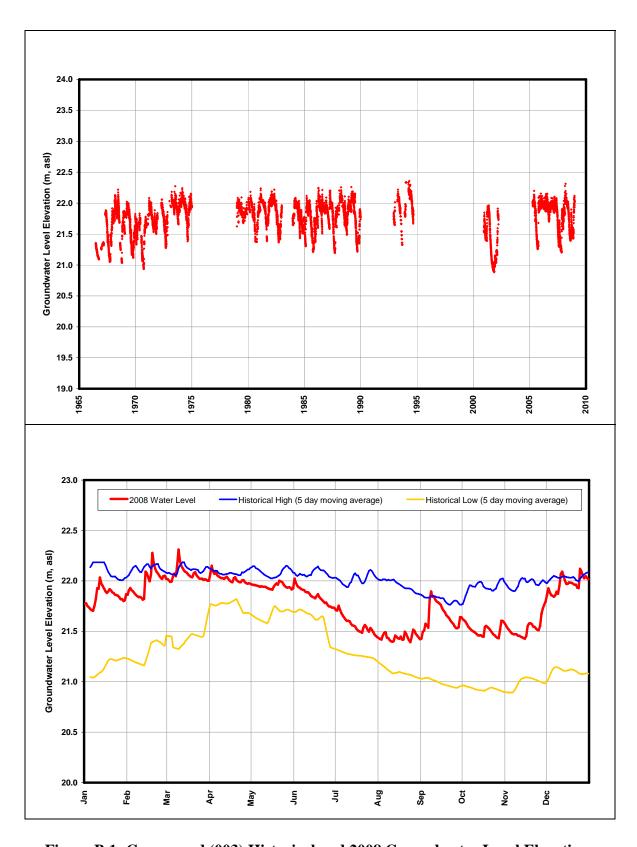
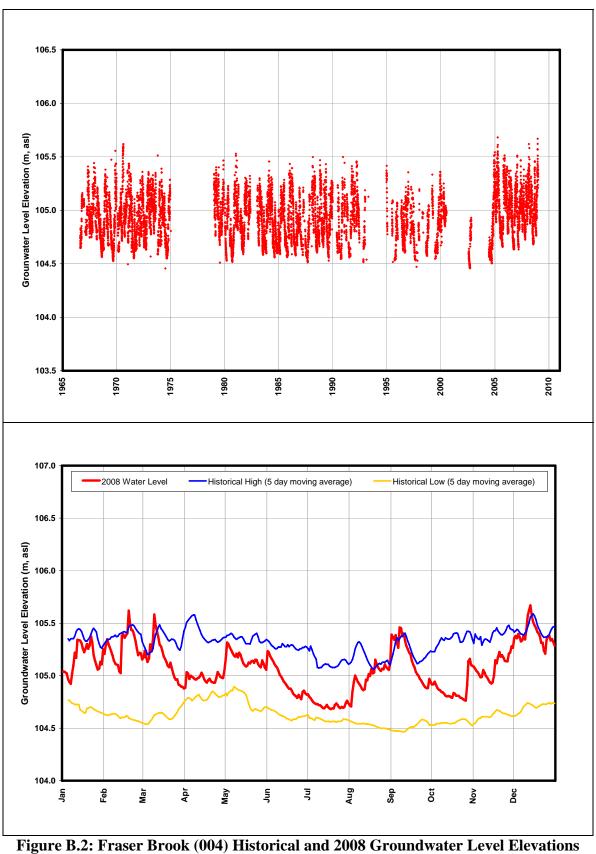



Figure B.1: Greenwood (003) Historical and 2008 Groundwater Level Elevations

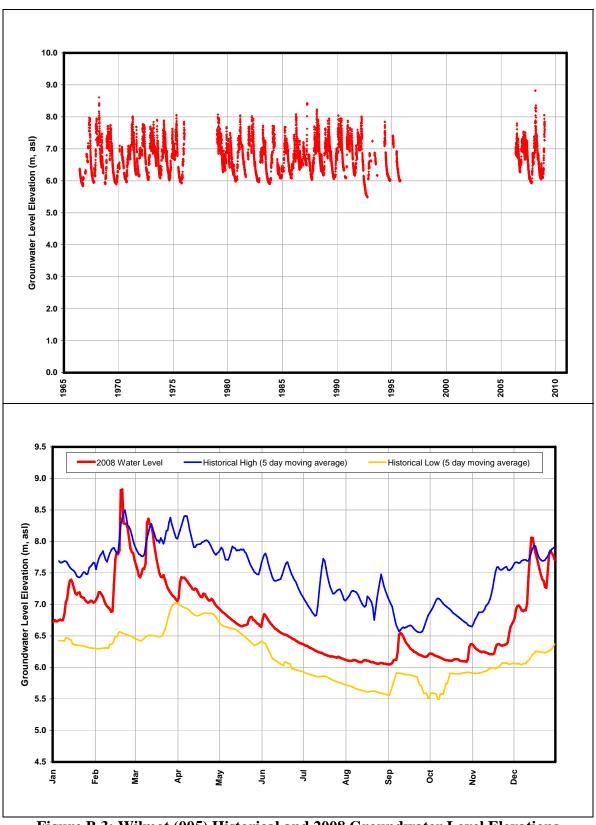
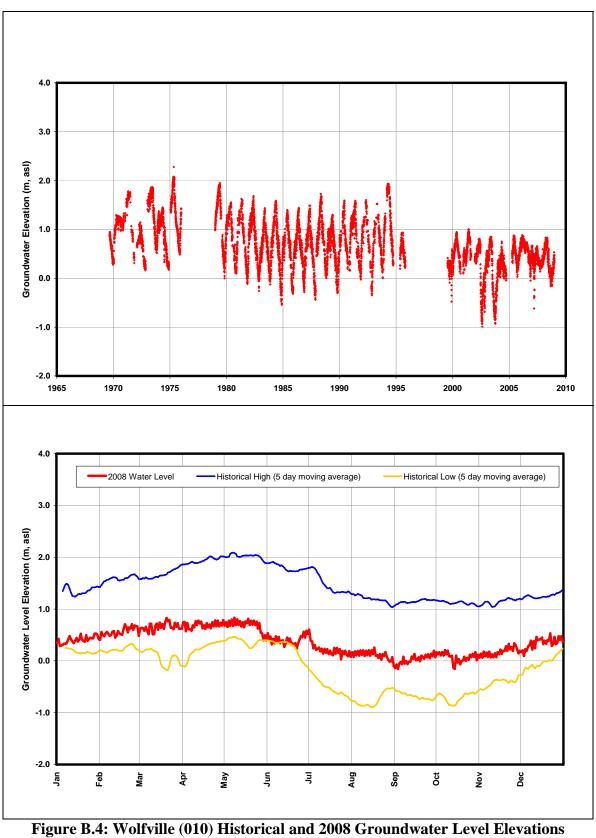



Figure B.3: Wilmot (005) Historical and 2008 Groundwater Level Elevations

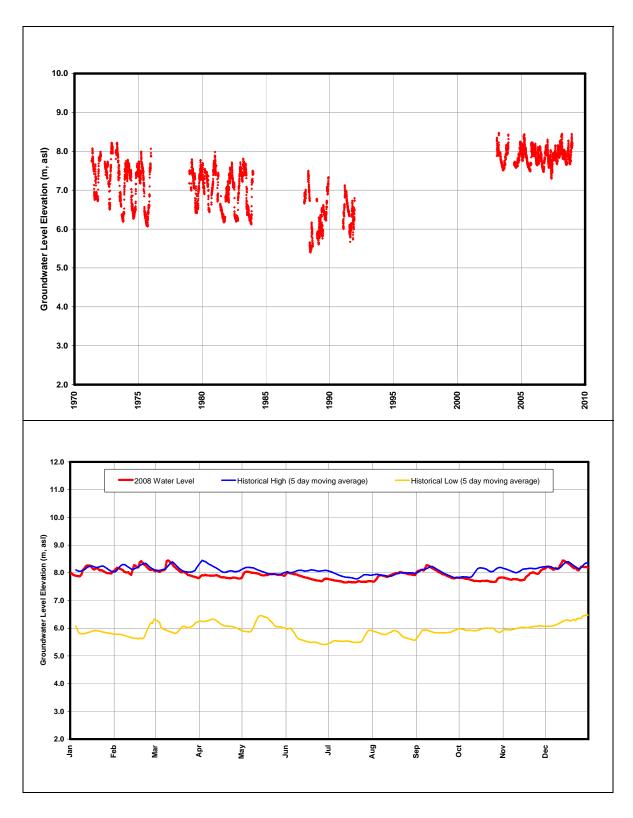


Figure B.5: Truro (014) Historical and 2008 Groundwater Level Elevations

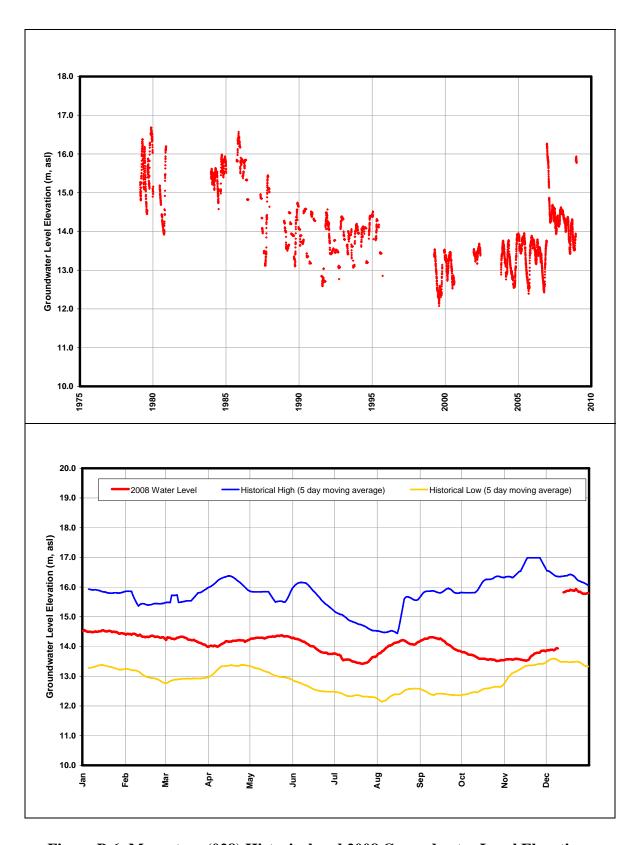


Figure B.6: Monastery (028) Historical and 2008 Groundwater Level Elevations

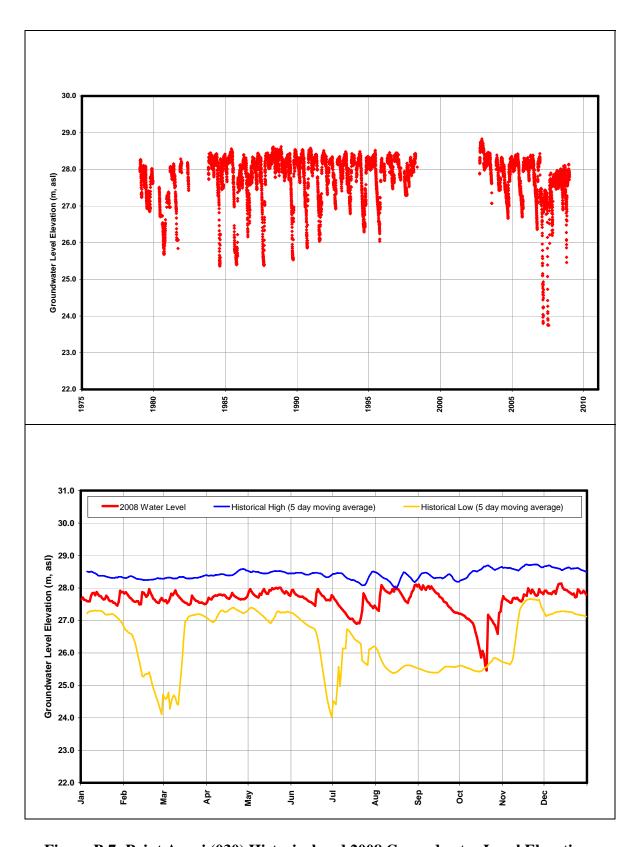


Figure B.7: Point Aconi (030) Historical and 2008 Groundwater Level Elevations

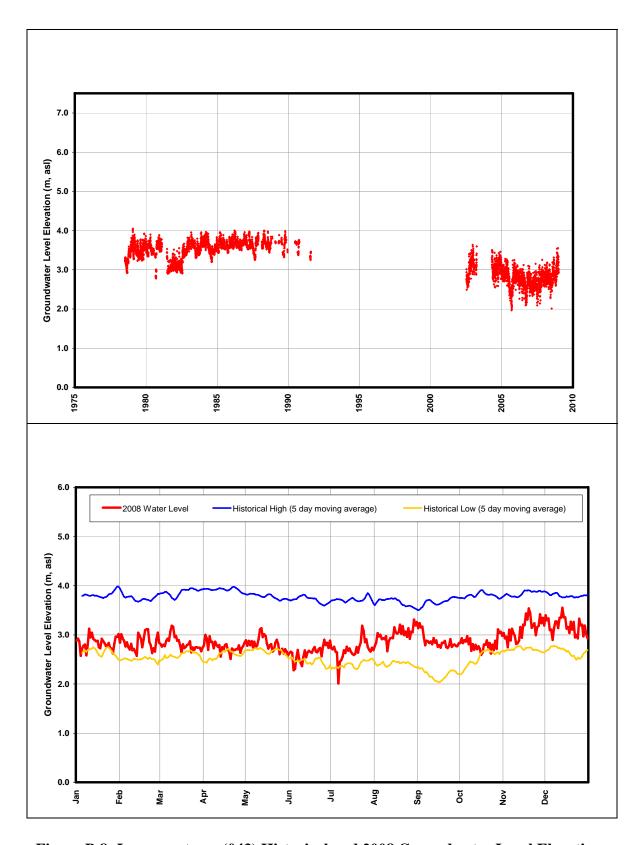


Figure B.8: Lawrencetown (043) Historical and 2008 Groundwater Level Elevations

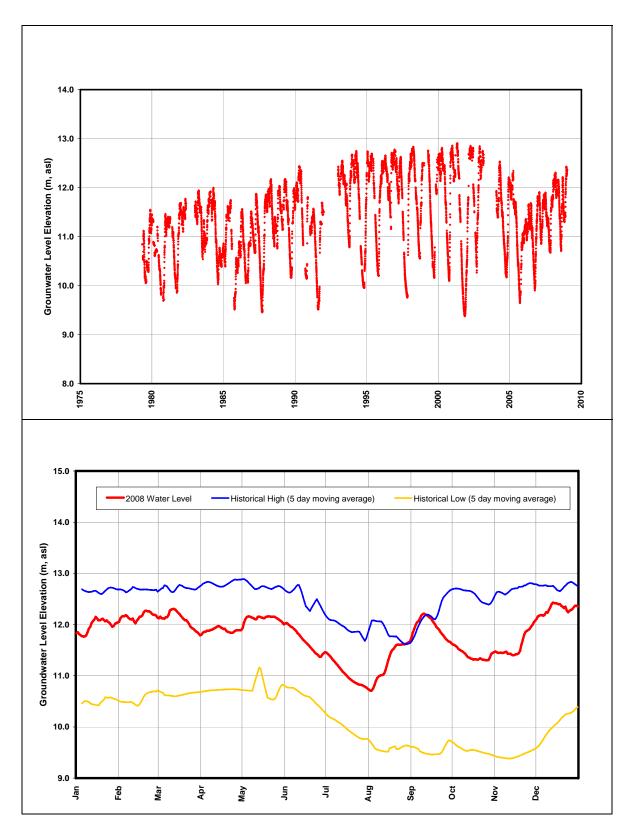


Figure B.9: Durham (045) Historical and 2008 Groundwater Level Elevations

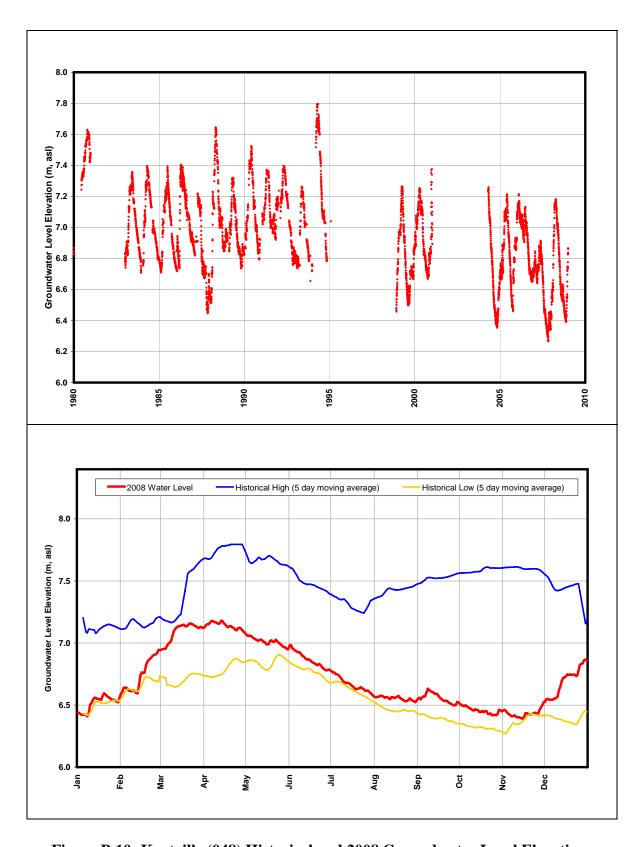


Figure B.10: Kentville (048) Historical and 2008 Groundwater Level Elevations

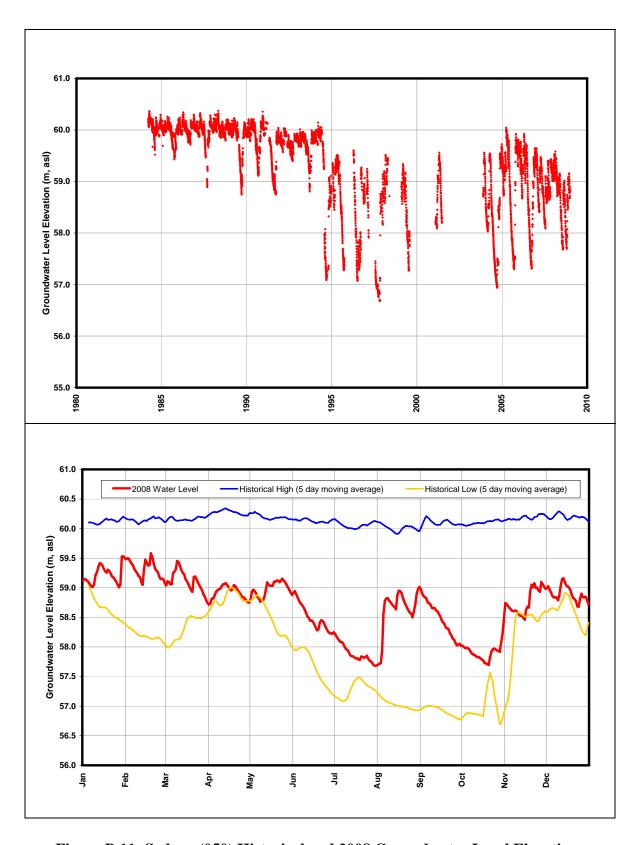


Figure B.11: Sydney (050) Historical and 2008 Groundwater Level Elevations

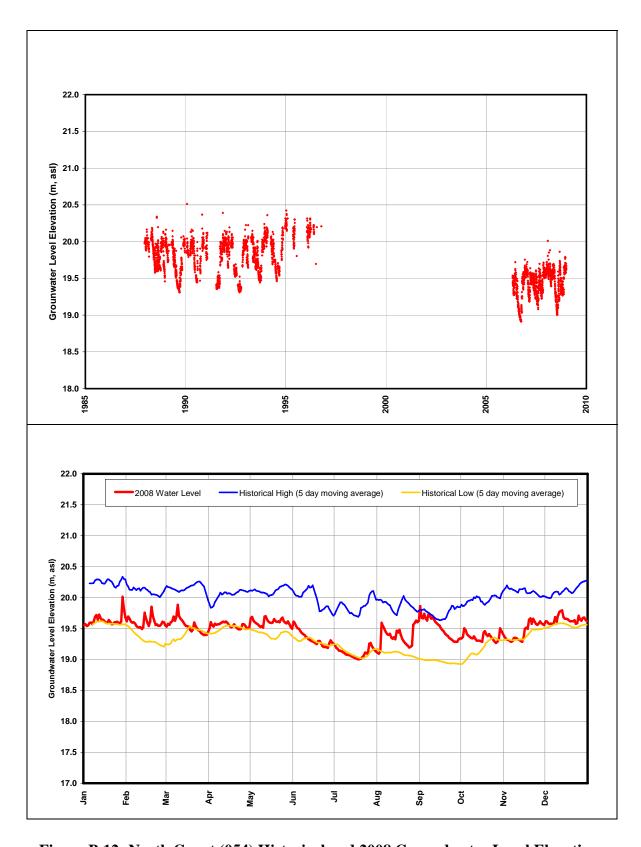


Figure B.12: North Grant (054) Historical and 2008 Groundwater Level Elevations

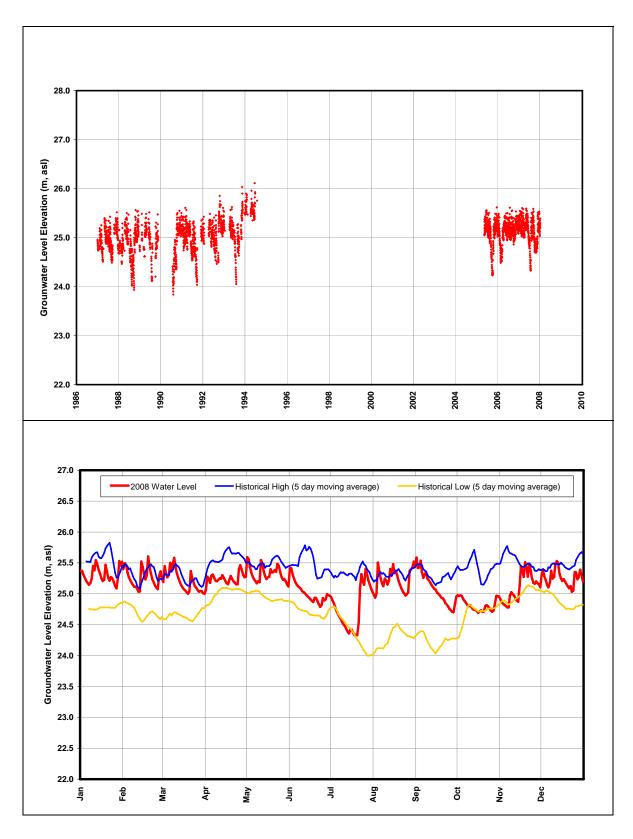


Figure B.13: Stillwater (055) Historical and 2008 Groundwater Level Elevations

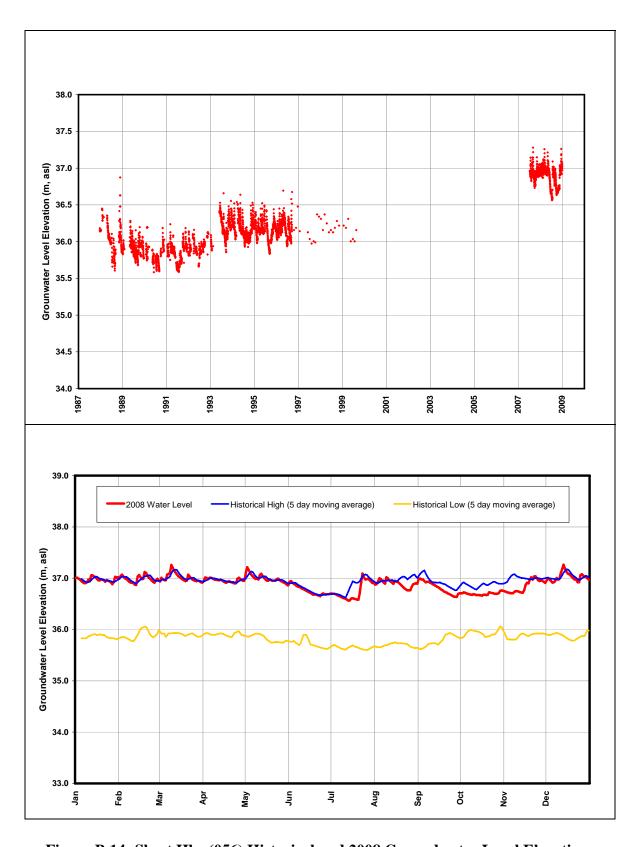


Figure B.14: Sheet Hbr (056) Historical and 2008 Groundwater Level Elevations

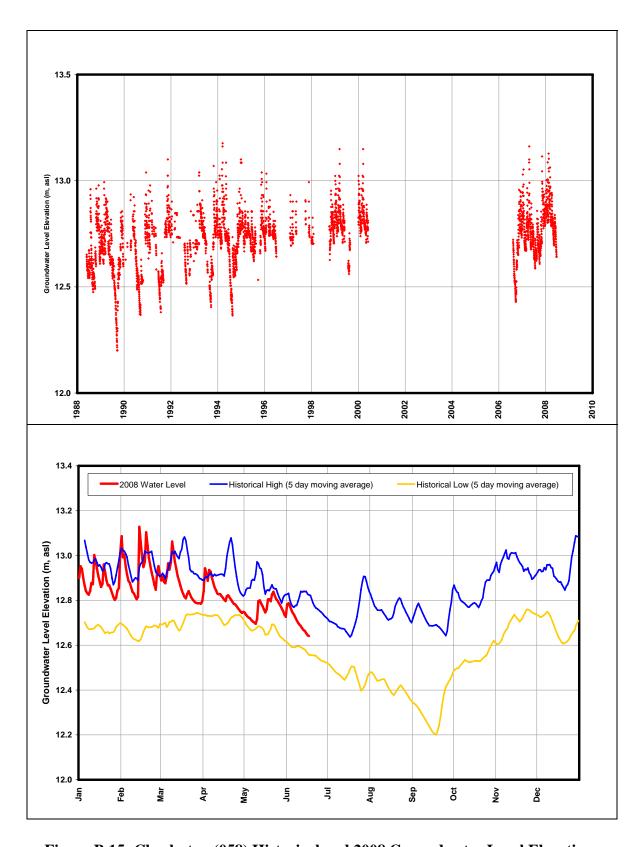


Figure B.15: Charleston (058) Historical and 2008 Groundwater Level Elevations

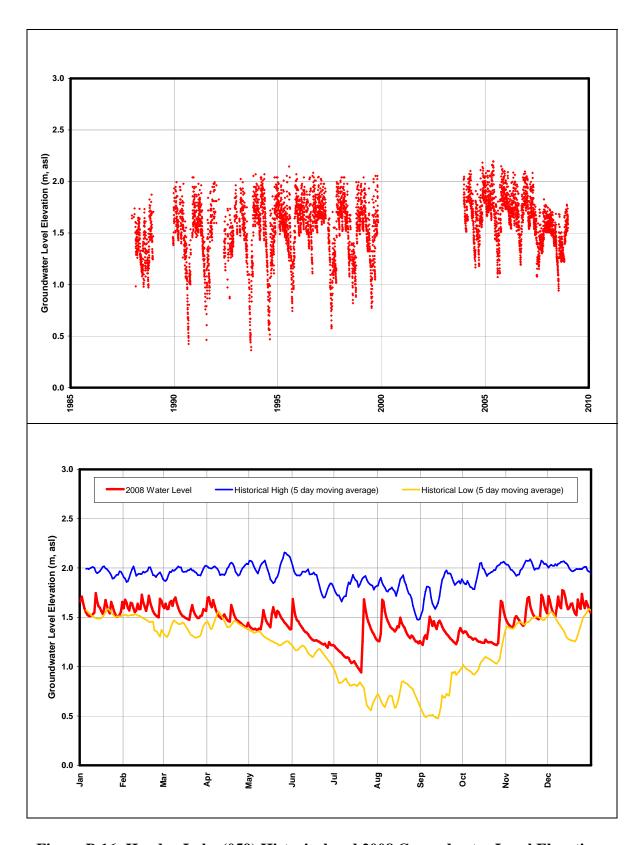


Figure B.16: Hayden Lake (059) Historical and 2008 Groundwater Level Elevations

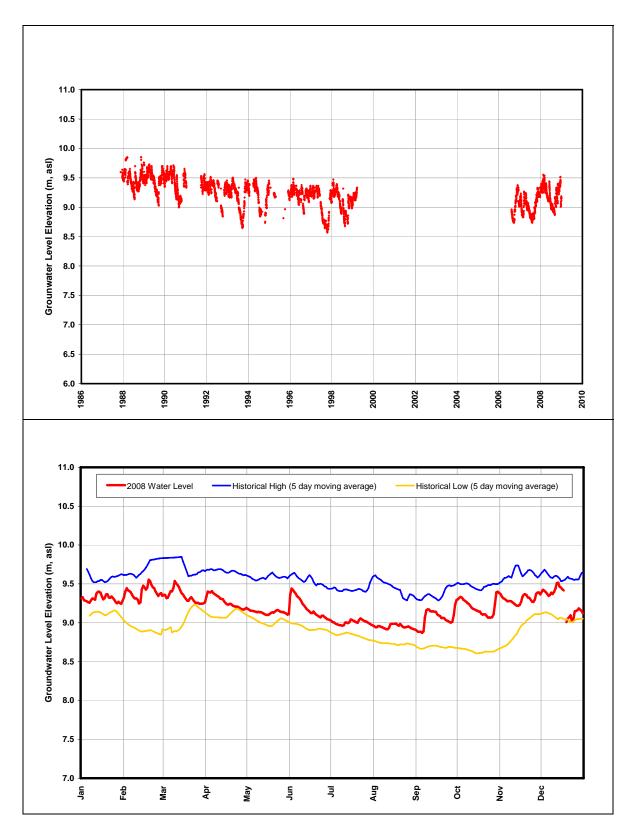


Figure B.17: Meteghan (060) Historical and 2008 Groundwater Level Elevations

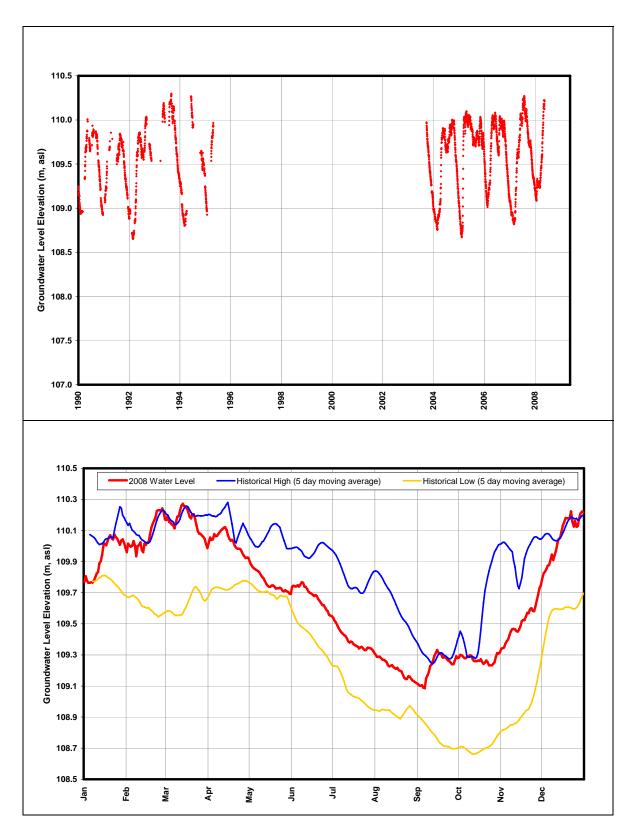


Figure B.18: Annapolis Royal (062) Historical and 2008 Groundwater Level Elevations

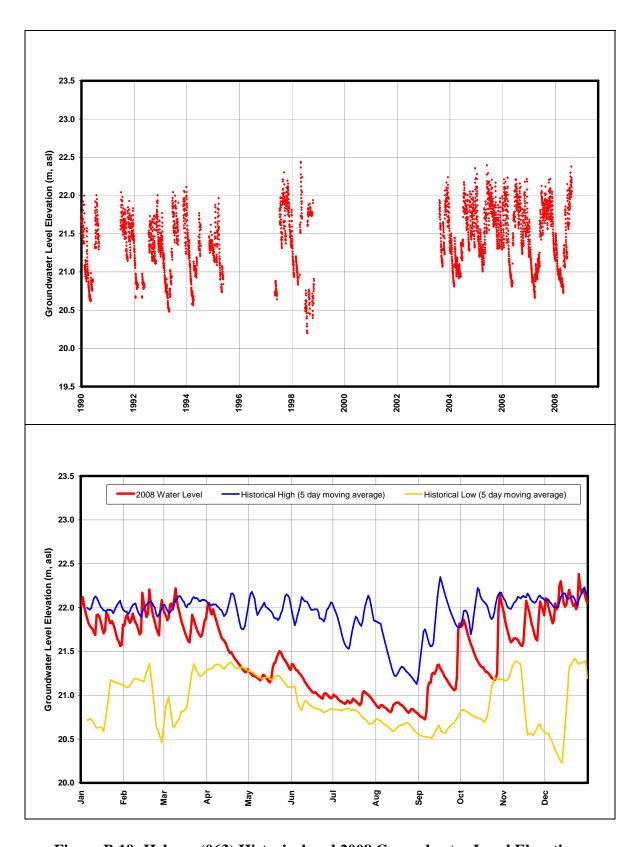


Figure B.19: Hebron (063) Historical and 2008 Groundwater Level Elevations

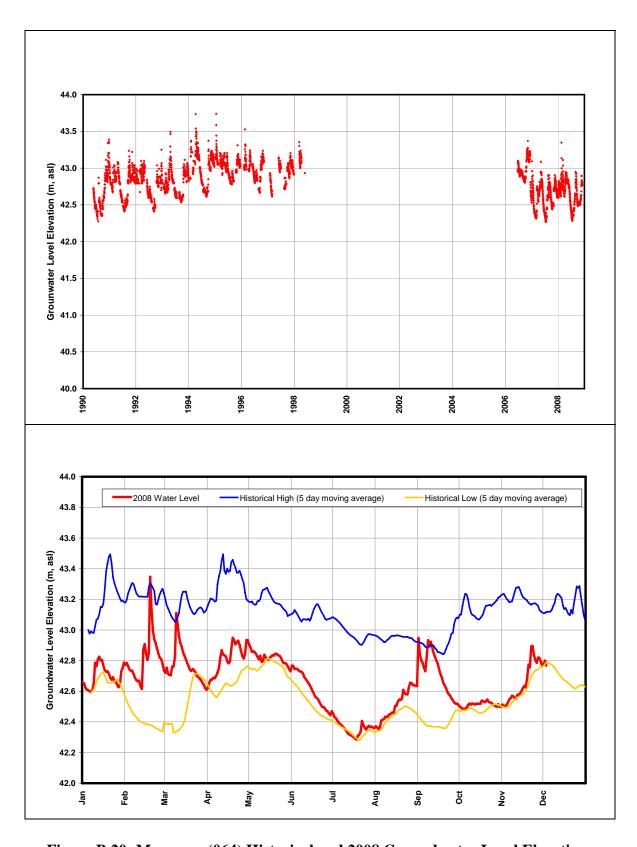


Figure B.20: Margaree (064) Historical and 2008 Groundwater Level Elevations

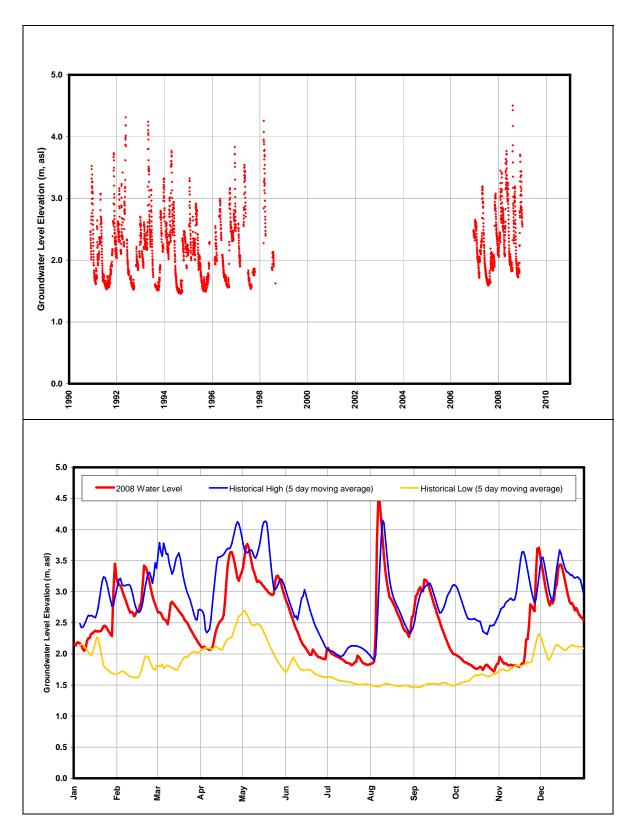


Figure B.21: Ingonish (065) Historical and 2008 Groundwater Level Elevations

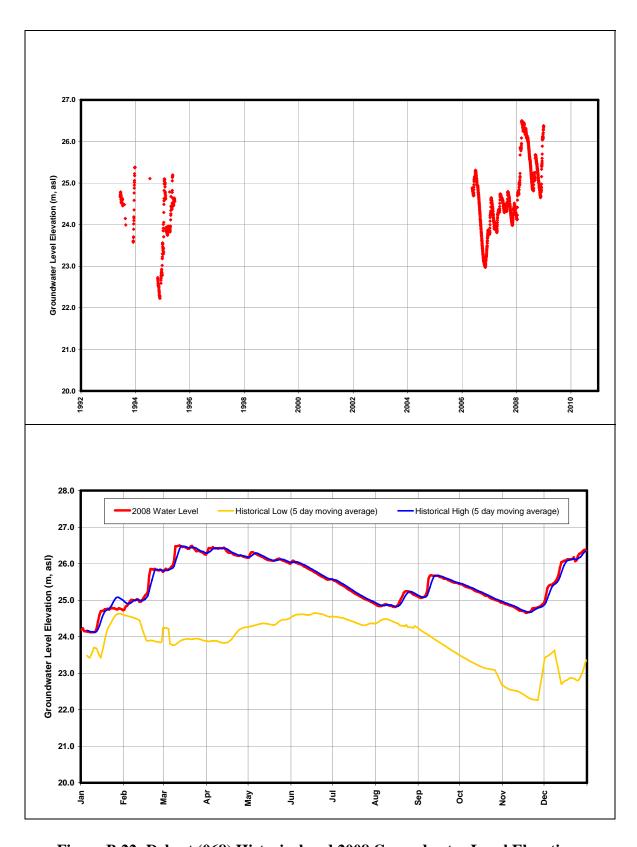


Figure B.22: Debert (068) Historical and 2008 Groundwater Level Elevations

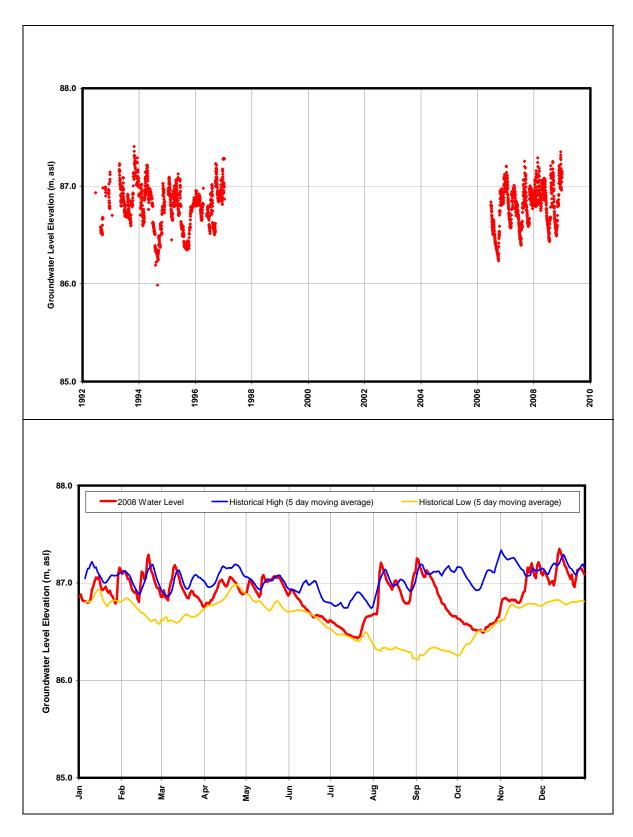


Figure B.23: Dalem Lake (069) Historical and 2008 Groundwater Level Elevations

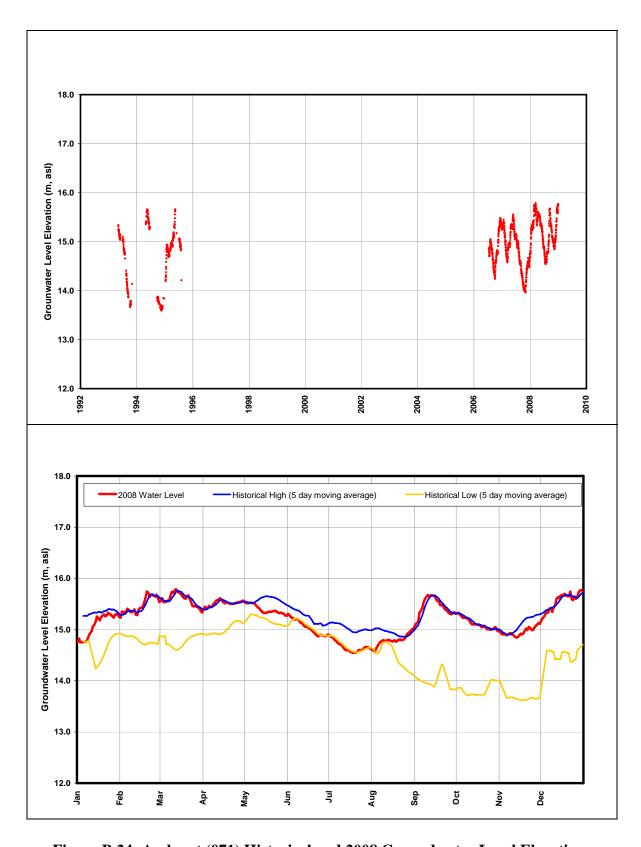


Figure B.24: Amherst (071) Historical and 2008 Groundwater Level Elevations

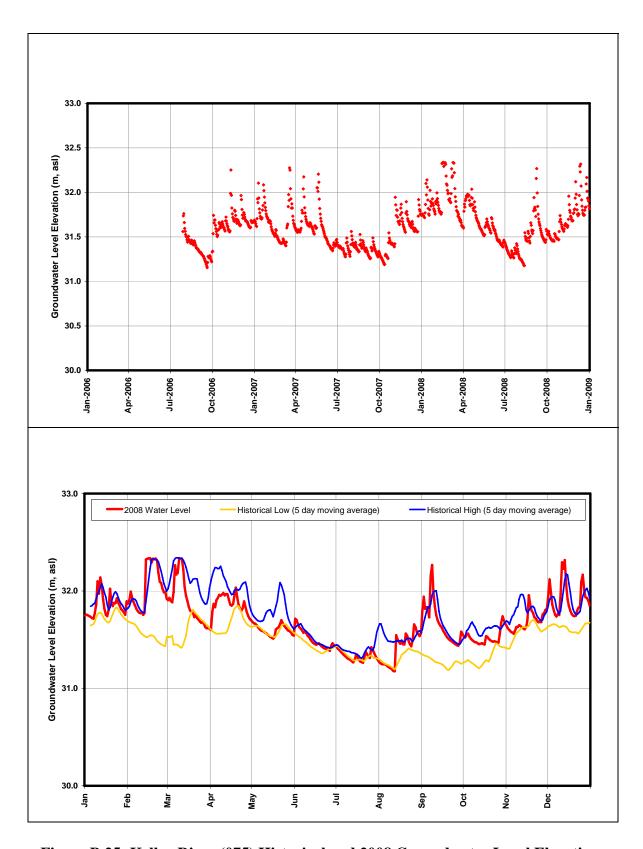


Figure B.25: Kelley River (075) Historical and 2008 Groundwater Level Elevations

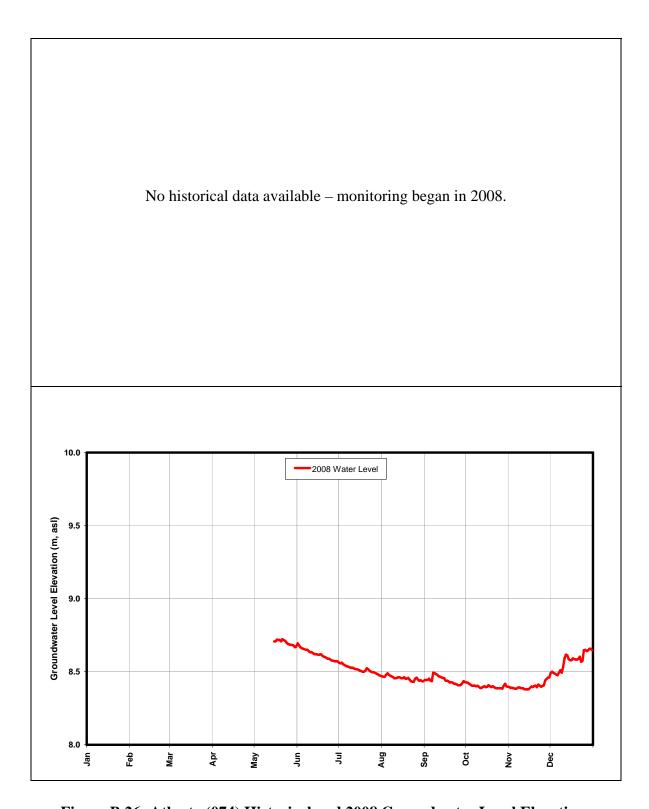


Figure B.26: Atlanta (074) Historical and 2008 Groundwater Level Elevations

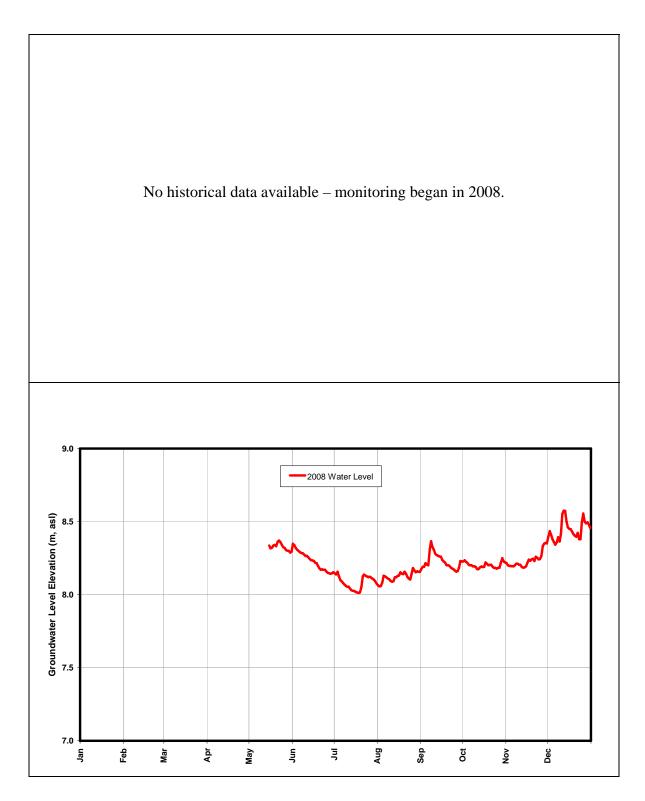


Figure B.27: Sheffield Mills (075) Historical and 2008 Groundwater Level Elevations

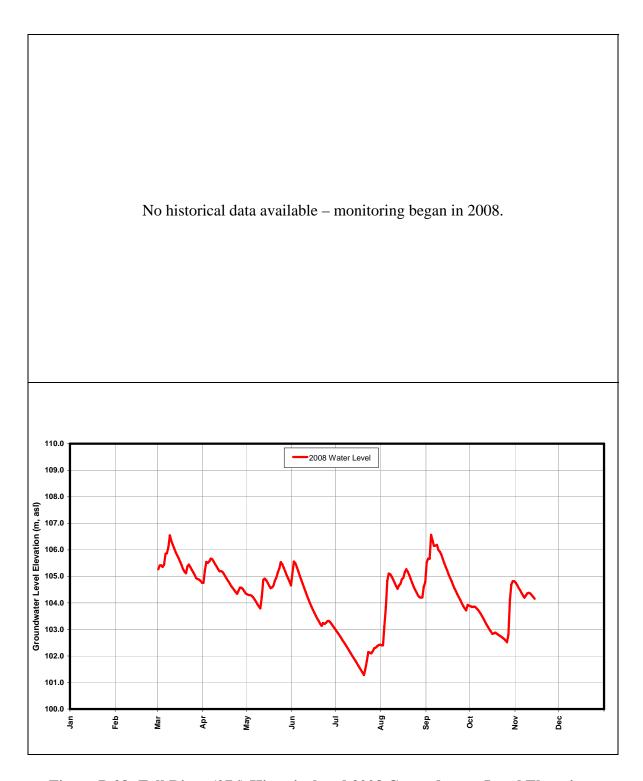


Figure B.28: Fall River (076) Historical and 2008 Groundwater Level Elevations

Figure B.29: West Northfield (077) Historical and 2008 Groundwater Level Elevations

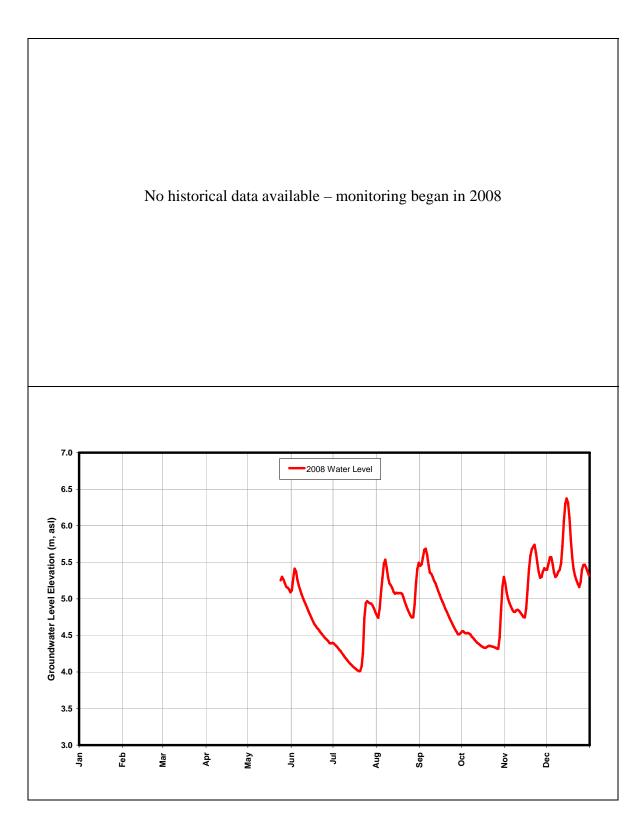


Figure B.30: Musquodoboit Hbr Historical and 2008 Groundwater Level Elevations



Figure B.31: Lewis Lake (079) Historical and 2008 Groundwater Level Elevations

APPENDIX C GROUNDWATER CHEMISTRY RESULTS

Table C1. Observation Well Sampling History

Observation We	ell	General Chemistry	Metals	voc	Pesticides	Tritium	Perchlorate
Greenwood (003)	23-Nov-2005	✓	✓	✓	✓	✓	✓
, ,	18-Dec-2008	✓	✓	✓	✓		
Fraser Brook (004)	10-Dec-2004	✓	✓	✓	✓		✓
, ,	3-Dec-2008	✓	✓	✓	✓		
Wilmot (005)	29-Nov-2006	✓	✓	✓			
Wolfville (010)	22-Dec-2004	✓	✓	✓	✓	✓	✓
, ,	18-Dec-2008	✓	✓	✓	✓		
Truro (014)	Not Sampled						
Monastery (028)	15-Dec-2006	✓	✓	✓	✓	✓	✓
	9-Dec-2008	✓	✓	✓	✓		
Point Aconi (030)	15-Sep-2005	✓	✓	✓	✓	✓	✓
,	10-Dec-2008	✓	✓	✓	✓		
Lawrencetown (043)	18-Nov-2004	✓	✓				
` ,	5-Dec-2008	✓	✓	✓	✓		
Durham (045)	5-Oct-2005	✓	✓	✓	✓	✓	✓
` ,	21-Jan-2009	✓	✓	✓	✓		
Kentville (048)	15-Jun-2005	✓	✓		✓	✓	✓
,	7-Nov-2007	✓	✓	✓	✓		
Sydney (050)	15-Sep-2005	√	✓	✓	√	✓	√
-	11-Dec-2008	✓	✓	√	√		
North Grant (054)	13-Dec-2006	✓	✓	✓	✓	✓	
, ,	22-Jul-2008	✓	✓	√	√		
Stillwater (055)	13-Dec-2006	✓	√	√	√	√	
(,	4-Dec-2008	✓	√	✓	√		
Sheet Harbour (056)	5-Dec-2008	✓	✓	√	√		
Charleston (058)	Not Sampled						
Hayden Lake (059)	9-Jun-2005	✓	✓	√	√	√	√
.,	16-Dec-2008	✓	✓	√	√		
Meteghan (060)	12-Dec-2006	✓	✓	√	√	√	
(11)	17-Dec-2008	✓	✓	√	√		
Annapolis Royal (062)	9-Nov-2005	✓	✓	√	√	√	√
, , ,	26-Nov-2007	✓	✓	✓	✓		
Hebron (063)	9-Jun-2005	✓	✓	√	√	√	√
,	17-Dec-2008	✓	✓	✓	✓		
Margaree (064)	14-Dec-2006	✓	✓	✓	✓	✓	
3 ()	10-Dec-2008	✓	✓	✓	✓		
Ingonish (065)	Not Sampled						
Debert (068)	Not Sampled						
Dalem Lake (069)	14-Dec-2006	✓	✓	√	√	√	
(111)	11-Dec-2008	✓	✓	√	√		
Amherst (071)	16-Dec-2006	✓	√	✓	√	√	
(- ,	8-Jan-2009	✓	√	√	√		
Kelley River (073)	12-Jan-2007	✓	√	√	√	√	
Atlanta (074)	3-Sep-2007	√	√	√	√		
Sheffield Mills (075)	10-Sep-2007	√ ·	√	√	√		
Fall River (076)	20-May-2008	√ ·	√	√	√		
West Northfield (077)	12-Jun-2008	√	√	√	√		
Musquodoboit Harbour (078)	22-May-2008	· ✓	✓	√ ·	<i>√</i>		
Lewis Lake (079)	31-Jul-2008	· ✓	√ ·	√ ·	<i>√</i>		
	51 Jul 2000						

Table C2: General Chemistry and Metal Results

		I		Green	nwood	Fraser	Wilmot	
Parameter	Units	Drinking Water	Detection Limit	(Well		(Well		(Well 005)
		Guideline			18-Dec-2008	10-Dec-2004	3-Dec-2008	29-Nov-2006
General Chemistry								
Total Alkalinity (Total as CaCO3)	mg/L	-	5	ND	ND	74	71	16
Chloride (CI)	mg/L	250 AO	1	6	3	5	5	22
Colour	TCU	15 AO	5	5	7	ND	ND	ND
Hardness (CaCO3)	mg/L	500 AO	-	10	5	79.1	75	180
Nitrate + Nitrite	mg/L	10	0.05	ND	0.12	ND	1.2	30
Nitrite (N)	mg/L	1	0.01	ND	ND	ND	ND	0.02
Nitrate (N)	mg/L	10	0.05	ND	0.12	ND	1.2	30
Nitrogen (Ammonia Nitrogen)	mg/L	-	0.05	0.22	ND	ND	ND	ND
Total Organic Carbon (C)	mg/L	-	0.5	2	0.8	ND	0.5	ND
Orthophosphate (P)	mg/L	-	0.01	0.05	ND	0.02	0.03	0.07
pH	pН	6.5 - 8.5 AO	-	6.41	6.49	7.6	8.05	6.7
Reactive Silica (SiO2)	mg/L	500 40	0.5	11	11	7.8	7.1	7.9
Sulphate (SO4)	mg/L	500 AO	2	9	5	5	4	27
Turbidity	NTU	5 AO	0.1	39	5.4	0.2	0.3	50
Conductivity	uS/cm	-	-	79	41	166	160	410
Anion Sum	me/L	-	- 1	0.372	0.18	1.73	1.73	3.65
Bicarb. Alkalinity (calc. as CaCO3) Calculated TDS	mg/L	-	1	ND 40	ND 28	74 94	70 95	16 275
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1	ND	ND	ND	95 ND	ND
Carb. Alkalinity (calc. as CaCO3) Cation Sum	mg/L me/L	-	<u> </u>	0.549	0.38	1.78	1.71	3.92
Ion Balance (% Difference)	%	_	-	19.2	35.7	1.76	0.58	3.58
Langelier Index (@ 20C)	N/A	-	-	19.2	-	-0.68	-0.188	-1.75
Langelier Index (@ 200)	N/A	-	-			-1.08	-0.188	-1.73
Saturation pH (@ 20C)	N/A	-	_		-	8.28	8.24	8.45
Saturation pH (@ 4C)	N/A	-	-	-	-	8.68	8.49	8.7
Calcium (Ca)	mg/L	_	0.1	2.2	1.2	19.3	18	56
Magnesium (Mg)	mg/L	-	0.1	1	0.4	7.5	7.3	8.5
Phosphorus (P)	mg/L	_	0.1	ND	ND	ND	ND	0.2
Potassium (K)	mg/L	_	0.1	2.4	1.7	1	1	3.1
Sodium (Na)	mg/L	200 AO	0.1	3.6	2.1	4	4.3	7.5
Bromide (Br)	mg/L	-	0.5	ND	ND	0.03	ND	-
Fluoride (F)	mg/L	1.5	0.1	ND	ND	ND	ND	-
Metals								
Aluminum (Al)	ug/L	-	10	47	18	ND	ND	ND
Antimony (Sb)	ug/L	6	2	ND	ND	ND	ND	ND
Arsenic (As)	ug/L	10	2	2	ND	14	15	ND
Barium (Ba)	ug/L	1000	5	59	25	5	6	89
Beryllium (Be)	ug/L	-	2	ND	ND	ND	ND	ND
Bismuth (Bi)	ug/L	-	2	ND	ND	ND	ND	ND
Boron (B)	ug/L	5000	5	ND	ND	30	27	14
Cadmium (Cd)	ug/L	5	0.3	ND	ND	ND	ND	ND
Chromium (Cr)	ug/L	50	2	ND	ND	ND	ND	ND
Cobalt (Co)	ug/L	-	1	3	1	ND	ND	ND
Copper (Cu)	ug/L	1000 AO	2	3	ND	ND	ND	ND
Iron (Fe)	ug/L	300 AO	50	8700	4300	ND	ND	ND
Lead (Pb)	ug/L	10	0.5	1.7	ND	ND	ND	2.3
Manganese (Mn)	ug/L	50 AO	2	140	84	ND	ND	15
Molybdenum (Mo)	ug/L	-	2	ND	ND	ND	ND	ND
Mercury (Hg)	ug/L	1	0.01	-	ND	-	ND	-
Nickel (Ni)	ug/L	-	2	4	2	ND	ND	3
Selenium (Se)	ug/L	10	2	ND	ND ND	ND	ND	ND
Silver (Ag)	ug/L	-	0.5	ND	ND	ND 450	ND 450	ND
Strontium (Sr)	ug/L	-	5	9	ND	150	150	160
Thallium (TI)	ug/L	-	0.1	ND	ND	ND	ND	ND
Tin (Sn)	ug/L	-	2	ND	ND	ND	ND	ND
Titanium (Ti)	ug/L	-	2	ND	ND	ND 4.5	ND 4.4	ND
Uranium (U)	ug/L	20	0.1	0.2	ND	1.5	1.4	ND
Vanadium (V)	ug/L	-	2	ND 07	ND 60	2	2	ND 7
Zinc (Zn)	ug/L	5000 AO	5	87	60	ND	ND	7

Table C2: General Chemistry and Metal Results

	Drinking Water		Detection Limit		fville		astery	Point Aconi	
Parameter	Units	Guideline	Detection Limit	(Well		(Well	,	(Wel	
		Guideline		22-Dec-2004	18-Dec-2008	15-Dec-2006	09-Dec-2008	15-Sep-2005	10-Dec-2008
General Chemistry		1							
Total Alkalinity (Total as CaCO3)	mg/L	-	5	25	10	240	220	140	130
Chloride (CI)	mg/L	250 AO	1	78 ND	87	31	24	19	11
Colour	TCU	15 AO	5	ND 404	14	ND 100	ND 05	ND 440	ND 100
Hardness (CaCO3)	mg/L	500 AO	- 0.05	101	67	120	95 ND	140 ND	160
Nitrate + Nitrite Nitrite (N)	mg/L	10 1	0.05 0.01	1.9 ND	1.5 ND	ND ND	ND ND	ND ND	1.3 ND
Nitrate (N)	mg/L mg/L	10	0.01	1.9	1.5	ND	ND	ND ND	1.3
Nitrogen (Ammonia Nitrogen)	mg/L	- 10	0.05	ND	0.63	0.14	0.12	ND	ND
Total Organic Carbon (C)	mg/L	-	0.03	ND	1.6	2.1	1	ND	1.3
Orthophosphate (P)	mg/L	-	0.01	ND	0.01	ND	ND	ND	ND
pH	pH	6.5 - 8.5 AO	-	6.5	6.53	8.14	8.23	8.01	7.97
Reactive Silica (SiO2)	mg/L	0.0 0.0	0.5	17	14	11	13	7.6	9.2
Sulphate (SO4)	mg/L	500 AO	2	12	11	72	59	10	21
Turbidity	NTU	5 AO	0.1	0.9	68	0.2	0.3	ND	0.2
Conductivity	uS/cm	-		382	370	660	640	380	340
Anion Sum	me/L	-	-	3.08	2.99	7.13	6.36	3.6	3.38
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	1	25	10	235	220	140	126
Calculated TDS	mg/L	-	1	196	201	417	365	207	194
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1	ND	ND	3	4	1	1
Cation Sum	me/L	-	-	3.3	3.4	7.51	6.28	4.11	3.66
Ion Balance (% Difference)	%	-	-	3.3	6.42	2.61	0.63	6.56	3.98
Langelier Index (@ 20C)	N/A	-	-	-2.12	-2.59	0.553	0.539	0.41	0.423
Langelier Index (@ 4C)	N/A	-	-	-2.52	-2.84	0.304	0.29	0.16	0.173
Saturation pH (@ 20C)	N/A	-	-	8.62	9.12	7.59	7.69	7.6	7.55
Saturation pH (@ 4C)	N/A	-	-	9.02	9.37	7.84	7.94	7.85	7.8
Calcium (Ca)	mg/L	-	0.1	27.4	19	31	25	44	55
Magnesium (Mg)	mg/L	-	0.1	7.8	4.6 ND	9.3	7.7	6.3 ND	5.8
Phosphorus (P) Potassium (K)	mg/L mg/L	-	0.1 0.1	ND 2	1.9	ND 2.3	ND 3.6	4	ND 1
Sodium (Na)	mg/L	200 AO	0.1	28.3	29	120	98	30	10
Bromide (Br)	mg/L	200 AO	0.5	0.06	ND	ND	ND	30	ND
Fluoride (F)	mg/L	1.5	0.1	ND	ND	0.3	ND		ND
Metals	mg/L	1.0	0.1	IVE	ND	0.0	IVE	<u>l</u>	110
Aluminum (Al)	ug/L	_	10	ND	ND	ND	ND	15	ND
Antimony (Sb)	ug/L	6	2	ND	ND	ND	0.78	ND	ND
Arsenic (As)	ug/L	10	2	ND	ND	6	4.1	ND	ND
Barium (Ba)	ug/L	1000	5	69	46	25	25	40	18
Beryllium (Be)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Bismuth (Bi)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Boron (B)	ug/L	5000	5	26	23	250	220	35	ND
Cadmium (Cd)	ug/L	5	0.3	ND	ND	ND	ND	ND	ND
Chromium (Cr)	ug/L	50	2	ND	ND	ND	ND	ND	ND
Cobalt (Co)	ug/L	-	1	ND	2	ND	ND	ND	ND
Copper (Cu)	ug/L	1000 AO	2	ND	ND	7	ND	6	ND
Iron (Fe)	ug/L	300 AO	50	230	20000	ND	ND	ND	ND
Lead (Pb)	ug/L	10	0.5	ND	ND	ND	ND	0.6	ND
Manganese (Mn)	ug/L	50 AO	2	14	1300	42	48	360	7.9
Molybdenum (Mo)	ug/L	-	2	ND	ND	3	ND	ND	ND
Mercury (Hg) Nickel (Ni)	ug/L	1 -	0.01 2	- ND	ND ND	ND ND	ND ND	- ND	ND ND
	ug/L		2						
Selenium (Se) Silver (Ag)	ug/L ug/L	10	0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Strontium (Sr)	ug/L ug/L	-	5	110	67	2400	2600	230	110
Thallium (TI)	ug/L ug/L	-	0.1	ND	ND	ND	ND	ND	ND
Tin (Sn)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Titanium (Ti)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Uranium (U)	ug/L	20	0.1	ND	ND	0.6	0.72	0.3	0.36
Vanadium (V)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Zinc (Zn)	ug/L	5000 AO	5	ND	ND	34	ND	18	ND
. ,			-						

Table C2: General Chemistry and Metal Results

		Drinking Water		Lawrence			rham	Kentville	
Parameter	Units	Guideline	Detection Limit	(Well (`	II 045)	(Well	
O Obit				18-Nov-2004	05-Dec-08	5-Oct-2005	21-Jan-2009	15-Jun-2005	7-Nov-2007
General Chemistry Total Alkalinity (Total as CaCO3)	ma/l	_	5	82	82	140	110	20	22
Chloride (CI)	mg/L mg/L	250 AO	1	150	180	44	19	230	270
Colour	TCU	15 AO	5	ND	ND	ND	ND	ND	ND
Hardness (CaCO3)	mg/L	500 AO	-	98.9	100	86	72	150	180
Nitrate + Nitrite	mg/L	10	0.05	ND	ND	ND	ND	1.2	0.96
Nitrite (N)	mg/L	1	0.01	ND	ND	ND	ND	ND	ND
Nitrate (N)	mg/L	10	0.05	ND	ND	ND	ND	1.2	0.96
Nitrogen (Ammonia Nitrogen)	mg/L	-	0.05	0.19	0.12	0.11	ND	0.06	ND
Total Organic Carbon (C)	mg/L	-	0.5	ND	0.5	ND	ND	ND	ND
Orthophosphate (P)	mg/L	-	0.01	ND	ND	ND	0.01	ND	0.05
pH	pН	6.5 - 8.5 AO	-	7.3	8.14	8.16	7.95	6.84	7.39
Reactive Silica (SiO2)	mg/L		0.5	7.3	8.5	11	9.8	11	11
Sulphate (SO4)	mg/L	500 AO	2	ND	ND	16	11	16	19
Turbidity	NTU	5 AO	0.1	1	0.2	ND	0.5	5	0.7
Conductivity	uS/cm	-	•	695	710	410	290	910	1000
Anion Sum	me/L	-	-	5.92	6.77	4.31	2.95	7.36	8.5
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	1	82	81	134	108	20.3	22
Calculated TDS	mg/L	-	1	341	375	243	167	223	503
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1	ND	1	2	ND	ND	ND
Cation Sum	me/L	-	-	6.19	6.39	4.22	2.92	8.18	8.67
Ion Balance (% Difference)	% N/A	-	-	2.27	2.89	1.01	0.51	5.28	0.99
Langelier Index (@ 20C)	N/A	-	-	-0.85	0.039	0.382	0.008	-1.54	-0.975
Langelier Index (@ 4C)	N/A	-	-	-1.25	-0.21	0.132	-0.242	-1.79	-1.22
Saturation pH (@ 20C)	N/A	-	-	8.15	8.1	7.78	7.94	8.38	8.37
Saturation pH (@ 4C) Calcium (Ca)	N/A mg/L	-	0.1	8.55 26.1	8.35 27	8.03 30	8.19 25	8.63 52	8.61 58
Magnesium (Mg)	mg/L	-	0.1	8.2	8.8	2.7	2.3	5.6	7.5
Phosphorus (P)	mg/L	-	0.1	ND	ND	0.1	ND	ND (0.2)	ND
Potassium (K)	mg/L		0.1	1.9	1.9	1.6	1.3	4.9	5.4
Sodium (Na)	mg/L	200 AO	0.1	95.4	98	57	33	120	120
Bromide (Br)	mg/L	-	0.5	0.53	ND	ND	ND	ND	ND
Fluoride (F)	mg/L	1.5	0.1	0.11	0.1	0.3	0.2	ND	ND
Metals									
Aluminum (AI)	ug/L	_	10	ND	ND	16	12	ND	ND
Antimony (Sb)	ug/L	6	2	ND	ND	ND	ND	ND	ND
Arsenic (As)	ug/L	10	2	56	58	4	2	ND	ND
Barium (Ba)	ug/L	1000	5	26	41	130	110	64	76
Beryllium (Be)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Bismuth (Bi)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Boron (B)	ug/L	5000	5	93	110	38	27	5.7	6
Cadmium (Cd)	ug/L	5	0.3	ND	ND	ND	ND	ND	ND
Chromium (Cr)	ug/L	50	2	ND	ND	ND	ND	ND	ND
Cobalt (Co)	ug/L	-	1	ND	ND	ND	ND	ND	ND
Copper (Cu)	ug/L	1000 AO	2	ND	ND	ND	ND	ND	ND
Iron (Fe)	ug/L	300 AO	50	ND	ND	ND	ND	ND	410
Lead (Pb)	ug/L	10	0.5	ND	ND	ND	ND	ND	45
Manganese (Mn)	ug/L	50 AO	2	16	32	21	ND	ND	12
Molybdenum (Mo)	ug/L	-	2	ND	ND	8	4 ND	ND	ND 0.04
Mercury (Hg)	ug/L	1	0.01	- ND	ND	- ND	ND ND	- ND	0.01
Nickel (Ni)	ug/L	- 10	2	ND	ND	ND	ND ND	ND	ND
Selenium (Se)	ug/L	10	2	ND	ND	ND	ND	ND	ND
Silver (Ag) Strontium (Sr)	ug/L ug/L	-	0.5 5	ND 1100	ND 1400	ND 1100	ND 520	ND 210	ND 260
Thallium (TI)	ug/L ug/L	-	0.1	ND	1400 ND	ND	ND	ND	ND
Tin (Sn)	ug/L ug/L	-	2	ND ND	ND	ND ND	ND ND	ND	ND
Titanium (Ti)	ug/L ug/L	-	2	ND ND	ND	ND	ND ND	ND	ND ND
Uranium (U)	ug/L ug/L	20	0.1	ND	ND	0.7	0.9	ND	ND
Vanadium (V)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Zinc (Zn)	ug/L	5000 AO	5	ND	ND	21	ND	150	8
	~g/ L	5555710	,					.50	<u> </u>

Table C2: General Chemistry and Metal Results

_	1	Drinking Water			ney	North		Stillwater		
Parameter	Units	Guideline	Detection Limit	(Well		(Well		(Well		
				15-Sep-2005	11-Dec-2008	13-Dec-2006	22-Jul-2008	13-Dec-2006	04-Dec-2008	
General Chemistry		1								
Total Alkalinity (Total as CaCO3)	mg/L	-	5	83	90	93	92	58	64	
Chloride (CI)	mg/L	250 AO	11	7	5	30	27	5	5	
Colour	TCU	15 AO	5	ND	8	ND	ND	ND 50	ND 50	
Hardness (CaCO3)	mg/L	500 AO	-	87	89	38	36	58	53	
Nitrate + Nitrite	mg/L	10	0.05	0.17	ND	0.55	0.7	0.13	0.1	
Nitrite (N)	mg/L	11	0.01	ND	ND	ND	ND	ND	ND	
Nitrate (N)	mg/L	10	0.05	0.17	ND	0.55	0.7	0.13	0.1	
Nitrogen (Ammonia Nitrogen)	mg/L	-	0.05	ND	ND 1.0	ND	ND	0.09	0.06	
Total Organic Carbon (C)	mg/L	-	0.5	ND	1.3	2.5	ND	2.5	0.8	
Orthophosphate (P)	mg/L	-	0.01	ND	ND	ND Too	ND	ND	ND	
pH	pH	6.5 - 8.5 AO	-	8.03	7.7	7.83	8.03	7.32	7.28	
Reactive Silica (SiO2)	mg/L	500 40	0.5	8.6	8	9.6	9.8	12	11	
Sulphate (SO4)	mg/L	500 AO	2	7	7	35	31	6	4	
Turbidity	NTU	5 AO	0.1	0.3	0.2	1.1	53	0.4	0.6	
Conductivity	uS/cm	-		210	190	340	340	140	140	
Anion Sum	me/L	-	- 1	2.02 82	2.1 90	3.5	3.3 91	1.44 58	1.52 64	
Bicarb. Alkalinity (calc. as CaCO3) Calculated TDS	mg/L	-	1	115	116	93 209	206	58 89		
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1	ND	ND	209 ND	ND	ND	88 ND	
Cation Sum	mg/L me/L	-	-	2.07	2.05	3.43	3.58	1.5	1.4	
Ion Balance (% Difference)	me/L	-	-	1.29	1.2	1.07	4.07	2.18	4.11	
Langelier Index (@ 20C)	N/A		-	0.069	-0.207	-0.526	-0.363	-0.962	-0.998	
Langelier Index (@ 200)	N/A	_	_	-0.182	-0.458	-0.320	-0.613	-1.21	-1.25	
Saturation pH (@ 20C)	N/A	-	-	7.96	7.91	8.36	8.39	8.28	8.28	
Saturation pH (@ 4C)	N/A	_	_	8.21	8.16	8.61	8.64	8.53	8.53	
Calcium (Ca)	mg/L	_	0.1	30	31	12	11	19	18	
Magnesium (Mg)	mg/L	_	0.1	3	2.8	2.2	2.2	2.2	2	
Phosphorus (P)	mg/L	_	0.1	ND	ND	ND	ND	ND	ND	
Potassium (K)	mg/L	_	0.1	1.7	1.4	1	1	1.8	1.6	
Sodium (Na)	mg/L	200 AO	0.1	6.6	5.5	61	61	6.8	7	
Bromide (Br)	mg/L	-	0.5	ND	ND	ND	ND	ND	ND	
Fluoride (F)	mg/L	1.5	0.1	0.1	0.1	0.6	0.6	ND	ND	
Metals	<u> </u>									
Aluminum (AI)	ug/L	-	10	11	ND	46	620	35	20	
Antimony (Sb)	ug/L	6	2	ND	ND	ND	ND	ND	ND	
Arsenic (As)	ug/L	10	2	ND	ND	3	15	ND	ND	
Barium (Ba)	ug/L	1000	5	93	91	88	110	11	10	
Beryllium (Be)	ug/L	-	2	ND	ND	ND	ND	ND	ND	
Bismuth (Bi)	ug/L	-	2	ND	ND	ND	ND	ND	ND	
Boron (B)	ug/L	5000	5	15	10	610	560	8	8	
Cadmium (Cd)	ug/L	5	0.3	ND	ND	ND	ND	ND	ND	
Chromium (Cr)	ug/L	50	2	ND	ND	ND	ND	ND	ND	
Cobalt (Co)	ug/L	-	1	ND	ND	ND	ND	ND	1	
Copper (Cu)	ug/L	1000 AO	2	7	ND	ND	ND	ND	ND	
Iron (Fe)	ug/L	300 AO	50	80	250	85	4900	ND	ND	
Lead (Pb)	ug/L	10	0.5	ND	ND	ND	0.6	ND	ND	
Manganese (Mn)	ug/L	50 AO	2	630	830	8	27	37	100	
Molybdenum (Mo)	ug/L	-	2	ND	ND	3	3	ND	ND	
Mercury (Hg)	ug/L	1	0.01	-	ND	ND	ND	ND	ND	
Nickel (Ni)	ug/L	-	2	ND	ND	ND	ND	ND	3	
Selenium (Se)	ug/L	10	2	ND	ND	ND	ND	ND	ND	
Silver (Ag)	ug/L	-	0.5	ND	ND	ND	ND	ND	ND	
Strontium (Sr)	ug/L	-	5	230	180	180	180	64	71	
Thallium (TI)	ug/L	-	0.1	ND	ND	ND	ND	ND	ND	
Tin (Sn)	ug/L	-	2	ND	ND	ND	ND	ND	ND	
Titanium (Ti)	ug/L	-	2	ND	ND	ND 1.0	24	ND	ND	
Uranium (U)	ug/L	20	0.1	ND	ND	1.3	2.1	0.5	0.3	
Vanadium (V)	ug/L	-	2	ND	ND	2	17	ND	ND	
Zinc (Zn)	ug/L	5000 AO	5	6	ND	ND	8	ND	ND	

Table C2: General Chemistry and Metal Results

		Drinking Water		Sheet Harbour		en Lake	Meteghan		
Parameter	Units	Guideline	Detection Limit	(Well 056)	(We	II 059)	(Well	060)	
<u> </u>		Guideline		05-Dec-08	9-Jun-2005	16-Dec-2008	12-Dec-2006	17-Dec-2008	
General Chemistry									
Total Alkalinity (Total as CaCO3)	mg/L	-	5	96	14	12	67	63	
Chloride (CI)	mg/L	250 AO	1	7	9.2	9	16	17	
Colour	TCU	15 AO	5	ND	ND	ND	6	ND	
Hardness (CaCO3)	mg/L	500 AO	-	81	15	13	85	77	
Nitrate + Nitrite	mg/L	10	0.05	ND	ND	0.06	ND	ND	
Nitrite (N)	mg/L	1	0.01	ND	ND	ND	ND	ND	
Nitrate (N)	mg/L	10	0.05	ND	ND	0.06	ND	ND	
Nitrogen (Ammonia Nitrogen)	mg/L	-	0.05	ND	ND	ND	0.07	0.08	
Total Organic Carbon (C)	mg/L	-	0.5	0.6	0.8	0.6	3.3	0.6	
Orthophosphate (P)	mg/L		0.01	ND	ND	ND	ND	ND	
pH	pН	6.5 - 8.5 AO	-	7.99	6.74	6.33	7.42	7.31	
Reactive Silica (SiO2)	mg/L		0.5	11	5.9	7.6	8.7	9	
Sulphate (SO4)	mg/L	500 AO	2	4	4.3	4	13	13	
Turbidity	NTU	5 AO	0.1	0.3	ND TO	0.1	59	49	
Conductivity	uS/cm	-	-	220	70	64	200	200	
Anion Sum	me/L	-	-	2.19	0.622	0.58	2.11	2.04	
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	1	95	13.6	12	67	63	
Calculated TDS	mg/L	-	1	121	41.2	40 ND	124 ND	119	
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1	ND 2.07	ND 0.650	ND 0.57	ND 2.20	ND 2.15	
Cation Sum	me/L		-	2.07	0.659	0.57	2.29	2.15	
Ion Balance (% Difference)	% N/A	-	-	2.82	2.9	0.87	4.09	2.63	
Langelier Index (@ 20C)	N/A	-	-	0.053	-2.86	-3.4	-0.765	-0.956	
Langelier Index (@ 4C) Saturation pH (@ 20C)	N/A N/A	-	-	-0.198	-3.11	-3.65 9.73	-1.02	-1.21	
Saturation pH (@ 20C)	N/A N/A	-		7.94 8.19	9.6 9.85	9.73	8.19 8.44	8.27 8.52	
		-	0.1	27	3.7		22	19	
Calcium (Ca) Magnesium (Mg)	mg/L mg/L	-	0.1	2.9	1.5	3.1 1.3	7.3	6.8	
Phosphorus (P)	mg/L	-	0.1	ND	ND	ND	ND	ND	
Potassium (K)	mg/L	-	0.1	1.9	0.9	1	1.7	1.7	
Sodium (Na)	mg/L	200 AO	0.1	9.5	7.5	6.6	8.5	9.2	
Bromide (Br)	mg/L	-	0.5	ND	ND	ND	ND	ND	
Fluoride (F)	mg/L	1.5	0.3	0.1	ND	ND	0.6	0.6	
Metals	mg/L	1.0	0.1	0.1	ND	ND	0.0	0.0	
Aluminum (AI)	ug/L		10	ND	25	73	ND	ND	
Antimony (Sb)	ug/L ug/L	6	2	ND	ND	ND	ND ND	ND ND	
Arsenic (As)	ug/L	10	2	10	ND	ND	ND	ND	
Barium (Ba)	ug/L	1000	5	7	7.4	8	5	6	
Beryllium (Be)	ug/L	-	2	, ND	ND	ND	ND	ND	
Bismuth (Bi)	ug/L	_	2	ND	ND	ND	ND	ND	
Boron (B)	ug/L	5000	5	18	6.9	7	47	51	
Cadmium (Cd)	ug/L	5	0.3	ND	ND	, ND	ND	ND	
Chromium (Cr)	ug/L	50	2	ND	ND	ND	ND	ND	
Cobalt (Co)	ug/L	-	1	ND	ND	ND	ND	ND	
Copper (Cu)	ug/L	1000 AO	2	ND	37	ND	ND	ND	
Iron (Fe)	ug/L	300 AO	50	77	ND	ND	4900	4600	
Lead (Pb)	ug/L	10	0.5	ND	ND	ND	ND	ND	
Manganese (Mn)	ug/L	50 AO	2	160	13	10	60	52	
Molybdenum (Mo)	ug/L	-	2	ND	ND	ND	ND	ND	
Mercury (Hg)	ug/L	1	0.01	ND	-	ND	ND	ND	
Nickel (Ni)	ug/L	-	2	ND	ND	ND	ND	ND	
Selenium (Se)	ug/L	10	2	ND	ND	ND	ND	ND	
Silver (Ag)	ug/L	-	0.5	ND	ND	ND	ND	ND	
Strontium (Sr)	ug/L	-	5	170	19	20	36	35	
Thallium (TI)	ug/L	-	0.1	ND	ND	ND	ND	ND	
Tin (Sn)	ug/L	-	2	2	ND	ND	ND	ND	
Titanium (Ti)	ug/L	-	2	ND	ND	ND	ND	ND	
Uranium (U)	ug/L	20	0.1	1	ND	ND	ND	ND	
Vanadium (V)	ug/L	-	2	ND	ND	ND	ND	ND	

Table C2: General Chemistry and Metal Results

		Drinking Water		Annapo	olis Royal	Hebron		Margaree	
Parameter	Units	Guideline	Detection Limit		II 062)		II 063)		064)
		Guideline		9-Nov-2005	26/Nov/2007	9-Jun-2005	17-Dec-2009	14-Dec-2006	10-Dec-2008
General Chemistry					T	1		1	ı
Total Alkalinity (Total as CaCO3)	mg/L		5	52	54	23	24	160	160
Chloride (CI)	mg/L	250 AO	1	6	6	49	57	10	8
Colour	TCU	15 AO	5	ND	ND	5.8	8	ND	ND
Hardness (CaCO3)	mg/L	500 AO	-	43	41	71	65	210	190
Nitrate + Nitrite	mg/L	10	0.05	ND	ND	ND	ND	ND	ND
Nitrite (N)	mg/L	1	0.01	ND	ND	ND	ND	ND	ND
Nitrate (N)	mg/L	10	0.05	ND	ND	ND	ND	ND	ND
Nitrogen (Ammonia Nitrogen)	mg/L	-	0.05	ND	ND	ND	0.05	0.13	0.12
Total Organic Carbon (C)	mg/L	-	0.5	ND	ND	1.2	1.6	3.6	ND
Orthophosphate (P)	mg/L	-	0.01	0.03	0.02	ND	0.01	ND	ND
pH	pН	6.5 - 8.5 AO	-	7.3	8.03	6.29	6.5	8.13	8.11
Reactive Silica (SiO2)	mg/L		0.5	14	12	17	16	12	16
Sulphate (SO4)	mg/L	500 AO	2	7	7	13	16	93	87
Turbidity	NTU	5 AO	0.1	0.2	15	150	45	0.2	0.7
Conductivity	uS/cm	-	-	130	140	270	310	510	510
Anion Sum	me/L	-	-	1.38	1.4	2.12	2.41	5.48	5.17
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	1	52	53	23.2	24	160	154
Calculated TDS	mg/L	-	1	89	88	169	174	311	295
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1	ND	ND	ND	ND	2	2
Cation Sum	me/L	-	-	1.44	1.42	3.38	3.14	5.5	4.95
Ion Balance (% Difference)	%	-	-	2.2	0.71	22.9	13.2	0.182	2.17
Langelier Index (@ 20C)	N/A	-	-	-1.15	-0.431	-2.47	-2.29	0.525	0.484
Langelier Index (@ 4C)	N/A	-	-	-1.41	-0.682	-2.72	-2.54	0.276	0.235
Saturation pH (@ 20C)	N/A	-	-	8.45	8.46	8.76	8.79	7.61	7.63
Saturation pH (@ 4C)	N/A	-	-	8.71	8.71	9.01	9.04	7.85	7.88
Calcium (Ca)	mg/L	-	0.1	15	14	18	16	41	41
Magnesium (Mg)	mg/L	-	0.1	1.6	1.5	6.3	6	26	21
Phosphorus (P)	mg/L	-	0.1	ND	ND	ND	0.1	ND	ND
Potassium (K)	mg/L	-	0.1	1	1.2	1.7	1.8	1.7	1.3
Sodium (Na)	mg/L	200 AO	0.1	13	13	20	20	28	27
Bromide (Br)	mg/L	-	0.5	ND	ND	0.5	0.5	ND	ND
Fluoride (F)	mg/L	1.5	0.1	0.2	0.2	ND	ND	0.6	0.6
Metals									
Aluminum (AI)	ug/L	-	10	ND	ND	ND	ND	12	ND
Antimony (Sb)	ug/L	6	2	ND	ND	ND	ND	ND	ND
Arsenic (As)	ug/L	10	2	4	4	ND	ND	ND	ND
Barium (Ba)	ug/L	1000	5	52	66	14	17	21	19
Beryllium (Be)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Bismuth (Bi)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Boron (B)	ug/L	5000	5	12	12	8.8	10	450	490
Cadmium (Cd)	ug/L	5	0.3	ND	ND	ND	ND	ND	ND
Chromium (Cr)	ug/L	50	2	ND	ND	ND	ND	ND	ND
Cobalt (Co)	ug/L		1	ND	ND	ND	ND	ND	ND
Copper (Cu)	ug/L	1000 AO	2	ND	ND	ND	ND	ND	ND
Iron (Fe)	ug/L	300 AO	50	ND	ND .	27000	26000	ND	ND
Lead (Pb)	ug/L	10	0.5	ND	1	ND	ND	ND -	ND
Manganese (Mn)	ug/L	50 AO	2	110	93	440	460	5	ND
Molybdenum (Mo)	ug/L	-	2	4	4	ND	ND	ND	ND
Mercury (Hg)	ug/L	1	0.01	-	0.02	-	ND	ND	ND
Nickel (Ni)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Selenium (Se)	ug/L	10	2	ND	ND ND	ND	ND	ND	ND
Silver (Ag)	ug/L	-	0.5	ND 50	ND C4	ND 04	ND 00	ND 45000	ND
Strontium (Sr)	ug/L	-	5	59 ND	61 ND	91	92	15000	14000
Thallium (TI)	ug/L	-	0.1	ND	ND	ND	ND	ND	ND
Tin (Sn)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Titanium (Ti)	ug/L	-	2	ND 4.0	ND 0.0	ND	ND	ND	ND
Uranium (U)	ug/L	20	0.1	1.9	3.6	ND	ND	ND	ND
Vanadium (V)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Zinc (Zn)	ug/L	5000 AO	5	ND	ND	16	ND	ND	ND

Table C2: General Chemistry and Metal Results

		Daialain a Matan		Dalen	n Lake	Amh	erst	Kelley River	Atlanta
Parameter	Units	Drinking Water Guideline	Detection Limit	(Well	069)	(Well		(Well 073)	(Well 074)
		Guideline		14-Dec-2006	11-Dec-2008	16-Dec-2006	08-Jan-2009	12-Jan-2007	03-Sep-2007
General Chemistry									
Total Alkalinity (Total as CaCO3)	mg/L	-	5	63	65	120	120	22	95
Chloride (CI)	mg/L	250 AO	1	38	38	33	32	8	8
Colour	TCU	15 AO	5	ND	ND	ND	ND	ND	ND
Hardness (CaCO3)	mg/L	500 AO	-	120	100	83	74	13	75
Nitrate + Nitrite	mg/L	10	0.05	ND	0.06	1.3	1.4	0.07	0.74
Nitrite (N)	mg/L	1	0.01	ND	ND	ND	0.01	ND	ND
Nitrate (N)	mg/L	10	0.05	ND	0.06	1.3	1.4	0.07	0.74
Nitrogen (Ammonia Nitrogen)	mg/L	-	0.05	ND	ND	ND	ND	ND	ND
Total Organic Carbon (C)	mg/L	-	0.5	2.6	ND	2.3	ND	2.7	ND
Orthophosphate (P)	mg/L	-	0.01	0.01	ND	0.04	0.05	ND 7.00	ND
pH	pH	6.5 - 8.5 AO	-	7.8	7.77	8.08	7.97	7.22	8.08
Reactive Silica (SiO2)	mg/L	500 40	0.5	12	12	11	11	4.3	11
Sulphate (SO4)	mg/L	500 AO	2	8	7	40 ND	42	4	4 ND
Turbidity	NTU	5 AO	0.1	0.3	1.2	ND	0.3	0.2	ND
Conductivity	uS/cm	-	-	260	260	430	390	81	210
Anion Sum	me/L	-	-	2.51	2.54	4.3	4.26	0.765	2.26
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	1	62	65	120	117	22	94
Calculated TDS	mg/L	-	1	150	145	260	259	46	135
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1	ND	ND 2.45	1	1 16	ND 0.746	1
Cation Sum Ion Balance (% Difference)	me/L %	-	-	2.77	2.45	4.55	4.46 2.29	0.746	2.47 4.44
Langelier Index (@ 20C)	N/A	-	-	4.97	1.8	2.89		1.26 -2.19	0.116
Ů ,	N/A N/A	-	-	-0.191 -0.442	-0.263 -0.514	0.17 -0.08	0.007 -0.242	-2.19 -2.44	-0.135
Langelier Index (@ 4C) Saturation pH (@ 20C)	N/A		-	7.99	8.03	7.91	7.96	9.41	7.96
Saturation pH (@ 4C)	N/A	-	-	8.24				9.41	8.22
Calcium (Ca)	mg/L	-	0.1	38	8.28 33	8.16 26	8.21 24	3.6	27
Magnesium (Mg)	mg/L	-	0.1	6.1	5.3	4.3	3.6	1	2.2
Phosphorus (P)	mg/L	-	0.1	ND	ND	ND	ND	ND	ND
Potassium (K)	mg/L	_	0.1	1.3	1.2	1.3	1.2	1	2.2
Sodium (Na)	mg/L	200 AO	0.1	7.5	7.5	66	68	11	21
Bromide (Br)	mg/L	-	0.5	ND	ND	ND	ND	ND	ND
Fluoride (F)	mg/L	1.5	0.1	0.2	0.2	0.6	0.6	ND	ND
Metals	g/ =	1.0	0	0.2	0.2	0.0	0.0		
Aluminum (AI)	ug/L	-	10	ND	ND	ND	ND	ND	ND
Antimony (Sb)	ug/L	6	2	ND	ND	ND	ND	ND	ND
Arsenic (As)	ug/L	10	2	4	3	ND	ND	ND	ND
Barium (Ba)	ug/L	1000	5	150	150	170	180	24	8
Beryllium (Be)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Bismuth (Bi)	ug/L	-	2	ND	ND	ND	ND	ND	ND ND
Boron (B)	ug/L	5000	5	9	5	12	11	14	13
Cadmium (Cd)	ug/L	5	0.3	ND	ND	ND	ND	ND	ND
Chromium (Cr)	ug/L	50	2	ND	ND	ND	ND	ND	ND
Cobalt (Co)	ug/L	-	1	ND	ND	ND	ND	ND	ND
Copper (Cu)	ug/L	1000 AO	2	ND	ND	ND	ND	ND	ND
Iron (Fe)	ug/L	300 AO	50	180	160	ND	ND	87	ND
Lead (Pb)	ug/L	10	0.5	ND	ND	ND	ND	ND	ND
Manganese (Mn)	ug/L	50 AO	2	330	350	3	ND	20	ND
Molybdenum (Mo)	ug/L	-	2	ND	ND	50	56	ND	ND
Mercury (Hg)	ug/L	1	0.01	ND	ND	ND	ND	ND	ND
Nickel (Ni)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Selenium (Se)	ug/L	10	2	ND	ND	ND	ND	ND	2
Silver (Ag)	ug/L	-	0.5	ND	ND	ND	ND	ND	ND
Strontium (Sr)	ug/L	-	5	77	58	58	58	20	280
Thallium (TI)	ug/L	-	0.1	ND	ND	ND	ND	ND	ND
Tin (Sn)	ug/L	-	2	ND	ND	ND	ND	ND	ND
Titanium (Ti)	ug/L	_	2	ND	ND	ND	ND	ND	ND
Uranium (U)	ug/L	20	0.1	ND	ND	3.7	3.8	ND	21
Vanadium (V)	ug/L	-	2	ND	ND	5	4	ND	ND
Zinc (Zn)	ug/L	5000 AO	5	ND	ND	ND	ND	ND	ND
- \/	-3'-	,							

Table C2: General Chemistry and Metal Results

	l		1	Sheffield Mills	Fall River	West Northfield	Musquodoboit	Lewis Lake
Parameter	Units	Drinking Water	Detection Limit	(Well 075)	(Well 076)	(Well 077)	(Well 078)	(Well 079)
		Guideline		10-Sep-2007	20-May-2008	12/Jun/2008	22/May/2008	31/Jul/2008
General Chemistry		L						
Total Alkalinity (Total as CaCO3)	mg/L	-	5	95	ND	57	81	62
Chloride (CI)	mg/L	250 AO	1	6	12	15	8	11
Colour	TCU	15 AO	5	ND	42	7	5	6
Hardness (CaCO3)	mg/L	500 AO	-	98	13	80	21	21
Nitrate + Nitrite	mg/L	10	0.05	0.78	0.14	ND	ND	ND
Nitrite (N)	mg/L	1	0.01	ND	ND	ND	ND	ND
Nitrate (N)	mg/L	10	0.05	0.78	0.12	ND	ND	ND
Nitrogen (Ammonia Nitrogen)	mg/L	-	0.05	ND	0.07	ND	0.16	ND
Total Organic Carbon (C)	mg/L	-	0.5	ND	1.1	ND	ND	0.5
Orthophosphate (P)	mg/L	-	0.01	ND	ND	ND	ND	0.03
pH	pН	6.5 - 8.5 AO	-	7.99	6	8.1	7.78	7.8
Reactive Silica (SiO2)	mg/L		0.5	8.9	4	9.1	2.4	20
Sulphate (SO4)	mg/L	500 AO	2	3	14	32	9	7
Turbidity	NTU	5 AO	0.1	ND	4.6	0.5	0.6	3.6
Conductivity	uS/cm	-	-	210	110	240	210	170
Anion Sum	me/L	-	-	2.17	0.69	2.31	2.13	1.83
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	1	94	ND	57	81	61
Calculated TDS	mg/L	-	1	124	54	139	119	124
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1	ND	ND	ND	ND	ND
Cation Sum	me/L	-	-	2.31	0.95	2.31	2.14	1.98
Ion Balance (% Difference)	%	-	-	3.13	15.9	0	0.23	3.94
Langelier Index (@ 20C)	N/A	-	-	0.147	-	-0.081	-0.857	-0.889
Langelier Index (@ 4C)	N/A	-	-	-0.104	-	-0.331	-1.11	-1.14
Saturation pH (@ 20C)	N/A	-	-	7.84	-	8.18	8.64	8.69
Saturation pH (@ 4C)	N/A	-	-	8.09	-	8.43	8.89	8.94
Calcium (Ca)	mg/L	-	0.1	35	3.4	27	6.4	7.5
Magnesium (Mg)	mg/L	-	0.1	2.7	1.1	3	1.3	0.5
Phosphorus (P)	mg/L	-	0.1	ND 0.5	ND	ND	ND	ND
Potassium (K)	mg/L	-	0.1	2.5	0.9	0.9	4.5	4.4
Sodium (Na)	mg/L	200 AO	0.1	6.8	8.1	16	37	33
Bromide (Br)	mg/L	-	0.5	ND	0.5	ND 1.1	ND 1.6	2.6
Fluoride (F)	mg/L	1.5	0.1	ND	ND	1.1	1.6	2.5
Metals		1	- 10					
Aluminum (Al)	ug/L	-	10	ND	45 NB	ND	ND	ND
Antimony (Sb)	ug/L	6	2	ND	ND	ND	ND	ND 40
Arsenic (As)	ug/L	10	2	ND	ND 44	ND	ND	18
Barium (Ba)	ug/L	1000	5 2	18 ND	14 ND	6 ND	5 ND	72 ND
Beryllium (Be)	ug/L	-			ND ND		ND ND	ND ND
Bismuth (Bi) Boron (B)	ug/L	5000	2 5	ND 7	6 6	ND 27	120	35
Cadmium (Cd)	ug/L ug/L	5	0.3	, ND	ND ND	ND	ND	ND
Chromium (Cr)	ug/L ug/L	50	2	ND ND	ND ND	ND ND	ND	ND ND
Cobalt (Co)	ug/L ug/L	-	1	ND ND	4	ND ND	ND ND	ND ND
Copper (Cu)	ug/L ug/L	1000 AO	2	ND ND	ND	ND	ND ND	ND
Iron (Fe)	ug/L ug/L	300 AO	50	ND ND	8700	150	ND ND	140
Lead (Pb)	ug/L	10	0.5	ND	1.5	ND	ND	0.7
Manganese (Mn)	ug/L	50 AO	2	ND	770	150	35	60
Molybdenum (Mo)	ug/L	-	2	ND	ND ND	6	5	3
Mercury (Hg)	ug/L	1	0.01	ND	ND	0.01	0.01	ND
Nickel (Ni)	ug/L	<u> </u>	2	ND	5	ND	ND	ND
Selenium (Se)	ug/L	10	2	ND	ND	ND	ND	ND
Silver (Ag)	ug/L	-	0.5	ND	ND	ND	ND	ND
Strontium (Sr)	ug/L	-	5	420	11	99	39	100
Thallium (TI)	ug/L	-	0.1	ND	ND	ND	ND	ND
Tin (Sn)	ug/L	-	2	ND	ND	ND	ND	ND
Titanium (Ti)	ug/L	-	2	ND	ND	ND	ND	ND
Uranium (U)	ug/L	20	0.1	8.4	ND	0.2	ND	0.2
Vanadium (V)	ug/L	-	2	ND	ND	ND	ND	ND
variadium (v)	ug/ L			ND	שוו	IND	IND	IND

Table C3: Volatile Organic Compound (VOC) Results (ug/L)

	Drinking	Detection	Green	wood		er Brook	Wilmot
Parameter	Water	Limit	(Well			II 004)	(Well 005)
	Guideline	LIIIII	23-Nov-2005	18-Dec-2008	10-Dec-2004	3-Dec-2008	29-Nov-2006
CHLOROBENZENES							
1,2-Dichlorobenzene	200	0.5	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	-	1	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	5	1	ND	ND	ND	ND	ND
Chlorobenzene	80	1	ND	ND	ND	ND	ND
VOLATILES							
1,1,1-Trichloroethane	-	1	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	-	1	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	-	1	ND	ND	ND	ND	ND
1,1-Dichloroethane	-	2	ND	ND	ND	ND	ND
1,1-Dichloroethylene	14	2	ND	ND	ND	ND	ND
1,2-Dichloroethane	5	1	ND	ND	ND	ND	ND
1,2-Dichloropropane	-	1	ND	ND	ND	ND	ND
Benzene	5	1	ND	ND	ND	ND	ND
Bromodichloromethane	16	1	ND	ND	ND	ND	ND
Bromoform	100	1	ND	ND	ND	ND	ND
Bromomethane	-	8	ND	ND	ND	ND	ND
Carbon Tetrachloride	5	1	ND	ND	ND	ND	ND
Chloroethane	-	8	ND	ND	ND	ND	ND
Chloroform	100	1	ND	ND	ND	ND	ND
Chloromethane	-	8	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	-	2	ND	ND	ND	ND	ND
Dibromochloromethane	100	1	ND	ND	ND	ND	ND
Ethylbenzene	2.4 AO	1	ND	ND	ND	ND	ND
Ethylene Dibromide	-	1	ND	ND	ND	ND	ND
Methylene Chloride(Dichloromethane)	-	3	ND	ND	ND	ND	ND
o-Xylene	300 AO	1	ND	ND	ND	ND	ND
p+m-Xylene	300 AO	2	ND	ND	ND	ND	ND
Styrene	-	1	ND	ND	ND	ND	ND
Tetrachloroethylene	30	1	ND	ND	ND	ND	ND
Toluene	24 AO	1	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	-	1	ND	ND	ND	ND	ND
Trichloroethylene	5	1	ND	ND	ND	ND	ND
Trichlorofluoromethane (FREON 11)	-	8	ND	ND	ND	ND	ND
Vinyl Chloride	2	1	ND	ND	ND	ND	ND

Table C3: Volatile Organic Compound (VOC) Results (ug/L)

	Drinking	Detection	Wolf	ville	Mona	astery	Point Aconi	
Parameter	Water	Limit	(Well	010)	(Well	028)	(Well	030)
	Guideline	LIIIII	22-Dec-2004	18-Dec-2008	15-Dec-2006	09-Dec-2008	15-Sep-2005	10-Dec-2008
CHLOROBENZENES								
1,2-Dichlorobenzene	200	0.5	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	-	1	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	5	1	ND	ND	ND	ND	ND	ND
Chlorobenzene	80	1	ND	ND	ND	ND	ND	ND
VOLATILES							-	
1,1,1-Trichloroethane	-	1	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	-	1	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	-	1	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	-	2	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	14	2	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	5	1	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	-	1	ND	ND	ND	ND	ND	ND
Benzene	5	1	ND	ND	ND	ND	ND	ND
Bromodichloromethane	16	1	ND	ND	ND	ND	ND	ND
Bromoform	100	1	ND	ND	ND	ND	ND	ND
Bromomethane	-	8	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	5	1	ND	ND	ND	ND	ND	ND
Chloroethane	-	8	ND	ND	ND	ND	ND	ND
Chloroform	100	1	ND	ND	ND	ND	ND	ND
Chloromethane	-	8	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	-	2	ND	ND	ND	ND	ND	ND
Dibromochloromethane	100	1	ND	ND	ND	ND	ND	ND
Ethylbenzene	2.4 AO	1	ND	ND	ND	ND	ND	ND
Ethylene Dibromide	-	1	ND	ND	ND	ND	ND	ND
Methylene Chloride(Dichloromethane)	-	3	ND	ND	ND	ND	ND	ND
o-Xylene	300 AO	1	ND	ND	ND	ND	ND	ND
p+m-Xylene	300 AO	2	ND	ND	ND	ND	ND	ND
Styrene	-	1	ND	ND	ND	ND	ND	ND
Tetrachloroethylene	30	1	ND	ND	ND	ND	ND	ND
Toluene	24 AO	1	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	-	1	ND	ND	ND	ND	ND	ND
Trichloroethylene	5	1	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane (FREON 11)	-	8	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	1	ND	ND	ND	ND	ND	ND

Table C3: Volatile Organic Compound (VOC) Results (ug/L)

	Drinking		Lawrencetown	Dur	ham	Kentville	Syc	Iney	
Parameter	Water	Detection	(Well 043)		1 045)	(Well 048)		1 050)	
1 drameter	Guideline	Limit	5-Dec-2008	5-Oct-2005	21-Jan-2009	(/	15-Sep-2005	11-Dec-2008	
CHLOROBENZENES	Guideline		3-Dec-2000	3-001-2003	21-Jan-2009	7-1107-2007	13-3ep-2003	11-Dec-2000	
1.2-Dichlorobenzene	200	0.5	ND	ND	ND	ND	ND	ND	
1.3-Dichlorobenzene	-	1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
.,	5	-	ND ND	ND ND	ND ND	ND	ND ND	ND ND	
1,4-Dichlorobenzene	80	1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
Chlorobenzene	80	I	ND	ND	ND	ND	ND	ND	
VOLATILES			ND	ND	ND I	ND	ND	l ND	
1,1,1-Trichloroethane	-	1	ND	ND	ND	ND	ND	ND	
1,1,2,2-Tetrachloroethane	-	1	ND	ND	ND	ND	ND	ND	
1,1,2-Trichloroethane	-	1	ND	ND	ND	ND	ND	ND	
1,1-Dichloroethane	-	2	ND	ND	ND	ND	ND	ND	
1,1-Dichloroethylene	14	2	ND	ND	ND	ND	ND	ND	
1,2-Dichloroethane	5	1	ND	ND	ND	ND	ND	ND	
1,2-Dichloropropane	-	1	ND	ND	ND	ND	ND	ND	
Benzene	5	1	ND	ND	ND	ND	ND	ND	
Bromodichloromethane	16	1	ND	ND	ND	ND	ND	ND	
Bromoform	100	1	ND	ND	ND	ND	ND	ND	
Bromomethane	-	8	ND	ND	ND	ND	ND	ND	
Carbon Tetrachloride	5	1	ND	ND	ND	ND	ND	ND	
Chloroethane	-	8	ND	ND	ND	ND	ND	ND	
Chloroform	100	1	ND	ND	ND	ND	ND	ND	
Chloromethane	-	8	ND	ND	ND	ND	ND	ND	
cis-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	ND	ND	
cis-1,3-Dichloropropene	-	2	ND	ND	ND	ND	ND	ND	
Dibromochloromethane	100	1	ND	ND	ND	ND	ND	ND	
Ethylbenzene	2.4 AO	1	ND	ND	ND	ND	ND	ND	
Ethylene Dibromide	-	1	ND	ND	ND	ND	ND	ND	
Methylene Chloride(Dichloromethane)	-	3	ND	ND	ND	ND	ND	ND	
o-Xylene	300 AO	1	ND	ND	ND	ND	ND	ND	
p+m-Xylene	300 AO	2	ND	ND	ND	ND	ND	ND	
Styrene	-	1	ND	ND	ND	ND	ND	ND	
Tetrachloroethylene	30	1	ND	ND	ND	ND	ND	ND	
Toluene	24 AO	1	ND	ND	ND	ND	ND	ND	
trans-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	ND	ND	
trans-1,3-Dichloropropene	-	1	ND	ND	ND	ND	ND	ND	
Trichloroethylene	5	1	ND	ND	ND	ND	ND	ND	
Trichlorofluoromethane (FREON 11)	-	8	ND	ND	ND	ND	ND	ND	
Vinyl Chloride	2	1	ND	ND	ND	ND	ND	ND	

AO = Aesthetic Objective.

ND = not detected

ND() = not detected at the elevated detection limit shown in brackets () All guidelines are health-based MACs or IMACs, unless otherwise indicated. Shaded values exceed guidelines.

Table C3: Volatile Organic Compound (VOC) Results (ug/L)

	Drinking	Datastian	North	Grant	Still	water	Sheet Harbour
Parameter	Water	Detection	(Well	054)	(Wel	I 055)	(Well 056)
	Guideline	Limit	13-Dec-2006	22-Jul-2008	13-Dec-2006	4-Dec-2008	5-Dec-2008
CHLOROBENZENES							1
1,2-Dichlorobenzene	200	0.5	ND	ND	ND	ND	ND
1.3-Dichlorobenzene	-	1	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	5	1	ND	ND	ND	ND	ND
Chlorobenzene	80	1	ND	ND	ND	ND	ND
VOLATILES	•						•
1,1,1-Trichloroethane	-	1	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	-	1	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	-	1	ND	ND	ND	ND	ND
1,1-Dichloroethane	-	2	ND	ND	ND	ND	ND
1,1-Dichloroethylene	14	2	ND	ND	ND	ND	ND
1,2-Dichloroethane	5	1	ND	ND	ND	ND	ND
1,2-Dichloropropane	-	1	ND	ND	ND	ND	ND
Benzene	5	1	ND	ND	ND	ND	ND
Bromodichloromethane	16	1	ND	ND	ND	ND	ND
Bromoform	100	1	ND	ND	ND	ND	ND
Bromomethane	-	8	ND	ND	ND	ND	ND
Carbon Tetrachloride	5	1	ND	ND	ND	ND	ND
Chloroethane	-	8	ND	ND	ND	ND	ND
Chloroform	100	1	ND	ND	ND	ND	ND
Chloromethane	-	8	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	-	2	ND	ND	ND	ND	ND
Dibromochloromethane	100	1	ND	ND	ND	ND	ND
Ethylbenzene	2.4 AO	1	ND	ND	ND	ND	ND
Ethylene Dibromide	-	1	ND	ND	ND	ND	ND
Methylene Chloride(Dichloromethane)	-	3	ND	ND	ND	ND	ND
o-Xylene	300 AO	1	ND	ND	ND	ND	ND
p+m-Xylene	300 AO	2	ND	ND	ND	ND	ND
Styrene	-	1	ND	ND	ND	ND	ND
Tetrachloroethylene	30	1	ND	ND	ND	ND	ND
Toluene	24 AO	1	ND	ND	1	ND	ND
trans-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	-	1	ND	ND	ND	ND	ND
Trichloroethylene	5	1	ND	ND	ND	ND	ND
Trichlorofluoromethane (FREON 11)	-	8	ND	ND	ND	ND	ND
Vinyl Chloride	2	1	ND	ND	ND	ND	ND

AO = Aesthetic Objective.

ND = not detected

ND() = not detected at the elevated detection limit shown in brackets ()

All guidelines are health-based MACs or IMACs, unless otherwise indicated.

Shaded values exceed guidelines.

Table C3: Volatile Organic Compound (VOC) Results (ug/L)

	Drinking	Datastian	Hayd	en Lake	Mete	eghan	Annapo	olis Royal
Parameter	Water	Detection	(We	II 059)	(Wel	1 060)	(We	II 062)
	Guideline	Limit	9-Jun-2005	16-Dec-2008	13-Dec-2006	17-Dec-2008	9-Nov-2005	26-Nov-2007
CHLOROBENZENES								
1,2-Dichlorobenzene	200	0.5	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	-	1	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	5	1	ND	ND	ND	ND	ND	ND
Chlorobenzene	80	1	ND	ND	ND	ND	ND	ND
VOLATILES								
1,1,1-Trichloroethane	-	1	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	-	1	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	-	1	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	-	2	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	14	2	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	5	1	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	-	1	ND	ND	ND	ND	ND	ND
Benzene	5	1	ND	ND	ND	ND	ND	ND
Bromodichloromethane	16	1	ND	ND	ND	ND	ND	ND
Bromoform	100	1	ND	ND	ND	ND	ND	ND
Bromomethane	-	8	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	5	1	ND	ND	ND	ND	ND	ND
Chloroethane	-	8	ND	ND	ND	ND	ND	ND
Chloroform	100	1	3.2	ND	ND	ND	ND (2)	ND
Chloromethane	-	8	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	-	2	ND	ND	ND	ND	ND	ND
Dibromochloromethane	100	1	ND	ND	ND	ND	ND	ND
Ethylbenzene	2.4 AO	1	ND	ND	ND	ND	ND	ND
Ethylene Dibromide	-	1	ND	ND	ND	ND	ND	ND
Methylene Chloride(Dichloromethane)	-	3	ND	ND	ND	ND	ND	ND
o-Xylene	300 AO	1	ND	ND	ND	ND	ND	ND
p+m-Xylene	300 AO	2	ND	ND	ND	ND	ND	ND
Styrene	-	1	ND	ND	ND	ND	ND	ND
Tetrachloroethylene	30	1	ND	ND	ND	ND	ND	ND
Toluene	24 AO	1	ND	ND	ND	ND	2	1
trans-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	-	1	ND	ND	ND	ND	ND	ND
Trichloroethylene	5	1	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane (FREON 11)	-	8	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	1	ND	ND	ND	ND	ND	ND

AO = Aesthetic Objective.

ND = not detected

ND() = not detected at the elevated detection limit shown in brackets () All guidelines are health-based MACs or IMACs, unless otherwise indicated. Shaded values exceed guidelines.

Table C3: Volatile Organic Compound (VOC) Results (ug/L)

	Drinking	Detection	He	bron	Març	garee	Dalen	n Lake
Parameter	Water	Limit	(Wel	II 063)	(Well	1064)	(Well	069)
	Guideline	LIIIIII	9-Jun-2005	17-Dec-2009	14-Dec-2006	10-Dec-2008	14-Dec-2006	11-Dec-2008
CHLOROBENZENES								
1,2-Dichlorobenzene	200	0.5	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	-	1	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	5	1	ND	ND	ND	ND	ND	ND
Chlorobenzene	80	1	ND	ND	ND	ND	ND	ND
VOLATILES								
1,1,1-Trichloroethane	-	1	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	-	1	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	-	1	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	-	2	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	14	2	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	5	1	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	ı	1	ND	ND	ND	ND	ND	ND
Benzene	5	1	ND	ND	ND	ND	ND	ND
Bromodichloromethane	16	1	ND	ND	ND	ND	ND	ND
Bromoform	100	1	ND	ND	ND	ND	ND	ND
Bromomethane	ı	8	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	5	1	ND	ND	ND	ND	ND	ND
Chloroethane	ı	8	ND	ND	ND	ND	ND	ND
Chloroform	100	1	ND	ND	ND	ND	ND	ND
Chloromethane	ı	8	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	-	2	ND	ND	ND	ND	ND	ND
Dibromochloromethane	100	1	ND	ND	ND	ND	ND	ND
Ethylbenzene	2.4 AO	1	ND	ND	ND	ND	ND	ND
Ethylene Dibromide	ı	1	ND	ND	ND	ND	ND	ND
Methylene Chloride(Dichloromethane)	ı	3	ND	ND	ND	ND	ND	ND
o-Xylene	300 AO	1	ND	ND	ND	ND	ND	ND
p+m-Xylene	300 AO	2	ND	ND	ND	ND	ND	ND
Styrene	-	1	ND	ND	ND	ND	ND	ND
Tetrachloroethylene	30	1	ND	ND	ND	ND	ND	ND
Toluene	24 AO	1	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	-	1	ND	ND	ND	ND	ND	ND
Trichloroethylene	5	1	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane (FREON 11)	-	8	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	1	ND	ND	ND	ND	ND	ND

AO = Aesthetic Objective.

ND = not detected

ND() = not detected at the elevated detection limit shown in brackets () All guidelines are health-based MACs or IMACs, unless otherwise indicated. Shaded values exceed guidelines.

Table C3: Volatile Organic Compound (VOC) Results (ug/L)

	Drinking	ı	Fall River	West Northfield	Musquodoboit	Lewis Lake
Parameter	Water	Detection	(Well 076)	(Well 077)	(Well 078)	(Well 079)
i didilietei	Guideline	Limit	20-May-2008	12-Jun-2008	22-May-2008	31-Jul-2008
CHLOROBENZENES	Guideline		20-101ay-2006	12-3011-2000	22-1VIAY-2000	31-Jul-2000
	200	0.5	ND	ND	ND	ND
1,2-Dichlorobenzene	200	0.5		ND		ND
1,3-Dichlorobenzene		1	ND	ND	ND	ND
1,4-Dichlorobenzene	5	1	ND	ND	ND	ND
Chlorobenzene	80	1	ND	ND	ND	ND
VOLATILES						
1,1,1-Trichloroethane	-	1	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	-	1	ND	ND	ND	ND
1,1,2-Trichloroethane	-	1	ND	ND	ND	ND
1,1-Dichloroethane	-	2	ND	ND	ND	ND
1,1-Dichloroethylene	14	2	ND	ND	ND	ND
1,2-Dichloroethane	5	1	ND	ND	ND	ND
1,2-Dichloropropane	-	1	ND	ND	ND	ND
Benzene	5	1	ND	ND	ND	ND
Bromodichloromethane	16	1	ND	ND	ND	ND
Bromoform	100	1	ND	ND	ND	ND
Bromomethane	-	8	ND	ND	ND	ND
Carbon Tetrachloride	5	1	ND	ND	ND	ND
Chloroethane	-	8	ND	ND	ND	ND
Chloroform	100	1	ND	ND	ND	ND
Chloromethane	-	8	ND	ND	ND	ND
cis-1,2-Dichloroethylene	-	2	ND	ND	ND	ND
cis-1,3-Dichloropropene	-	2	ND	ND	ND	ND
Dibromochloromethane	100	1	ND	ND	ND	ND
Ethylbenzene	2.4 AO	1	ND	ND	ND	ND
Ethylene Dibromide	-	1	ND	ND	ND	ND
Methylene Chloride(Dichloromethane)	-	3	ND	ND	ND	ND
o-Xylene	300 AO	1	ND	ND	ND	ND
p+m-Xylene	300 AO	2	ND	ND	ND	ND
Styrene	-	1	ND	ND	ND	ND
Tetrachloroethylene	30	1	ND	ND	ND	ND
Toluene	24 AO	1	ND	ND	ND	ND
trans-1,2-Dichloroethylene	-	2	ND	ND	ND	ND
trans-1,3-Dichloropropene	-	1	ND	ND	ND	ND
Trichloroethylene	5	1	ND	ND	ND	ND
Trichlorofluoromethane (FREON 11)	-	8	ND	ND	ND	ND
Vinyl Chloride	2	1	ND	ND	ND	ND

AO = Aesthetic Objective.

ND = not detected

ND() = not detected at the elevated detection limit shown in brackets ()

All guidelines are health-based MACs or IMACs, unless otherwise indicated. Shaded values exceed guidelines.

Table C4: Pesticide Results (ug/L)

	Drinking	Detection		nwood	Fraser		Wol	
Parameter	Water	Limit	(Well	/	(Well	,	(Well	/
	Guideline		23-Nov-2005	18-Dec-2008	10-Dec-2004	3-Dec-2008	22-Dec-2004	18-Dec-2008
Herbicides		0.0	ND	ND	ND	ND	ND.	ND
Atrazine	5	0.2	ND	ND	ND	ND	ND	ND
De-ethyl Atrazine		0.3	ND ND	ND	ND ND	ND	ND ND	ND ND
Butylate	40	0.5	ND	ND	ND	ND	ND	ND
Cyanazine	10	0.5	ND	ND	ND	ND	ND	ND
Desmetryn		0.3	ND	ND	ND	ND	ND	ND
Diphenylamine		0.1 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Eptam The objection			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethalfluralin		0.5						
Hexazinone		0.1	ND ND	ND	ND ND	ND ND	ND	ND
Metalaxyl	90	0.3		ND			ND	ND
Metribuzin	80	0.3 0.2	ND ND	ND ND	ND ND	ND ND	ND	ND
Metolachlor	50		ND				ND	ND
Pirimicarb		0.5	ND	ND	ND	ND	ND	ND
Profluralin		0.5 0.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Prometryn								
Propazine Simozina	10	0.1	ND ND	ND	ND	ND	ND	ND
Simazine	10	0.5	ND ND	ND	ND	ND	ND ND	ND ND
Terbuthylazine	 	0.1	ND ND	ND ND	ND	ND	ND ND	ND
Terbutryn Triallata	 	0.2	ND ND	ND ND	ND	ND	ND	ND
Triallate Triadimefon	 	0.3	ND ND	ND	ND	ND ND	ND	ND
	45	0.3	ND	ND	ND		ND	ND
Trifluralin	45	0.2	ND	ND	ND	ND	ND	ND
Organochlorine Pesticides								1
Alachlor		0.5	ND		ND	ND	ND	
Aldrin + Dieldrin	0.7	0.5	ND	ND	ND	ND	ND	ND
BHC, alpha-		0.3	ND	ND	ND	ND	ND	ND
BHC, beta-		0.3	ND	ND	ND	ND	ND	ND
Captan		1	ND	ND	ND	ND	ND	ND
Chlorbenside		0.1	ND	ND	ND	ND	ND	ND
Chlordane, alpha-		0.5	ND	ND	ND	ND	ND	ND
Chlordane, gamma-		0.5	ND	ND	ND	ND	ND	ND
Chlorfenson (Ovex)		0.2	ND	ND	ND	ND	ND	ND
Chlorothalonil (Daconil)		0.2	ND	ND	ND	ND	ND	ND
Chlorpropham			ND	ND	ND	ND	ND	ND
Dacthal (DCPA)		0.1	ND ND	ND ND (0.4)	ND ND	ND ND (0.4)	ND ND	ND ND
4,4'-DDE		0.01	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
DDT - orthopara (2,4')		0.01	ND (0.2)	ND (0.2)	ND (0.2) ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)
DDT - parapara (4,4')		0.01 0.5	ND (0.2) ND	ND (0.2) ND	ND (0.2)	ND (0.2) ND	ND (0.2) ND	ND (0.2) ND
Diallate(e/z) Dichlobenil		0.5	ND ND	ND	ND	ND	ND ND	ND ND
					ND		ND	
Dichloran Dichlofluanid		0.5 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dicofol		0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Endosulfan I		0.2	ND ND	ND	ND	ND	ND ND	ND ND
Endosulfan II		0.5	ND ND	ND	ND	ND	ND ND	ND ND
Endosulfan II Endosulfan Sulphate		0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Endosulfan Sulphate Endrin		0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Folpet		1	ND ND	ND	ND ND	ND	ND ND	ND ND
Heptachlor		0.5	ND ND	ND	ND ND	ND	ND ND	ND ND
		0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Lindane (BHC), gamma- Methidathion		0.3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methoxychlor	900	0.3	ND ND	ND ND	ND ND	ND	ND ND	ND ND
Mirex	900	0.1	ND ND	ND	ND ND	ND	ND ND	ND ND
Nitrofen		0.3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Permethrin-cis/trans		0.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Procymidone	1							
,	 	0.2	ND ND	ND	ND	ND	ND	ND
Pronamide		0.2	ND ND	ND	ND -	ND	ND -	ND
Quintozene (Pentachloronitrobenzene)	 	0.5	ND ND	ND ND	- ND	- ND	- ND	ND ND
Tecnazene Tetradifon	 	0.5						
Tetradifon	 	0.2	ND	ND	ND	ND	ND	ND
Tolylfluanid Vinclozolin	 	0.5	ND	ND	ND	ND	ND	ND
		0.5	ND	ND	ND	ND	ND	ND

Table C4: Pesticide Results (ug/L)

	Drinking	Detection	Monastery	Point	Aconi	Lawrencetown	Dui	rham
Parameter	Water	Detection Limit	(Well 028)		030)	(Well 043)	(Wel	l 045)
	Guideline	Liiiiii	15-Dec-2006	15-Sep-2005	10-Dec-2008	5-Dec-2008	5-Oct-2005	21-Jan-2009
Herbicides	_			1				1
Atrazine	5	0.2	ND	ND	ND	ND	ND	ND
De-ethyl Atrazine		0.3	ND ND	ND ND	ND ND	ND	ND	ND
Butylate	10	0.5	ND ND	ND ND	ND ND	ND	ND	ND
Cyanazine	10	0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Desmetryn Dinhandamina		0.3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Diphenylamine Eptam		0.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethalfluralin		0.5	ND	ND	ND ND	ND	ND	ND
Hexazinone		0.1	ND	ND	ND	ND	ND	ND
Metalaxyl		0.3	ND	ND	ND	ND	ND	ND
Metribuzin	80	0.3	ND	ND	ND	ND	ND	ND
Metolachlor	50	0.2	ND	ND	ND	ND	ND	ND
Pirimicarb		0.5	ND	ND	ND	ND	ND	ND
Profluralin		0.5	ND	ND	ND	ND	ND	ND
Prometryn		0.2	ND	ND	ND	ND	ND	ND
Propazine		0.1	ND	ND	ND	ND	ND	ND
Simazine	10	0.5	ND	ND	ND	ND	ND	ND
Terbuthylazine		0.1	ND	ND	ND	ND	ND	ND
Terbutryn		0.2	ND	ND	ND	ND	ND	ND
Triallate		0.3	ND	ND	ND	ND	ND	ND
Triadimefon		0.3	ND	ND	ND	ND	ND	ND
Trifluralin	45	0.2	ND	ND	ND	ND	ND	ND
Organochlorine Pesticides								
Alachlor		0.5	ND	ND			ND	ND
Aldrin + Dieldrin	0.7	0.5	ND	ND	ND	ND	ND	ND
BHC, alpha-		0.3	ND	ND	ND	ND	ND	ND
BHC, beta-		0.3	ND	ND	ND	ND	ND	ND
Captan		1	ND	ND	ND	ND	ND	ND
Chlorbenside		0.1	ND	ND	ND	ND	ND	ND
Chlordane, alpha-		0.5	ND	ND	ND	ND	ND	ND
Chlordane, gamma-		0.5	ND ND	ND ND	ND ND	ND	ND	ND
Chlorfenson (Ovex) Chlorothalonil (Daconil)		0.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorpropham		0.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dacthal (DCPA)		0.2	ND	ND	ND ND	ND	ND	ND
4.4'-DDE		0.01	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
DDT - orthopara (2,4')		0.01	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.1)	ND (0.1)
DDT - parapara (4,4')		0.01	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)
Diallate(e/z)		0.5	ND	ND	ND	ND	ND	ND
Dichlobenil		0.2	ND	ND	ND	ND	ND	ND
Dichloran		0.5	ND	ND	ND	ND	ND	ND
Dichlofluanid		0.5	ND	ND	ND	ND	ND	ND
Dicofol		0.2	ND	ND	ND	ND	ND	ND
Endosulfan I		0.5	ND	ND	ND	ND	ND	ND
Endosulfan II		0.5	ND	ND	ND	ND	ND	ND
Endosulfan Sulphate		0.5	ND	ND	ND	ND	ND	ND
Endrin		0.5	ND	ND	ND	ND	ND	ND
Folpet		1	ND	ND	ND	ND	ND	ND
Heptachlor		0.5	ND	ND	ND	ND	ND	ND
Lindane (BHC), gamma-	1	0.5	ND	ND	ND	ND	ND	ND
Methidathion	000	0.3	ND	ND	ND	ND	ND	ND
Methoxychlor	900	0.1		ND	ND	ND	ND	ND
Mirex	1	0.3	ND ND	ND ND	ND ND	ND	ND	ND
Nitrofen	1	0.2	ND ND	ND ND	ND ND	ND	ND	ND
Permethrin-cis/trans		0.5	ND ND	ND ND	ND ND	ND	ND	ND
Procymidone	1	0.2	ND ND	ND ND	ND ND	ND	ND	ND
Pronamide		0.2	ND	ND ND	ND ND	ND	ND	ND
Quintozene (Pentachloronitrobenzene) Tecnazene	1	0.5 0.5	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Tetradifon		0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Tolylfluanid			ND ND	ND ND	ND ND	ND ND		ND ND
Vinclozolin	1	0.5 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
VIIIGIOZUIIII	<u> </u>	0.5	טאו	טאו	טאו	טאו	טאו	IND

Table C4: Pesticide Results (ug/L)

	Drinking	Detection	Kent	ville	Syc	Iney	North	Grant
Parameter	Water	Detection Limit	(Well	048)	(Well	050)	(Well	054)
	Guideline	Liiiiii	15-Jun-2005	7-Nov-2007	15-Sep-2005	11-Dec-2008	12-Dec-2006	22-Jul-2008
Herbicides		1						1
Atrazine	5	0.2	ND (1)	ND	ND	ND	ND	ND
De-ethyl Atrazine		0.3	-	ND	ND	ND	ND	ND
Butylate	40	0.5	-	ND	ND	ND	ND	ND
Cyanazine	10	0.5	-	ND	ND	ND	ND	ND
Desmetryn		0.3	-	ND	ND ND	ND ND	ND	ND
Diphenylamine Eptam	-	0.1 0.5	-	ND ND	ND ND	ND ND	ND ND	ND ND
Ethalfluralin		0.5	-	ND	ND ND	ND ND	ND ND	ND
Hexazinone		0.5		ND	ND ND	ND ND	ND ND	ND
Metalaxyl	-	0.1	_	ND	ND	ND ND	ND	ND
Metribuzin	80	0.3	_	ND	ND	ND	ND	ND
Metolachlor	50	0.2	-	ND	ND	ND	ND	ND
Pirimicarb	- 00	0.5	-	ND	ND	ND	ND	ND
Profluralin	1	0.5	_	ND	ND	ND	ND	ND
Prometryn		0.2	-	ND	ND	ND	ND	ND
Propazine		0.1	-	ND	ND	ND	ND	ND
Simazine	10	0.5	-	ND	ND	ND	ND	ND
Terbuthylazine		0.1	-	ND	ND	ND	ND	ND
Terbutryn		0.2	-	ND	ND	ND	ND	ND
Triallate		0.3	-	ND	ND	ND	ND	ND
Triadimefon		0.3	-	ND	ND	ND	ND	ND
Trifluralin	45	0.2	-	ND	ND	ND	ND	ND
Organochlorine Pesticides								
Alachlor		0.5	-	ND	ND	ND	ND	ND
Aldrin + Dieldrin	0.7	0.5	-	ND	ND	ND	ND	ND (0.02)
BHC, alpha-		0.3	-	ND	ND	ND	ND	ND (0.1)
BHC, beta-		0.3	-	ND	ND	ND	ND	ND (0.1)
Captan		1	-	ND	ND	ND	ND	ND
Chlorbenside		0.1	-	ND	ND	ND	ND	ND
Chlordane, alpha-		0.5	-	ND	ND	ND	ND	ND (0.06)
Chlordane, gamma-		0.5	-	ND	ND	ND	ND	ND (0.06)
Chlorfenson (Ovex)		0.2	-	ND	ND	ND	ND	ND
Chlorothalonil (Daconil)		1	-	ND	ND	ND	ND	ND
Chlorpropham		0.2	-	ND	ND	ND	ND	ND
Dacthal (DCPA)		0.1	- ND	ND ND (0.4)	ND ND (0.4)	ND ND (0.4)	ND	ND
4,4'-DDE	-	0.01	ND ND	ND (0.1)	ND (0.1)	ND (0.1)	ND ND	ND
DDT - orthopara (2,4') DDT - parapara (4,4')		0.01	ND ND	ND (0.2) ND (0.2)	ND (0.2) ND (0.2)	ND (0.2) ND (0.2)	ND ND	ND ND
Diallate(e/z)	1	0.01	-	ND (0.2)	ND (0.2)	ND (0.2)	ND ND	ND
Dichlobenil		0.3	_	ND	ND	ND ND	ND	ND
Dichloran		0.2	-	ND	ND ND	ND ND	ND ND	ND
Dichlofluanid		0.5	_	ND	ND	ND	ND	ND
Dicofol	1	0.2	-	ND	ND	ND	ND	ND
Endosulfan I	1	0.5	-	ND	ND	ND	ND	ND (0.2)
Endosulfan II	1	0.5	-	ND	ND	ND	ND	ND (0.2)
Endosulfan Sulphate		0.5	-	ND	ND	ND	ND	ND (0.2)
Endrin		0.5	-	ND	ND	ND	ND	ND (0.02)
Folpet		1	-	ND	ND	ND	ND	ND
Heptachlor		0.5	-	ND	ND	ND	ND	ND (0.1)
Lindane (BHC), gamma-		0.5	-	ND	ND	ND	ND	ND (0.1)
Methidathion		0.3	-	ND	ND	ND	ND	ND
Methoxychlor	900	0.1	-	ND	ND	ND	ND	ND
Mirex		0.3	-	ND	ND	ND	ND	ND
Nitrofen		0.2	-	ND	ND	ND	ND	ND
Permethrin-cis/trans		0.5	-	ND	ND	ND	ND	ND
Procymidone		0.2	-	ND	ND	ND	ND	ND
Pronamide		0.2	-	ND	ND	ND	ND	ND
Quintozene (Pentachloronitrobenzene)		0.5	-	ND	ND	ND	ND	ND
Tecnazene		0.5	-	ND	ND	ND	ND	ND
Tetradifon		0.2	-	ND	ND	ND	ND	ND
Tolylfluanid	1	0.5	-	ND	ND	ND	ND	ND
Vinclozolin		0.5	-	ND	ND	ND	ND	ND

Table C4: Pesticide Results (ug/L)

l limit			eghan
Herbicides	ell 059)	(We	II 060)
Arrazine	16-Dec-2008	3 13-Dec-2006	17-Dec-2008
De-ethyl Atrazine		1	T
Butylate	ND	ND	ND
Oyanazine	ND ND	ND	ND ND
Desmetryn	ND ND	ND ND	ND
Diphenylamine	ND	ND	ND
Eptam	ND	ND	ND
Ehabifuratin	ND	ND	ND
Hexazinone	ND	ND	ND
Metribuzin	ND	ND	ND
Metolachlor	ND	ND	ND
Pirimicarb	ND	ND	ND
Profluralin	ND	ND	ND
Prometryn	ND	ND	ND
Propazine	ND	ND	ND
Simazine	ND	ND	ND
Terbuthylazine	ND	ND	ND
Teributryn	ND	ND	ND
Triallate 0.3 ND ND ND - Triadimefon 0.3 ND ND ND - Trifiduralin 45 0.2 ND ND ND - Organochlorine Pesticides Alachlor 0.5 ND ND ND - - Aldrin + Dieldrin 0.7 0.5 ND ND ND - - Aldrin + Dieldrin 0.7 0.5 ND ND ND - - Aldrin + Dieldrin 0.7 0.5 ND ND ND - - Aldrin + Dieldrin ND ND ND ND - - Aldrin + Dieldrin ND ND <t< td=""><td>ND ND</td><td>ND ND</td><td>ND ND</td></t<>	ND ND	ND ND	ND ND
Triadimefon 45 0.2 ND ND ND - Organochlorine Pesticides Alachlor 0.5 ND ND ND - Aldrin + Dieldrin 0.7 0.5 ND ND ND - BHC, alpha- 0.3 ND ND ND ND - BHC, beta- 0.3 ND ND ND ND - Captan 1 ND ND ND ND - Chlordane, alpha- 0.1 ND ND ND ND - Chlordane, alpha- 0.5 ND ND ND ND - Chlordenson (Ovex) 0.2 ND ND ND	ND ND	ND ND	ND ND
Triffuralin	ND ND	ND	ND
Drganochlorine Pesticides	ND	ND	ND
Alachlor	110	110	IND
Aldrin + Dieldrin 0.7 0.5 ND ND ND - BHC, alpha- 0.3 ND ND ND - BHC, beta- 0.3 ND ND ND - Captan 1 ND ND ND - Chlordane, alpha- 0.1 ND ND ND - Chlordane, alpha- 0.5 ND ND ND ND - Chlordane, alpha- 0.5 ND ND ND ND - Chlordane, gamma- 0.5 ND		ND	ND
BHC, alpha-	ND	ND	ND
Captan 1 ND ND ND - Chlorbenside 0.1 ND ND ND - Chlordane, alpha- 0.5 ND ND ND - Chlordane, gamma- 0.5 ND ND ND - Chlorenson (Ovex) 0.2 ND ND ND - Chlorothalonii (Daconii) 1 ND ND ND ND - Chlorothalonii (Daconii) 1 ND ND ND ND ND - Chlorothalonii (Daconii) 1 ND	ND	ND	ND
Chlorbenside 0.1 ND ND ND - Chlordane, alpha- 0.5 ND ND ND - Chlordane, gamma- 0.5 ND ND ND - Chlorfenson (Ovex) 0.2 ND ND ND - Chlorothalonii (Daconii) 1 ND ND ND ND - Chlorothalonii (Daconii) 1 ND ND ND ND ND ND ND -	ND	ND	ND
Chlordane, alpha- 0.5 ND ND ND - Chlordane, gamma- 0.5 ND ND ND - Chlorfenson (Ovex) 0.2 ND ND ND - Chlorothalonii (Daconii) 1 ND ND ND - Chlorpropham 0.2 ND ND ND - - Chlorpropham 0.2 ND ND ND ND - - Chlorpropham 0.2 ND ND ND ND -<	ND	ND	ND
Chlordane, gamma- 0.5 ND ND ND - Chlorfenson (Ovex) 0.2 ND ND ND - Chlorothalonil (Daconil) 1 ND ND ND - Chlorpropham 0.2 ND ND ND - Dacthal (DCPA) 0.1 ND ND ND - 4,4'-DE 0.01 ND ND (0.1) ND (0.1) ND DDT - orthopara (2,4') 0.01 ND ND (0.2) ND (0.2) ND DDT - parapara (4,4') 0.01 ND ND (0.2) ND (0.2) ND Dichlobenil 0.2 ND ND ND - - Dichlobenil 0.2 ND ND ND - - Dichlofuanid 0.5 ND ND ND - - Dichlofuanid 0.5 ND ND ND - - Dichlofuanid 0.5 ND ND	ND	ND	ND
Chlorfenson (Ovex) 0.2 ND ND ND - Chlorothalonil (Daconil) 1 ND ND ND - Chlorpropham 0.2 ND ND ND - Dacthal (DCPA) 0.1 ND ND ND - 4,4*-DDE 0.01 ND ND (0.1) ND (0.1) ND ND - DDT - orthopara (2,4*) 0.01 ND ND (0.2) ND (0.2) ND DD DD ND (0.2) ND	ND	ND	ND
Chlorothalonil (Daconil) 1 ND ND ND - Chlorpropham 0.2 ND ND ND - Dacthal (DCPA) 0.1 ND ND ND - 4,4"-DDE 0.01 ND ND (0.1) ND (0.1) ND DDT - orthopara (2,4") 0.01 ND ND (0.2) ND (0.2) ND DDT - parapara (4,4") 0.01 ND ND ND ND - Dichloberil 0.5 ND ND ND ND - Dichlofulanid 0.5 ND ND ND - Dichlofluanid 0.5 ND ND ND - Dicofol 0.2 ND ND ND - Endosulfan I 0.5 ND ND ND - Endosulfan II 0.5 ND ND ND - Endosulfan Sulphate 0.5 ND ND ND - <tr< td=""><td>ND</td><td>ND</td><td>ND</td></tr<>	ND	ND	ND
Chlorpropham 0.2 ND ND ND - Dacthal (DCPA) 0.1 ND ND ND - 4,4'-DE 0.01 ND ND (0.1) ND (0.2) ND DDT - orthopara (2,4') 0.01 ND ND (0.2) ND (0.2) ND DDT - parapara (4,4') 0.01 ND ND ND ND ND Dichloteal 0.5 ND ND ND ND - Dichloteal 0.5 ND ND ND - Dichlofluanid 0.5 ND ND ND - Dichlofluanid 0.5 ND ND ND - Dicofol 0.2 ND ND ND - Dicofol 0.5 ND ND ND - Dicofol 0.5 ND<	ND	ND	ND
Dacthal (DCPA)	ND	ND	ND
4,4'-DDE 0.01 ND ND (0.1) ND (0.1) ND DDT - orthopara (2,4') 0.01 ND ND (0.2) ND (0.2) ND DDT - parapara (4,4') 0.01 ND ND (0.2) ND (0.2) ND Diallate(e/z) 0.5 ND ND ND - Dichlobenil 0.2 ND ND ND - Dichlofan 0.5 ND ND ND - Dichlofluanid 0.5 ND ND ND - Dicofol 0.2 ND ND ND - Endosulfan I 0.5 ND ND ND - Endosulfan II 0.5 ND ND ND - Endrin 0.5 ND ND ND - Endrin 0.5 ND ND ND - Folpet 1 ND ND ND - Heptachlor 0.5 ND <td>ND ND</td> <td>ND ND</td> <td>ND ND</td>	ND ND	ND ND	ND ND
DDT - orthopara (2,4')	ND (0.1)	ND	ND (0.1)
DDT - parapara (4,4')	ND (0.1)	ND	ND (0.1)
Diallate(e/z) 0.5 ND ND ND - Dichlobenil 0.2 ND ND ND - Dichlofran 0.5 ND ND ND - Dichlofluanid 0.5 ND ND ND - Dicofol 0.2 ND ND ND - Endosulfan I 0.5 ND ND ND - Endosulfan II 0.5 ND ND ND - Endosulfan Sulphate 0.5 ND ND ND - Endrin 0.5 ND ND ND - Endrin 0.5 ND ND ND - Folpet 1 ND ND ND - Heptachlor 0.5 ND ND ND - Lindane (BHC), gamma- 0.5 ND ND ND - Methidathion 0.3 ND ND ND <td>ND (0.2)</td> <td>ND</td> <td>ND (0.2)</td>	ND (0.2)	ND	ND (0.2)
Dichlobenii 0.2	ND	ND	ND
Dichloran 0.5	ND	ND	ND
Dichlofluanid 0.5	ND	ND	ND
Endosulfan I 0.5 ND ND ND - Endosulfan II 0.5 ND ND ND - Endosulfan Sulphate 0.5 ND ND ND - Endrin 0.5 ND ND ND - Folpet 1 ND ND ND - Heptachlor 0.5 ND ND ND - Lindane (BHC), gamma- 0.5 ND ND ND - Methidathion 0.3 ND ND ND - Methoxychlor 900 0.1 ND ND ND -	ND	ND	ND
Endosulfan II 0.5 ND ND ND - Endosulfan Sulphate 0.5 ND ND ND - Endrin 0.5 ND ND ND - Folpet 1 ND ND ND - Heptachlor 0.5 ND ND ND - Lindane (BHC), gamma- 0.5 ND ND ND - Methidathion 0.3 ND ND ND - Methoxychlor 900 0.1 ND ND ND -	ND	ND	ND
Endosulfan Sulphate 0.5 ND ND ND - Endrin 0.5 ND ND ND - Folpet 1 ND ND ND - Heptachlor 0.5 ND ND ND - Lindane (BHC), gamma- 0.5 ND ND ND - Methidathion 0.3 ND ND ND - Methoxychlor 900 0.1 ND ND ND -	ND	ND	ND
Endrin 0.5 ND ND ND - Folpet 1 ND ND ND - Heptachlor 0.5 ND ND ND - Lindane (BHC), gamma- 0.5 ND ND ND - Methidathion 0.3 ND ND ND - Methoxychlor 900 0.1 ND ND ND -	ND	ND	ND
Folpet 1 ND ND ND - Heptachlor 0.5 ND ND ND - Lindane (BHC), gamma- 0.5 ND ND ND - Methidathion 0.3 ND ND ND - Methoxychlor 900 0.1 ND ND ND -	ND	ND	ND
Heptachlor 0.5 ND ND ND - Lindane (BHC), gamma- 0.5 ND ND ND - Methidathion 0.3 ND ND ND - Methoxychlor 900 0.1 ND ND ND -	ND	ND	ND
Lindane (BHC), gamma- 0.5 ND ND - Methidathion 0.3 ND ND ND - Methoxychlor 900 0.1 ND ND ND -	ND	ND	ND
Methidathion 0.3 ND ND - Methoxychlor 900 0.1 ND ND ND -	ND	ND	ND
Methoxychlor 900 0.1 ND ND -	ND ND	ND ND	ND ND
	ND ND	ND ND	ND ND
- UNI UNI 10.0 -	ND ND	ND	ND
Nitrofen 0.2 ND ND -	ND	ND	ND
Permethrin-cis/trans 0.5 ND ND -	ND	ND	ND
Procymidone 0.2 ND ND ND -	ND	ND	ND
Pronamide 0.2 ND ND -	ND	ND	ND
Quintozene (Pentachloronitrobenzene) 0.5 ND ND -	ND	ND	ND
Tecnazene 0.5 ND ND ND -	ND	ND	ND
Tetradifon 0.2 ND ND -	ND	ND	ND
Tolylfluanid 0.5 ND ND -	ND	ND	ND
Vinclozolin 0.5 ND ND ND -	ND	ND	ND

Table C4: Pesticide Results (ug/L)

	Drinking	Detection	Annapo	olis Royal		bron	Marg	aree
Parameter	Water	Limit		I 062)		II 063)	(Well	
	Guideline	Liiiiii	9-Nov-2005	26-Nov-2007	9-Jun-2005	17-Dec-2008	14-Dec-2006	8-Dec-2008
Herbicides	_					1		
Atrazine	5	0.2	ND	ND	ND (2.5)	ND	ND	ND
De-ethyl Atrazine		0.3	ND	ND	-	ND	ND	ND
Butylate		0.5	ND	ND	-	ND	ND	ND
Cyanazine	10	0.5	ND	ND	-	ND	ND	ND
Desmetryn		0.3	ND	ND	-	ND	ND	ND
Diphenylamine		0.1	ND	ND	-	ND	ND	ND
Eptam		0.5	ND	ND	-	ND	ND	ND
Ethalfluralin		0.5	ND	ND	-	ND	ND	ND
Hexazinone	1	0.1	ND	ND	-	ND	ND	ND
Metalaxyl		0.3	ND	ND	-	ND	ND	ND
Metribuzin	80	0.3	ND	ND	-	ND	ND	ND
Metolachlor	50	0.2	ND	ND	-	ND	ND	ND
Pirimicarb	1	0.5	ND	ND	-	ND	ND	ND
Profluralin		0.5	ND	ND	-	ND	ND	ND
Prometryn		0.2	ND	ND	-	ND	ND	ND
Propazine		0.1	ND	ND	-	ND	ND	ND
Simazine	10	0.5	ND	ND	-	ND	ND	ND
Terbuthylazine		0.1	ND	ND	-	ND	ND	ND
Terbutryn		0.2	ND	ND	-	ND	ND	ND
Triallate		0.3	ND	ND	-	ND	ND	ND
Triadimefon	 	0.3	ND	ND	-	ND	ND	ND
Trifluralin	45	0.2	ND	ND	-	ND	ND	ND
Organochlorine Pesticides	,				1	T-	1	1
Alachlor		0.5	ND	ND	-		ND	ND
Aldrin + Dieldrin	0.7	0.5	ND	ND	-	ND	ND	ND
BHC, alpha-		0.3	ND	ND	-	ND	ND	ND
BHC, beta-		0.3	ND	ND	-	ND	ND	ND
Captan		1	ND	ND	-	ND	ND	ND
Chlorbenside		0.1	ND	ND	-	ND	ND	ND
Chlordane, alpha-		0.5	ND	ND	-	ND	ND	ND
Chlordane, gamma-		0.5	ND	ND	-	ND	ND	ND
Chlorfenson (Ovex)		0.2	ND	ND	-	ND	ND	ND
Chlorothalonil (Daconil)		1	ND	ND	-	ND	ND	ND
Chlorpropham		0.2	ND	ND	-	ND	ND	ND
Dacthal (DCPA)		0.1	ND	ND	-	ND	ND	ND
4,4'-DDE		0.01	ND (0.1)	ND (0.1)	ND	ND (0.1)	ND	ND (0.1)
DDT - orthopara (2,4')		0.01	ND (0.2)	ND (0.2)	ND	ND (0.2)	ND	ND (0.2)
DDT - parapara (4,4')		0.01	ND (0.2)	ND (0.2)	ND	ND (0.2)	ND	ND (0.2)
Diallate(e/z)		0.5	ND	ND	-	ND	ND	ND
Dichlobenil		0.2	ND	ND	-	ND	ND	ND
Dichloran		0.5	ND	ND	-	ND	ND	ND
Dichlofluanid		0.5	ND	ND	-	ND	ND	ND
Dicofol		0.2	ND	ND	-	ND	ND	ND
Endosulfan I	1	0.5	ND	ND	-	ND	ND	ND
Endosulfan II		0.5	ND	ND	-	ND	ND	ND
Endosulfan Sulphate		0.5	ND	ND	-	ND	ND	ND
Endrin	1	0.5	ND	ND	-	ND	ND	ND
Folpet	1	1	ND	ND	-	ND	ND	ND
Heptachlor		0.5	ND	ND	-	ND	ND	ND
Lindane (BHC), gamma-	1	0.5	ND	ND	-	ND	ND	ND
Methidathion	1	0.3	ND	ND	-	ND	ND	ND
Methoxychlor	900	0.1	ND	ND	-	ND	ND	ND
Mirex		0.3	ND	ND	-	ND	ND	ND
Nitrofen	1	0.2	ND	ND	-	ND	ND	ND
Permethrin-cis/trans		0.5	ND	ND	-	ND	ND	ND
Procymidone		0.2	ND	ND	-	ND	ND	ND
Pronamide		0.2	ND	ND	-	ND	ND	ND
Quintozene (Pentachloronitrobenzene)		0.5	ND	ND	-	ND	ND	ND
Tecnazene		0.5	ND	ND	-	ND	ND	ND
Tetradifon		0.2	ND	ND	-	ND	ND	ND
					_			
Tolylfluanid		0.5	ND	ND	-	ND	ND	ND

Table C4: Pesticide Results (ug/L)

	Drinking	Datastian	Dalem	Lake	Amh	erst	Kelley River	Atlanta	Sheffield Mills
Parameter	Water	Detection Limit	(Well	069)	(Well	071)	(Well 073)	(Well 074)	(Well 075)
	Guideline	LIIIII	14-Dec-2006	11-Dec-2008	16-Dec-2006	8-Jan-2009	12-Jan-2007	3-Sep-2007	10-Sep-2007
Herbicides									
Atrazine	5	0.2	ND	ND	ND	ND	ND	ND	ND
De-ethyl Atrazine		0.3	ND ND	ND	ND	ND	ND	ND	ND
Butylate	10	0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
Cyanazine	10	0.5 0.3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Desmetryn Diphenylamine		0.3	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
Eptam		0.1	ND ND	ND	ND	ND	ND	ND	ND ND
Ethalfluralin		0.5	ND	ND	ND	ND	ND	ND	ND
Hexazinone		0.1	ND	ND	ND	ND	ND	ND	ND
Metalaxyl		0.3	ND	ND	ND	ND	ND	ND	ND
Metribuzin	80	0.3	ND	ND	ND	ND	ND	ND	ND
Metolachlor	50	0.2	ND	ND	ND	ND	ND	ND	ND
Pirimicarb		0.5	ND	ND	ND	ND	ND	ND	ND
Profluralin		0.5	ND	ND	ND	ND	ND	ND	ND
Prometryn		0.2	ND	ND	ND	ND	ND	ND	ND
Propazine		0.1	ND	ND	ND	ND	ND	ND	ND
Simazine	10	0.5	ND	ND	ND	ND	ND	ND	ND
Terbuthylazine		0.1	ND	ND	ND	ND	ND	ND	ND
Terbutryn		0.2	ND	ND	ND	ND	ND	ND	ND
Triallate		0.3	ND	ND	ND	ND	ND	ND	ND
Triadimefon		0.3	ND	ND	ND	ND	ND	ND	ND
Trifluralin	45	0.2	ND	ND	ND	ND	ND	ND	ND
Organochlorine Pesticides									
Alachlor		0.5	ND	ND	ND	ND	ND	ND	ND
Aldrin + Dieldrin	0.7	0.5	ND	ND	ND	ND	ND	ND	ND
BHC, alpha-		0.3	ND	ND	ND	ND	ND	ND	ND
BHC, beta-		0.3	ND	ND	ND	ND	ND	ND	ND
Captan		1	ND	ND	ND	ND	ND	ND	ND
Chlorbenside		0.1	ND	ND	ND	ND	ND	ND	ND
Chlordane, alpha-		0.5	ND ND	ND	ND	ND	ND	ND	ND
Chlordane, gamma-		0.5 0.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorfenson (Ovex) Chlorothalonil (Daconil)		1	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
Chlorpropham		0.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dacthal (DCPA)		0.1	ND	ND	ND	ND	ND	ND	ND
4.4'-DDE		0.01	ND	ND (0.1)	ND	ND	ND (0.1)	ND	ND
DDT - orthopara (2,4')		0.01	ND	ND (0.2)	ND	ND	ND (0.2)	ND	ND
DDT - parapara (4,4')		0.01	ND	ND (0.2)	ND	ND	ND (0.2)	ND	ND
Diallate(e/z)		0.5	ND	ND	ND	ND	ND	ND	ND
Dichlobenil		0.2	ND	ND	ND	ND	ND	ND	ND
Dichloran		0.5	ND	ND	ND	ND	ND	ND	ND
Dichlofluanid		0.5	ND	ND	ND	ND	ND	ND	ND
Dicofol		0.2	ND	ND	ND	ND	ND	ND	ND
Endosulfan I		0.5	ND	ND	ND	ND	ND	ND	ND
Endosulfan II		0.5	ND	ND	ND	ND	ND	ND	ND
Endosulfan Sulphate		0.5	ND	ND	ND	ND	ND	ND	ND
Endrin		0.5	ND	ND	ND	ND	ND	ND	ND
Folpet		11	ND	ND	ND	ND	ND	ND	ND
Heptachlor		0.5	ND	ND	ND	ND	ND	ND	ND
Lindane (BHC), gamma-		0.5	ND	ND	ND	ND	ND	ND	ND
Methidathion	000	0.3	ND	ND	ND	ND	ND	ND	ND
Methoxychlor	900	0.1	ND ND	ND	ND ND	ND	ND	ND ND	ND
Mirex		0.3	ND ND	ND	ND ND	ND	ND	ND	ND
Nitrofen Permethrin-cis/trans		0.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Procymidone		0.5 0.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Pronamide		0.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Quintozene (Pentachloronitrobenzene)		0.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Tecnazene		0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Tetradifon		0.3	ND ND	ND	ND	ND	ND	ND	ND ND
Tolylfluanid		0.5	ND	ND	ND	ND	ND	ND	ND
Vinclozolin		0.5	ND ND	ND	ND	ND	ND	ND	ND
		5.0			.,,,				

Table C4: Pesticide Results (ug/L)

	Drinking	.	Fall River	West Northfield	Musquodoboit	Lewis Lake	Tatamagouche
Parameter	Water	Detection	(Well 076)	(Well 077)	(Well 078)	(Well 079)	(Well 083)
	Guideline	Limit	20-May-2008	12-Jun-2008	22-May-2008	31-Jul-2008	21-Jul-2008
Herbicides							
Atrazine	5	0.2	ND	ND	ND	ND	ND
De-ethyl Atrazine		0.3	ND	ND	ND	ND	ND
Butylate		0.5	ND	ND	ND	ND	ND
Cyanazine	10	0.5	ND	ND	ND	ND	ND
Desmetryn		0.3	ND	ND	ND	ND	ND
Diphenylamine		0.1	ND	ND	ND	ND	ND
Eptam		0.5	ND	ND	ND	ND	ND
Ethalfluralin		0.5	ND	ND	ND	ND	ND
Hexazinone		0.1	ND	ND	ND	ND	ND
Metalaxyl		0.3	ND	ND	ND	ND	ND ND
Metribuzin	80	0.3	ND	ND	ND	ND	ND ND
Metolachlor	50	0.2	ND	ND	ND	ND	ND ND
Pirimicarb		0.5	ND	ND	ND	ND	ND
Profluralin		0.5	ND	ND	ND	ND	ND ND
Prometryn		0.2	ND	ND	ND	ND	ND
Propazine Simozina	10	0.1	ND	ND ND	ND	ND	ND ND
Simazine Torbuthylazina	10	0.5	ND		ND	ND	
Terbutnya Terbutnya	1	0.1	ND ND	ND ND	ND ND	ND	ND ND
Terbutryn Triallate	1	0.2	ND ND	ND ND	ND ND	ND ND	ND ND
Triadimefon	1	0.3	ND ND	ND ND	ND ND	ND ND	ND ND
Trifluralin	45	0.3	ND ND	ND ND	ND	ND ND	ND ND
	40	0.2	ND	ND	ND	ND	ND
Organochlorine Pesticides	ı	0.5	ND	ND	ND	ND	ND
Alachlor	0.7	0.5	ND (0.03)		ND (0.03)	ND (0.03)	
Aldrin + Dieldrin BHC, alpha-	0.7	0.5 0.3	ND (0.02) ND (0.1)				
BHC, beta-		0.3	ND (0.1)				
Captan	1	1	ND ND	ND (0.1)	ND (0.1)	ND (0.1)	ND ND
Chlorbenside		0.1	ND	ND	ND	ND	ND
Chlordane, alpha-	1	0.5	ND (0.06)				
Chlordane, gamma-	1	0.5	ND (0.06)				
Chlorfenson (Ovex)		0.2	ND	ND	ND	ND	ND
Chlorothalonil (Daconil)		1	ND	ND	ND	ND	ND
Chlorpropham		0.2	ND	ND	ND	ND	ND
Dacthal (DCPA)		0.1	ND	ND	ND	ND	ND
4,4'-DDE		0.01	ND	ND	ND	ND	ND
DDT - orthopara (2,4')		0.01	ND	ND	ND	ND	ND
DDT - parapara (4,4')		0.01	ND	ND	ND	ND	ND
Diallate(e/z)		0.5	ND	ND	ND	ND	ND
Dichlobenil		0.2	ND	ND	ND	ND	ND
Dichloran		0.5	ND	ND	ND	ND	ND
Dichlofluanid		0.5	ND	ND	ND	ND	ND
Dicofol		0.2	ND	ND	ND	ND	ND
Endosulfan I		0.5	ND (0.2)				
Endosulfan II	<u> </u>	0.5	ND (0.2)				
Endosulfan Sulphate	ļ	0.5	ND (0.2)				
Endrin	ļ	0.5	ND (0.02)				
Folpet	ļ	1	ND	ND	ND	ND	ND
Heptachlor	<u> </u>	0.5	ND (0.1)				
Lindane (BHC), gamma-	<u> </u>	0.5	ND (0.1)				
Methidathion	000	0.3	ND	ND	ND	ND	ND
Methoxychlor	900	0.1	ND	ND	ND	ND	ND ND
Mirex	 	0.3	ND	ND	ND	ND	ND
Nitrofen	 	0.2	ND	ND ND	ND ND	ND	ND ND
Permethrin-cis/trans	 	0.5	ND	ND	ND	ND	ND
Procymidone Dranamida	 	0.2	ND	ND	ND	ND	ND
Pronamide	 	0.2	ND	ND ND	ND ND	ND ND	ND ND
Quintozene (Pentachloronitrobenzene)	<u> </u>	0.5	ND ND	ND ND	ND ND	ND ND	ND ND
Tecnazene	 	0.5	ND ND	ND	ND	ND ND	ND
Tetradifon	 	0.2	ND	ND ND	ND	ND	ND ND
Tolylfluanid	 	0.5	ND	ND	ND	ND	
Vinclozolin		0.5	ND	ND	ND	ND	ND

Table C4: Pesticide Results (ug/L)

	Drinking	Detection	Greer		Fraser		Wolfville		
Parameter	Water	Limit	(Well	003)	(Well			010)	
	Guideline	Lillin	23-Nov-2005	18-Dec-2008	10-Dec-2004	3-Dec-2008	22-Dec-2004	18-Dec-2008	
	_								
Organophosphorus Pesticides									
Aspon		0.2	ND	ND	ND	ND	ND	ND	
Azinphos ethyl		0.5	ND	ND	ND	ND	ND	ND	
Azinphos methyl	20	1	ND	ND	ND	ND	ND	ND	
Bromacil		0.1	ND	ND	ND	ND	ND	ND	
Benfluralin		0.1	ND	ND	ND	ND	ND	ND	
Bromophos		0.1	ND	ND	ND	ND	ND	ND	
Bromophos-ethyl		0.3	ND	ND	ND	ND	ND	ND	
Carbophenothion		0.3	ND	ND	ND	ND	ND	ND	
Chlorfenvinphos(e/z)		0.1	ND	ND	ND	ND	ND	ND	
Chlormephos		0.5	ND	ND	ND	ND	ND	ND	
Chlorpyrifos	90	0.2	ND	ND	ND	ND	ND	ND	
Chlorpyriphos-methyl		0.1	ND	ND	ND	ND	ND	ND	
Chlorthiophos		0.3	ND	ND	ND	ND	ND	ND	
Cyanophos		0.2	ND	ND	ND	ND	ND	ND	
Demeton		1	ND	ND	ND	ND	ND	ND	
Diazinon	20	0.3	ND	ND	ND	ND	ND	ND	
Dichlofenthion		0.2	ND	ND	ND	ND	ND	ND	
Dichlorvos/Naled		0.1	ND	ND	ND	ND	ND	ND	
Dicrotophos		0.5	ND	ND	ND	ND	ND	ND	
Dimethoate	20	0.5	ND	ND	ND	ND	ND	ND	
Dioxathion		1	ND	ND	ND	ND	ND	ND	
Disulfoton (Di-Syston)		1	ND	ND	ND	ND	ND	ND	
EPN		0.5	ND	ND	ND	ND	ND	ND	
Ethion		0.2	ND	ND	ND	ND	ND	ND	
Fenchlorphos (Ronnel)		0.1	ND	ND	ND	ND	ND	ND	
Fenitrothion		0.5	ND	ND	ND	ND	ND	ND	
Fensulfothion		0.1	ND	ND	ND	ND	ND	ND	
Fenthion		0.1	ND	ND	ND	ND	ND	ND	
Fonofos		0.1	ND	ND	ND	ND	ND	ND	
Iodofenphos		0.1	ND	ND	ND	ND	ND	ND	
Isofenphos		0.3	ND	ND	ND	ND	ND	ND	
Malaoxon		1	ND	ND	ND	ND	ND	ND	
Malathion	190	0.5	ND	ND	ND	ND	ND	ND	
Mevinphos-cis/trans (Phosdrin)		0.1	ND	ND	ND	ND	ND	ND	
Omethoate		1	ND	ND	ND	ND	ND	ND	
Parathion	50	0.5	ND	ND	ND	ND	ND	ND	
Parathion methyl		0.5	ND	ND	ND	ND	ND	ND	
Phorate (Thimet)	2	0.5	ND	ND	ND	ND	ND	ND	
Phosalone		0.2	ND	ND	ND	ND	ND	ND	
Phosmet		0.2	ND	ND	ND	ND	ND	ND	
Phosphamidon		0.2	ND	ND	ND	ND	ND	ND	
Pirimiphos-ethyl		0.5	ND	ND	ND	ND	ND	ND	
Pirimiphos-methyl		0.2	ND	ND	ND	ND	ND	ND	
Profenophos		0.5	ND	ND	ND	ND	ND	ND	
Pyrazophos		0.1	ND	ND	ND	ND	ND	ND	
Quinalphos		0.3	ND	ND	ND	ND	ND	ND	
Sulfotep		0.1	ND	ND	ND	ND	ND	ND	
Terbufos	1	0.3	ND	ND	ND	ND	ND	ND	
Tetrachlorvinphos (Stirophos)		0.2	ND	ND	-	-	-	ND	
Other				1	1	1			
Hexachlorobenzene		0.2	ND	ND	ND	ND	ND	ND	
Iprodione		1	-	-	-	-	-	-	
Propiconazole		0.5	_	-	-	-	-	_	
		0.0					1	ı	

Shaded values exceed guidelines.

Table C4: Pesticide Results (ug/L)

	Drinking	Detection	Monastery	Point	Aconi	Lawrencetown	Durham	
Parameter	Water Limit		(Well 028)	(Well 030)		(Well 043)	(Well	
	Guideline	Limit	15-Dec-2006	15-Sep-2005	10-Dec-2008	5-Dec-2008	5-Oct-2005	21-Jan-2009
Organophosphorus Pesticides	_							
Aspon	_	0.2	ND	ND	ND	ND	ND	ND
Azinphos ethyl		0.2	ND ND	ND	ND	ND	ND	ND
Azinphos etriyi Azinphos methyl	20	1	ND ND	ND	ND	ND	ND	ND
Bromacil	20	0.1	ND (1)	ND	ND	ND	ND	ND ND
Benfluralin		0.1	ND (1)	ND	ND	ND	ND	ND
Bromophos		0.1	ND	ND	ND	ND	ND	ND
Bromophos-ethyl		0.3	ND	ND	ND	ND	ND	ND
Carbophenothion		0.3	ND	ND	ND	ND	ND	ND
Chlorfenvinphos(e/z)		0.1	ND	ND	ND	ND	ND	ND
Chlormephos		0.5	ND	ND	ND	ND	ND	ND
Chlorpyrifos	90	0.2	ND	ND	ND	ND	ND	ND
Chlorpyriphos-methyl		0.1	ND	ND	ND	ND	ND	ND
Chlorthiophos		0.3	ND	ND	ND	ND	ND	ND
Cyanophos		0.2	ND	ND	ND	ND	ND	ND
Demeton		1	ND	ND	ND	ND	ND	ND
Diazinon	20	0.3	ND	ND	ND	ND	ND	ND
Dichlofenthion		0.2	ND	ND	ND	ND	ND	ND
Dichlorvos/Naled		0.1	ND	ND	ND	ND	ND	ND
Dicrotophos		0.5	ND	ND	ND	ND	ND	ND
Dimethoate	20	0.5	ND	ND	ND	ND	ND	ND
Dioxathion		1	ND	ND	ND	ND	ND	ND
Disulfoton (Di-Syston)		1	ND	ND	ND	ND	ND	ND
EPN		0.5	ND	ND	ND	ND	ND	ND
Ethion		0.2	ND	ND	ND	ND	ND	ND
Fenchlorphos (Ronnel)		0.1		ND	ND	ND	ND	ND
Fenitrothion		0.5	ND	ND	ND	ND	ND	ND
Fensulfothion		0.1	ND	ND	ND	ND	ND	ND
Fenthion		0.1	ND	ND	ND	ND	ND	ND
Fonofos		0.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
lodofenphos Isofenphos		0.1	ND ND	ND	ND	ND	ND ND	ND ND
Malaoxon		1	ND ND	ND ND	ND ND	ND	ND ND	ND ND
Malathion	190	0.5	ND ND	ND	ND	ND	ND	ND ND
Mevinphos-cis/trans (Phosdrin)	190	0.5	ND ND	ND	ND	ND	ND	ND
Omethoate	-	1	ND	ND	ND	ND	ND	ND
Parathion	50	0.5	ND	ND	ND	ND	ND	ND
Parathion methyl	- 55	0.5	ND	ND	ND	ND	ND	ND
Phorate (Thimet)	2	0.5	ND	ND	ND	ND	ND	ND
Phosalone	<u> </u>	0.2	ND	ND	ND	ND	ND	ND
Phosmet		0.2	ND	ND	ND	ND	ND	ND
Phosphamidon		0.2	ND	ND	ND	ND	ND	ND
Pirimiphos-ethyl		0.5	ND	ND	ND	ND	ND	ND
Pirimiphos-methyl		0.2	ND	ND	ND	ND	ND	ND
Profenophos		0.5	ND	ND	ND	ND	ND	ND
Pyrazophos		0.1	ND	ND	ND	ND	ND	ND
Quinalphos		0.3	ND	ND	ND	ND	ND	ND
Sulfotep		0.1	ND	ND	ND	ND	ND	ND
Terbufos	1	0.3	ND	ND	ND	ND	ND	ND
Tetrachlorvinphos (Stirophos)		0.2		ND	ND	ND	ND	ND
Other								
Hexachlorobenzene		0.2	ND	ND	ND	ND	ND	ND
Iprodione		1	-	-	-	-	-	-
Propiconazole		0.5	-	-	i	•	-	-

Table C4: Pesticide Results (ug/L)

	Drinking	Dotostisis	Kentville		Syd	ney	North Grant		
Parameter	Water	Detection Limit	(Well		(Well 050)		(Well 054)		
	Guideline	Limit	15-Jun-2005	7-Nov-2007	15-Sep-2005	11-Dec-2008	12-Dec-2006	22-Jul-2008	
Organophosphorus Pesticides	_								
Aspon		0.2	-	ND	ND	ND	ND	ND	
Azinphos ethyl		0.5	-	ND	ND	ND	ND	ND	
Azinphos citryi Azinphos methyl	20	1	-	ND	ND	ND	ND	ND	
Bromacil	20	0.1	-	ND	ND	ND	ND	ND	
Benfluralin		0.1	_	ND	ND	ND	ND	ND	
Bromophos		0.1	_	ND	ND	ND	ND	ND	
Bromophos-ethyl		0.3	_	ND	ND	ND	ND	ND	
Carbophenothion		0.3	_	ND	ND	ND	ND	ND	
Chlorfenvinphos(e/z)		0.1	-	ND	ND	ND	ND	ND	
Chlormephos		0.5	-	ND	ND	ND	ND	ND	
Chlorpyrifos	90	0.2	_	ND	ND	ND	ND	ND (0.01)	
Chlorpyriphos-methyl		0.1	-	ND	ND	ND	ND	ND	
Chlorthiophos		0.3	-	ND	ND	ND	ND	ND	
Cyanophos		0.2	-	ND	ND	ND	ND	ND	
Demeton		1	-	ND	ND	ND	ND	ND	
Diazinon	20	0.3	ND (2)	ND	ND	ND	ND	ND (0.02)	
Dichlofenthion		0.2	-	ND	ND	ND	ND	ND	
Dichlorvos/Naled		0.1	-	ND	ND	ND	ND	ND	
Dicrotophos		0.5	-	ND	ND	ND	ND	ND	
Dimethoate	20	0.5	-	ND	ND	ND	ND	ND	
Dioxathion		1	-	ND	ND	ND	ND	ND	
Disulfoton (Di-Syston)		1	-	ND	ND	ND	ND	ND	
EPN		0.5	-	ND	ND	ND	ND	ND	
Ethion		0.2	-	ND	ND	ND	ND	ND	
Fenchlorphos (Ronnel)		0.1	-	ND	ND	ND	ND	ND	
Fenitrothion		0.5	-	ND	ND	ND	ND	ND	
Fensulfothion		0.1	-	ND	ND	ND	ND	ND	
Fenthion		0.1	-	ND	ND	ND	ND	ND	
Fonofos		0.1	-	ND	ND	ND	ND	ND	
lodofenphos		0.1	-	ND	ND	ND	ND	ND	
Isofenphos		0.3	-	ND	ND	ND	ND	ND	
Malaoxon		1	-	ND	ND	ND	ND	ND	
Malathion	190	0.5	ND (2)	ND	ND	ND	ND	ND	
Mevinphos-cis/trans (Phosdrin)		0.1	-	ND	ND	ND	ND	ND	
Omethoate		1	-	ND	ND	ND	ND	ND	
Parathion	50	0.5	ND (2)	ND	ND	ND	ND	ND	
Parathion methyl		0.5	ND (2)	ND	ND	ND	ND	ND	
Phorate (Thimet)	2	0.5	-	ND	ND	ND	ND	ND	
Phosalone		0.2	-	ND	ND	ND	ND	ND	
Phosmet		0.2	-	ND	ND	ND	ND	ND	
Phosphamidon		0.2	-	ND	ND	ND	ND	ND	
Pirimiphos-ethyl		0.5	-	ND	ND	ND	ND	ND	
Pirimiphos-methyl		0.2	-	ND	ND	ND	ND	ND	
Profenophos		0.5	-	ND	ND	ND	ND	ND	
Pyrazophos		0.1	-	ND	ND	ND	ND	ND	
Quinalphos		0.3	-	ND	ND	ND	ND	ND	
Sulfotep		0.1	-	ND	ND	ND	ND	ND	
Terbufos	1	0.3	-	ND	ND	ND	ND	ND	
Tetrachlorvinphos (Stirophos)		0.2	-	ND	ND	ND	ND	ND	
Other			ļ						
Hexachlorobenzene		0.2	-	ND	ND	ND	ND	ND	
Iprodione		1	-	ND	-	-	-	ND	
Propiconazole		0.5	-	ND	-	-	-	ND	

Table C4: Pesticide Results (ug/L)

	Drinking	D : ::	Stillw	ater	Sheet Harbour	Hayde	en Lake	Mete	ghan
Parameter	Water	Detection	(Well		(Well 056) (Well 059)		(Well 060)		
	Guideline	Limit	12-Dec-2006	4-Dec-2008	5-Dec-2008	9-Jun-2005	16-Dec-2008	13-Dec-2006	17-Dec-2008
	_								
Organophosphorus Pesticides		0.0	ND	ND	ND	1	ND	ND	ND
Aspon		0.2	ND	ND	ND	-	ND	ND	ND
Azinphos ethyl		0.5	ND	ND	ND	-	ND	ND	ND
Azinphos methyl	20	11	ND	ND	ND	-	ND	ND	ND
Bromacil		0.1	ND	ND	ND	-	ND	ND	ND
Benfluralin		0.1	ND	ND	ND	-	ND	ND	ND
Bromophos		0.1	ND	ND	ND	-	ND	ND	ND
Bromophos-ethyl		0.3	ND	ND	ND	-	ND	ND	ND
Carbophenothion		0.3	ND	ND	ND	-	ND	ND	ND
Chlorfenvinphos(e/z)		0.1	ND	ND	ND	-	ND	ND	ND
Chlormephos		0.5	ND	ND	ND	-	ND	ND	ND
Chlorpyrifos	90	0.2	ND	ND	ND	-	ND	ND	ND
Chlorpyriphos-methyl		0.1	ND	ND	ND	-	ND	ND ND	ND
Chlorthiophos	1	0.3	ND	ND	ND	-	ND	ND	ND
Cyanophos		0.2	ND	ND	ND	-	ND	ND	ND
Demeton		1	ND	ND	ND	-	ND	ND	ND
Diazinon	20	0.3	ND	ND	ND	ND (5)	ND	ND	ND
Dichlofenthion		0.2	ND	ND	ND	-	ND	ND	ND
Dichlorvos/Naled		0.1	ND	ND	ND	-	ND	ND	ND
Dicrotophos		0.5	ND	ND	ND	-	ND	ND	ND
Dimethoate	20	0.5	ND	ND	ND	-	ND	ND	ND
Dioxathion		1	ND	ND	ND	-	ND	ND	ND
Disulfoton (Di-Syston)		1	ND	ND	ND	-	ND	ND	ND
EPN		0.5	ND	ND	ND	-	ND	ND	ND
Ethion		0.2	ND	ND	ND	-	ND	ND	ND
Fenchlorphos (Ronnel)		0.1	ND	ND	ND	-	ND	ND	ND
Fenitrothion		0.5	ND	ND	ND	-	ND	ND	ND
Fensulfothion		0.1	ND	ND	ND	-	ND	ND	ND
Fenthion		0.1	ND	ND	ND	-	ND	ND	ND
Fonofos		0.1	ND	ND	ND	-	ND	ND	ND
lodofenphos		0.1	ND	ND	ND	-	ND	ND	ND
Isofenphos		0.3	ND	ND	ND	-	ND	ND	ND
Malaoxon		1	ND	ND	ND	-	ND	ND	ND
Malathion	190	0.5	ND ND	ND ND	ND	ND (5)	ND ND	ND ND	ND ND
Mevinphos-cis/trans (Phosdrin)		0.1			ND	-			
Omethoate		1	ND	ND	ND		ND	ND	ND
Parathion	50	0.5	ND ND	ND	ND ND	ND (5)	ND ND	ND ND	ND
Parathion methyl	2	0.5 0.5	ND ND	ND ND	ND ND	ND (5)	ND ND	ND ND	ND ND
Phorate (Thimet)			ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND
Phosalone		0.2	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND
Phosmet		0.2	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND
Phosphamidon	_		ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND
Pirimiphos-ethyl	_	0.5 0.2	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND
Pirimiphos-methyl	_	0.2	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND
Profenophos	_	0.5	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND
Pyrazophos Quinalphos		0.1	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND
			ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND
Sulfotep	1	0.1	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND
Terbufos	1	0.3		ND ND	ND ND	-	ND ND	ND ND	ND ND
Tetrachlorvinphos (Stirophos)		U.Z	ND	טט	ND	-	ND	ND	ND
Other		0.0	ND	ND	ND	1	ND	ND	ND
Hexachlorobenzene		0.2	ND	ND	ND	-	ND	ND	ND
Iprodione		11	-	-	-	-	-	-	-
Propiconazole		0.5	-	-	-	-	-	-	-

Table C4: Pesticide Results (ug/L)

	Drinking	Detection	Annapolis Royal (Well 062)			bron	Margaree	
Parameter	Water	Limit			(Well 063)		(Well 064)	
	Guideline	Lillie	9-Nov-2005	26-Nov-2007	9-Jun-2005	17-Dec-2008	14-Dec-2006	8-Dec-2008
Organophosphorus Pesticides	_							
Aspon		0.2	ND	ND	-	ND	ND	ND
Azinphos ethyl		0.5	ND	ND	-	ND	ND	ND
Azinphos methyl	20	1	ND	ND	-	ND	ND	ND
Bromacil		0.1	ND	ND	-	ND	ND	ND
Benfluralin		0.1	ND	ND	-	ND	ND	ND
Bromophos		0.1	ND	ND	-	ND	ND	ND
Bromophos-ethyl		0.3	ND	ND	-	ND	ND	ND
Carbophenothion		0.3	ND	ND	-	ND	ND	ND
Chlorfenvinphos(e/z)		0.1	ND	ND	-	ND	ND	ND
Chlormephos		0.5	ND	ND	-	ND	ND	ND
Chlorpyrifos	90	0.2	ND	ND	-	ND	ND	ND
Chlorpyriphos-methyl		0.1	ND	ND	-	ND	ND	ND
Chlorthiophos		0.3	ND	ND	-	ND	ND	ND
Cyanophos		0.2	ND	ND	-	ND	ND	ND
Demeton		1	ND	ND	-	ND	ND	ND
Diazinon	20	0.3	ND	ND	ND (5)	ND	ND	ND
Dichlofenthion		0.2	ND	ND	-	ND	ND	ND
Dichlorvos/Naled		0.1	ND	ND	-	ND	ND	ND
Dicrotophos		0.5	ND	ND	-	ND	ND	ND
Dimethoate	20	0.5	ND	ND	-	ND	ND	ND
Dioxathion		1	ND	ND	-	ND	ND	ND
Disulfoton (Di-Syston)		1	ND	ND	-	ND	ND	ND
EPN		0.5	ND	ND	-	ND	ND	ND
Ethion		0.2	ND	ND	-	ND	ND	ND
Fenchlorphos (Ronnel)		0.1	ND	ND	-	ND	ND	ND
Fenitrothion		0.5	ND	ND	-	ND	ND	ND
Fensulfothion		0.1	ND	ND	-	ND	ND	ND
Fenthion		0.1	ND	ND	-	ND	ND	ND
Fonofos		0.1	ND	ND	-	ND	ND	ND
Iodofenphos		0.1	ND	ND	-	ND	ND	ND
Isofenphos		0.3	ND	ND	-	ND	ND	ND
Malaoxon		1	ND	ND	-	ND	ND	ND
Malathion	190	0.5	ND	ND	ND (5)	ND	ND	ND
Mevinphos-cis/trans (Phosdrin)		0.1	ND	ND	-	ND	ND	ND
Omethoate		1	ND	ND	-	ND	ND	ND
Parathia	50	0.5	ND	ND	ND (5)	ND	ND ND	ND
Parathion methyl	2	0.5	ND ND	ND ND	ND (5)	ND ND	ND ND	ND ND
Phorate (Thimet) Phosalone		0.5	ND ND	ND ND	-	ND ND	ND ND	ND ND
			ND ND	ND ND	-		ND ND	ND ND
Phosmet		0.2	ND ND	ND ND	-	ND ND	ND ND	ND ND
Phosphamidon		0.2	ND ND	ND ND	-	ND ND	ND ND	ND ND
Pirimiphos-ethyl Pirimiphos-methyl		0.5 0.2	ND ND	ND ND	-	ND ND	ND ND	ND ND
Profenophos		0.2	ND ND	ND ND	-	ND ND	ND ND	ND ND
Pyrazophos		0.5	ND ND	ND ND	-	ND ND	ND ND	ND ND
Quinalphos		0.1	ND ND	ND ND	-	ND ND	ND ND	ND ND
Sulfotep		0.3	ND ND	ND ND	-	ND ND	ND ND	ND ND
Terbufos	1	0.1	ND	ND ND	-	ND ND	ND ND	ND
Tetrachlorvinphos (Stirophos)	'	0.3	ND	ND ND	-	ND ND	ND ND	ND ND
Other	1	0.2	שאו	שאו	_	IND	ם או	אט
	1	0.2	ND	ND	_	ND	ND	ND
Hexachlorobenzene	_							ND
Iprodione		1	-	ND ND	-	-	-	-
Propiconazole		0.5	_	ND	-	-	-	-

Table C4: Pesticide Results (ug/L)

Parameter Water Coulombin (Well 073) (Well 073)		Drinking		Dalem	Lake	Amh	erst	Kelley River	Atlanta	Sheffield Mills
Crampchosphorus Pesticides	Parameter		Detection							(Well 075)
Aspon			Limit	, -	/	, -	- /	(/	(/	10-Sep-2007
Aspon	D	_								
Aziaphos ently			0.0	ND	ND	ND	ND	ND	ND	ND
Azinphos methy										
Bonnacid	-									
Benfuralin		20								
Bromophos		_								
Bomophose-ethyl		_								
Carbophenothion			_							
Chlorfenvinghos(et/z)	,									
Chloremprios										
Chloryrifos	. , ,									
Chlorthiophos 0.3		90		ND	ND	ND	ND	ND	ND	ND
Cyanophos 0.2 ND	Chlorpyriphos-methyl		0.1	ND	ND	ND	ND	ND	ND	ND
Demetron	Chlorthiophos		0.3	ND	ND	ND	ND	ND	ND	ND
Discription 20	Cyanophos		0.2	ND	ND		ND	ND	ND	ND
Dichlerention 0.2 ND	Demeton		1	ND	ND	ND	ND	ND		ND
Dichloros/Naled	Diazinon	20	0.3							ND
Dicrotophos										
Dimethoate			_							
Dioxathion	·									
Disulfoton (Di-Syston)		20								
EPN 0.5 ND N										
Ethion										
Fenchlorphos (Ronnel)										
Fenitrothion		_								
Fensulfothion		_								
Fenthion		_								
Fonofos										
Iodofenphos 0.1										
Sofenphos 0.3										
Malaoxon 1 ND ND <t< td=""><td>•</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	•		_							
Mevinphos-cis/trans (Phosdrin) 0.1 ND				ND	ND	ND	ND	ND	ND	ND
Omethoate 1 ND <	Malathion	190	0.5	ND	ND	ND	ND	ND	ND	ND
Parathion	Mevinphos-cis/trans (Phosdrin)		0.1	ND	ND	ND	ND	ND	ND	ND
Parathion methyl 0.5 ND	Omethoate		1	ND	ND	ND	ND	ND	ND	ND
Phorate (Thimet) 2		50								
Phosalone 0.2 ND										
Phosmet 0.2 ND ND ND ND ND ND ND N	,	2								
Phosphamidon			_							
Pirimiphos-ethyl		-								
Pirimiphos-methyl		_								
Profenophos 0.5		-								
Pyrazophos 0.1 ND	, ,	_								
Quinalphos 0.3 ND										
Sulfotep 0.1 ND		-								
Terbufos 1 0.3 ND <		_								
Tetrachlorvinphos (Stirophos)		1								
Other Incompanies No.2 ND										
Hexachlorobenzene 0.2 ND			٥.۷	ואט	ND	IAD	שאו	IAD	IAD	140
Iprodione			0.2	ND	ND	ND	ND	ND	ND	ND
		_								
Propiconazole 0.5										

Notes:

AO = Aesthetic Objective.

ND = not detected

ND() = not detected at the elevated detection limit shown in brackets ()

All guidelines are health-based MACs or IMACs, unless

otherwise indicated.

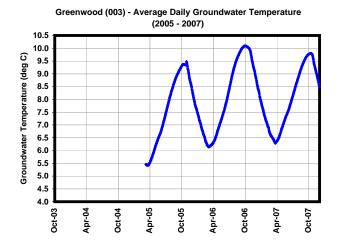
Shaded values exceed guidelines.

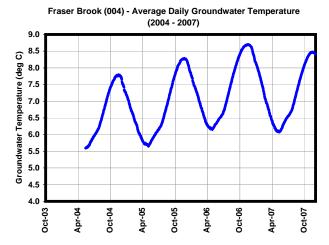
Table C4: Pesticide Results (ug/L)

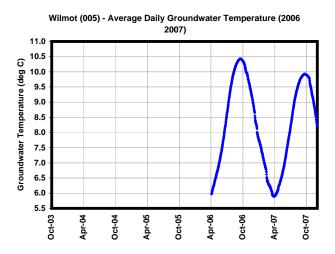
	Drinking	D-44:	Fall River	West Northfield	Musquodoboit	Lewis Lake	Tatamagouche
Parameter	Water	Detection	(Well 076)	(Well 077)	(Well 078)	(Well 079)	(Well 083)
	Guideline	Limit	20-May-2008	12-Jun-2008	22-May-2008	31-Jul-2008	21-Jul-2008
Organophosphorus Pesticides							
Aspon		0.2	ND	ND	ND	ND	ND
Azinphos ethyl		0.5	ND	ND	ND	ND	ND
Azinphos methyl	20	1	ND	ND	ND	ND	ND
Bromacil		0.1	ND	ND	ND	ND	ND
Benfluralin		0.1	ND	ND	ND	ND	ND
Bromophos		0.1	ND	ND	ND	ND	ND
Bromophos-ethyl		0.3	ND	ND	ND	ND	ND
Carbophenothion		0.3	ND	ND	ND	ND	ND
Chlorfenvinphos(e/z)		0.1	ND	ND	ND	ND	ND ND
Chlormephos	00	0.5	ND (0.04)	ND ND (0.04)	ND ND (0.04)	ND ND (0.04)	ND ND (0.04)
Chlorpyrifos	90	0.2	ND (0.01) ND				
Chlorpyriphos-methyl Chlorthiophos		0.1	ND ND	ND ND	ND ND	ND ND	ND ND
Cyanophos		0.3	ND ND	ND ND	ND ND	ND	ND ND
Demeton	-	1	ND ND	ND ND	ND ND	ND	ND ND
Diazinon	20	0.3	ND (0.02)				
Dichlofenthion	20	0.3	ND (0.02)				
Dichlorvos/Naled		0.2	ND	ND	ND	ND	ND ND
Dicrotophos		0.5	ND	ND	ND ND	ND	ND
Dimethoate	20	0.5	ND	ND	ND	ND	ND
Dioxathion	20	1	ND	ND	ND	ND	ND ND
Disulfoton (Di-Syston)		1	ND	ND	ND	ND	ND ND
EPN		0.5	ND	ND	ND	ND	ND
Ethion		0.2	ND	ND	ND	ND	ND
Fenchlorphos (Ronnel)		0.1	ND	ND	ND	ND	ND
Fenitrothion		0.5	ND	ND	ND	ND	ND
Fensulfothion		0.1	ND	ND	ND	ND	ND
Fenthion		0.1	ND	ND	ND	ND	ND
Fonofos		0.1	ND	ND	ND	ND	ND
Iodofenphos		0.1	ND	ND	ND	ND	ND
Isofenphos		0.3	ND	ND	ND	ND	ND
Malaoxon		1	ND	ND	ND	ND	ND
Malathion	190	0.5	ND	ND	ND	ND	ND
Mevinphos-cis/trans (Phosdrin)		0.1	ND	ND	ND	ND	ND
Omethoate		1	ND	ND	ND	ND	ND
Parathion	50	0.5	ND	ND	ND	ND	ND
Parathion methyl		0.5	ND	ND	ND	ND	ND
Phorate (Thimet)	2	0.5	ND	ND	ND	ND	ND
Phosalone		0.2	ND	ND	ND	ND	ND
Phosmet	_	0.2	ND	ND	ND	ND	ND
Phosphamidon		0.2	ND	ND	ND	ND	ND
Pirimiphos-ethyl		0.5	ND ND	ND ND	ND ND	ND ND	ND ND
Pirimiphos-methyl		0.2	ND	ND ND	ND ND	ND ND	ND ND
Profenophos		0.5	ND ND	ND ND	ND ND	ND ND	ND ND
Pyrazophos Quinalphos		0.1	ND ND	ND ND	ND ND	ND ND	ND ND
Quinaipnos Sulfotep		0.3	ND ND	ND ND	ND ND	ND ND	ND ND
Terbufos	1	0.1	ND ND	ND ND	ND ND	ND ND	ND ND
Tetrachlorvinphos (Stirophos)	'	0.3	ND ND	ND ND	ND ND	ND ND	ND ND
Other		U.Z	IND	IND	חאו	מאו	שוו
		0.0	ND	ND	ND	ND	ND
Hexachlorobenzene	_	0.2	ND	ND ND	ND ND	ND ND	ND ND
Iprodione Propiognazala	_	1 0.5	ND ND	ND ND	ND ND	ND ND	ND ND
Propiconazole	1	0.5	ND	ND	ND	ND	טא

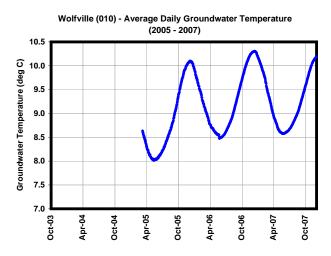
Table C5: Tritium Results

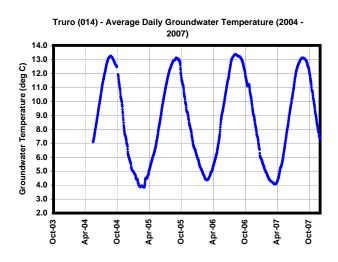
Observation Well	Date Sampled	Tritium	Accuracy	Age Estimate
		Level (TU)	(+/- TU)	(Recent is >1952)
Wolfville (010)	22-Dec-2004	4.7	0.4	Mix/Recent
Hayden Lake (059)	9-Jun-2005	3.4	0.3	Mix
Hebron (063)	9-Jun-2005	4.6	0.4	Mix/Recent
Kentville (048)	15-Jun-2005	3.8	0.3	Mix
Point Aconi (030)	15-Sep-2005	3.62	0.34	Mix
Sydney (050)	15-Sep-2005	4.92	0.43	Mix/Recent
Durham (045)	5-Oct-2005	2.04	0.28	Mix
Annapolis Royal (062)	9-Nov-2005	0.27	0.17	Old
Greenwood (003)	23-Nov-2005	5.76	0.47	Recent
Meteghan (060)	12-Dec-2006	0.46	0.14	Old
North Grant (054)	13-Dec-2006	1.95	0.22	Mix
Stillwater (055)	13-Dec-2006	3.82	0.34	Mix
Margaree (064)	14-Dec-2006	0.41	0.14	Old
Dalem Lake (069)	14-Dec-2006	3.61	0.3	Mix
Monastery (028)	15-Dec-2006	0.94	0.17	Old
Amherst (071)	16-Dec-2006	4.0	0.32	Mix/Recent
Kelley River (073)	12-Jan-2007	3.78	0.32	Mix

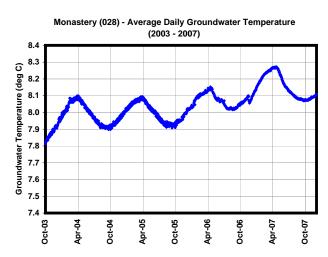

Age Estimate Guide	Tritium Level (TU)
Recent (recharged after 1952)	>5
Mixture of recent and old	1 to 5
Old (recharged before 1952)	<1
Source: Clark and Fritz, 1997	

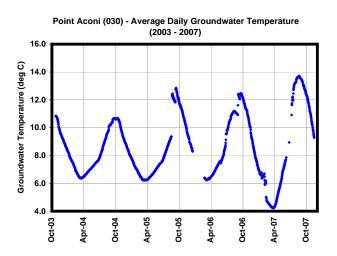

Table C6: Perchlorate Results

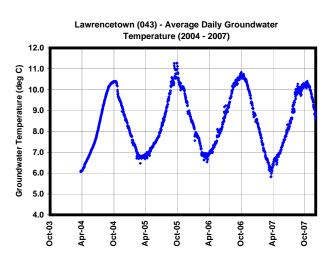

Observation Well	Date Sampled	Recommended Guidance	Detection Limit	Perchlorate Result
		Value (Health Canada, 2007)		
		(ug/L)	(ug/L)	(ug/L)
Fraser Brook (004)	10-Dec-2004	6	0.2	ND
Wolfville (010)	22-Dec-2004	6	0.2	ND
Hayden Lake (059)	9-Jun-2005	6	0.011	0.014
Hebron (063)	9-Jun-2005	6	0.011	ND
Kentville (048)	15-Jun-2005	6	0.011	0.05
Point Aconi (030)	15-Sep-2005	6	0.011	ND
Sydney (050)	15-Sep-2005	6	0.011	ND
Durham (045)	5-Oct-2005	6	0.011	ND
Annapolis Royal (062)	9-Nov-2005	6	0.011	ND
Greenwood (003)	23-Nov-2005	6	0.011	ND
Monastery (028)	15-Dec-2006	6	0.011	ND

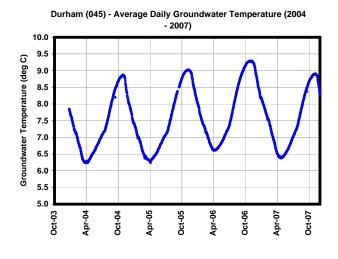

ND = Not Detected

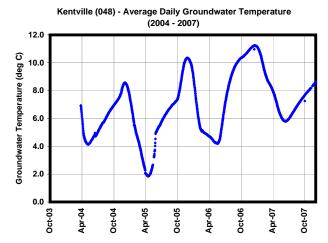

APPENDIX D GROUNDWATER TEMPERATURE GRAPHS

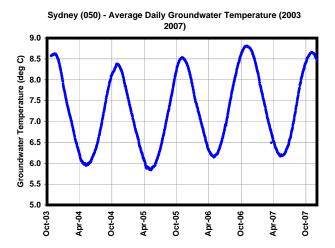


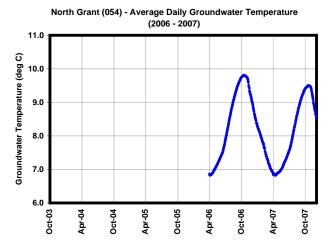


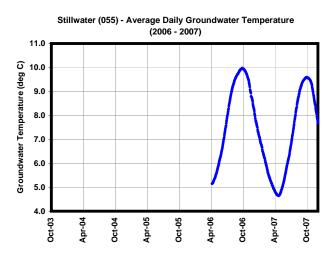


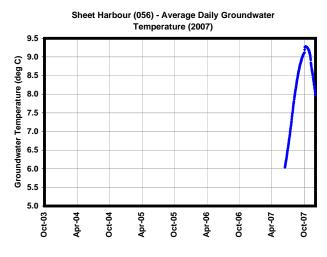


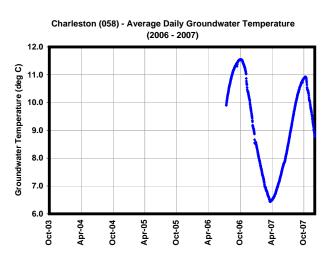


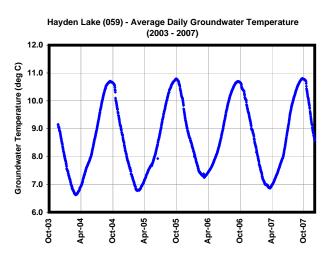


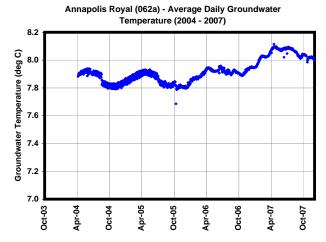


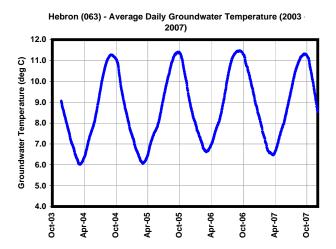


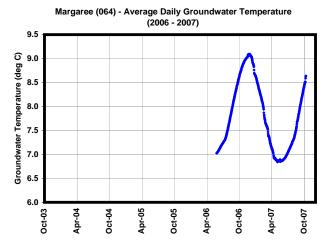


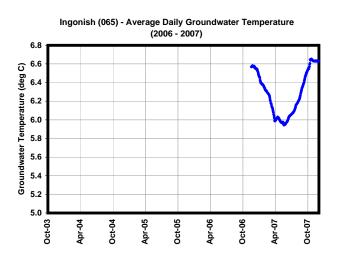


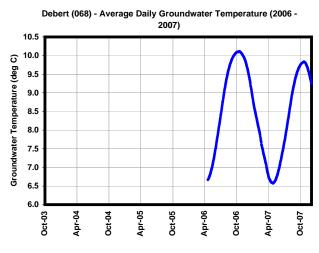


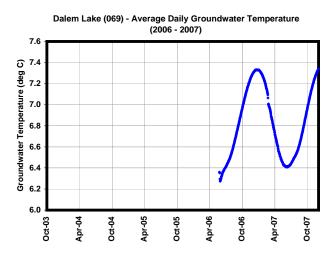


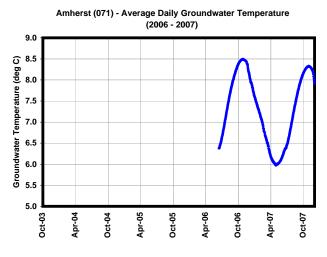


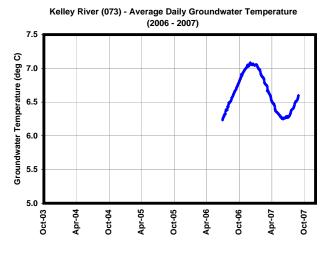


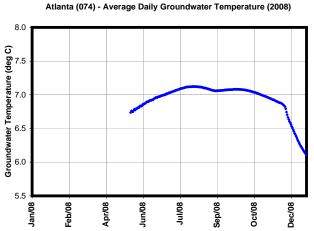


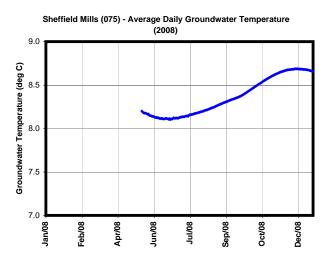


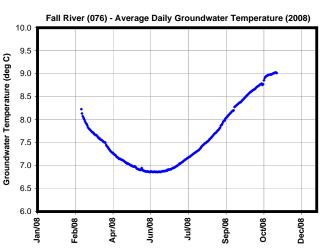


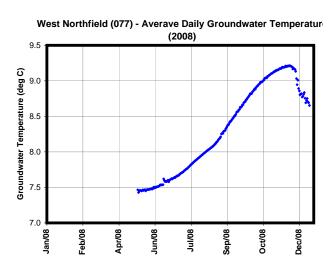


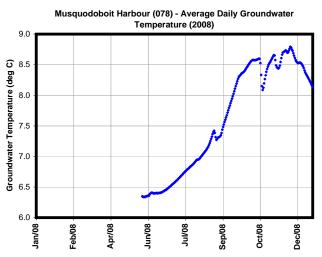


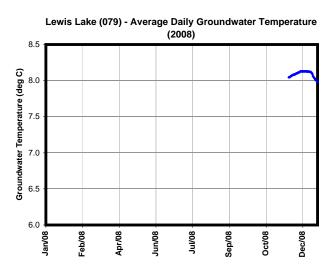












APPENDIX E WATER LEVEL TREND ANALYSIS

Table E1. Water Level Statistical Trend Analyses

Observation Well	Well	First	Last	n ¹	Mann-Ken	dall Statistics	0 - 6 1 14
Observation Well	Number	Year	Year	n	S ²	Q ³ (cm/year)	Confidence Level ⁴
Greenwood	003	1966	2008	20	-20	-0.2	70%
Fraser Brook	004	1966	2008	19	65	0.3	95%
Wilmot	005	1966	2008	18	9	0.1	60%
Wolfville	010	1969	2008	20	-138	-2.5	99%
Truro	014	1971	2008	16	18	2.2	75%
Monastery	028	1976	2008	10	-17	-3.9	90%
Point Aconi	030	1976	2008	16	16	0.5	75%
Lawrencetown	043	1978	2008	12	-16	-2.4	80%
Durham	045	1979	2008	23	81	2.4	95%
Kentville	048	1980	2008	15	-51	-1.0	99%
Sydney	050	1984	2008	14	-65	-5.5	99%
North Grant	054	1987	2008	7	NA	NA	NA
Stillwater	055	1987	2008	6	NA	NA	NA
Sheet Harbour	056	1987	2008	6	NA	NA	NA
Charleston	058	1988	2008	5	NA	NA	NA
Hayden Lake	059	1988	2008	14	43	1.2	95%
Meteghan	060	1987	2008	8	NA	NA	NA
Annapolis Royal	062	1990	2008	7	NA	NA	NA
Hebron	063	1990	2008	7	NA	NA	NA
Margaree	064	1990	2008	7	NA	NA	NA
Ingonish	065	1990	2008	6	NA	NA	NA
Debert	068	1993	2008	3	NA	NA	NA
Dalem Lake	069	1992	2008	5	NA	NA	NA
Amherst	071	1993	2008	2	NA	NA	NA
Kelley River	073	2006	2008	2	NA	NA	NA
Atlanta	074	2008	2008	<1	NA	NA	NA
Sheffield Mills	075	2008	2008	<1	NA	NA	NA
Fall River	076	2008	2008	<1	NA	NA	NA
West Northfield	077	2008	2008	<1	NA	NA	NA
Musquodoboit Hbr	078	2008	2008	<1	NA	NA	NA
Lewis Lake	079	2008	2008	<1	NA	NA	NA

- 1. n is the number of "usable" years. For a year of data to be considered a "usable", data must be available for at least 75% of the year, unless otherwise noted. Trend analyses were not completed for wells with less than 10 years of usable data.
- 2. S is the Mann-Kendall statistic, which is based on the differences between data values. Positive values indicate upward trends and negative values indicate downward trends (Gilbert, 1987).
- 3. Q is Sen's estimator of slope. Positive values indicate upward trends and negative values indicate downward trends (Gilbert, 1987).
- 4. The trend is considered to be statistically significant if the confidence level is at least 80%.
- 5. NA = Not Applicable (there were insufficient data to complete a trend analysis at this well).