

NOVA SCOTIA
GROUNDWATER
OBSERVATION WELL
NETWORK

2008 REPORT

Prepared: December 2008

TABLE OF CONTENTS

			PAGE NO.			
EXE	CUTIV	E SUMMARY	iii			
ACK	INTRODUCTION 1 1.1 Historical Background 1 1.2 Activities Completed in 2007 2 1.3 Description of the Current Network 2					
1.0						
	1.3	Description of the Current Network	2			
2.0	MET	THODS	6			
	2.1	Groundwater Level Monitoring	6			
		2.1.1 Field Methods				
		2.1.2 Data Assessment Methods	6			
	2.2	Groundwater Quality Monitoring				
		2.2.1 Field Methods				
		2.2.2 Data Assessment Methods	10			
3.0	RESI	ULTS	12			
	3.1	Greenwood (003)				
	3.2	Fraser Brook (004)				
	3.3	Wilmot (005)				
	3.4	Wolfville (010)	24			
	3.5	Truro (014)				
	3.6	Monastery (028)				
	3.7	Point Aconi (030)	37			
	3.8	Lawrencetown (043)	41			
	3.9	Durham (045)				
	3.10	Kentville (048)				
	3.11	Sydney (050)				
	3.12	North Grant (054)				
	3.13	Stillwater (055)				
	3.14	Sheet Harbour (056)				
	3.15	Charleston (058)				
	3.16	Hayden Lake (059)				
	3.17	Meteghan (060)				
	3.18	Annapolis Royal (062)				
	3.19	Hebron (063)				
	3.20	Margaree (064)	91			

	3.21	Incomish (065)	05
		Ingonish (065)	93
	3.22	Debert (068)	
	3.23	Dalem Lake (069)	
	3.24	Amherst (071)	107
	3.25	Kelley River (073)	
	3.26	Atlanta (074)	
	3.27	Sheffield Mills (075)	118
4.0	SUM	MARY & CONCLUSIONS	
	4.1	Groundwater Levels	122
	4.2	Groundwater Quality	
5.0	REFI	ERENCES	128

APPENDICES

APPENDIX A: Well Logs

APPENDIX B: Groundwater Chemistry Results APPENDIX C: Groundwater Temperature Graphs APPENDIX D: Water Level Trend Analyses

EXECUTIVE SUMMARY

The Nova Scotia Groundwater Observation Well Network was established in 1965 to monitor groundwater levels across the province. The network currently monitors both groundwater levels and groundwater quality and the results are used to: manage groundwater resources; assess drought conditions; evaluate the impact of human activities on groundwater; and, evaluate long-term groundwater trends. At the beginning of 2007 the network included 24 observation wells and three additional wells were added during 2007. This report presents the monitoring results collected up to the end of 2007.

The observation wells are monitored with telemetric dataloggers that record water levels and groundwater temperature every hour and transmit the data to a central computer. The number of years of groundwater level data available at each observation well ranges from one to 41 years. Groundwater samples are collected from the wells periodically and tested for a number of parameters, including: general chemistry, metals, pesticides, volatile organic compounds (VOCs), tritium and perchlorate.

The groundwater level monitoring results indicate that seven of the 27 observation wells exhibit statistically significant groundwater level trends, with four having small upward trends and three having small downward trends. The downward trends tend to be larger than the upward trends, however, the size of the trends in all cases is relatively small. The maximum observed water level decline was approximately 1.0 m. The three wells with downward trends are located in municipal wellfields and, therefore, groundwater levels in these areas have probably been lowered due to wellfield pumping.

The groundwater quality monitoring results indicate that five of the 27 wells exceeded health-based drinking water guidelines. The parameters that exceeded health-based guidelines included: arsenic (at two wells), lead (one well), nitrate (one well) and uranium (one well). Arsenic and uranium are known to occur in groundwater in certain areas of the province due to their naturally-occurring presence in soil and bedrock. Nine of the 27 wells exceeded aesthetic drinking water guidelines for the following parameters: manganese (at six wells), iron (four wells), chloride (one well), pH (two wells) and turbidity (four wells). All of these parameters are naturally-occurring water quality

problems that are routinely encountered in water wells in Nova Scotia and elsewhere.

The water quality results show that none of the observation wells exceeded drinking water guidelines for VOCs, pesticides or perchlorate. However, two VOCs were detected in three observation wells at very low levels (i.e., chloroform at 3.2 ug/L in one well, and toluene at 1 ug/L in two other wells). Perchlorate was also detected at two observation wells at very low levels (i.e., 100 times less than the recommended Health Canada guidance value for perchlorate). No pesticides were detected in any of the observation wells.

The tritium tests were used to assess the age of the groundwater in the observation wells. The results indicated that most of the wells tested for tritium (i.e., 13 of 17 wells) contained either recent water (recharged after 1952), or a mix of recent and old water (recharged before and after 1952). Only four of the 17 wells tested for tritium contained purely old water (recharged before 1952). The results suggest that groundwater in these aquifers is recharged relatively quickly. This is encouraging from a water quantity point of view because it suggests the aquifers are being regularly replenished with new water. However, it also indicates that the aquifers are vulnerable to contamination because contaminants released at the surface will be carried into the aquifer relatively quickly. This emphasizes the importance of source water protection plans in the province to ensure that groundwater is kept clean.

ACKNOWLEDGMENTS

This report was prepared by staff at Nova Scotia Environment. Both the report and the operation of the Nova Scotia Groundwater Observation Well Network have benefitted from the valuable input of many dedicated individuals. In particular, we gratefully acknowledge the cooperation of the many property owners with observation wells located on their properties. Their continued participation in the program is vital to the success of the network.

We would also like to thank Natural Resources Canada (Groundwater Program) for assistance with the groundwater level trend analysis methods used in this report, Environment Canada (National Water Research Institute) for completing the perchlorate analyses, and the Canada-Nova Scotia Water Supply Expansion Program for providing financial assistance for purchasing groundwater monitoring equipment to expand the network.

1.0 INTRODUCTION

The Nova Scotia Groundwater Observation Well Network was established in 1965 to monitor groundwater levels across the province. The size of the network has varied over the years, however, at the beginning of 2007 the network included 24 observation wells, with three additional wells being added during 2007. The network is currently operated by Nova Scotia Environment (NSE) and is used for monitoring both groundwater levels and groundwater quality. The monitoring results are used to help manage groundwater resources, assess drought conditions, evaluate the impact of human activities on groundwater and evaluate long-term groundwater trends. This report presents the monitoring results up to the end of 2007.

1.1 Historical Background

When the observation well network was initially established in 1965, it consisted of wells that were installed as part of the International Hydrologic Decade (1965-1974) and as part of regional groundwater resource evaluation studies undertaken in Nova Scotia during the 1960's and 1970's. Most of these wells were constructed specifically for observation purposes or drilled as test holes and then converted to observation wells. During the 1970's and 80's the network continued to expand until it included as many as 40 active wells, but many of these were abandoned in the 1990's. By 2003, the network consisted of 11 active wells.

After 2003, the network began expanding again. Three wells were added between 2003 and 2005, bringing the total number of wells to 14. Ten observation wells were added to the network in 2006, bringing the total number of wells to 24. All of the wells added to the network up to the end of 2006 were existing wells that were once part of the historic network, but were no longer being actively monitored.

Up until the 1990's, groundwater levels in each well were monitored using mechanical Stevens F Type chart recorders, which recorded water level changes on a paper chart that was retrieved from the field on a monthly or quarterly basis. In the late 1990's the chart recorders began to be replaced with electronic dataloggers and in 2003 an initiative began to equip the entire network with telemetric dataloggers which are capable of transmitting the monitoring results by cell phone to a

central computer.

Two reports have been previously published on the network: "Groundwater Hydrographs in Nova Scotia 1965-1981" (McIntosh, 1984) and "Nova Scotia Groundwater Observation Well Network - 2007 Report" (NS Environment and Labour, 2007).

In 2006, a web page was launched that provides public access to the network's results. The website can be found at: http://www.gov.ns.ca/nse/water/groundwater/groundwaternetworkwells.asp. The webpage is updated with new groundwater level data on a quarterly basis. The majority of the historical hard copy water level data has been digitized and is available in spreadsheet format on the above referenced webpage.

1.2 Activities Completed in 2007

Three wells were added to the network in 2007, including: Sheet Harbour (056), Atlanta (074) and Sheffield Mills (075). Sheet Harbour (056) was an existing well that was once part of the historic observation well network, but was no longer being monitored. Atlanta (074) and Sheffield Mills (075) were drilled in 2007 by NSE. Water quality sampling was carried out at five observation wells, including: Wilmot (005), Monastery (028), Kentville (048), Annapolis River (062), Atlanta (074) and Sheffield Mills (075).

1.3 Description of the Current Network

As of December 31st, 2007 the observation well network consisted of 27 wells. The wells are listed in Table 1.1 and the well locations are shown in Figure 1.1. As shown in Table 1.1, the number of years since monitoring began at each well is variable, but ranges from one to 41 years and can be summarized as follows: wells with more than 40 years of data (3 wells); 30 years (4 wells); 20 years (8 wells); 10 years (9 wells); and less than 10 years (3 wells). Note that these figures do not necessarily reflect the number of years of monitoring data available for each well because there are data gaps in the records.

Table 1.1: Wells in the NS Groundwater Observation Well Network (as of Dec 2007)

No.	Well Name	Observation	County	Year	No. of Years
		Well ID		Monitoring	Since
		Number		Started	Monitoring
					Began
1	Greenwood (003)	003	Kings	1966	41
2	Fraser Brook (004)	004	Colchester	1966	41
3	Wilmot (005)	005	Annapolis	1966	41
4	Wolfville (010)	010	Kings	1969	38
5	Truro (014)	014	Colchester	1971	36
6	Monastery (028)	028	Antigonish	1976	31
7	Point Aconi (030)	030	Cape Breton	1976	31
8	Lawrencetown (043)	043	Halifax	1978	29
9	Durham (045)	045	Pictou	1979	28
10	Kentville (048)	048	Kings	1980	27
11	Sydney (050)	050	Cape Breton	1984	23
12	North Grant (054)	054	Antigonish	1987	20
13	Stillwater (055)	055	Guysborough	1987	20
14	Sheet Harbour (056)	056	Halifax	1987	20
15	Charleston (058)	058	Queens	1988	19
16	Hayden Lake (059)	059	Shelburne	1988	19
17	Meteghan (060)	060	Digby	1987	20
18	Annapolis Royal (062)	062	Digby	1990	17
19	Hebron (063)	063	Yarmouth	1990	17
20	Margaree (064)	064	Inverness	1990	17
21	Ingonish (065)	065	Victoria	1996	11
22	Debert (068)	068	Colchester	1993	14
23	Dalem Lake (069)	069	Victoria	1992	15
24	Amherst (071)	071	Cumberland	1993	14
25	Kelley River (073)	073	Cumberland	2006	1
26	Atlanta (074)	074	Kings	2007	<1
27	Sheffield Mills (075)	075	Kings	2007	<1

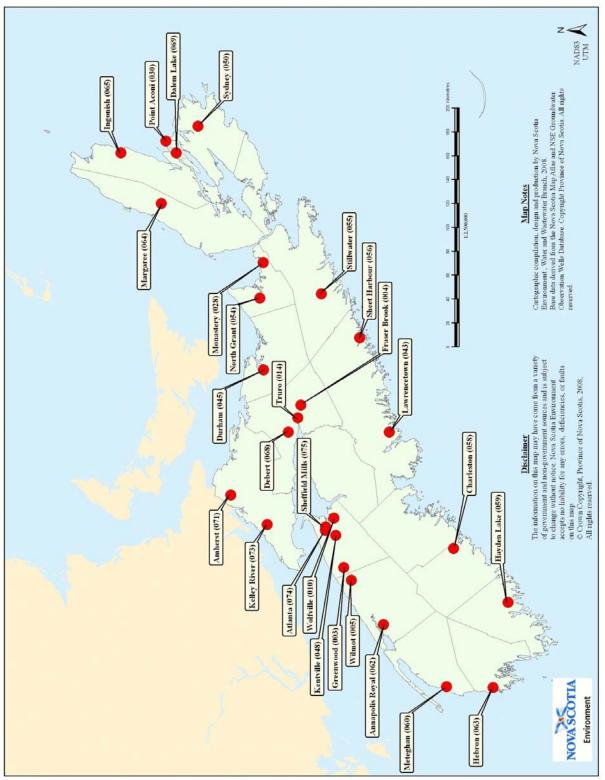


Figure 1.1: Map of Observation Well Locations

Currently, all of the observation wells in the network have dataloggers that record water levels and temperature every hour. The majority of wells also have telemetric systems that transmit the data by cell phone to a central computer. Groundwater samples are collected from the wells periodically and tested for a number of parameters, including general chemistry, metals, pesticides, volatile organic compounds, tritium and perchlorate. Most of the wells in the network have been sampled once and each well will be re-sampled at approximately two to five year intervals to monitor changes in water quality.

Note that the observation wells listed in Table 1.1 are named based on the nearest town or water body and the observation well number that is assigned to the well when it is added to the network. For example, "Truro (014)" is located in Truro and its network well ID number is 014. The three digit observation well ID numbers have been in use since the network was developed in 1965. They are unique and are not reused, even if a well is abandoned. Some of the observation wells in this report have been renamed since the initial 1984 network report in order to adhere to a consistent naming protocol. For example, "Truro (014)" was originally named "Truro 421" in the 1984 network report. The "421" was originally included in the well name because it was called "Department of Mines Test Hole 421" at the time of drilling. Because some of the original well names have changed, readers who wish to compare historical results from the 1984 network report with this report should cross-reference wells using the three digit observation well ID number.

2.0 METHODS

2.1 Groundwater Level Monitoring

2.1.1 Field Methods

Each observation well in the network is equipped with a pressure transducer, temperature sensor and electronic datalogger that records water levels and water temperature every hour. There is also a second pressure transducer located above the water in each well that monitors atmospheric pressure so the water level measurements can be adjusted for atmospheric pressure changes. The majority of wells are also equipped with telemetric systems that transmit the monitoring data by cell phone to a central computer system once a week.

The wells are visited approximately every six months for field verification of the water level data and to change the telemetric system batteries. Water levels are verified in the field with a manual electronic water level tape.

After the raw water level data is collected, it goes through several adjustments before being added to the spreadsheet database. Data corrections are applied if the field measurement differs from the pressure transducer readings by more than 2.1 cm, which is the reported accuracy of the pressure transducers. If corrections are necessary, they are made by applying a linear adjustment between two field verified water levels. Next, the hourly water level data is averaged to obtain a single average daily water level for each day. Finally, the water level data are converted to a water level elevation (relative to mean sea level) using the elevation of the top of the well casing.

2.1.2 Data Assessment Methods

The water levels at each well were assessed for changes and long-term trends for the entire period on record, up to the end of 2007. The water level assessments were carried out by visual inspection of the water level graphs and statistical tests. The Mann-Kendall trend test (Gilbert, 1987) was used to determine if there was a trend in the water level data (i.e. upward trend, downward trend or no trend). This test is one of the most commonly used statistical methods to evaluate trends in environmental data and has been used in other studies in Nova Scotia to assess groundwater level trends (Rivard et. al., in progress). The rate of annual change at each well was determined using the

Sen's slope estimator (Gilbert, 1987), a commonly-used linear slope estimator in environmental statistics.

The results of the statistical trend analyses are presented in Appendix D. Trend analyses were only completed for wells with four or more "usable" years of data. A year was considered usable if groundwater level data were available for at least 75% of the days in the year. A trend for a well was considered "statistically significant" if there was 10 or more "usable" years. Trends were considered "statistically significant" if there was at least an 80% confidence that the trend was real. Note that "statistically significant" means there is statistical evidence that there is a trend present, but it does not necessarily mean the trend is large.

If groundwater level changes or trends were identified, possible reasons for the change or trend were evaluated. Several factors can cause groundwater levels to fluctuate. The most common causes of groundwater level changes in Nova Scotia include: precipitation, seasonal variations, groundwater pumping and tidal effects. Each of these factors is discussed in further detail in the following paragraphs.

Fluctuations Due to Precipitation

Precipitation, such as rainfall or melting snow, will either run off into streams and surface water bodies, be intercepted by vegetation, or seep into the ground. The portion that seeps into the ground is known as groundwater recharge. Groundwater recharge is difficult to measure, however, it has been estimated that recharge rates in Nova Scotia range from about 8 to 25% of precipitation. Groundwater recharge causes the groundwater levels in an aquifer to rise, although there is usually a delay between the precipitation event and when the groundwater level rises. The amount of precipitation and groundwater recharge varies throughout the province. Nova Scotia weather stations show the following mean annual total precipitations at selected locations between 1971 and 2000: Greenwood 1127 mm, Halifax 1452 mm, Sydney 1505 mm, and Yarmouth 1274 mm (Environment Canada, 2007).

Long-term trends in precipitation due to climate change can result in corresponding trends in groundwater levels. In cases where observation wells showed a significant groundwater level trend, the nearest climate station data was also evaluated for precipitation trends to assess whether or not climate change could be affecting groundwater levels.

Seasonal Fluctuations

In Nova Scotia, the spring and fall tend to have the highest amounts of precipitation and the summers tend to be drier. This seasonal variation is reflected in groundwater levels in the province's aquifers, which usually have higher water levels in the spring and lower levels in the summer. The lower groundwater levels in the late months of summer are the result of several factors, including: decreased precipitation, increased evaporation and the increased interception of water by vegetation. The typical seasonal variation in groundwater levels in Nova Scotia aquifers is usually less than about three metres.

Season fluctuations in groundwater levels in Nova Scotia can often be observed in the three typical patterns they produce in observation well hydrographs. These usually include two wet seasons (spring and fall) with rising groundwater levels, and a dry season in the summer with declining groundwater levels, as described below:

- 1. Spring Recharge rising groundwater levels between March and May due to spring rainfall and melting snowpack . Maximum groundwater levels usually occur during this period.
- 2. Fall Recharge rising groundwater levels between October and December due to fall precipitation.
- 3. Summer Recession declining groundwater levels beginning in June and reaching minimum levels in September. Winter conditions of snowfall and frost can also limit recharge, resulting in a minor groundwater level recession in February.

Groundwater Pumping

The removal of water from an aquifer, by a well or wellfield, results in the lowering of the water level in the well and the surrounding aquifer. The lowering of groundwater levels as a result of pumping is referred to as drawdown. The amount of drawdown depends on how much is being pumped, the distance from the pumping well, and the characteristics of the aquifer (e.g., transmissivity, storativity, aquifer boundaries). In Nova Scotia, large wellfields in bedrock aquifers have been observed to cause groundwater drawdown in wells as far away as two to three kilometres.

Tidal Fluctuations

Aquifers and wells near the ocean can experience tidal fluctuations. Even though the water in a well may be fresh, the water level may rise and fall with the tide. The amount of water level fluctuation (i.e., amplitude) depends on the distance between the well and the ocean and aquifer properties. There is also a delay (i.e., time lag) between the rise or drop in the tide and the corresponding rise or drop in the well.

2.2 Groundwater Quality Monitoring

2.2.1 Field Methods

The observation wells have been tested for various parameters including: general chemistry, metals, volatile organic compounds (VOC), pesticides, tritium and perchlorate. The general chemistry, metals, VOC and pesticides analyses were carried out at Maxxam Analytics in Bedford, NS; the tritium analyses were carried out at the Environmental Isotope Laboratory, University of Waterloo, Waterloo, ON; and, the perchlorate analyses were carried out by the National Water Research Institute in Burlington, ON.

The groundwater samples were collected using either a disposable bailer or a submersible pump that was cleaned after each sample was collected. Prior to collecting the samples each well was purged by either removing three well volumes, or by purging until electrical conductivity (EC) and temperature (T) have become stable based on the following approach: 1) begin to purge the well; 2) record the EC and T values after purging 0.5 well volumes; 3) repeat EC and T measurements after purging 1 well volume; 4) continue purging and recording EC and T values at 0.5 well volume intervals until EC and T values are within 10% of previous values. If a well was pumped completely dry, purging was considered complete.

The groundwater samples were collected into laboratory supplied bottles, stored in a chilled cooler and delivered to the laboratory within the specified holding times. Samples for general chemistry and metals were filtered in the field using 0.45 micron filters. Samples collected for metals were also preserved in the field using nitric acid.

2.2.2 Data Assessment Methods

The groundwater sample results for general chemistry, metals, VOCs and pesticides were assessed by comparison to the Canadian Drinking Water Quality Guidelines. Tritium and perchlorate results were assessed separately, as described in the paragraphs below. Note that the observation wells in the network are not used for drinking water, however, the drinking water guidelines are the most commonly used guidelines applied to water wells and they provide a useful reference point to judge the general water quality at each well.

Tritium is a short-lived isotope of hydrogen with a half-life of 12.43 years that is commonly used to assess the relative age of groundwater and how vulnerable an aquifer is to contamination (Clark and Fritz, 1997). During the 1950's, hydrogen bomb testing caused tritium levels to become elevated above naturally-occurring background levels in the earth's atmosphere. The elevated tritium levels are picked up by precipitation and carried into aquifers as the precipitation infiltrates in to the ground. Groundwater with tritium levels of less than 1.0 Tritium Units (TU) is considered relatively old, being recharged before hydrogen bomb testing began in 1952. Groundwater with more than 5.0 TU is considered to be predominantly recent water, being recharged after 1952 (Clark and Fritz, 1997). Groundwater with tritium levels between 1.0 and 4.0 TU is considered to be a mix of recent and old water. Groundwater with tritium levels between 4.0 and 5.0 TU is considered to be a mix of mostly recent water with a small measure being old water

Water wells with tritium levels less than 1.0 TU are considered to be recharged by older water and, therefore, are not as vulnerable to contamination as other wells. Water wells that contain recent water, or a mix of recent and old water, are more vulnerable to contamination because rapid recharge allows contaminants to move relatively quickly from the ground surface into the aquifer. Many of the wells in the observation well network have short casing lengths (i.e., less than seven metres) and long open-hole intervals that allow both shallow and deep groundwater to enter the well and, therefore, it is likely that these wells will contain a mix of recent and old water. This type of well construction is similar to the majority of water wells in Nova Scotia, which have a minimum casing length of 6.1 m, as required by the Well Construction Regulations.

Perchlorate is an emerging contaminant that has received significant attention since 1997 when it was found in several water supplies in the United States. It is a compound consisting of one chlorine

and four oxygen atoms that can exist as the solid salt of ammonium, potassium, or other metals, and it readily dissolves in water to produce the perchlorate ion (ClO_4^-) . Perchlorate has been used in products such as rocket fuels, munitions, explosives, fireworks, road flares, fertilizers and air bag inflation systems. It can also occur naturally at low levels in the environment.

Recent sampling has detected the presence of very low levels of perchlorate in some Canadian drinking water sources (Health Canada, 2007). Groundwater samples from the Nova Scotia Observation Well Network were tested for perchlorate in order to evaluate the occurrence of perchlorate in Nova Scotia groundwater. There is currently no national drinking water guideline for perchlorate either in Canada or in the United States, however, Health Canada recommends a drinking water guidance value of 6 ug/L. Therefore, the perchlorate results from the observation well network were assessed by comparison to the recommended Health Canada value of 6 ug/L.

For wells that had elevated chloride levels, an assessment of the possible source of salt was carried out by calculating the bromide (Br) to chloride (Cl) ratio. Wells were considered to have elevated chloride levels if chloride concentrations exceeded typical background levels for groundwater in coastal Nova Scotia (i.e., <50 mg/L). A commonly used guide for distinguishing salt sources in Nova Scotia is to calculate the ratio of Br(mg/L)/Cl(mg/L) x 10,000, and compare the result to the following three ranges:

- 1. Ratio <10 indicates road salt or halite brine;
- 2. Ratio >10 indicates formation brines;
- 3. Ratio = 35 indicates a sea water influence.

3.0 RESULTS

This section presents the monitoring results for each observation well. Please refer to the appendices for well logs, groundwater chemistry tables, groundwater temperature graphs and groundwater level trend analysis details.

3.1 Greenwood (003)

Well Description

The Greenwood (003) observation well is located near Greenwood, Kings County. It was constructed in 1966 as part of a regional groundwater resource evaluation project (Trescott, 1968) and was originally named "Nova Scotia Department of Mines Test Hole 88". The well is completed in an overburden aquifer comprised of outwash sand. It is 7.6 m deep and has 6.6 m of casing. The well location and construction information is shown in Table 3.1 and the well log is provided in Appendix A.

Table 3.1: Greenwood (003) Well Construction Information

Well Name	Greenwood (003)
Observation Well ID Number	003
NSE Well Log Number	661225
County	Kings
Nearest Community	Greenwood
UTM - Easting (m)	350680
UTM - Northing (m)	4985498
Year Monitoring Started	1966
Casing Depth (m, bgs)	6.6
Well Depth (m, bgs)	7.6
Elevation - top of casing (m, asl)	24.15
Geologic Unit	Pleistocene Outwash
Aquifer Material	Overburden - sand

Notes: bgs = below ground surface; asl = above sea level

The location of the Greenwood (003) observation well is shown in Figure 3.1. It is situated in a rural area where land use is primarily agricultural or undeveloped. The well is located in a wooded area behind a house (see Figure 3.2), with all other development at least a kilometre away. The nearest water well is a private well located approximately 120 m away.

Monitoring Results - Water Levels

The historical water level graph for Greenwood (003) is shown in Figure 3.3 and the 2007 water level graph is shown in Figure 3.4. This well has been monitored since 1966 and water levels have remained essentially the same. The average water level elevation is approximately 21.8 m above sea level and the annual water level fluctuation is about 1 m. The depth to water in this well is approximately 2.4 m below ground surface. There is no visually obvious long-term water level trend in Figure 3.3 and the statistical trend analysis for this well (Appendix D) indicates that there is no statistically significant trend prest. The 2007 water levels, shown in Figure 3.4, were within the normal range for this well.

Monitoring Results - Water Chemistry and Temperature

The Greenwood (003) well was last sampled in November 2005. Water chemistry results are presented in Appendix B. The results indicate that no health-based drinking water guidelines were exceeded. Iron (8,700 μ g/L) and manganese (140 μ g/L) were above the aesthetic drinking water guidelines of 300 μ g/L and 50 μ g/L, respectively. Also, turbidity and pH did not meet the aesthetic drinking water guidelines. The elevated turbidity levels are expected due to the high iron and manganese. Note that the ion balance error reported in the general chemistry analysis is 19%, which exceeds the generally acceptable level of 5% and, therefore, these results should be viewed with caution.

VOCs, pesticides and perchlorate were not detected at the Greenwood (003) well. The tritium level in this well was 5.76 TU, indicating that the water in this well is relatively recent (i.e., recharged after 1952). The average groundwater temperature at the Greenwood (003) well is 7.96 °C and fluctuates annually between 5.5 and 10 °C. A graph of daily average temperature data collected since April 2005 is presented in Appendix C.

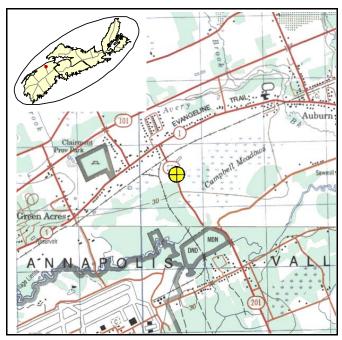


Figure 3.1: Greenwood (003) Well Location

Figure 3.2 Greenwood (003) Site Photo

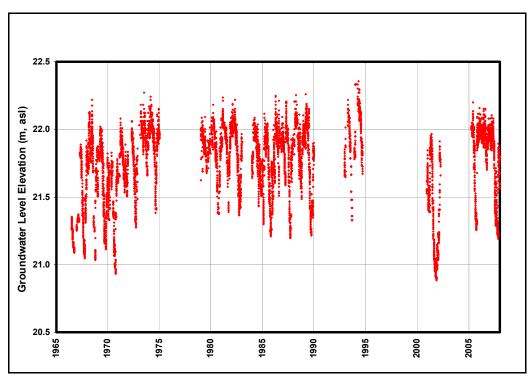


Figure 3.3: Greenwood (003) Historical Water Level Graph

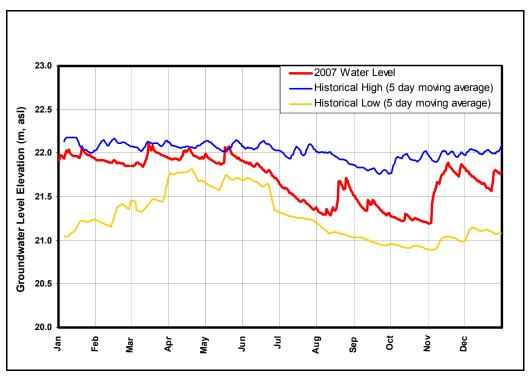


Figure 3.4: Greenwood (003) 2007 Water Level Graph

3.2 Fraser Brook (004)

Well Description

The Fraser Brook (004) observation well is located near Lower Harmony, Colchester County. It was constructed in 1966 as part of a water resources study (Hennigar, 1966) that was carried out under the International Hydrologic Decade Program. It was originally named "Test Hole 100" and was one in a series of test wells installed in the Fraser Brook watershed.

The well is completed in siltstone. It is 18.3 m deep and the casing extends to a depth of 9.3 m. Well location and construction information is provided in Table 3.2 and the well log is provided in Appendix A. A 24-hour pump test conducted at this well indicated a transmissivity of 4.8 m²/day and a safe yield of 42 m³/day (6.5 igpm) (McIntosh, 1984).

Table 3.2: Fraser Brook (004) Well Construction Information

Well Name	Fraser Brook (004)
Observation Well ID Number	004
NSE Well Log Number	661226
County	Colchester
Nearest Community	Lower Harmony
UTM - Easting	486889
UTM - Northing	5021100
Year Monitoring Started	1966
Casing Depth (m, bgs)	9.3
Well Depth (m, bgs)	18.3
Elevation - top of casing (m, asl)	109.27
Geologic Unit	Canso Group
Aquifer Material	Bedrock - siltstone

Notes: bgs = below ground surface; asl = above sea level

The location of the Fraser Brook (004) observation well is shown in Figure 3.5. It is situated in a rural area where land use is primarily agricultural or undeveloped. The well was located in a wooded area (see Figure 3.6), however, in 2005 the majority of the trees were removed due to damage sustained during Hurricane Juan in 2003. The nearest water well is a domestic well, located approximately 1,000 m away.

Monitoring Results - Water Levels

The historical water level graph for Fraser Brook (004) is shown in Figure 3.7 and the 2007 water level graph is shown in Figure 3.8. This well has been monitored since 1966. The average water level elevation at this well is approximately 104.9 m above sea level and the annual water level fluctuation is about 1 m. The depth to water in this well is approximately 4.4 m below ground surface. There is no visually obvious long-term water level trend, however, the statistical trend analysis for this well (Appendix D) indicates that there is a very small statistically significant upward trend about 0.3 cm/year. This is equivalent to a total rise of about 0.1 m since monitoring began at this well.

The 2007 water levels generally fluctuated within the typical range for this well, however, water levels levels exceeded historical highs in January and on several occasions in the months between May and September.

Monitoring Results - Water Chemistry and Temperature

The Fraser Brook (004) well was last sampled in December 2004. Water chemistry results are presented in Appendix B. The results indicate that arsenic (14 μ g/L) exceeded the drinking water guideline of 10 μ g/L. No other parameters exceeded guidelines at this well. VOCs, pesticides and perchlorate were not detected. This well has not been tested for tritium.

The average groundwater temperature at the Fraser Brook (004) well is 7.0 °C and fluctuates annually between 5.5 and 8.7 °C. A graph of daily average temperature data collected since June 2004 is presented in Appendix C.

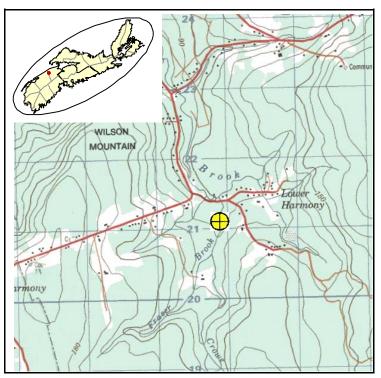


Figure 3.5: Fraser Brook (004) Well Location

Figure 3.6: Fraser Brook (004) Site Photograph

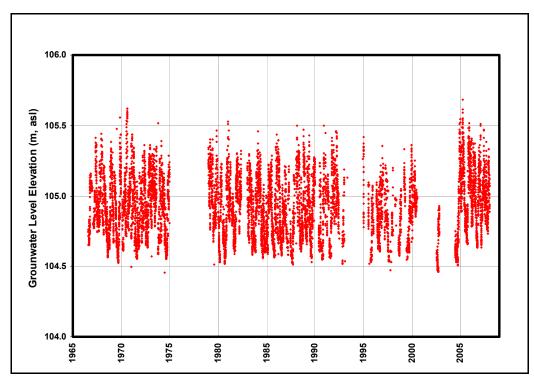


Figure 3.7: Fraser Brook (004) Historical Water Level Graph

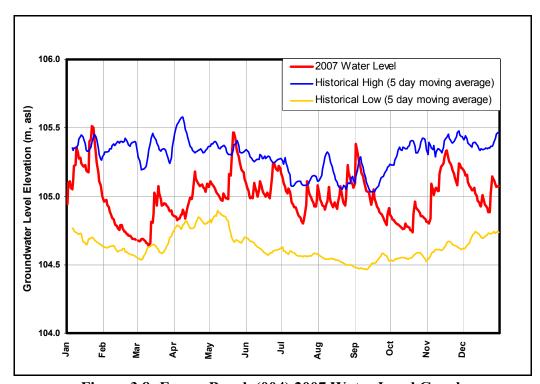


Figure 3.8: Fraser Brook (004) 2007 Water Level Graph

3.3 Wilmot (005)

Well Description

The Wilmot (005) observation well is located in Wilmot, Annapolis County. It was constructed May 1966 as part of a regional groundwater resource evaluation project (Trescott, 1968) and was originally named "Nova Scotia Department of Mines Test Hole 51". The well is completed in an overburden aquifer comprised of fine to course outwash gravel. It is 18.3 m deep and the casing depth extends to 6.4 m. The surficial geology of the area was classified as a stream alluvium deposit of the Quaternary Period. The alluvium deposit consisted of several feet of clay overlying a fine to coarse gravel deposit.

Table 3.3: Wilmot (005) Well Construction Information

Well Name	Wilmot (005)
Observation Well ID Number	005
NSE Well Log Number	661267
County	Annapolis
Nearest Community	Wilmot
UTM - Easting	340015
UTM - Northing	4979368
Year Monitoring Started	1966
Casing Depth (m, bgs)	6.4
Well Depth (m, bgs)	18.3
Elevation - top of casing (m, asl)	9.0
Geologic Unit	Pleistocene Outwash
Aquifer Material	Overburden - gravel

Notes: bgs = below ground surface; asl = above sea level

Well location and construction information is provided in Table 3.3 and the well log is provided in Appendix A. A 26 hour pump test conducted at a nearby wellfield situated in a similar geological unit indicated a transmissivity of 621 m²/day and storativity of 1.9 x 10⁻³ (McIntosh, 1984).

The location of the Wilmot (005) observation well is shown in Figure 3.9. The well site, shown in

Figure 3.10, is located south-west of Wilmot. It is situated in an actively farmed field, 100m east of Baynard Road. South of the site, it is surrounded by a wooded area extending 75m to the Annapolis River, where Environment Canada has a hydrometric station. The nearest water well is a domestic well located approximately 150 m away.

Monitoring Results - Water Levels

The historical water level graph for Wilmot (005) is shown in Figure 3.11 and the 2007 water level graph is shown in Figure 3.12. This well has been monitored since 1966 and there is no visually obvious long-term water level trend. The trend analysis for this well (Appendix D) indicates that there is no statistically significant trend.

From 1966 to the fall of 1995, the average water level elevation was approximately 6.72 m above sea level and the annual water level fluctuation was about 1.9 m. The average water level elevation for the period when monitoring resumed in the spring 2006 to the end 2007 was only slightly lower, at 6.70 m, and the annual water level fluctuation for this period was approximately 1.7 m. The depth to water in this well is approximately 2.0 m below ground surface. The 2007 water levels fluctuated within the recorded historical high and low levels, however water levels remained close to and exceeded historical high levels throughout the month of January.

Monitoring Results - Water Chemistry and Temperature

The Wilmot (005) well was last sampled in December 2006. Water chemistry results are presented in Appendix B. The results indicate that no health-based drinking water guidelines were exceeded. VOCs were not detected. This well has not been tested for pesticides, perchlorate or tritium.

The average groundwater temperature at this well is 8.31 °C and fluctuates annually between approximately 6.0 and 10.5 °C. A graph of daily average temperature data collected since May 2006 is presented in Appendix C.

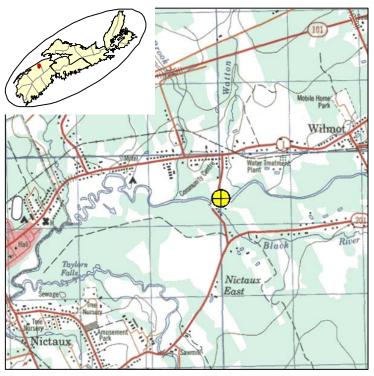


Figure 3.9: Wilmot (005) Well Location

Figure 3.10: Wilmot (005) Site Photograph

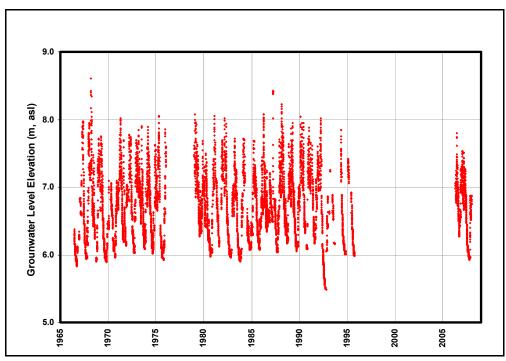


Figure 3.11: Wilmot (005) Historical Water Level Graph

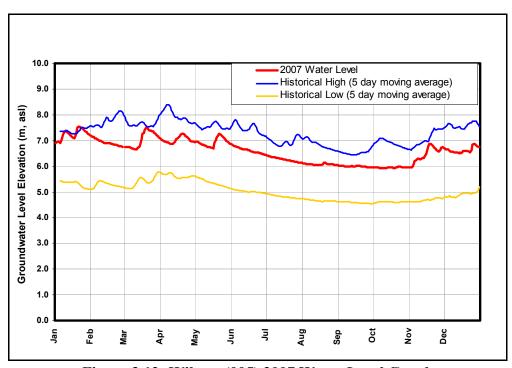


Figure 3.12: Wilmot (005) 2007 Water Level Graph

3.4 Wolfville (010)

Well Description

The Wolfville (010) observation well is located in Wolfville, Kings County. It was constructed in December 1968 as part of a regional groundwater resource evaluation project (Trescott, 1969) and was originally named "Nova Scotia Department of Mines Test Hole 398". This well has also been referred to as the "Wolfville 2" observation well. The well is completed in a sandstone aquifer. It is 17.7 m deep and penetrates 7.0 m into the bedrock. The casing depth extends to 22.7 m. Well location and construction information is provided in Table 3.4 and the well log is provided in Appendix A. A 29-day pump test was conducted at this well in 1969. The results indicated a transmissivity of 695 m²/day and storativity of 3x10-² (McIntosh, 1984).

Table 3.4: Wolfville (010) Well Construction Information

Well Name	Wolfville (010)	
Observation Well ID Number	010	
NSE Well Log Number	681252	
County	Kings	
Nearest Community	Wolfville	
UTM - Easting	392093	
UTM - Northing	4993838	
Year Monitoring Started	1969	
Casing Depth (m, bgs)	22.7	
Well Depth (m, bgs)	24.1	
Elevation - top of casing (m, asl)	5.20	
Geologic Unit	Wolfville Formation	
Aquifer Material	Bedrock - sandstone	

Notes: bgs = below ground surface; asl = above sea level

The location of the Wolfville (010) observation well is shown in Figure 3.13. The well is situated in a small park in the middle of a residential area (see Figure 3.14). Land use in the vicinity of the well is urban. The wellfield for the Town of Wolfville, comprised of two pumping wells, is located approximately 750 m away.

Monitoring Results - Water Levels

The historical water level graph for Wolfville (010) is shown in Figure 3.15 and the 2007 water level graph is shown in Figure 3.16. This well has been monitored since 1969 and water levels appear to have declined slightly over time. From 1970 to 1975, the average water level elevation was approximately 1.0 m above sea level and the annual water level fluctuation was about 2 m. The average water level in 2007 was 0.36 m above sea level, with an annual fluctuation of 1.3 m. The depth to water in this well is approximately 4.6 m below ground surface.

The statistical trend analysis for this well (Appendix D) indicates that there is small downward trend in water levels, equivalent to approximately 2.7 cm/year. The total water level drop since monitoring began at this well is approximately 0.7 m. The reason for this decline has not been confirmed, however, it may be related to pumping at the Town of Wolfville's production wells which are located within 750 m from this well.

The 2007 water levels were often lower than the typical range for this well. Between February and June water levels were close to or below the historical lows.

Monitoring Results - Water Chemistry and Temperature

The Wolfville (010) well was last sampled in December 2004. Water chemistry results are presented in Appendix B. The results indicate that no health-based drinking water guidelines were exceeded. VOCs, pesticides and perchlorate were not detected. The tritium level in this well was 4.7 TU (+/-0.4), indicating that the water in this well is either a mix of old and recent water (i.e., recharge occurred before and after 1952) or is recent (i.e., recharged occurred after 1952).

The chloride level in this well was 78 mg/L, which does not exceed the aesthetic objective of 250 mg/L, but is elevated above the typical background level for groundwater in coastal Nova Scotia (<50 mg/L). The bromide/chloride ratio for this well was <10 (i.e., $0.06 \text{ mg/L}/78 \text{mg/L} \times 10,000 = 7.7$). This indicates that the source of the chloride is road salt. Please see Section 2.2.4 for a

discussion of how this ratio is used to assess salt sources.

The average groundwater temperature at the Wolfville (010) well is 9.15 °C and fluctuates annually between 8.0 and 10.3 °C. A graph of daily average temperature data collected since April 2005 is presented in Appendix C.

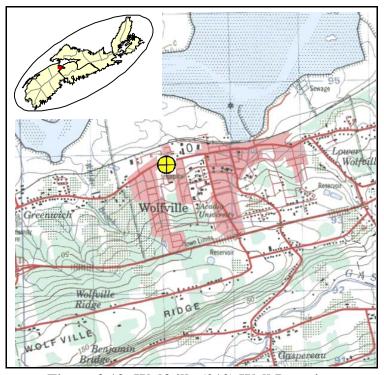


Figure 3.13: Wolfville (010) Well Location

Figure 3.14: Wolfville (010) Site Photograph

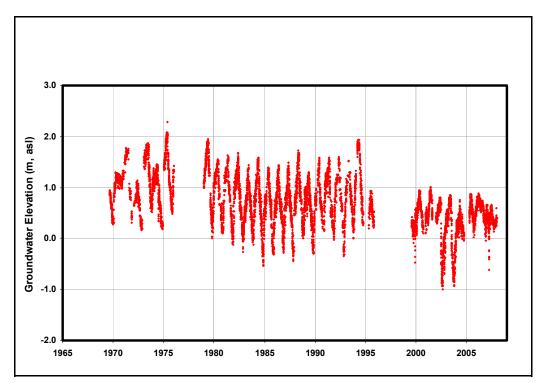


Figure 3.15: Wolfville (010) Historical Water Level Graph

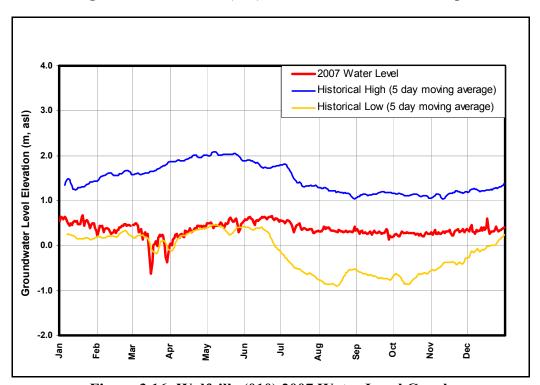


Figure 3.16: Wolfville (010) 2007 Water Level Graph

3.5 Truro (014)

Well Description

The Truro (014) observation well is located in Truro, Colchester County. It was constructed in November 1970 as part of a regional groundwater resource evaluation project (Hennigar, 1972) and was originally named "Nova Scotia Department of Mines Test Hole 421". It has also been referred to as the "Truro 421" observation well. The well is 91.4 m deep, penetrates 80.8 m into bedrock and the casing depth extends to 18.3 m. It is completed in a sandstone aquifer. Well location and construction information is provided in Table 3.5 and the well log is provided in Appendix A.

Table 3.5: Truro (014) Well Construction Information

Well Name	Truro (014)	
Observation Well ID Number	014	
NSE Well Log Number	701431	
County	Colchester	
Nearest Community	Truro	
UTM - Easting	476052	
UTM - Northing	5023778	
Year Monitoring Started	1971	
Casing Depth (m, bgs)	18.3	
Well Depth (m, bgs)	91.4	
Elevation - top of casing (m, asl)	9.83	
Geologic Unit	Wolfville Formation	
Aquifer Material	Bedrock - sandstone	

Notes: bgs = below ground surface; asl = above sea level

The location of the Truro (014) observation well is shown in Figure 3.17. It is situated in an urban area where the surrounding land is predominantly developed. The well is located within the Town of Truro Public Works yard and is adjacent to a golf course, several businesses and residences. The area is serviced by a municipal water supply and there are no other known water wells in the immediate vicinity.

Monitoring Results - Water Levels

The historical water level graph for Truro (014) is shown in Figure 3.18 and the 2007 water level graph is shown in Figure 3.19. This well has been monitored since 1971 and the groundwater levels appear to have decreased slightly between 1971 and 1993, and then increased slightly between 1993 and 2007. The average water level elevation between 1971 and 1993 ranged from about 6.5 to 7.5 m above sea level and the annual water level fluctuation was about 1.5 m. Since 1994, the average water level elevation has risen to approximately 7.8 m above sea level, with an annual water level fluctuation of about 1.0 m. The increased water level is believed to be a result of the decommissioning of a municipal water supply well in 1994, which was located within a kilometre of the observation well

The depth to water in this well has varied from approximately 2.0 m to 3.5 m below ground surface. Water levels in recent years, including 2007, have been higher than historical highs. During 2007 water levels were close to the historical high level, and often exceeded it. The trend analysis for this well (Appendix D) indicates that there is no statistically significant trend present.

Monitoring Results - Water Chemistry and Temperature

The Truro (014) well has not been sampled due to a partial blockage of the casing, caused by the float device of an old Stevens chart recorder that is lodged in the well. Therefore, detailed chemistry data are not available. The average groundwater temperature at this well is 8.76 °C and fluctuates annually between approximately 4.0 and 13.2 °C. A graph of daily average temperature data collected since June 2004 is presented in Appendix C.

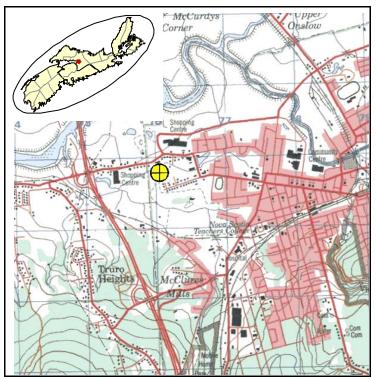


Figure 3.17: Truro (014) Well Location

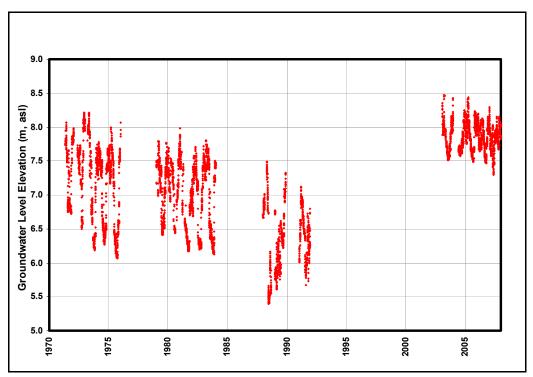


Figure 3.18: Truro (014) Historical Water Level Graph

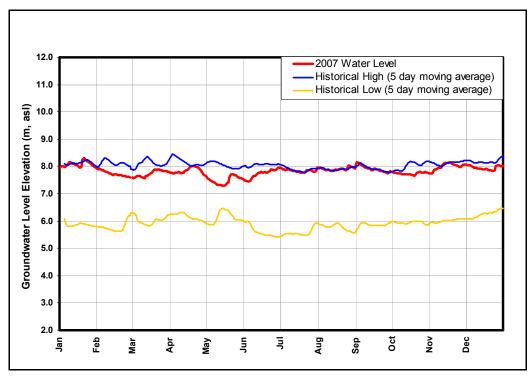


Figure 3.19: Truro (014) 2007 Water Level Graph

3.6 Monastery (028)

Well Description

The Monastery (028) observation well is located near Monastery, Antigonish County. The well was installed in January 1974 as part of a groundwater resource evaluation study (Strait of Canso Natural Environment Committee, 1975) and was originally named "Nova Scotia Department of Mines Test Hole 449". The well is completed in a sandstone aquifer. It is 158 m deep and the casing depth is unknown. Well location and construction information is provided in Table 3.6 and the well log is provided in Appendix A. A 50-hour pump test was conducted at this well in 1974, indicating a transmissivity of 9.8 m²/day and a 20-year safe yield of 439 m³/day (67 igpm) (McIntosh, 1984).

Table 3.6: Monastery (028) Well Construction Information

Well Name	Monastery (028)
Observation Well ID Number	028
NSEL Well Log Number	742420
County	Antigonish
Nearest Community	Monastery
UTM - Easting	606083
UTM - Northing	5052489
Year Monitoring Started	1976
Casing Depth (m, bgs)	NA
Well Depth (m, bgs)	158
Elevation - top of casing (m, asl)	23.12
Geologic Unit	Canso Group
Aquifer Material	Bedrock - sandstone

Notes: bgs = below ground surface; asl = above sea level

The location of the Monastery (028) well is shown in Figure 3.20. It is situated in a rural area where land use is primarily agricultural. The well is located at the end of a hayfield (see Figure 3.21), approximately 1,000 m from the ocean. The nearest water well is a domestic well located approximately 230 m away.

The historical water level graph for Monastery (028) is shown in Figure 3.22 and the 2007 water level graph is shown in Figure 3.23. This well has been monitored since 1976 and the average water level elevation decreased from about 15.5 m (between 1979 and 1987) to approximately 13.5 m in 2006. The annual water level fluctuation also decreased over the same period from about 1.5 m to 1.0 m. However, the water level in this well rebounded to its 1980's elevation after the well was purged during a sampling event in December 2006. Therefore, it is suspected that the long-term decline in water levels at this well during the 1990's and early 2000's may have been due to a slow decline in well efficiency, caused by biofouling, iron/manganese encrustation or siltation.

During 2007, water levels rose above the average of recent years. The 2007 average water level was 14.5 m asl, and this level fluctuated 2.0 m over the year. The depth to water in this well has varied from approximately 7.8 m to 9.8 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The Monastery (028) well was last sampled in December 2006. Water chemistry results are presented in Appendix B. The results indicate that no health-based drinking water guidelines were exceeded. VOCs, pesticides and perchlorate were not detected. The tritium level in this well was 0.94 TU (+/- 0.17), indicating that the water is relatively old (i.e., recharge occurred before 1952). The average groundwater temperature at this well is 8.0 °C and fluctuates annually between 7.8 and 8.3 °C. A graph of daily average temperature data collected since October 2003 is presented in Appendix C.

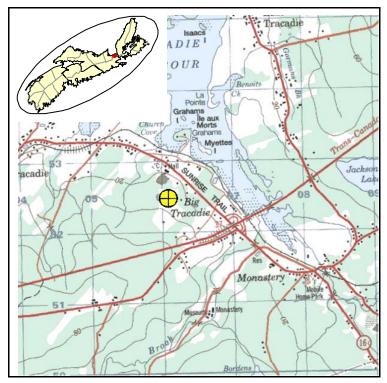


Figure 3.20: Monastery (028) Well Location

Figure 3.21: Monastery (028) Site Photograph

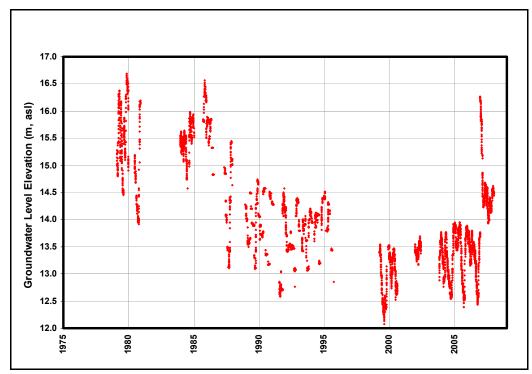


Figure 3.22: Monastery (028) Historical Water Level Graph

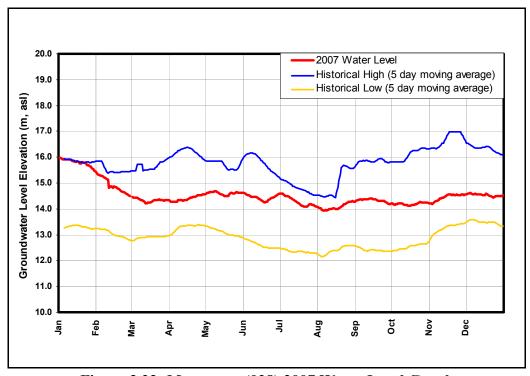


Figure 3.23: Monastery (028) 2007 Water Level Graph

3.7 **Point Aconi (030)**

Well Description

The Point Aconi (030) observation well is located near Point Aconi, Cape Breton County. It was constructed in August 1976 to monitor groundwater levels at the Prince Mine, located about 2 km away. The well is completed in a sandstone aquifer. It is 30.5 m deep, penetrates 26.2 m into the bedrock and the casing depth extends to 12.8 m. Well location and construction information is provided in Table 3.7 and the well log is provided in Appendix A.

The location of the Point Aconi (030) well is shown in Figure 3.24. It is situated in an urban area where the land use is primarily residential. There are several residences located within 300 m of the well, one of which is immediately adjacent to the well (see Figure 3.25). The nearest water well is a domestic well located approximately 18 m away.

Table 3.7: Point Aconi (030) Well Construction Information

Well Name	Point Aconi (030)
Observation Well ID Number	030
NSE Well Log Number	761408
County	Cape Breton
Nearest Community	Point Aconi
UTM - Easting	707986
UTM - Northing	5133152
Year Monitoring Started	1976
Casing Depth (m, bgs)	12.8
Well Depth (m, bgs)	30.5
Elevation - top of casing (m, asl)	29.97
Geologic Unit	Inverness Formation
Aquifer Material	Bedrock - sandstone

The historical water level graph for Point Aconi (030) is shown in Figure 3.26 and the 2007 water level graph is shown in Figure 3.27. This well has been monitored since 1976. The average water level elevation at the Point Aconi (030) well is approximately 27.7 m above sea level and the annual water level fluctuation is about 3 m. The depth to water in this well is approximately 2.2 m below ground surface. The trend analyses for this well (Appendix D) indicates that there is a very small upward trend, equivalent to about 0.7 cm/year. This is equivalent to a total rise of about 0.2 m since monitoring began at this well.

There was a water level drop in the Point Aconi (030) well in December 2006 when two new monitoring wells were drilled approximately 100 m away. These two new monitoring wells are not associated with the NS Groundwater Observation Well Network. They were installed by a private company to monitor for potential effects of a nearby coal mine. The water level at the Point Aconi (030) observation well appears to have since stabilized at a new level which remains approximately 1.0 m below its former static level.

The 2007 water levels were near, or below, the historical lows for this well from January to July, and were within the normal range for this well between August and December.

Monitoring Results - Water Chemistry and Temperature

The Point Aconi (030) well was last sampled in September 2005. Water chemistry results are presented in Appendix B. The results indicate that no health-based drinking water guidelines were exceeded. Manganese (360 μ g/L) was above the aesthetic objective of 50 μ g/L. VOCs, pesticides and perchlorate were not detected. The tritium level in this well was 3.62 TU (+/- 0.34), indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at the Point Aconi (030) well is 8.65 °C and fluctuates annually between 4.0 and 14.0 °C. A graph of daily average temperature data collected since November 2003 is presented in Appendix C.

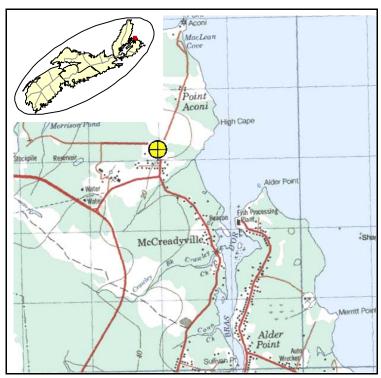


Figure 3.24: Point Aconi (030) Well Location

Figure 3.25: Point Aconi (030) Site Photograph

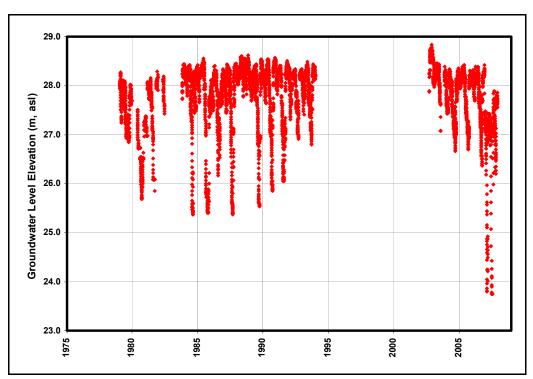


Figure 3.26: Point Aconi (030) Historical Water Level Graph

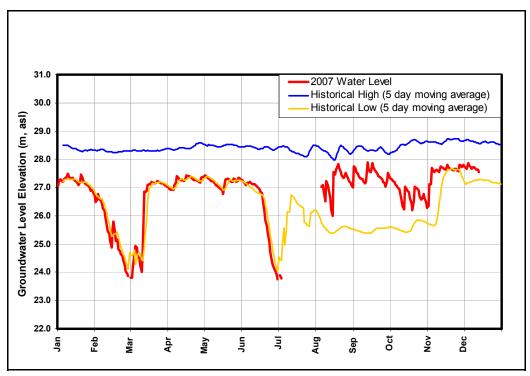


Figure 3.27: Point Aconi (030) 2007 Water Level Graph

3.8 Lawrencetown (043)

Well Description

The Lawrencetown (043) observation well is located near Upper Lawrencetown, Halifax County. It was constructed in March 1977 as part of a saltwater intrusion investigation in the Lawrencetown area (Cross, 1980) and was originally named "Nova Scotia Department of the Environment, Test Hole L3". It has also been referred to as the "Lawrencetown L3" observation well. Three other test wells that were drilled near this well (i.e., Lawrencetown L1, L2 and L4) were decommissioned in August 1994 by sealing the entire length of the wells with alternating layers of bentonite and sand.

Table 3.8: Lawrencetown (043) Well Construction Information

Well Name	Lawrencetown (043)
Observation Well ID Number	043
NSE Well Log Number	771538
County	Halifax
Nearest Community	Upper Lawrencetown
UTM - Easting	464172
UTM - Northing	4947712
Year Monitoring Started	1978
Casing Depth (m, bgs)	44.2
Well Depth (m, bgs)	53
Elevation - top of casing (m, asl)	4.73
Geologic Unit	Goldenville Formation
Aquifer Material	Bedrock - quartzite

Notes: bgs = below ground surface; asl = above sea level

The Lawrencetown (043) well is completed in a fractured bedrock aquifer comprised of quartzite. It is 53.0 m deep, penetrates 49.4 m into the bedrock and the casing depth extends to 44.2 m. Well location and construction information is provided in Table 3.8 and the well log is provided in Appendix A. A 1.5-hour pump test was conducted at this well in 1977 and the results indicated a transmissivity of 2.8 m²/day a safe yield rate of 95 m³/day (14.5 igpm) (McIntosh, 1984).

The location of the Lawrencetown (043) observation well is shown in Figure 3.28. It is situated in

a rural area where land use is primarily residential. The well is located within 100 m of the ocean (see Figure 3.29) and the there are two domestic wells nearby, both located approximately 50 m away.

Monitoring Results - Water Levels

The historical water level graph for Lawrencetown (043) is shown in Figure 3.30 and the 2007 water level graph is shown in Figure 3.31. This well has been monitored since 1978 and a visual inspection of Figure 3.30 indicates that water levels appear to have declined by approximately 1.0 m. The decline in water level at this well is most likely due to pumping at a nearby domestic well (located 50 m away). However, the trend analysis for this well (Appendix D) indicates that there is no statistically significant trend present.

The average water level elevation at the Lawrencetown (043) well for the monitoring period 1978-1992 was approximately 3.6 m above sea level and the annual water level fluctuation was about 0.6 m. Between 2002 and 2007, the average water level declined to approximately 2.8 m above sea level, with a 1.0 m annual fluctuation. The depth to water in this well has varied from 1.1 m to 1.6 m below ground surface and the hourly water level data shows tidal fluctuations of approximately 0.3 m. There is also a daily drawdown and subsequent recovery of approximately 0.8 m at this well, which likely reflects domestic water use patterns associated with a nearby domestic well. The 2007 water levels at this observation well were at or below historical lows throughout the year.

Monitoring Results - Water Chemistry and Temperature

The Lawrencetown (043) well was last sampled in November 2004. The water chemistry results are presented in Appendix B. The results indicate that arsenic concentrations (56 μ g/L) exceeded the health-based drinking water guideline of 10 μ g/L. The well has not been sampled for VOCs, pesticides or perchlorate. Tritium results reported from a previous study (Bottomley, 1983) were non-detect, indicating this water is relatively old (i.e., recharged prior to 1952).

It should also be noted that the chloride level in this well (150 mg/L) is elevated above the typical background level for groundwater in coastal Nova Scotia (<50 mg/L), although it is below the aesthetic objective of 250 mg/L. The ocean is less than about 100 m from this well and, therefore, the elevated chloride level is probably due to sea water influence. The bromide/chloride ratio at this well also indicates a sea water influence. The bromide/chloride ratio at the Lawrencetown (043)

observation well was 35 (i.e., $0.53 \text{ mg/L}/150 \text{ mg/L} \times 10,000 = 35$). Please see Section 2.2.4 for a discussion of how this ratio is used to assess salt sources.

The average groundwater temperature at the Lawrencetown (043) well is 8.48 °C and fluctuates between approximately 6.0 and 11.0 °C. A graph of daily average temperature data collected from April 2004 is presented in Appendix C.

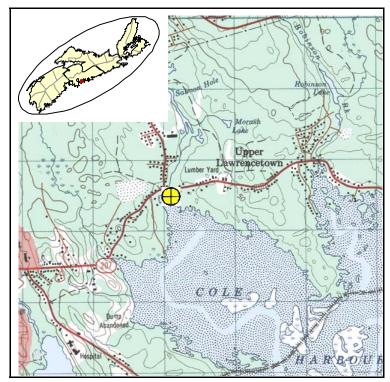


Figure 3.28: Lawrencetown (043) Well Location

Figure 3.29: Lawrencetown (043) Site Photograph

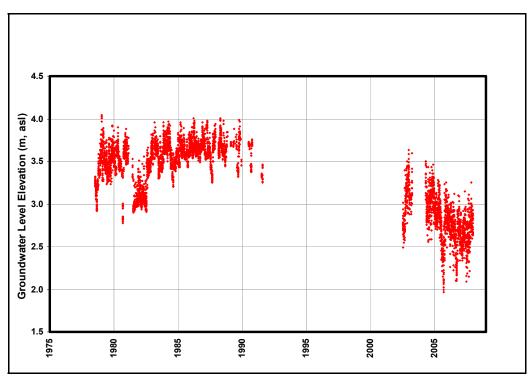


Figure 3.30: Lawrencetown (043) Historical Water Level Graph

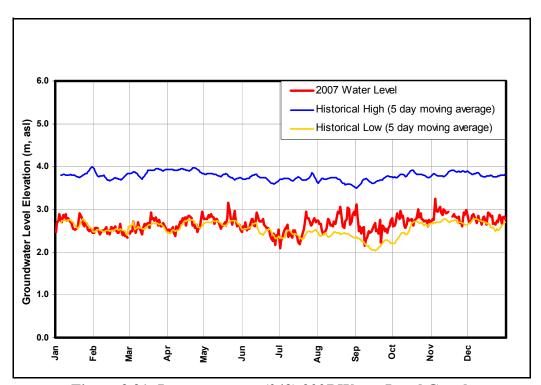


Figure 3.31: Lawrencetown (043) 2007 Water Level Graph

3.9 **Durham (045)**

Well Description

The Durham (045) observation well is located near Durham, Pictou County. It was constructed in July 1978 as part of a regional groundwater resource evaluation project (Gibb and McMullin, 1980) and was originally named "Nova Scotia Department of the Environment Test Hole Durham 3". The well is completed in a sandstone and shale aquifer. It is 75.3 m deep, penetrates 69.2 m into the bedrock and the casing depth is unknown. Well location and construction information is provided in Table 3.9 and the well log is provided in Appendix A. A 72-hour pump test was conducted at this well in 1978, indicating a transmissivity of 14 m²/day and storativity of 3.2 x 10-4 (McIntosh, 1984).

The location of the Durham (045) observation well is shown in Figure 3.32. It is situated in a rural area, where the land use is primarily agricultural. The well is located in a wooded area, about 3 m from the edge of a hayfield. The nearest water well is a domestic well located approximately 500 m away.

Table 3.9: Durham (045) Well Construction Information

Well Name	Durham (045)
Observation Well ID Number	045
NSE Well Log Number	782683
County	Pictou
Nearest Community	Durham
UTM - Easting	516224
UTM - Northing	5052105
Year Monitoring Started	1979
Casing Depth (m, bgs)	NA
Well Depth (m, bgs)	75.3
Elevation - top of casing (m, asl)	14.88
Geologic Unit	Boss Point Formation
Aquifer Material	Bedrock - sandstone/shale

The historical water level graph for Durham (045) is shown in Figure 3.33 and the 2007 water level graph is shown in Figure 3.34. This well has been monitored since 1979 and water levels appear to have risen slightly and the amount of annual water level fluctuation has varied. The trend analysis for this well (Appendix D) indicates that there is a small upward trend, equivalent to about 2.2 cm/year. This is equivalent to a total rise of about 0.6 m since monitoring began at this well.

The average water level elevation at the Durham (045) well is approximately 11.3 m above sea level and the annual water level fluctuation is between 2.0 and 3.0 m. However, from 1979 to 1989 the average water level was approximately 11.0m, then from 1989 to 2004 average water levels rose slightly, to approximately 11.6 m. Since 2004 the average water levels decreased slightly. The 2007 water levels were within the historically observed range at this well, and had an average water level of 11.4 m. The depth to water in this well is approximately 3.5 to 4.0 m below ground surface.

Monitoring Results - Water Chemistry and Temperature

The Durham (045) well was last sampled in October 2005. Water chemistry results are presented in Appendix B. The results indicate that no health-based drinking water guidelines were exceeded. VOCs, pesticides and perchlorate were not detected. The tritium level in this well was 2.04 TU, indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average annual groundwater temperature at the Durham (045) well is 7.6 °C and fluctuates annually between 6.2 and 9.2 °C. A graph of hourly temperature data collected since January 2004 is presented in Appendix C.

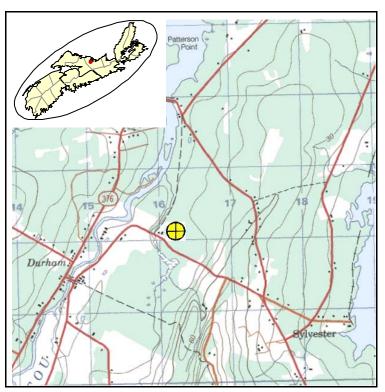


Figure 3.32: Durham (045) Well Location

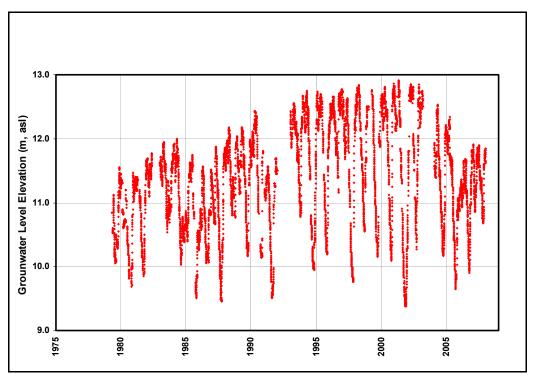


Figure 3.33: Durham (045) Historical Water Level Graph

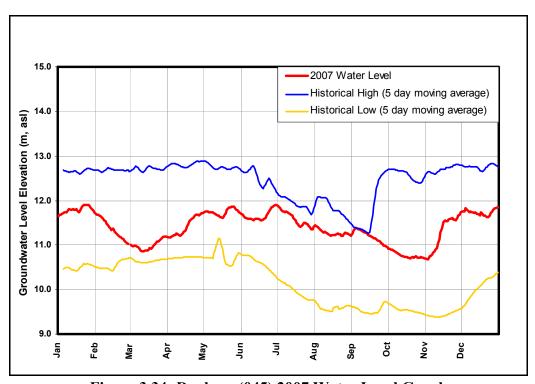


Figure 3.34: Durham (045) 2007 Water Level Graph

3.10 Kentville (048)

Well Description

The Kentville (048) observation well is located near Kentville, Kings County. The well was constructed in May 1977 as part of a water supply investigation for the Kentville Industrial Park (Callan, 1977) and was previously named the "Kentville Industrial Park" observation well. The well is completed in a sandstone aquifer. It is 106.7 m deep and the casing depth extends to 30.5 m. Well location and construction information is provided in Table 3.10 and the well log is in Appendix A. A 72-hour pump test was conducted at this well in June 1977 and the results indicated a transmissivity of 84 m²/day and a storativity of 3 x 10⁻⁴ (Callan, 1977).

Table 3.10: Kentville (048) Well Construction Information

Well Name	Kentville (048)
Observation Well ID Number	048
NSE Well Log Number	772021
County	Kings
Nearest Community	Kentville
UTM - Easting	377628
UTM - Northing	4992245
Year Monitoring Started	1980
Casing Depth (m, bgs)	30.5
Well Depth (m, bgs)	106.7
Elevation - top of casing (m, asl)	12.79
Geologic Unit	Wolfville Formation
Aquifer Material	Bedrock - sandstone

Notes: bgs = below ground surface; asl = above sea level

The location of the Kentville (048) observation well is shown in Figure 3.35. It is situated in a wooded area (see Figure 3.36) and the surrounding land use includes an industrial park (Annapolis Valley Regional Industrial Park), residential properties and undeveloped land. This well lies within the wellhead protection area for the Town of Kentville wellfield, which includes seven production wells. This wellfield was initially developed in the late 1970's to supply the nearby industrial park

and was expanded to become the primary water supply for the Town of Kentville in 2002. The nearest production well is located approximately 150 m away from the Kentville (048) observation well.

Monitoring Results - Water Levels

The historical water level graph for Kentville (048) is shown in Figure 3.37 and the 2007 water level graph is shown in Figure 3.38. This well has been monitored since 1980 and the water level appears to have dropped slightly since monitoring began. The trend analysis for this well (Appendix D) indicates that there is a very small downward trend, equivalent to about 0.8 cm/year. The total drop in water level since monitoring began at this well is approximately 0.6 m.

The average water level elevation at the Kentville (048) well has ranged between 6.9 and 7.4 m above sea level and the annual water level fluctuation is approximately 0.7 m. The depth to water in this well is approximately 5.9 m below ground surface. The 2007 average water level was approximately 6.6 m above sea level, which is below the historically observed water level range for this well. The 2007 water levels are the lowest on record for this well, as they coincide with the historical lows throughout most of the year.

Monitoring Results - Water Chemistry and Temperature

The Kentville (048) well was last sampled in November 2007. Prior to this, it was last sampled in June 2005. Water chemistry results are presented in Appendix B. The results indicate that in 2005 no health-based drinking water guidelines. In 2007, lead (45 ug/L) exceeded drinking water guideline of 10 ug/L. The iron level (410 ug/L) exceeded the aesthetic objective of 300 ug/L. No pesticides or VOC's were detected.

The perchlorate level in this well was tested for in 2005 and the results show 0.05 ug/L, which is well below the recommended Health Canada guidance value of 6 ug/L. The tritium level in this well was 3.8 TU (+/- 0.3), indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

In 2005 the chloride level in this well was at 230 mg/L, which is elevated above the typical background level for groundwater in coastal Nova Scotia (<50 mg/L). In 2007, the chloride level in this well increased to 270 mg/L, which exceeded the aesthetic objective of 250 mg/L. The well

is located approximately 15 km from the ocean and, therefore, the elevated chloride levels are not expected to be caused by sea water. The bromide/chloride ratio at this well indicated the salt source is either related to road salt or naturally occurring formation salt associated with the geologic formation. The bromide/chloride ratio at this well was <22 (i.e., <0.5 mg/L/230 mg/L x 10,000 = <22). Please see Section 2.2.4 for a discussion of how this ratio is used to assess salt sources. This well is located immediately adjacent to a road (within about 5 m) and, therefore, the source of the chloride may be road salt.

The average groundwater temperature at the Kentville (048) well is 6.94 °C and fluctuates annually between 2.0 and 11.0 °C. A graph of daily average temperature data collected since April 2004 is presented in Appendix C.

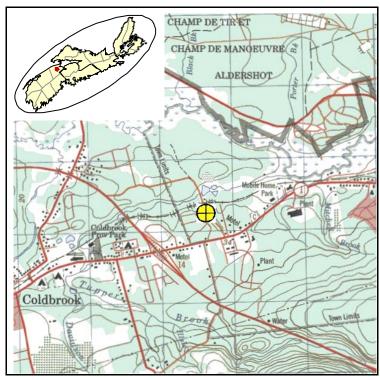


Figure 3.35: Kentville (048) Well Location

Figure 3.36: Kentville (048) Site Photograph

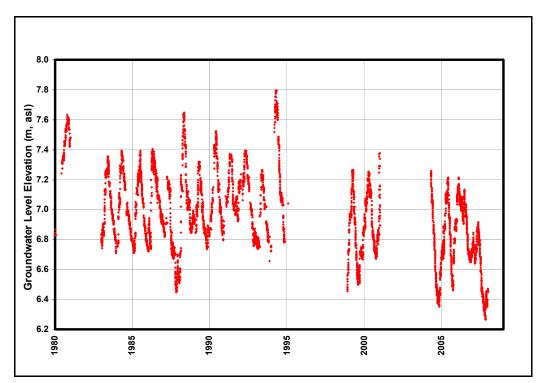


Figure 3.37: Kentville (048) Historical Water Level Graph

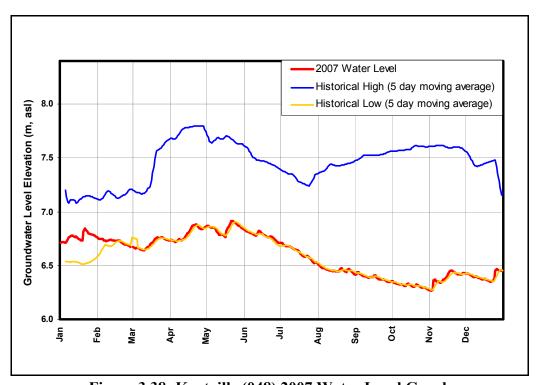


Figure 3.38: Kentville (048) 2007 Water Level Graph

3.11 Sydney (050)

Well Description

The Sydney (050) observation well is located near Sydney, Cape Breton County. It was constructed in 1977 as part of a regional water resource study in the Sydney Coalfield (Baechler, 1986) and has also been referred to as the "Sydney Watershed" observation well. The well is completed in a sandstone aquifer and is 100.6 m deep with a casing depth extending to 6.1 m. Well location and construction information is provided in Table 3.11 and the well log is provided in Appendix A. A 72-hour pump test was conducted at this well in the 1980's and the results indicated a transmissivity of 71 m²/day (Baechler, 1986).

Table 3.11: Sydney (050) Well Construction Information

Well Name	Sydney (050)
Observation Well ID Number	050
NSE Well Log Number	771077
County	Cape Breton
Nearest Community	Sydney
UTM - Easting	720589
UTM - Northing	5106450
Year Monitoring Started	1984
Casing Depth (m, bgs)	6.7
Well Depth (m, bgs)	100.6
Elevation - top of casing (m, asl)	64.10
Geologic Unit	South Bar Formation
Aquifer Material	Bedrock - sandstone

Notes: bgs = below ground surface; asl = above sea level

The location of the Sydney (050) observation well is shown in Figure 3.39. It is situated in a rural area where land use is primarily residential and undeveloped land. The well is located with in the Sydney wellfield, which consists of 11 production wells. The wellfield, which began operating in 1996, pumps an average of approximately 16,000 m³/day and is the largest municipal wellfield in Nova Scotia. The nearest production well is located approximately 200 m from the Sydney (050)

observation well.

Monitoring Results - Water Levels

The historical water level graph for Sydney (050) is shown in Figure 3.40 and the 2007 water level graph is shown in Figure 3.41. This well has been monitored since 1984 and water levels appear to have decreased slightly over time. This is likely due to the Sydney wellfield that began pumping in 1996. The trend analysis for this well (Appendix D) indicates that there is a downward trend, equivalent to approximately 5.4 cm/year. The total drop in water level since monitoring began at this well is approximately 1.0 m.

The average water level elevation at this well from 1984 to 1994 was approximately 59.8 m above sea level and the annual water level fluctuation varied between 0.7 m and 1.0 m. Between 1999 and 2007 the average water level elevation was approximately 58.8 m above sea level, with the annual water level fluctuation at about 2 m. The depth to water in this well is between 4.5 and 5.0 m below ground surface. The 2007 water levels were within the historically observed water level range for this well.

Monitoring Results - Water Chemistry and Temperature

The Sydney (050) well was last sampled in September 2005. Water chemistry results are presented in Appendix B. The results indicate that no health-based drinking water guidelines were exceeded. Manganese (630 μ g/L) was above the aesthetic drinking water guidelines of 50 μ g/L. VOCs, pesticides and perchlorate were not detected. The tritium level in this well was 4.92 TU (+/- 0.43), indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at the Sydney (050) well is 7.30 °C and fluctuates annually between approximately 5.8 and 8.8 °C. A graph of daily average temperature data collected since November 2003 is presented in Appendix C.

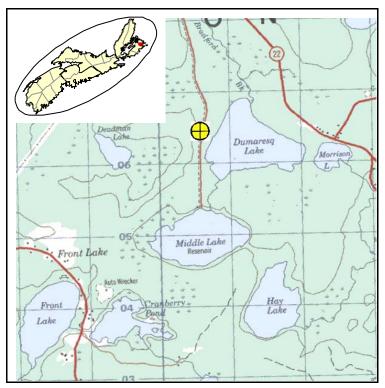


Figure 3.39: Sydney (050) Well Location

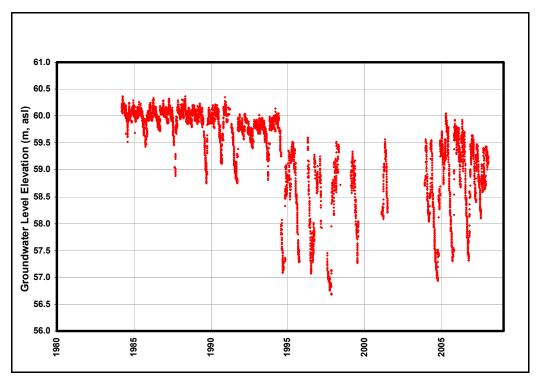


Figure 3.40: Sydney (050) Historical Water Level Graph

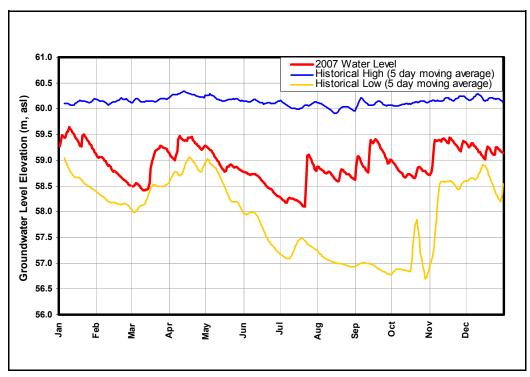


Figure 3.41: Sydney (050) 2007 Water Level Graph

3.12 North Grant (054)

Well Description

The North Grant (054) observation well is located in Lower North Grant, Antigonish County. This well was constructed in 1987 to expand the NS Groundwater Observation Well Network. The well is completed in slate and is 39.0 m deep and the casing extends to a depth of 13.1 m. Well location and construction information is provided in Table 3.12 and the well log is provided in Appendix A.

The location of the North Grant (054) observation well is shown in Figure 3.42. The well is situated approximately 15 km northwest of the town of Antigonish, and approximately 3.0 m from the side of North Grant Road (see Figure 3.43). It is located approximately 100 m from the Wrights River, and there is a domestic drilled well located within 150 m.

Table 3.12: North Grant (054) Well Construction Information

Well Name	North Grant (054)
Observation Well ID Number	054
NSEL Well Log Number	871262
County	Antigonish
Nearest Community	Lower North Grant
UTM - Easting	576403
UTM - Northing	5055139
Year Monitoring Started	1987
Casing Depth (m, bgs)	13.1
Well Depth (m, bgs)	39
Elevation - top of casing (m, asl)	21.7
Geologic Unit	Horton Group
Aquifer Material	Bedrock - shale/slate

The historical water level graph for North Grant (054) is shown in Figure 3.44 and the 2007 water level graph is shown in Figure 3.45. This well has been monitored since 1987, however, there is a gap in the monitoring data between 1997 and 2006. Water levels appear to have declined when comparing current water level to levels before 1997. From 1987 to 1997, the average water level elevation was approximately 19.8 m above sea level and the annual water level fluctuation was about 0.9 m. The average water level elevation for the period between April 2006 and 2007 was slightly lower, at 19.5 m above sea level, and the annual water level fluctuation for this period was approximately 0.8 m. The depth to water in this well is approximately 1.1 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

The 2007 water levels were below the typical historical range for this well. Figure 3.45 shows the 2007 water levels coinciding with the historical low for a majority of the year indicating that 2007 is one of the lowest years on record for this well.

Monitoring Results - Water Chemistry and Temperature

The North Grant (054) well was last sampled in December 2006. Water chemistry results are presented in Appendix B. The results indicate that no health-based drinking water guidelines were exceeded. VOCs and pesticides were not detected. The tritium level in this well was 1.95 TU (+/-0.22), indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at this well is 8.23 °C and fluctuates annually between approximately 6.8 and 9.8 °C. A graph of daily average temperature data collected since April 2006 is presented in Appendix C.

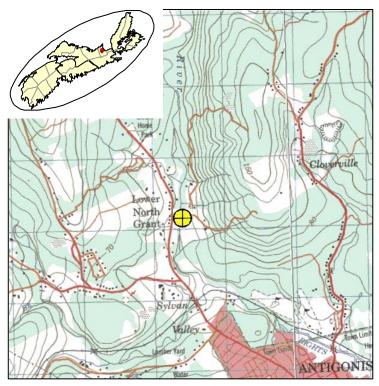


Figure 3.42: North Grant (054) Well Location

Figure 3.43: North Grant (054) Site Photograph

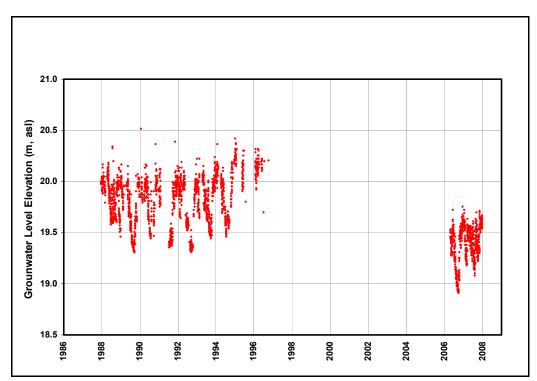


Figure 3.44: North Grant (054) Historical Water Level Graph

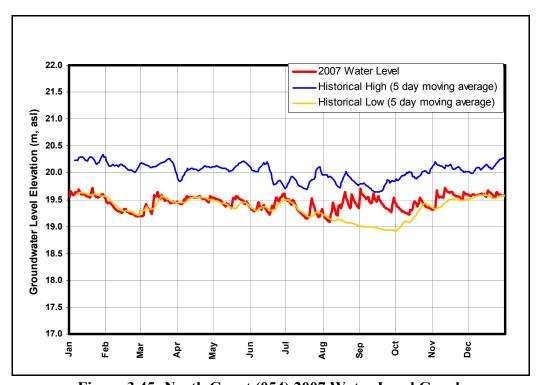


Figure 3.45: North Grant (054) 2007 Water Level Graph

3.13 Stillwater (055)

Well Description

The Stillwater (055) observation well is located in Stillwater, Guysborough County. This well was constructed in 1987 to expand the NS Groundwater Observation Well Network. It is completed in fractured bedrock comprised of greywacke. The well is 36.0 m deep and the casing extends to 13.4 m depth. Well location and construction information are provided in Table 3.13 and the well log is provided in Appendix A.

The location of the Stillwater (055) observation well is shown in Figure 3.46. The well is located in a wooded area off Route #7 on Department of Natural Resources' property adjacent to a gravel road leading to a rifle range. The nearest water well is a domestic drilled well located within 250 m. The St. Mary's River is approximately 750 m away, and the well is located 2 km from an Environment Canada Hydrometric Station on the river.

Table 3.13: Stillwater (055) Well Construction Information

Well Name	Stillwater (055)
Observation Well ID Number	055
NSE Well Log Number	871263
County	Guysborough
Nearest Community	Stillwater
UTM - Easting	579938
UTM - Northing	5004212
Year Monitoring Started	1987
Casing Depth (m, bgs)	13.4
Well Depth (m, bgs)	36
Elevation - top of casing (m, asl)	26.9
Geologic Unit	Goldenville Formation
Aquifer Material	Bedrock - greywacke

The historical water level graph for Stillwater (055) is shown in Figure 3.47 and the 2007 water level graph is shown in Figure 3.48. This well has been monitored since 1987, howeve,r monitoring stopped in the summer of 1995 and did not resume until May 2006. Water levels appear to have remained the same over time. From 1987 to 1995, the average water level elevation was approximately 25.0 m above sea level and the annual water level fluctuation was about 1.1 m. The average water level elevation for the period between May 2006 and 2007 was slightly higher, at 25.1 m above sea level, and the annual water level fluctuation for this period was approximately 1.0 m. The 2007 water levels were within the typical historical range for this well. The depth to water in this well is approximately 1.9 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The Stillwater (055) well was last sampled in December 2006. Water chemistry results are presented in Appendix B. The results indicate that no health-based drinking water guidelines were exceeded, at this well. One VOC (Toluene) was measured at the detection limit of 1 ug/L. Pesticides were not detected. The tritium level in this well was 3.82 TU (+/- 0.34), indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at this well is 7.53 °C and fluctuates annually between approximately 4.5 and 10.0 °C. A graph of daily average temperature data collected since May 2006 is presented in Appendix C.

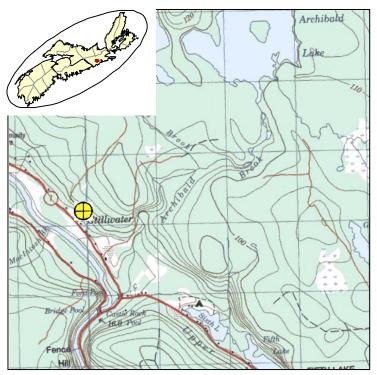


Figure 3.46: Stillwater (055) Well Location

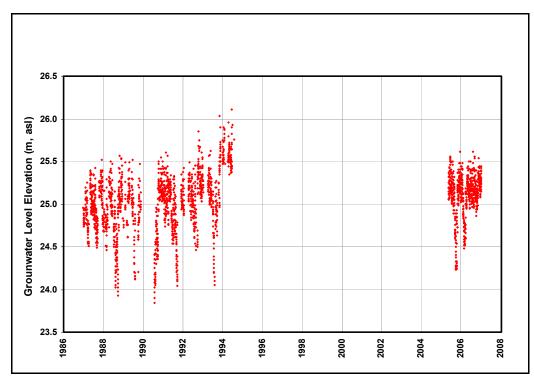


Figure 3.47: Stillwater (055) Historical Water Level Graph

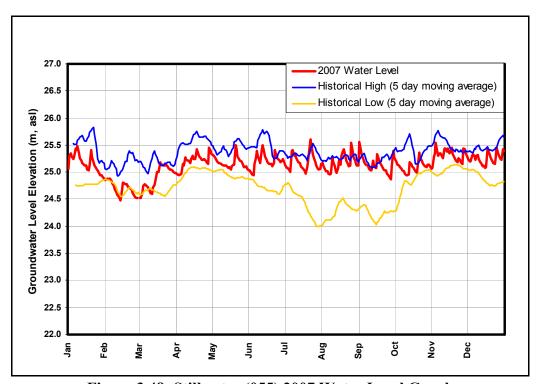


Figure 3.48: Stillwater (055) 2007 Water Level Graph

3.14 Sheet Harbour (056)

Well Description

The Sheet Harbour (056) observation well is located in Sheet Harbour, Halifax County. The well was constructed in 1987 to expand the NS Groundwater Observation Well Network. The well is completed in a bedrock aquifer. It is 46.4 m deep and the casing extends to 7.01 m depth. Well location and construction information is provided in Table 3.14 and the well log is provided in Appendix A.

The location of the Sheet Harbour (056) observation well is shown in Figure 3.49. It is situated in a rural area where the surrounding land is predominantly undeveloped. The well is located in a field, 50 m north of Route #7 (see Figure 3.50). It is located approximately 5.0 m from the East Halfway Brook, and there is a domestic drilled well within 35 m of the observation well.

Table 3.14: Sheet Harbour (056) Well Construction Information

Well Name	Sheet Harbour (056)
Observation Well ID Number	056
NSE Well Log Number	871264
County	Halifax
Nearest Community	Sheet Harbour
UTM - Easting	543176
UTM - Northing	4972468
Year Monitoring Started	1987
Casing Depth (m, bgs)	7.01
Well Depth (m, bgs)	46.4
Elevation - top of casing (m, asl)	38.06
Geologic Unit	Goldenville Formation
Aquifer Material	Bedrock - Quartzite

The historical water level graph for Sheet Harbour (056) is shown in Figure 3.51 and the 2007 water level graph is shown in Figure 3.52. The average water level elevation for the recorded period was approximately 36.5 m above sea level. The depth to water in this well is approximately 1.0 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The Sheet Harbour (056) well has not been sampled. The temperature at this well has been monitored since July 2007. A graph of daily average temperature data since July 2007 is presented in Appendix C.

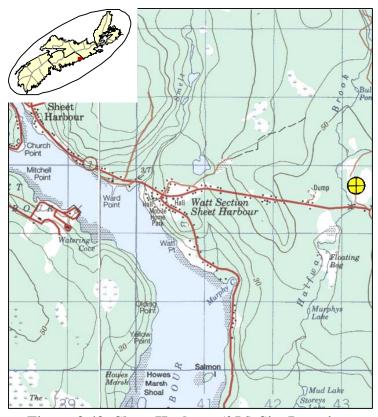


Figure 3.49: Sheet Harbour (056) Site Location

Figure 3.50: Sheet Harbour (056) Site Photograph

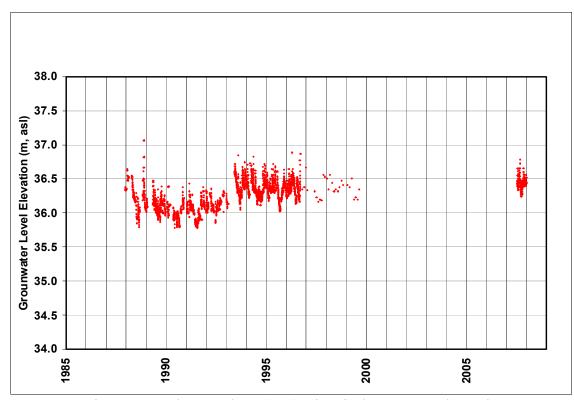


Figure 3.51: Sheet Harbour (056) Historical Water Level Graph

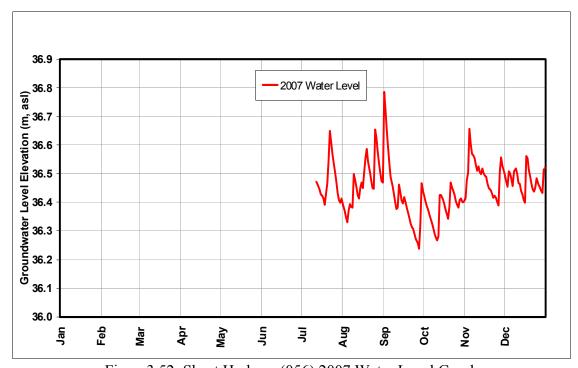


Figure 3.52: Sheet Harbour (056) 2007 Water Level Graph

3.15 Charleston (058)

Well Description

The Charleston (058) observation well is located near Riversdale, Queens County. This well was constructed in 1987 to expand the NS Groundwater Observation Well Network. The well is completed in slate and is 12.2 m deep, with an unknown casing depth. Well location and construction information is provided in Table 3.15 and the well log is provided in Appendix A.

The location of the Charleston (058) observation well is shown in Figure 3.53. It is situated in a rural area where the surrounding land is predominantly undeveloped. The well is located on a property that was used as a satellite tracking station until the mid-1990's. The nearest water well is a domestic well located approximately 150 m away.

Table 3.15: Charleston (058) Well Construction Information

Well Name	Charleston (058)
Observation Well ID Number	058
NSE Well Log Number	870190
County	Queens
Nearest Community	Riversdale
UTM - Easting	366778
UTM - Northing	4894476
Year Monitoring Started	1988
Casing Depth (m, bgs)	NA
Well Depth (m, bgs)	12.2
Elevation - top of casing (m, asl)	15.07
Geologic Unit	Halifax Formation
Aquifer Material	Bedrock - slate

The historical water level graph for Charleston (058) is shown in Figure 3.54 and the 2007 water level graph is shown in Figure 3.55. This well has been monitored since 1988 and water levels appear to have remained relatively constant. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

The average water level elevation at the Charleston (058) well is approximately 12.7 m above sea level and the annual water level fluctuation is about 0.5 m. The depth to water in this well is approximately 2.3 m below ground surface. The 2007 water levels were within the historically observed water level range for this well, however, historical highs were exceeded several times throughout the year.

Monitoring Results - Water Chemistry and Temperature

The Charleston (058) well has not been sampled and, therefore, water chemistry results are not available. The temperature at this well has been monitored since August 2006, and typically ranges between approximately 6.5 and 11.5 °C. The average groundwater temperature is approximately 9.2 °C. A graph of hourly temperature data since August 2006 is presented in Appendix C.

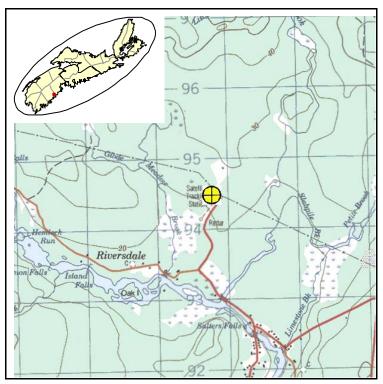


Figure 3.53: Charleston (058) Well Location

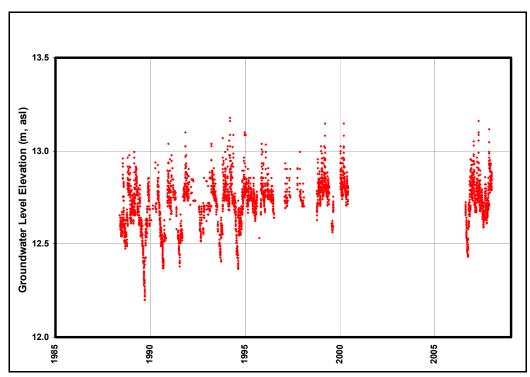


Figure 3.54: Charleston (058) Historical Water Level Graph

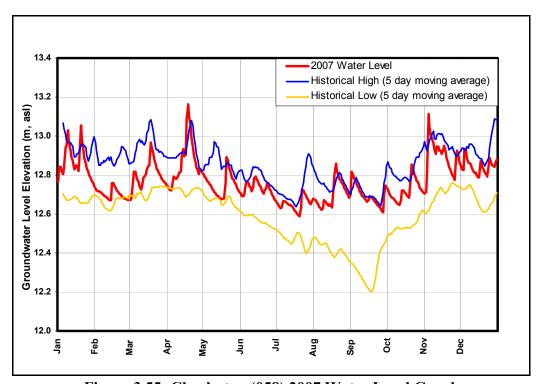


Figure 3.55: Charleston (058) 2007 Water Level Graph

3.16 Hayden Lake (059)

Well Description

The Hayden Lake (059) observation well is located near East Jordan, Shelburne County. The well was constructed in 1987 to expand the NS Groundwater Observation Well Network. It is completed in fractured bedrock comprised of greywacke. The well is 48.8 m deep and the casing extends to 6.1 m. Well location and construction information is provided in Table 3.16 and the well log is provided in Appendix A.

The location of the Hayden Lake (059) observation well is shown in Figure 3.56. It is situated in a rural area where the surrounding land is primarily undeveloped. The well is located adjacent to the Hayden Lake Water Treatment Plant, which supplies the Town of Lockeport. The nearest water well is a domestic well located approximately 300 m away.

Table 3.16: Hayden Lake (059) Well Construction Information

Well Name	Hayden Lake (059)
Observation Well ID Number	059
NSE Well Log Number	870189
County	Shelburne
Nearest Community	East Jordan
UTM - Easting	321365
UTM - Northing	4849195
Year Monitoring Started	1988
Casing Depth (m, bgs)	6.1
Well Depth (m, bgs)	48.8
Elevation - top of casing (m, asl)	2.94
Geologic Unit	Goldenville Formation
Aquifer Material	Bedrock - greywacke

The historical water level graph for Hayden Lake (059) is shown in Figure 3.57 and the 2007 water level graph is shown in Figure 3.58. This well has been monitored since 1988 and water levels appear to have risen slightly over time and the amount of annual fluctuation appears to have decreased. The statistical trend analysis for this well (Appendix D) indicates that there is a very small upward trend, equivalent to approximately 1.6 cm/year. This corresponds to a total water level rise of approximately 0.3 m since monitoring began at this well.

The average water level elevation at the Hayden Lake (059) well is approximately 1.7 m above sea level and the annual water level fluctuation is between 1.0 and 1.5 m. The depth to water in this well is approximately 1.3 m below ground surface. The 2007 water levels were within the historically observed water level range for this well.

Monitoring Results - Water Chemistry and Temperature

The Hayden Lake (059) well was last sampled in June 2005. Water chemistry results are presented in Appendix B. The results indicate that no health-based drinking water guidelines were exceeded. One VOC, chloroform, was detected at 3.2 ug/L, but was below the drinking water guideline of 100 ug/L. Chloroform is produced when chlorine reacts with organic matter and may be present in this well as a result of chlorine use and storage at the nearby water treatment plant. Perchlorate was detected at very low levels (0.014 ug/L), but was far below the recommended Health Canada guidance value of 6 ug/L. No pesticides were detected. The tritium level in this well was 3.4 TU, indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at the Hayden Lake (059) well is 8.7 °C and fluctuates annually between 6.8 and 10.8 °C. A graph of daily average temperature data collected since December 2003 is presented in Appendix C.

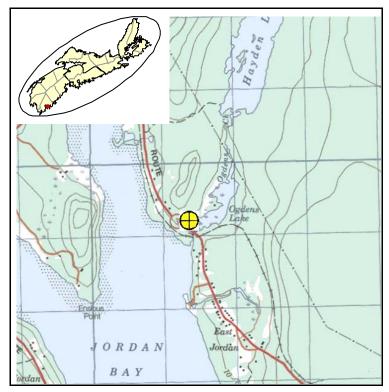


Figure 3.56: Hayden Lake (059) Well Location

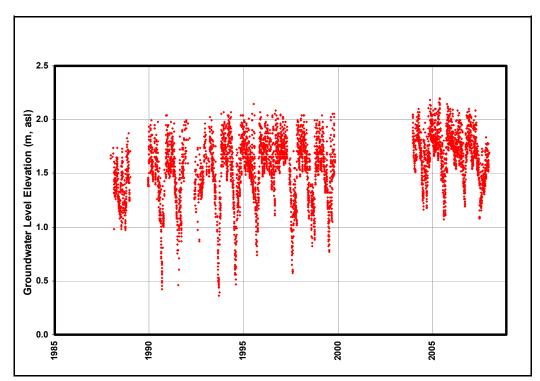


Figure 3.57: Hayden Lake (059) Historical Water Level Graph

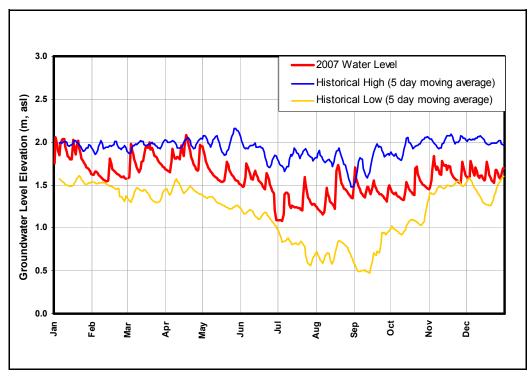


Figure 3.58: Hayden Lake (059) 2007 Water Level Graph

3.17 Meteghan (060)

Well Description

The Meteghan (060) observation well is located near the community of Meteghan River, Digby County. The well was constructed in March 1987 to expand the NS Groundwater Observation Well Network. The well is completed in slate aquifer. It is 61.0 m deep and the casing depth extends to 12.19 m. Well location and construction information is provided in Table 3.17 and the well log is provided in Appendix A.

The location of the Meteghan (060) observation well is shown in Figure 3.59. The well is situated on the lawn of a private property (see Figure 3.60), located 100 m south of the Meteghan River. The nearest water well is a domestic dug well approximately 30 m away.

Table 3.17: Meteghan (060) Well Construction Information

Well Name	Meteghan (060)
Observation Well ID Number	060
NSE Well Log Number	870188
County	Digby
Nearest Community	Meteghan River
UTM - Easting	250890
UTM - Northing	4900628
Year Monitoring Started	1987
Casing Depth (m, bgs)	12.19
Well Depth (m, bgs)	61
Elevation - top of casing (m, asl)	13.8
Geologic Unit	Halifax Formation
Aquifer Material	Bedrock-slate

The historical water level graph for Meteghan (060) is shown in Figure 3.61 and the 2007 water level graph is shown in Figure 3.62. This well has been monitored since mid December 1987 and water levels appear to have decreased over time. From the end of 1987 until the end of 1992 the average water level elevation was approximately 9.42 m above sea level. From 1993 to the spring of 1999, the average water level elevation was approximately 9.15 m above sea level. The average water level elevation for the period when monitoring resumed in August 2006 to the end 2007 was again lower, at 9.05 m. The depth to water in this well is approximately 4.0 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

The 2007 water levels were lower than the historical average for most of the year at this well, and have established new historical lows for the months of January through to August.

Monitoring Results - Water Chemistry and Temperature

The Meteghan (060) well was last sampled in December 2006. Water chemistry results are presented in Appendix B. The results indicate that no health-based drinking water guidelines were exceeded. The iron level at this well was 4,900 ug/L, which exceeds the aesthetic drinking water guideline of 300 ug/L. The manganese level at this well was 60 ug/L, which exceeds the aesthetic drinking water guideline of 50 ug/L. In addition, turbidity did not meet the aesthetic drinking water guidelines. The elevated turbidity is expected due to the high iron and manganese levels. VOCs and pesticides were not detected. The tritium level in this well was 0.46 TU (+/- 0.14), indicating that the water in this well is old water (i.e., recharge occurred before 1952).

The average groundwater temperature at this well is 8.96 °C and fluctuates annually between approximately 8.0 and 9.8 °C. A graph of daily average temperature data collected since August 2006 is presented in Appendix C.

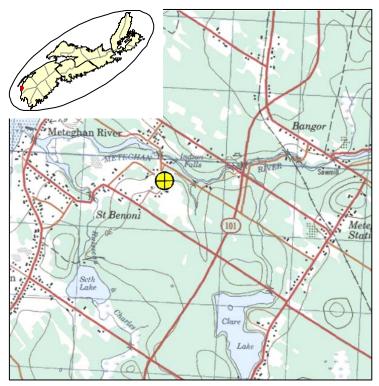


Figure 3.59: Meteghan (060) Site Location

Figure 3:60: Meteghan(060) Site Photograph

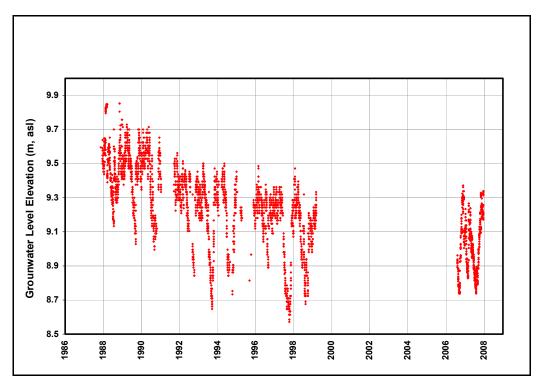


Figure 3.61: Meteghan (060) Historical Water Level Graph

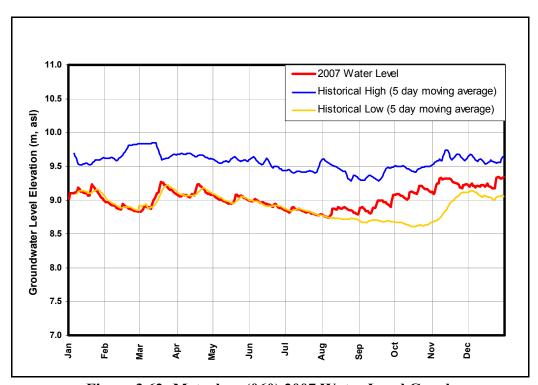


Figure 3.62: Meteghan (060) 2007 Water Level Graph

3.18 Annapolis Royal (062)

Well Description

The Annapolis Royal (062) observation well is located near Lake La Rose, Annapolis County. The well was constructed in December 1989 to expand the NS Groundwater Observation Well Network. The well is completed in granite. It is 62.8 m deep and the casing depth extends to 24.3 m. Well location and construction information is provided in Table 3.18 and the well log is provided in Appendix A.

The location of the Annapolis Royal (062) observation well is shown in Figure 3.63. It is situated in a rural area where the surrounding land is primarily undeveloped. The well is located 500 m from Lake La Rose, the former water supply for the Town of Annapolis Royal. The nearest water well is a domestic well located approximately 1,000 m away.

Table 3.18: Annapolis Royal (062) Well Construction Information

Well Name	Annapolis Royal (062)
Observation Well ID Number	062
NSE Well Log Number	891722
County	Annapolis
Nearest Community	Lake La Rose
UTM - Easting	303029
UTM - Northing	4952588
Year Monitoring Started	1990
Casing Depth (m, bgs)	24.3
Well Depth (m, bgs)	62.8
Elevation - top of casing (m, asl)	121.06
Geologic Unit	Liscomb Complex
Aquifer Material	Bedrock - granite

The historical water level graph for Annapolis Royal (062) is shown in Figure 3.64 and the 2007 water level graph is shown in Figure 3.65. This well has been monitored since 1990 and water levels have remained relatively constant. The average water level elevation at the Annapolis Royal (062) well is approximately 109.5 m above sea level and the annual water level fluctuation is about 1.3 m. The depth to water in this well is about 11.5 m below ground surface.

There is no visually obvious long-term water level trend in Figure 3.64 and there was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis. The 2007 water levels, shown in Figure 3.65, were within the typical range for this well.

Monitoring Results - Water Chemistry and Temperature

The Annapolis Royal (062) well was last sampled in November 2007. It was also sampled in November 2005. Water chemistry results are presented in Appendix B. The results indicate that no health-based drinking water guidelines were exceeded. Manganese was detected at $110 \,\mu\text{g/L}$ in 2005 and was again detected at $93 \,\mu\text{g/L}$ in 2007. This is above the aesthetic drinking water guideline of $50 \,\mu\text{g/L}$. Pesticides and perchlorate were not detected. One VOC, toluene, was detected at $2 \,\mu\text{g/L}$ in 2005 and at $1 \,\mu\text{g/L}$ in 2007. These toluene levels are below the aesthetic drinking water guideline of $24 \,\mu\text{g/L}$. This well is located beside a road and, therefore, the toluene, which is a chemical found in gasoline, may be due to runoff from the road. The tritium level in this well was measured in 2005 and found to be $0.27 \,\mu\text{TU}$, (+/- 0.17), indicating the water in the well is relatively old (i.e., recharge occurred before 1952).

The average groundwater temperature at the Annapolis Royal (062) well is 7.92 °C and fluctuates annually between 7.8 and 8.1 °C. A graph of daily average temperature data collected since May 2004 is presented in Appendix C.

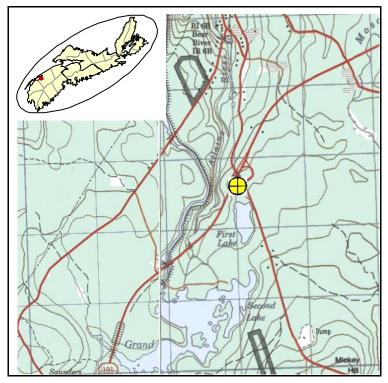


Figure 3.63: Annapolis Royal (062) Well Location

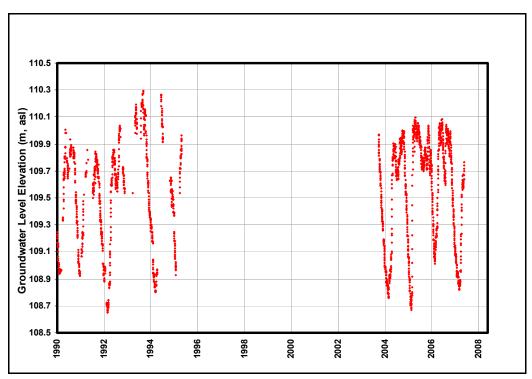


Figure 3.64: Annapolis Royal (062) Historical Water Level Graph

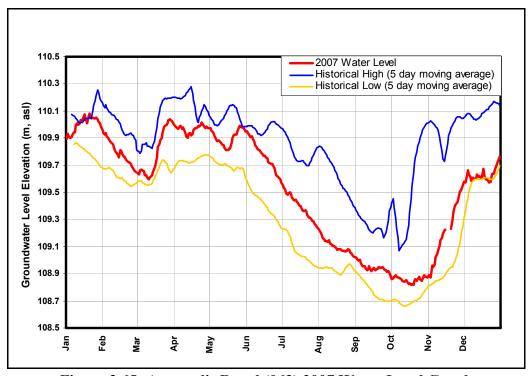


Figure 3.65: Annapolis Royal (062) 2007 Water Level Graph

3.19 Hebron (063)

Well Description

The Hebron (063) observation well is located near Dayton, Yarmouth County. The well was constructed in 1989 to expand the NS Groundwater Observation Well Network. The well is completed in slate and is 45.7 m deep with a casing extending to 12.2 m. Well location and construction information is provided in Table 3.19 and the well log is provided in Appendix A.

The location of the Hebron (063) observation well is shown in Figure 3.66. It is situated in a rural area and the surrounding land use is primarily residential. The well is located approximately 100 m from Lake Milo and 1,000 m from the ocean. The nearest water well is a domestic well located approximately 90 m away.

Table 3.19: Hebron (063) Well Construction Information

Well Name	Hebron (063)
Observation Well ID Number	063
NSE Well Log Number	891721
County	Yarmouth
Nearest Community	Dayton
UTM - Easting	250697
UTM - Northing	4862322
Year Monitoring Started	1990
Casing Depth (m, bgs)	12.2
Well Depth (m, bgs)	45.7
Elevation - top of casing (m, asl)	23.89
Geologic Unit	Whiterock Formation
Aquifer Material	Bedrock - slate

The historical water level graph for Hebron (063) is shown in Figure 3.67 and the 2007 water level graph is shown in Figure 3.68. This well has been monitored since 1990 and water levels have been relatively constant, although there appears to be a slight increase in the average water level (up by about 0.3 m) since the 1990's. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

The average water level elevation at the Hebron (063) well has varied from approximately 3.0 m to 3.3 m above sea level and the annual water level fluctuation is about 1.5 m. The depth to water in this well is about 2.5 m below ground surface and the hourly water level data shows tidal fluctuations of approximately 0.05 m.

The 2007 water levels were within the historically observed water level range for this well, although they were near historical highs for the months of June, July and November.

Monitoring Results - Water Chemistry and Temperature

The Hebron (063) well was last sampled in June 2005. Water chemistry results are presented in Appendix B. The results indicate that no health-based drinking water guidelines were exceeded. Iron (27,000 μ g/L) and manganese (440 μ g/L) were above the aesthetic drinking water guidelines of 300 μ g/L and 50 μ g/L, respectively. In addition, turbidity and pH did not meet the aesthetic drinking water guidelines. The elevated turbidity levels are expected due to the high iron and manganese levels. Note that the ion balance error reported in the general chemistry analysis is 23%, which exceeds the generally acceptable level of 5% and, therefore, these results should be viewed with caution.

VOCs, pesticides and perchlorate were not detected at the Hebron (063) well. The tritium level in this well was 4.6 TU, indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952). The average groundwater temperature at the Hebron (063) well is 8.8 °C and fluctuates annually between 6.0 and 11.5 °C. A graph of daily average temperature data collected since December 2003 is available in Appendix C.

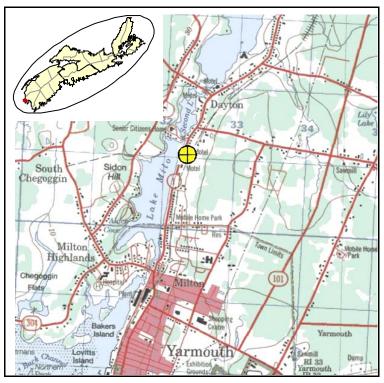


Figure 3.66: Hebron (063) Well Location

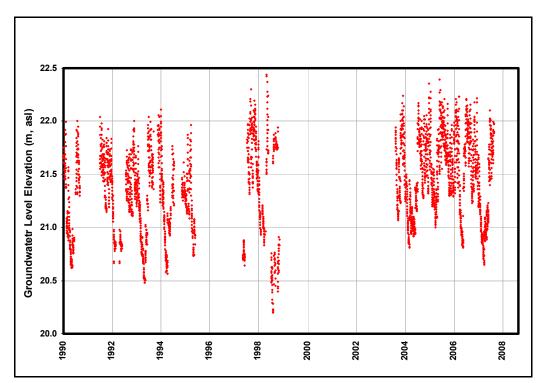


Figure 3.67: Hebron (063) Historical Water Level Graph

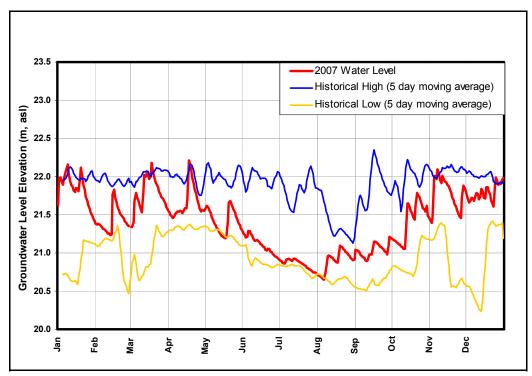


Figure 3.68: Hebron (063) 2007 Water Level Graph

3.20 Margaree (064)

Well Description

The Margaree (064) observation well is located near the community of Margaree Valley, Inverness County. The well was constructed in January 1990 to expand the NS Groundwater Observation Well Network. The well is completed in a bedrock aquifer. It is 45.7 m deep and the casing extends to 12.19 m. Well location and construction information is provided in Table 3.20 and the well log is provided in Appendix A.

The location of the Margaree (064) observation well is shown in Figure 3.69. The well is situated 1.5 km northwest of the town of Margaree Valley. It is located at the end of a field (see Figure 3.70), 25 m from the northeast branch of the Margaree River, where Nova Scotia Environment has a surface water quality station and Environment Canada has a hydrometric station to measure river water levels. The land surrounding the well is used for growing hay.

Table 3.20: Margaree (064) Well Construction Information

Well Name	Margaree (064)
Observation Well ID Number	064
NSE Well Log Number	902524
County	Inverness
Nearest Community	Margaree Valley
UTM - Easting	655717
UTM - Northing	5137031
Year Monitoring Started	1990
Casing Depth (m, bgs)	12.19
Well Depth (m, bgs)	45.7
Elevation - top of casing (m, asl)	46.5
Geologic Unit	Windsor Group
Aquifer Material	Bedrock-conglomerate

The historical water level graph for Margaree (064) is shown in Figure 3.71 and the 2007 water level graph is shown in Figure 3.72. This well has been monitored since the end of May 1990 and water levels appear to have remained the same over time. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

From 1990 until 1998 the average water level elevation was approximately 42.87 m above sea level. The average water level elevation for the period when monitoring resumed in June 2006 to the end 2007 was 42.73 m above sea level. There appears to be an increase in water elevation during the early 90's which then levels off after 1995 and then begins to decline over 2006-2007. The depth to water in this well is about 3.5 m below ground surface. The 2007 water levels at this observation well recorded historical lows over most of the year.

Monitoring Results - Water Chemistry and Temperature

The Margaree (064) well was last sampled in December 2006. Water chemistry results are presented in Appendix B. The results indicate that no health-based drinking water guidelines were exceeded. VOCs and pesticides were not detected. The tritium level in this well was 0.41 TU (+/- 0.14), indicating that the water in this well is old water (i.e., recharge occurred before 1952).

The average groundwater temperature at this well is 7.80 °C and fluctuates annually between approximately 6.8 and 9.1 °C. A graph of daily average temperature data collected since June 2006 is presented in Appendix C. Due to equipment failure, temperature data after November 7th, 2007 are not available.

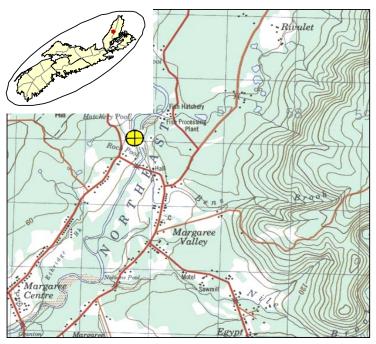


Figure 3.69: Margaree (064) Site Location

Figure 3.70: Margaree (064) Site Photograph

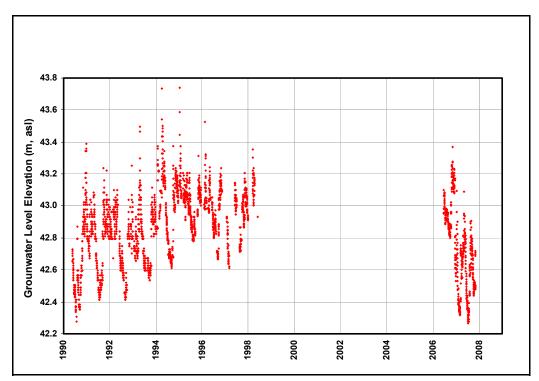


Figure 3.71: Margaree (064) Historical Water Level Graph

Figure 3.72: Margaree (064) 2007 Water Level Graph

3.21 Ingonish (065)

Well Description

The Ingonish (065) observation well is located near the community of Ingonish Beach, Victoria County. The well was constructed in December 1989 to expand the NS Groundwater Observation Well Network. The well is completed in a bedrock aquifer. It is 45.7 m deep and the casing depth extends to 12.2 m. Well location and construction information is provided in Table 3.21 and the well log is provided in Appendix A.

The location of the Ingonish (065) observation well is shown in Figure 3.73. The well is situated on the Highlands Links golf course, within the Cape Breton Highlands Park. It is located 1.5 km south of Ingonish Center, and is approximately 30 m north west of Clyde Burn Brook. The well is stationed in a forested area, adjacent to a small storage building (see site photo in Figure 3.74). There may be golf course irrigation wells nearby.

Table 3.21: Ingonish (065) Well Construction Information

Well Name	Ingonish (065)
Observation Well ID Number	065
NSE Well Log Number	892288
County	Victoria
Nearest Community	Ingonish Beach
UTM - Easting	698083
UTM - Northing	5170473
Year Monitoring Started	1990
Casing Depth (m, bgs)	12.2
Well Depth (m, bgs)	45.7
Elevation - top of casing (m, asl)	7.0
Geologic Unit	Early Devonion Granodiorite
Aquifer Material	Bedrock - granodiorite

The historical water level graph for Ingonish (065) is shown in Figure 3.75 and the 2007 water level graph is shown in Figure 3.76. This well has been monitored since November 1990 and water levels appear to have remained the same over time. From 1990 until August of 1998 the average water level elevation was approximately 2.17 m above sea level with annual fluctuations between 1.5 and 4.25 m. The average water level elevation for the period when monitoring resumed in December 2006 to the end 2007 was 2.16 m above sea level. The 2007 water levels were within the historically observed water level range for this well. The depth to water in this well is about 4.4 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry

The Ingonish (065) well has not been sampled and, therefore, water chemistry results are not available. The temperature at this well has been monitored since December 2006, and typically ranges between approximately 5.9 and 6.7°C. The average groundwater temperature is approximately 6.30 °C. A graph of hourly temperature data since December 2006 is presented in Appendix C.

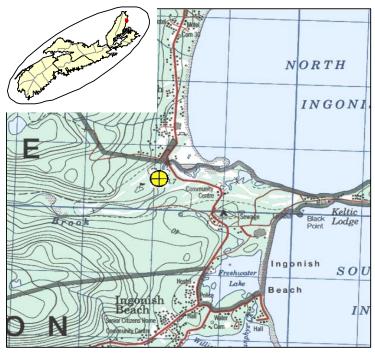


Figure 3.73: Ingonish (065) Site Location

Figure 3.74: Ingonish (065) Site Photograph

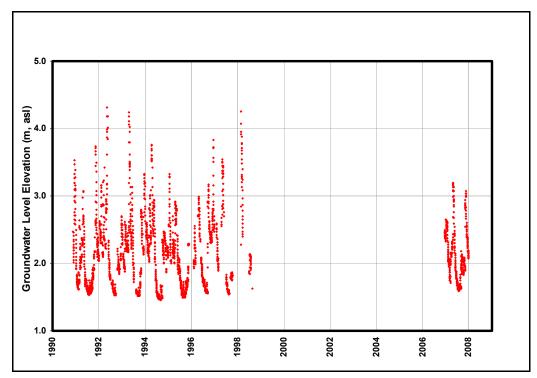


Figure 3.75: Ingonish (065) Historical Water Level Graph

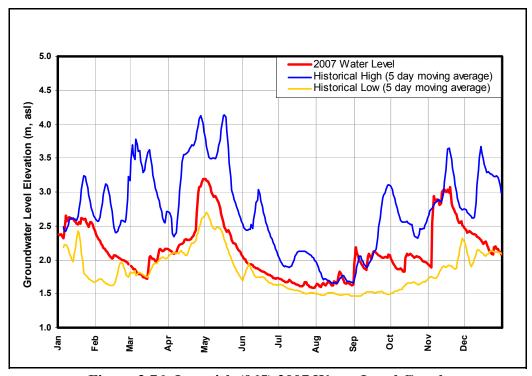


Figure 3.76: Ingonish (065) 2007 Water Level Graph

3.22 Debert (068)

Well Description

The Debert (068) observation well is located near the community of Debert, Colchester County. The well was constructed in August 1983 as a domestic water supply and was added to the NS Observation Well Network in 1993 to expand the network. The well is completed in a bedrock aquifer comprised of conglomerate. It is 46.6 m deep and the casing extends to a depth of 7.9 m. Well location and construction information is provided in Table 3.22 and the well log is provided in Appendix A.

The location of the Debert (068) observation well is shown in Figure 3.77. The well is situated within the Debert Industrial Park, north of Highway 104. It is located in a cleared area beside a parking lot.

Table 3.22: Debert (068) Well Construction Information

Well Name	Debert (068)
Observation Well ID Number	068
NSE Well Log Number	832002
County	Colchester
Nearest Community	Debert
UTM - Easting	466921
UTM - Northing	5028483
Year Monitoring Started	1993
Casing Depth (m, bgs)	7.9
Well Depth (m, bgs)	46.6
Elevation - top of casing (m, asl)	28.4
Geologic Unit	Wolfville Formation
Aquifer Material	Bedrock-conglomerate

The historical water level graph for Debert (068) is shown in Figure 3.78 and the 2007 water level graph is shown in Figure 3.79. This well has been monitored since June 1993, and water levels appear to have remained the constant over time. From June 1993 until June 1995 the average water level elevation was approximately 24.0 m above sea level, with an annual variation of approximately 2.0 m. The average water level elevation for the period when monitoring resumed in May 2006 to the end 2007 was 24.25 m above sea level. Based on the previous years of data, the 2007 water levels, shown in Figure 3.79, exhibit levels of a typical year. The depth to water in this well is about 4.0 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The Debert (068) well has not been sampled and, therefore, water chemistry results are not available. The temperature at this well has been monitored since May 2006, and typically ranges between approximately 6.5 and 10.0°C. The average groundwater temperature is approximately 8.54 °C. A graph of hourly temperature data since May 2006 is presented in Appendix C.

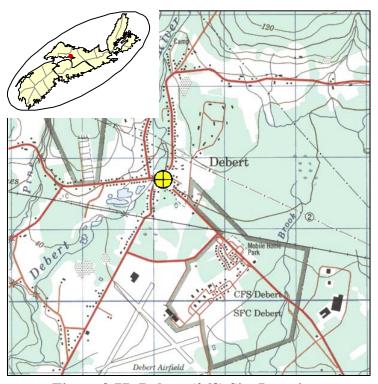


Figure 3.77: Debert (068) Site Location

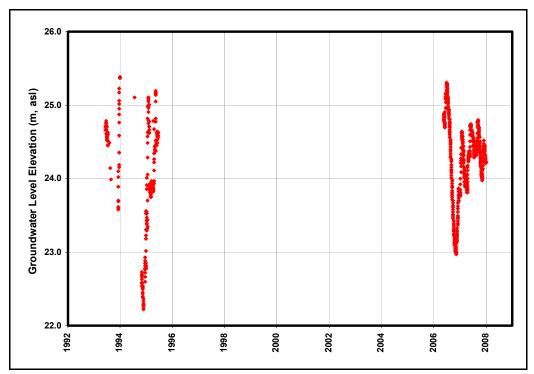


Figure 3.78: Debert (068) Historical Water Level Graph

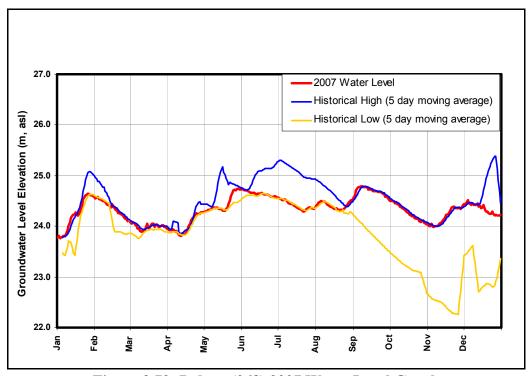


Figure 3.79: Debert (068) 2007 Water Level Graph

3.23 Dalem Lake (069)

Well Description

The Dalem Lake (069) observation well is located near the community of New Dominion, Victoria County. This well was drilled circa 1994 by Nova Scotia Environment to expand the NS Groundwater Observation Well Network. The well is completed in a bedrock aquifer, comprised of sandstone. It is 61.0 m deep and the casing depth extends to 12.4 m. Well location and construction information is provided in Table 3.23.

The location of the Dalem Lake (069) observation well is shown in Figure 3.80. The well is located approximately 75 m south of the 105 Trans Canada Highway. There are no other wells in the nearby area and the surrounding land has recently been logged.

Table 3.23: Dalem Lake (069) Well Construction Information

Well Name	Dalem Lake (069)
Observation Well ID Number	069
NSE Well Log Number	943326
County	Victoria
Nearest Community	New Dominion
UTM - Easting	698221
UTM - Northing	5124576
Year Monitoring Started	1992
Casing Depth (m, bgs)	12.4
Well Depth (m, bgs)	61
Elevation - top of casing (m, asl)	93.8
Geologic Unit	South Bar Formation
Aquifer Material	Bedrock - sandstone

Notes: bgs = below ground surface; asl = above sea level

Monitoring Results - Water Levels

The historical water level graph for Dalem Lake (069) is shown in Figure 3.81 and the 2007 water level graph is shown in Figure 3.82. This well has been monitored since June 1992 and water levels appear to have remained the same. The average water level elevation between August 1992 and the end of 1996 was approximately 86.80 m above sea level. The average water level elevation for the period when monitoring resumed in June 2006 to the end 2007 was 86.75 m above sea level. The 2007 water levels were within the historically observed water level range for this well. The depth to water in this well is about 5.5 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The Dalem Lake (069) well was last sampled in December 2006. Water chemistry results are presented in Appendix B. The results indicate that no health-based drinking water guidelines were exceeded, however, the manganese level of 330 μ g/L was above the recommended aesthetic objective of 50 μ g/L. VOCs and pesticides were not detected. The tritium level in this well was 3.61 TU (+/- 0.30), indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at this well is 6.83 °C and fluctuates annually between approximately 6.4 and 7.3 °C. A graph of daily average temperature data collected since June 2006 is presented in Appendix C.

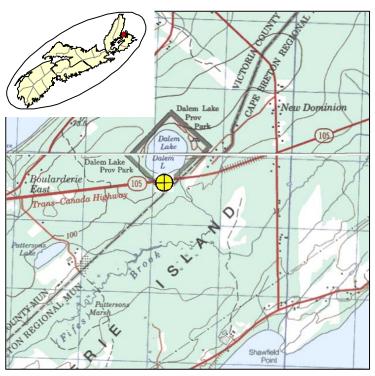


Figure 3.80: Dalem Lake (069) Site Location

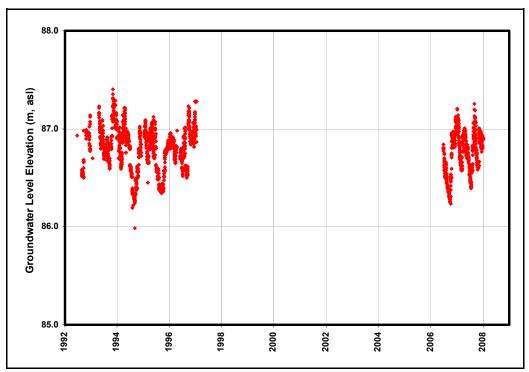


Figure 3.81: Dalem Lake (069) Historical Water Level Graph

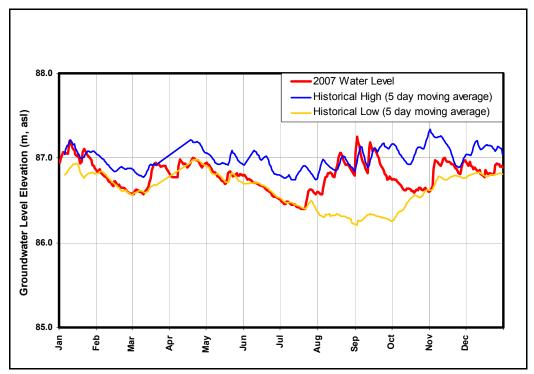


Figure 3.82: Dalem Lake (069) 2007 Water Level Graph

3.24 Amherst (071)

Well Description

The Amherst (071) observation well is located near the Town of Amherst, Cumberland County. It was drilled in July 1986 as a test well for the Town of Amherst's wellfield and was originally named "Test Hole No. 86-9". The well is completed in a aquifer comprised of sandstone. It is 91.4 m deep and the casing depth is 5.7 m. Well location and construction information is provided in Table 3.24 and the well log is provided in Appendix A.

The location of the Amherst (071) observation well is shown in Figure 3.83. The well is situated approximately 175 m northwest of Route 66 (Tyndal Road), within an inactive field. There are two domestic wells within 125 m of this observation well and the Town of Amherst's wellfield is located nearby.

Table 3.24: Amherst (071) Well Construction Information

Well Name	Amherst (071)
Observation Well ID Number	071
NSE Well Log Number	862667
County	Cumberland
Nearest Community	Amherst
UTM - Easting	411279
UTM - Northing	5079213
Year Monitoring Started	1993
Casing Depth (m, bgs)	6.1
Well Depth (m, bgs)	116.4
Elevation - top of casing (m, asl)	17.8
Geologic Unit	Balfron Formation
Aquifer Material	Bedrock - sandstone

Notes: bgs = below ground surface; asl = above sea level

Monitoring Results - Water Levels

The historical water level graph for Amherst (071) is shown in Figure 3.84 and the 2007 water level graph is shown in Figure 3.85. This well has been monitored since May 1993, and water levels appear to have remained the same over time. From May 1993 until August 1995, the monitoring data are intermittent and there are no data available from 1996 to 2006. The average water level elevation at this well is approximately 14.8 m above sea level and the depth to water in this well is about 2.5 m below ground surface. Based on the previous years of data, the 2007 water levels in Figure 3.85 exhibit levels of a typical year. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The Amherst (071) well was last sampled in December 2006. Water chemistry results are presented in Appendix B. The results indicate that no health-based drinking water guidelines were exceeded. VOCs and pesticides were not detected. The tritium level in this well was 4.0 TU (+/- 0.32), indicating that the water in this well is either a mix of old and recent water (i.e., recharge occurred before and after 1952) or is recent water (i.e., recharge occurred after 1952).

The average groundwater temperature at this well is 7.35 °C and fluctuates annually between approximately 6.0 and 8.5 °C. A graph of daily average temperature data collected since July 2006 is presented in Appendix C.

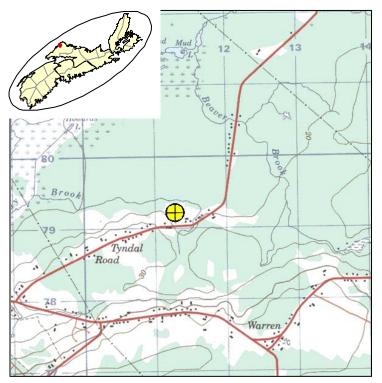


Figure 3.83: Amherst (071) Site Location

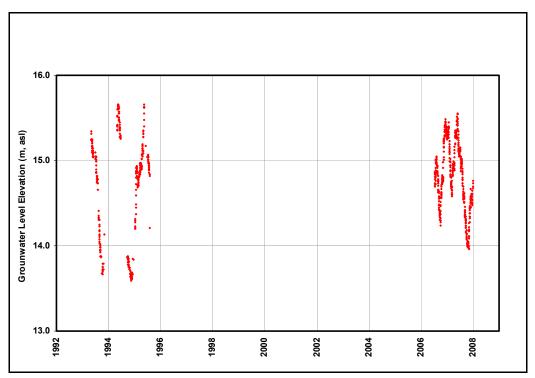


Figure 3.84: Amherst (071) Historical Water Level Graph

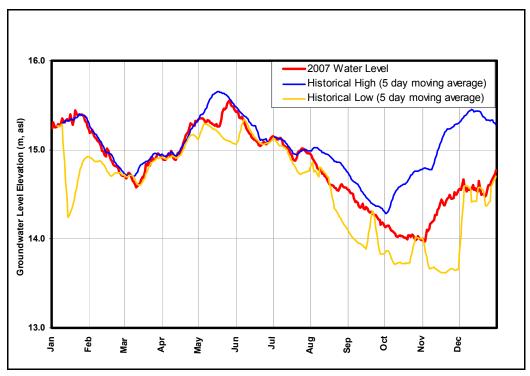


Figure 3.85: Amherst (071) 2007 Water Level Graph

3.25 Kelley River (073)

Well Description

The Kelley River (073) observation well is located near the community of River Herbert, Cumberland County. This well was drilled as part of a hydrogeological investigation of the Kelley River Basin in 1972 (Hennigar, 1974). In the report entitled "Hydrogeology of the Kelley River IHD Benchmark Basin Cumberland County, NS" (Hennigar, 1974), this well is named "Observation well No.2".

The well is completed in a bedrock aquifer comprised of sandstone. It is approximately 11.6 m deep and the casing depth is 4.2 m. Well location and construction information is provided in Table 3.25 and the well log is provided in Appendix A.

Table 3.25: Kelley River (073) Well Construction Information

Well Name	Kelley River (073)
Observation Well ID Number	073
NSE Well Log Number	721858
County	Cumberland
Nearest Community	River Herbert
UTM - Easting	386806
UTM - Northing	5049171
Year Monitoring Started	2006
Casing Depth (m, bgs)	4.2
Well Depth (m, bgs)	11.6
Elevation - top of casing (m, asl)	33.1
Geologic Unit	Malagash Formation
Aquifer Material	Bedrock - sandstone

Notes: bgs = below ground surface; asl = above sea level

The location of the Kelley River (073) observation well is shown in Figure 3.86. The well is located within the Chignecto Game Sanctuary, 13 km from the Boars Back Ridge Road. Positioned within a wooded area, the well is 18 m from Nova Scotia Environment's water quality station and

Environment Canada's hydrometric station on the Kelley River.

Monitoring Results - Water Levels

The historical water level graph for Kelley River (073) is shown in Figure 3.87 and the 2007 water level graph is shown in Figure 3.88. This well has been monitored since July 2006. From July 2006 to December 2007, the average water level elevation was 31.5 m above sea level and the depth to water was approximately 1.5 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The Kelley River (073) well was last sampled in January 2007. Water chemistry results are presented in Appendix B. The results indicate that no health-based drinking water guidelines were exceeded. VOCs and pesticides were not detected. The tritium level in this well was 3.78 TU (+/-0.32), indicating that the water in this well is a mix of old and recent water (i.e., recharge occurred before and after 1952).

The average groundwater temperature at this well is 6.63 °C and fluctuates annually between approximately 6.2 and 7.1 °C. A graph of daily average temperature data collected since July 2006 is presented in Appendix C. Due to equipment failure, temperature data after September 26, 2007 is not available.

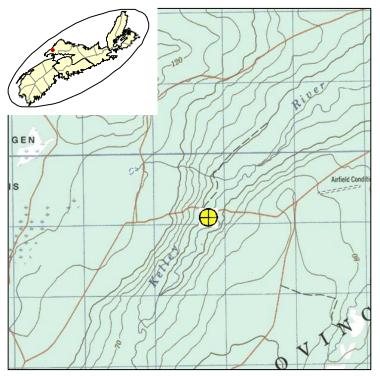


Figure 3.86: Kelley River (073) Site Location

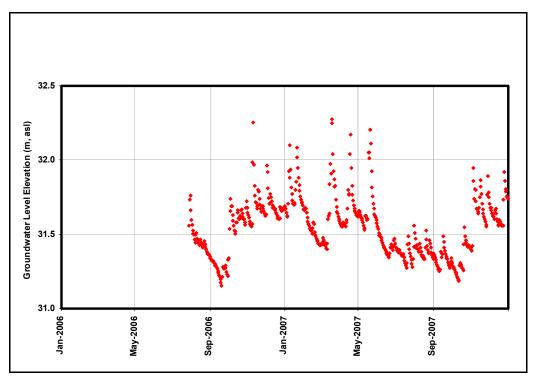


Figure 3.87: Kelley River (073) Historical Water Level Graph

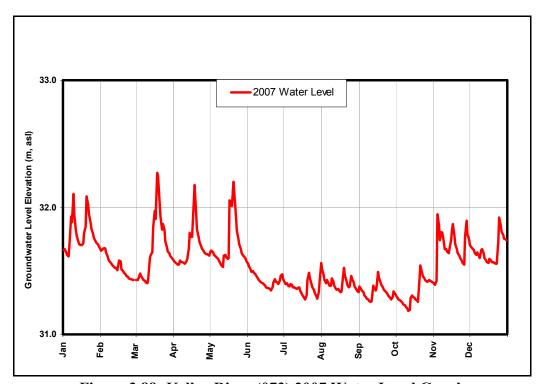


Figure 3.88: Kelley River (073) 2007 Water Level Graph

3.26 Atlanta (074)

Well Description

The Atlanta (074) observation well is located near the community of Atlanta, Kings County. The well was constructed in August 2007 as part of a aquifer evaluation project completed by Nova Scotia Department of Environment and Labour. The well is completed in a bedrock aquifer comprised of sandstone. It is 53.4 m deep and the casing extends to a depth of 36.0 m. Well location and construction information is provided in Table 3.26 and the well log is provided in Appendix A. A 72-hour pump test conducted at this well in 2007 indicated a transmissivity of 105 m²/day, hydraulic conductivity of 5.7 m/day and a safe yield of 1227 m³/day (188 igpm).

Table 3.26: Atlanta (074) Well Construction Information

Well Name	Atlanta (074)
Observation Well ID Number	074
NSE Well Log Number	070613
County	Kings
Nearest Community	Atlanta
UTM - Easting	381956
UTM - Northing	5000758
Year Monitoring Started	2007
Casing Depth (m, bgs)	36.0
Well Depth (m, bgs)	53.4
Elevation - top of casing (m, asl)	NA
Geologic Unit	Blomidon Formation
Aquifer Material	Bedrock - sandstone

Notes: bgs = below ground surface; asl = above sea level

The location of the Atlanta (074) observation well is shown in Figure 3.89. The well is located on approximately 250 m south of Bains Road and is surrounded by undeveloped land in a wooded area. It is located 150 m from the nearest domestic well and 150 m from the Habitant River.

Monitoring Results - Water Levels

Water level monitoring was not in progress in 2007. The water level in this well is approximately 1.1 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The Atlanta (074) well was last sampled in September 2007. Water chemistry results are presented in Appendix B. The results indicate that one health-based drinking water guideline was exceeded, for uranium. The uranium level in this well was 21 μ g/L, which exceeds the drinking water guideline of 20 μ g/L. VOCs and pesticides were not detected.

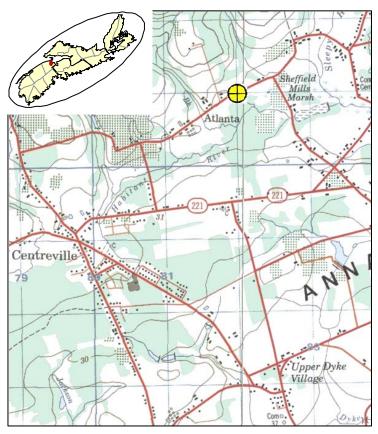


Figure 3.89: Atlanta (074) Site Location

Figure 3.90: Atlanta (074) Site Photograph

3.27 Sheffield Mills (075)

Well Description

The Sheffield Mills (075) observation well is located near the community of Sheffield Mills, Kings County. The well was constructed in August 2007 as part of a aquifer evaluation project completed by Nova Scotia Department of Environment and Labour. The well is completed in a bedrock aquifer, comprised of sandstone. It is 53.4 m deep and the casing depth is 19.2 m. Well location and construction information is provided in Table 3.27 and the well log is provided in Appendix A. A 72-hour pump test conducted at this well in 2007 indicated a transmissivity of 72.4 m²/day, hydraulic conductivity of 5.7 m/day and a safe yield of 371 m³/day (57 igpm).

Table 3.27: Sheffield Mills (075) Well Construction Information

Well Name	Sheffield Mills (075)
Observation Well ID Number	075
NSE Well Log Number	070618
County	Kings
Nearest Community	Sheffield Mills
UTM - Easting	384693
UTM - Northing	5000590
Year Monitoring Started	2007
Casing Depth (m, bgs)	19.2
Well Depth (m, bgs)	53.4
Elevation - top of casing (m, asl)	NA
Geologic Unit	Wolfville Formation
Aquifer Material	Bedrock - sandstone

Notes: bgs = below ground surface; asl = above sea level

The location of the Sheffield Mills (075) observation well is shown in Figure 3.91. The well is located south of Highway 221 in an active agricultural field which is used for growing vegetables (see Figure 3.92). It is located 165 m from the Habitant River and there are several houses with domestic wells located within 300 m.

Monitoring Results - Water Levels

Water level monitoring was not in progress in 2007. The water level in this well is approximately 4.4 m below ground surface. There was insufficient water level data (i.e., <10 years of useable data) to complete a water level trend analysis for this well.

Monitoring Results - Water Chemistry and Temperature

The Sheffield Mills (075) well was last sampled in September 2007. Water chemistry results are presented in Appendix B. The results indicate that no health-based drinking water guidelines were exceeded. VOCs and pesticides were not detected.

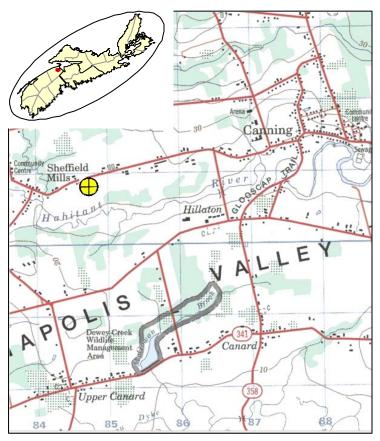


Figure 3.91: Sheffield Mills (075) Site Location

Figure 3.92: Sheffield Mills (075) Site Photograph

4.0 SUMMARY & CONCLUSIONS

4.1 Groundwater Levels

Table 4.1 presents a summary of groundwater level trends for each observation well. The trend analyses were only carried out on wells with at least ten years of "useable" water level data. A year was considered useable if data were available for at least 75% of the year. Eleven of the observation wells had enough water level data available to complete trend analyses. The remaining 16 wells had either been monitored for less than ten years, or had data gaps that caused some years of monitoring data to be "unuseable". Trends were considered statistically significant if the confidence level was greater than 80%.

The results indicate that seven of the wells exhibit statistically significant groundwater level trends, with four having small upward trends and three having small downward trends. The downward trends tend to be larger than the upward trends, however, the size of the trends in all cases is relatively small.

Upward trends were observed at the following wells: Fraser Brook (004), Point Aconi (030), Durham (045) and Hayden Lake (059). The largest upward trend was 2.2 cm/year at the Durham(045) observation well, which resulted in a total rise of approximately 0.6 m over the entire monitoring period at this well. The reason for the upward trends at these wells has not been determined, however, possible reasons include: increased precipitation; greater infiltration rates due to changes in land use; and, reduction in evapotranspiration rates.

Downward trends were observed at the following wells: Wolfville (010), Kentville (048) and Sydney (050). The largest downward trend was 5.4 cm/year at the Sydney (050) observation well, which resulted in a total decline of approximately 1.0 m since monitoring began. The reason for the downtrends trends at these wells has not been confirmed, however, all of these observation wells are located in municipal wellfields and, therefore, groundwater levels in these areas have probably been lowered due to pumping.

Table 4.1: Summary of Groundwater Level Trends

Well Name	Year Monitoring Started	No. of Usable Years ¹	Average Yearly Water Level Change (cm/year) ²	Total Water Level Change Since Monitoring Began (m)	Water Level Trend ³
Greenwood (003)	1968	19	NA	NA	No Trend
Fraser Brook (004)	1968	18	0.3	0.1	Up
Wilmot (005)	1969	17	NA	NA	No Trend
Wolfville (010)	1970	19	-2.7	-0.7	Down
Truro (014)	1974	15	NA	NA	No Trend
Monastery (028)	1979	9	NA	NA	Insufficient Data
Point Aconi (030)	1979	15	0.7	0.2	Up
Lawrencetown (043)	1979	11	NA	NA	No Trend
Durham (045)	1980	22	2.2	0.6	Up
Kentville (048)	1983	14	-0.8	-0.6	Down
Sydney (050)	1985	13	-5.4	-1	Down
North Grant (054)	1988	6	NA	NA	Insufficient Data
Stillwater (055)	1988	5	NA	NA	Insufficient Data
Sheet Harbour (056)	1987	<4	NA	NA	Insufficient Data
Charleston (058)	1989	5	NA	NA	Insufficient Data
Hayden Lake (059)	1988	13	1.6	0.3	Up
Meteghan (060)	1988	7	NA	NA	Insufficient Data
Annapolis Royal (062)	1992	6	NA	NA	Insufficient Data
Hebron (063)	1993	6	NA	NA	Insufficient Data
Margaree (064)	1991	6	NA	NA	Insufficient Data
Ingonish (065)	1991	5	NA	NA	Insufficient Data
Debert (068)	1993	<4	NA	NA	Insufficient Data
Dalem Lake (069)	1994	4	NA	NA	Insufficient Data
Amherst (071)	2006	<4	NA	NA	Insufficient Data

Well Name	Year Monitoring Started	No. of Usable Years ¹	Average Yearly Water Level Change (cm/year) ²	Total Water Level Change Since Monitoring Began (m)	Water Level Trend ³
Kelley River (073)	2007	<4	NA	NA	Insufficient Data
Atlanta (074)	2007	<4	NA	NA	Insufficient Data
Sheffield Mills (075)	2007	<4	NA	NA	Insufficient Data

Notes:

- 1. For a year to be considered a "useable" year, data must be available for at least 75% of the year.
- 2. Positive (+) values indicate upward trend and negative (-) values indicate downward trend.
- 3. The trend is considered to be statistically significant if the confidence level is 80% or more.
- 5. Insufficient data means there are less than 10 useable years of data available.

4.2 Groundwater Quality

Table 4.2 presents a summary of the groundwater quality results for each of the network's observation wells. Detailed chemistry results are available in Appendix B. The results indicate that five of the 27 wells exceeded health-based drinking water guidelines. The parameters that exceeded health-based guidelines include; arsenic (at two wells), lead, nitrate and uranium.

Arsenic is known to occur in groundwater in certain areas of the province due to the presence of naturally-occurring arsenic in soil and bedrock. The most common source of arsenic in groundwater is through erosion and weathering of soils, minerals and ores. Industrial effluents and pesticide runoff may also contribute arsenic to water in some areas.

Lead occurs naturally in soil and rock, but is not commonly found dissolved in groundwater at high levels. The main source of lead in drinking water is through corrosion of plumbing materials with lead components, such as pipes, solder, faucets, fittings and older galvanized well liners.

Nitrate is a naturally occurring chemical made of nitrogen and oxygen. In groundwater, nitrate primarily comes from decomposing plant and animal material, agricultural fertilizers, manure, and domestic sewage.

Uranium is a naturally occurring radioactive element that exists in soil and rock throughout some parts of Nova Scotia. Elevated levels of uranium are more likely to occur in drilled wells than in dug wells or surface water supplies. Furthermore, elevated uranium levels are most commonly observed in the following bedrock types in Nova Scotia: granite, sandstone and shale.

Several water quality parameters exceeded aesthetic drinking water guidelines in the observation well, as follows: manganese (at seven wells), iron (at four wells), chloride (at one well), pH (at two wells) and turbidity (at four wells). All of these parameters are naturally-occurring water quality problems that are commonly encountered in water wells in Nova Scotia.

The water quality results show that none of the observation wells exceeded drinking water guidelines for VOCs, pesticides or perchlorate. However, two VOCs were detected in three observation wells at very low levels (i.e., chloroform at 3.2 ug/L in one well, and toluene at 1 ug/L in two other wells). The source of the VOCs at these wells has not been determined. Perchlorate was also detected at two observation wells at very low levels (i.e., 100 times less than the recommended Health Canada guidance value for perchlorate). The source of the perchlorate at these observation wells has not been determined. No pesticides were detected in any of the observation wells.

The hourly groundwater temperature data collected at each observation well (see Appendix C) shows that all of the observation wells experience seasonal temperature fluctuations. The peak groundwater temperatures lag behind the seasonal changes, with peak highs usually occurring between September and January and peak lows usually occurring between March and June. The temperature range at each observation well is variable, however, the typical range is between 6°C and 10°C, with a typical average temperature of approximately 8°C.

Table 4.2: Summary of Groundwater Quality Results At All Observation Wells

Well Name	Parameters Exceeding Health- Based Drinking Water Guidelines	Parameters Exceeding Aesthetic Drinking Water Guidelines	Comments
Greenwood (003)	None	Iron, Manganese, pH, Turbidity	None
Fraser Brook (004)	Arsenic	None	None
Wilmot (005)	Nitrate	Turbidity	None
Wolfville (010)	None	None	Chloride exceeds background levels
Truro (014)	Not sampled	Not sampled	Not sampled
Monastery (028)	None	None	None
Point Aconi (030)	None	Manganese	None
Lawrencetown (043)	Arsenic	None	Chloride exceeds background levels
Durham (045)	None	None	None
Kentville (048)	Lead	Chloride, Iron	Perchlorate detected below guideline
Sydney (050)	None	Manganese	None
North Grant (054)	None	None	None
Stillwater (055)	None	None	Toluene detected below guideline
Sheet Harbour (056)	Not sampled	Not sampled	Not sampled
Charleston (058)	Not sampled	Not sampled	Not sampled
Hayden Lake (059)	None	None	Chloroform detected below guideline; perchlorate detected below guideline
Meteghan (060)	None	Iron, Manganese, Turbidity	None
Annapolis Royal (062)	None	Manganese	Toluene detected below guideline on both sampling occasions

Well Name	Parameters Exceeding Health- Based Drinking Water Guidelines	Parameters Exceeding Aesthetic Drinking Water Guidelines	Comments
Hebron (063)	None	Iron, Manganese, pH, Turbidity	None
Margaree (064)	None	None	None
Ingonish (065)	Not sampled	Not sampled	Not sampled
Debert (068)	Not sampled	Not sampled	Not sampled
Dalem Lake (069)	None	Manganese	None
Amherst (071)	None	None	None
Kelley River (073)	None	None	None
Atlanta (074)	Uranium	None	None
Sheffield Mills (074)	None	None	None

The tritium results indicate that most of the wells tested (i.e., 13 of 17 wells) contained either recent water (recharged after 1952), or a mix of recent and old water (recharged before and after 1952). Only four of the seventeen wells tested for tritium contained purely old water (recharged before 1952). The results suggest that groundwater in these aquifers is recharged relatively quickly. This is encouraging from a water quantity point of view because the aquifers are being regularly replenished with new water, however, it also indicates that the aquifers are vulnerable to contamination (i.e., contaminants released at the surface will be carried into the aquifer relatively quickly). This emphasizes the importance of source water protection plans in the province to ensure that groundwater is kept clean.

5.0 REFERENCES

Baechler, F.E. 1986. Regional Water Resources Sydney Coalfield, Nova Scotia. Department of the Environment, Halifax.

Bottomley, D.J. 1983. Origins of Some Arseniferous Groundwaters in Nova Scotia and New Brunswick, Canada. Canada Journal of Hydrology, 69: 223-257.

Callan, D.M. 1977. Groundwater Exploration and Testing Programme - Annapolis Valley Industrial Park, Kentville, N.S.

Clark I.D. and P. Fritz. 1997. Environmental Isotopes in Hydrogeology. Lewis Publishers, Boca Raton.

Cross, H.J. 1980. Report on Test Drilling, Upper Lawrencetown, Halifax County, Nova Scotia. Department of the Environment, Water Planning and Management Division, Halifax.

Environment Canada. 2007. Canadian Climate Normals Online. http://climate.weatheroffice.ec.gc.ca

Gibb, J.E., and K.A. McMullin. 1980. Regional Water Resources, Pictou County, Nova Scotia. Nova Scotia Department of the Environment.

Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. John Wiley & Sons.

Health Canada. 2007. Perchlorate and Human Health.

(Website: http://www.hc-sc.gc.ca/ewh-semt/water-eau/drink-potab/perchlorate_e.html)

Hennigar, T.W. 1966. Report on the geology and hydrology of the Fraser Brook Watershed, IHD-IWB-RB-23.

Hennigar, T.W. 1972. Hydrogeology of the Truro Area, Nova Scotia. Province of Nova Scotia Department of Mines, Groundwater Section report 72-1.

Hennigar, T.W. 1974. Hydrogeology of the Kelley River IHD Benchmark Basin, Cumberland County, Nova Scotia. Province of Nova Scotia Department of Environment.

McIntosh, J.R. 1984. Groundwater Hydrographs in Nova Scotia 1965-1981. Nova Scotia Department of the Environment.

NS Environment and Labour. 2007. Nova Scotia Groundwater Observation Well Network - 2007 Report. Nova Scotia Department of Environment and Labour.

Rivard, C., D. Paradis, S.J. Paradis, A. Bolduc, R.H. Morin, S. Liao, S. Pullan, Gauthier, M.-J., S. Trepanier, A. Blackmore, I. Spooner, C. Deblonde, R. Fernandes, S. Castonguay, Y. Michaud, J. Drage, and C. Paniconi. In progress. Canadian Groundwater Inventory: Regional Hydrogeological Characterization of the Annapolis-Cornwallis Valley Aquifers. Geological Survey of Canada.

Strait of Canso Natural Environment Committee. 1975. Strait of Canso Natural Environment Inventory Water Resources

Trescott, P.C. 1968. Groundwater Resources and Hydrogeology of the Annapolis-Cornwallis Valley, Nova Scotia. Nova Scotia Department of Mines, Memoir 6.

Trescott, P.C. 1969. Wolfville aquifer evaluation, Kings County, Nova Scotia. Province of Nova Scotia Department of Mines, Groundwater Section Report 69-1.

APPENDIX A WELL LOGS

Table A-1: Summary of Observation Well Construction Information

NSE Well Log No.	Address	Community	County	Date	Well Depth	Casing Depth	Depth to Bedrock	Depth to Static Level	Water Yield	Driller	Type of Well
					(ft)	(ft)	(ft)	(ft)	(igpm)		
661225	NS OBS WELL - GREENWOOD (003)	GREENWOOD	KINGS	20-Jun-66	25	21.5				1	DRILLED
661226	NS OBS WELL - FRASER BROOK (004)	LOWER HARMONY	COLCHESTER	11-Jul-66	60		2		5	1	DRILLED
661267	NS OBS WELL - WILMOT (005)	WILMOT	ANNAPOLIS	18-May-66	60	21				1	DRILLED
681252	NS OBS WELL - WOLFVILLE (010)	WOLFVILLE	KINGS	17-Dec-68	79	74.5	35			1	DRILLED
701431	NS OBS WELL - TRURO (014)	TRURO	COLCHESTER	16-Nov-70	300	60	35			1	DRILLED
742420	NS OBS WELL - MONASTERY (028)	MONASTERY	ANTIGONISH	01-Jan-74	520				40	1	DRILLED
761408	NS OBS WELL - POINT ACONI (030)	POINT ACONI	CAPE BRETON	11-Aug-76	100	42	14		10	45	DRILLED
771538	NS OBS WELL - LAWRENCETOWN (043)	UPPER LAWRENCETOWN	HALIFAX	16-Mar-77	175	145	10	4	8	83	DRILLED
782683	NS OBS WELL - DURHAM (045)	DURHAM	PICTOU	01-Jul-78	247		20		100	4	DRILLED
772021	NS OBS WELL - KENTVILLE (048)	KENTVILLE	KINGS	20-May-77	400	100	95		150	20	DRILLED
771077	NS OBS WELL - SYDNEY (050)	SYDNEY	CAPE BRETON	09-Mar-77	330	22	13		250	45	DRILLED
871262	NS OBS WELL - NORTH GRANT (054)	LOWER NORTH GRANT	ANTIGONISH	30-Mar-87	150	43		14	20	2	DRILLED
871263	NS OBS WELL - STILLWATER (055)	STILLWATER	GUYSBOROUGH	01-Apr-87	118	44		30	4.5	2	DRILLED
871264	NS OBS WELL - SHEET HARBOUR (056)	BEAVER HARBOUR	HALIFAX	06-Apr-87	150	23		10	0.7	2	DRILLED
870190	NS OBS WELL - CHARLESTON (058)	RIVERSDALE	QUEENS	01-Apr-87	40		20	6		210	DRILLED
870189	NS OBS WELL - HAYDEN LAKE (059)	EAST JORDAN	SHELBURNE	31-Mar-87	160	20	10		3.7	210	DRILLED
870188	NS OBS WELL - METEGHAN (060)	METEGHAN RIVER	DIGBY	31-Mar-87	200	40			0.7	210	DRILLED
891722	NS OBS WELL - ANNAPOLIS ROYAL (062)	LAKE LA ROSE	ANNAPOLIS	20-Dec-89	205	80	71		0.5	210	DRILLED
891721	NS OBS WELL - HEBRON (063)	DAYTON	YARMOUTH	19-Dec-89	150	40	3		45	210	DRILLED
902524	NS OBS WELL - MARGAREE (064)	MARGAREE VALLEY	INVERNESS	16-Jan-90	150	40			10	45	DRILLED
892288	NS OBS WELL - INGONISH (065)	INGONISH	VICTORIA	12-Dec-89	150	40			100	45	DRILLED
832002	NS OBS WELL - DEBERT (068)	DEBERT	COLCHESTER	13-Aug-83	153	26		112	10	6	DRILLED
943326	NS OBS WELL - DALEM LAKE (069)	NEW DOMINION	VICTORIA	01-Jan-94	200	40.5					DRILLED
862667	NS OBS WELL - AMHERST (071)	AMHERST	CUMBERLAND	29-Jul-86	382	19	15			32	DRILLED
721858	NS OBS WELL - KELLEY RIVER (073)	RIVER HEBERT	CUMBERLAND	01-Jul-72	38	13.6					DRILLED
070613	NS OBS WELL - ATLANTA (074)	ATLANTA	KINGS	20-Aug-07	175	118		7.71	188	307	DRILLED
070618	NS OBS WELL - SHEFFIELD MILLS (075)	SHEFFIELD MILLS	KINGS	20-Aug-07	175	63		18.75	57	307	DRILLED

NSEL Well No.

Well Type

661225 DRILLED

Environment and Labour		
Certified Well Contractor	,	Well Owner/Contractor Information
Name MINES	Well Drilled For: 0	Owner NS DEPT. OF MINES
Certificate No. 1	or Contractor/Bui	lder/Consultant, etc.
Company N. S. DEPARTMENT OF MINE	Civic Address of	Well NS OBS WELL - GREENWOOD (003)
, ,	Lot Number	Subdivision
	County KINGS	Postal Code
	'	
	Nearest Commun	nity in Altlas/Map Book ATLAS GREENWOOD
	Well Location	
NS Atlas or Map Book Reference :	NTS Map Reference :	GPS (WGS84 UTM) :
Atlas or Map Book	Map Sheet 21H2	Northing (m) 4985498
Map Page No.	Reference Map B	Easting (m) 350680
Reference Letter	Tract No. 7	Property (PID)
Reference Number	Claim M	Well Location Sketch Available
Roamer Letter		Worl Education Station / Wallaste
Roamer Number		
Depth in feet Prim	nary Lithology	Secondary Lithology
From To Colour 1 Description 1	Lithology 1 Colour 2	Description 2 Lithology 2 Water Found
0 25 FINE GRAINED	SAND	COARSE GRAIN SAND
Well Construction Information	Dug Well Information	Water Yield
Total depth below surface (ft) 25	Depth of liner (crock) (ft)	Estimated Yield (igpm)
Depth to bedrock (ft)	Reservoir material	
Water bearing fractures encountered at (ft):		Method
water bearing fractures encountered at (it).	Reservoir vol. (cu.yd)	Rate (igpm)
Outer Well Casing:	Reservoir material size	Duration (hrs)
From (ft) 0 To (ft) 22	Apron Material	
		Depth to water at end of test (ft)
	Apron depth (ft)	Depth to water at end of test (ft) Total drawdown (ft)
Diameter (in) 4.5	Apron depth (ft) Apron thickness (ft)	
	Apron depth (ft) Apron thickness (ft) Apron width (ft)	Total drawdown (ft)
Diameter (in) 4.5	Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd)	Total drawdown (ft) Water level recovered to (ft)
Diameter (in) 4.5 Length of casing above ground :	Apron depth (ft) Apron thickness (ft) Apron width (ft)	Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs)
Diameter (in) 4.5 Length of casing above ground: (ft) (in)	Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft)
Diameter (in) 4.5 Length of casing above ground: (ft) (in) Driveshoe make	Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow
Diameter (in) 4.5 Length of casing above ground: (ft) (in) Driveshoe make	Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow Well Status/Water Use/Date Completed
Diameter (in) 4.5 Length of casing above ground: (ft) (in) Driveshoe make	Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL

NSEL Well No.

661226 DRILLED

Well Type

Environment and Labour

Certified Well Contractor			V	Vell Owner/	Contractor Inforr	mation
Continued Well Contractor		1	v	. 5.1. C WITOI/	COMMON THOM	
Name		Well Drilled Fo	: Owner		NS D	DEPT. OF MINES
Certificate No. 1		or Contractor/I	uilder/Co	onsultant, et	c	
Company N. S. DEPARTMENT OF MINE	S	Civic Address	of Well	NS OBS WE	LL - FRASER B	ROOK (004)
		Lot Number		Subdivisio	n	
		County COL	HESTER	₹	Posta	I Code
		Nearest Comm	unity in A	Altlas/Map B	ook ATLAS	LOWER HARMONY
	Well	Location			-	,
NS Atlas or Map Book Reference :	NTS Map Reference			GPS (\	NGS84 UTM) :	
Atlas or Map Book	Map Sheet	11E6	7	Northir		5021100
Map Page No.	Reference Map	A	=	Easting	g (m)	486889
Reference Letter	Tract No.	81	_		ty (PID)	
Reference Number	<u> </u>		-			Aveilable
Roamer Letter	Claim	J		well Lo	ocation Sketch A	Available
Roamer Number						
Depth in feet Prim	nary Lithology			Secondary	/ Lithology	
From To Colour 1 Description 1	Lithology 1	Colour 2	Desc	cription 2	Lithology	2 Water Found
0 2 REDDISH SANDY	TILL					
	OU TOTONE	ODAY	LAVED	^	OII TOTONE	
6 60 REDDISH LAMINATED	SILTSTONE	GRAY	LAYER	S	SILTSTONE	
	SILTSTONE	GRAY	LAYER	S	SILTSTONE	
	SILTSTONE	GRAY	LAYER	S	SILTSTONE	
	SILTSTONE Dug Well Ir		LAYER	S	SILTSTONE	Yield
6 60 REDDISH LAMINATED		nformation	LAYER			
6 60 REDDISH LAMINATED Well Construction Information	Dug Well Ir	nformation ock) (ft)	LAYER	Est	Water	
6 60 REDDISH LAMINATED Well Construction Information Total depth below surface (ft) 60	Dug Well Ir Depth of liner (cro	nformation ock) (ft)	LAYER	Est Met	Water imated Yield (igp	om) 6.5
Well Construction Information Total depth below surface (ft) Depth to bedrock (ft) 2	Dug Well Ir Depth of liner (cro Reservoir materia	nformation Dock) (ft)	LAYER	Est Mei Rat	Water imated Yield (igp thod e (igpm)	PUMP TEST 5
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing:	Dug Well Ir Depth of liner (cro Reservoir materia Reservoir vol. (cu	nformation Dock) (ft)	LAYER	Est Mei Rat Dur	Water imated Yield (igp thod e (igpm) ration (hrs)	PUMP TEST 5 24
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft):	Dug Well Ir Depth of liner (cro Reservoir materia Reservoir vol. (cu Reservoir materia	nformation Dock) (ft)	LAYER	Est Mei Rat Dur Dep	Water imated Yield (igp thod e (igpm) ration (hrs) oth to water at er	PUMP TEST 5 24 and of test (ft)
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing:	Dug Well Ir Depth of liner (cro Reservoir materia Reservoir vol. (cu Reservoir materia Apron Material	nformation pck) (ft) al i.yd) al size	LAYER	Est Mei Rat Dur Dep Tot	Water imated Yield (ign thod e (igpm) ration (hrs) oth to water at er al drawdown (ft)	PUMP TEST 5 24 nd of test (ft) 29.5
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) To (ft)	Dug Well Ir Depth of liner (cro Reservoir materia Reservoir vol. (cu Reservoir materia Apron Material Apron depth (ft)	nformation pck) (ft) al i.yd) al size	LAYER	Est Mei Rat Dur Dep Tot: Wa	Water imated Yield (iggathod e (igpm) ration (hrs) oth to water at er al drawdown (ft) ter level recover	PUMP TEST 5 24 nd of test (ft) 29.5 ed to (ft)
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) To (ft) Diameter (in) 6 Length of casing above ground:	Dug Well Ir Depth of liner (cro Reservoir material Reservoir wol. (cu Reservoir material Apron Material Apron depth (ft) Apron thickness (nformation pck) (ft) al i.yd) al size	LAYER	Est Met Rat Dur Dep Tot Wa Rec	Water imated Yield (ign thod e (igpm) ration (hrs) oth to water at er al drawdown (ft)	PUMP TEST 5 24 nd of test (ft) 29.5 ed to (ft)
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) To (ft) Diameter (in) 6 Length of casing above ground:	Dug Well Ir Depth of liner (cro Reservoir materia Reservoir vol. (cu Reservoir materia Apron Material Apron depth (ft) Apron thickness (Apron width (ft)	nformation pck) (ft) al i.yd) al size	LAYER	Est Met Rat Dur Dep Tot Wa Rec	Water imated Yield (ign thod e (igpm) ration (hrs) oth to water at er al drawdown (ft) ter level recover	PUMP TEST 5 24 nd of test (ft) 29.5 ed to (ft)
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) To (ft) Diameter (in) 6 Length of casing above ground: (ft) (in)	Dug Well Ir Depth of liner (cro Reservoir materia Reservoir vol. (cu Reservoir materia Apron Material Apron depth (ft) Apron thickness (Apron width (ft) Apron volume (cu Bottom material	nformation pck) (ft) al i.yd) al size	LAYER	Est Met Rat Dur Dep Tot Wa Rec Dep	Water imated Yield (ign thod e (igpm) ration (hrs) oth to water at er al drawdown (ft) ter level recover covery time (hrs) oth to static level	PUMP TEST 5 24 nd of test (ft) 29.5 ed to (ft)
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) To (ft) 5 Length of casing above ground: (ft) (in) Driveshoe make	Dug Well Ir Depth of liner (cro Reservoir materia Reservoir vol. (cu Reservoir materia Apron Material Apron depth (ft) Apron thickness (Apron width (ft) Apron volume (cu Bottom material	nformation pck) (ft) al i.yd) al size		Est Met Rat Dur Dep Tot Wa Rec Dep	Water imated Yield (ignated Yield (i	pump TEST 5 24 and of test (ft) 29.5 ed to (ft)
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) To (ft) 5 Length of casing above ground: (ft) (in) Driveshoe make	Dug Well Ir Depth of liner (cro Reservoir materia Reservoir vol. (cu Reservoir materia Apron Material Apron depth (ft) Apron thickness (Apron width (ft) Apron volume (cu Bottom material	nformation pck) (ft) al i.yd) al size		Est Met Rat Dur Dep Tot: Wa Rec Ove	Water imated Yield (ignated Yield (i	PUMP TEST 5 24 nd of test (ft) 29.5 ed to (ft) (ft) se/Date Completed
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) 2 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) To (ft) 5 Length of casing above ground: (ft) (in) Driveshoe make	Dug Well Ir Depth of liner (cro Reservoir materia Reservoir vol. (cu Reservoir materia Apron Material Apron depth (ft) Apron thickness (Apron width (ft) Apron volume (cu Bottom material	nformation pck) (ft) al i.yd) al size	F	Est Met Rat Dur Dep Tot: Wa Rec Ove	Water imated Yield (ignated Yield (i	PUMP TEST 5 24 nd of test (ft) 29.5 ed to (ft) (ft) se/Date Completed

(Summary Log)

NSE Well No.

661267 DRILLED

Well Type

Certified Well Contractor		Well Owner/Contractor Information
Name MINES Certificate No. 1 Company N. S. DEPARTMENT OF MINES NS Atlas or Map Book Reference: Atlas or Map Book Map Page No. Reference Letter Reference Number Roamer Letter Roamer Number	or Cor Civic A Lot Nu County	Orilled For: Owner Intractor/Builder/Consultant, etc. Address of Well NS OBS WELL - WILMOT (005) Imber Subdivision Y ANNAPOLIS Postal Code st Community in Altlas/Map Book ATLAS WILMOT GPS (WGS84 UTM): Northing (m) 4979368 Easting (m) 340015 1 Property (PID)
Well Construction Information Total depth below surface (ft) 60 Depth to bedrock (ft) Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) 0 To (ft) 21 Diameter (in) 4.5 Length of casing above ground: (ft) (in) Driveshoe make	Dug Well Information Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	Method Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow
Comments NS OBSERVATION WELL - WILM	MOT (005)	Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL Water use MONITORING Method of drilling Date well completed 18-May-66

NSEL Well No.

681252 DRILLED

Well Type

Environment and Labour

Certified Well Contractor		Well Owner/Contractor Information			
Name MINES Certificate No. 1 Company N. S. DEPARTMENT OF MINES NS Atlas or Map Book Reference: Atlas or Map Book		Well Drilled For: Owner or Contractor/Builder/Consultant, etc. Civic Address of Well NS OBS WELL - WOLFVILLE (010) Lot Number Subdivision County KINGS Postal Code Nearest Community in Altlas/Map Book ATLAS WOLFVILLE			
Map Page No. Reference Letter Reference Number Roamer Letter Roamer Number	Reference Map Tract No. Claim	В 78 К	Easting (m) 392086 Property (PID) Well Location Sketch Available		
From To Colour 1 Description 1 0 3 RED CLAYEY 3 15 FINE GRAINED 15 35 RED CLAYEY 35 79 RED	Lithology 1 TILL SAND TILL SAND TILL SANDSTONE	Colour 2	Secondary Lithology Description 2 Lithology 2 Water Found GRAVEL		
Well Construction Information Total depth below surface (ft) 79 Depth to bedrock (ft) 35 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) 75 Diameter (in) 4.5 Length of casing above ground: (ft) (in) Driveshoe make	Dug Well Infor Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material si: Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	ze	Water Yield Estimated Yield (igpm) Method Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow		
Comments NS OBSERVATION WELL - WOL	FVILLE (010)		Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL Water use MONITORING Method of drilling Date well completed 17-Dec-68		

NSEL Well No.

Environment and Labour

(Summary Log)

701431 DRILLED Well Type

Certified Well Contractor		Well Owner/Contractor Information			
Name MINES Certificate No. 1 Company N. S. DEPARTMENT OF MINES Well L NS Atlas or Map Book Reference: NTS Map Reference Atlas or Map Book Map Sheet Map Page No. Reference Letter Reference Letter Reference Number Roamer Letter Roamer Letter Claim		Civic Address of Lot Number County COLCH Nearest Commun	Owner Ider/Consultant, etc. Well NS OBS WEL Subdivision HESTER hity in Altlas/Map Bo GPS (W Northing Easting Property	Postal Code ok ATLAS TR /GS84 UTM):	OF MINES URO 5023778 476052
Roamer Number					
Depth in feet Prin From To Colour 1 Description 1	nary Lithology Lithology 1	Colour 2	Secondary Description 2	Lithology Lithology 2	Water Found
0 20 20 35 35 300	GRAVEL GLACIAL TILL SHALE	(SEAM S	SANSTONE	
Well Construction Information	Dug Well Inf	formation		Water Yield	
Total depth below surface (ft) 300 Depth to bedrock (ft) 35 Water bearing fractures encountered at (ft): Outer Well Casing: From (ft) 0 To (ft) 60 Diameter (in) 6 Length of casing above ground: (ft) (in) Driveshoe make	Depth of liner (crock Reservoir material Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.) Bottom material	ck) (ft)	Meth Rate Dura Dept Total Wate Reco Dept Over	nated Yield (igpm) nod (igpm) thion (hrs) th to water at end of the drawdown (ft) er level recovered to overy time (hrs) th to static level (ft) flow	(ft)
Comments NS OBSERVATION WELL - TRI	JRO (014)		Final status of Water use Method of drill Date well com	MONITORING	ON WELL

NSEL Well No.

742420 DRILLED

Well Type

Environment and Labour

Certified Well Contractor			Well Owner/Contractor Information				
			Well Owner/Contractor Information				
Name			Well Drilled For: Owner NS DEPT. OF MINES				
Certificate No. 1			or Contractor/Builder/Consultant, etc.				
Company N. S. DEPARTMENT OF MINES			Civic Address of Well NS OBS WELL - MONASTERY (028)				RY (028)
IN. C. BELYKKIMEIN CHIMINE			Lot Nu	mber	Subdivisio	n	
			County	ANTIG	ONISH	Postal	Code
			Neares	st Commu	nity in Altlas/Map Bo	ook ATLAS	MONASTERY
		Well I	ocation				
NS Atlas or Map Book Refe	erence :	NTS Map Reference			GPS (V	VGS84 UTM) :	
Atlas or Map Book		Map Sheet	11F	12	Northin		5052489
Map Page No.		Reference Map	A		Easting		606083
Reference Letter		Tract No.	91			ty (PID)	
Reference Number		Claim					veileble
Roamer Letter		Ciaim			vveiric	ocation Sketch A	avaliable
Roamer Number							
Depth in feet	Prima	ry Lithology			Secondary	Lithology	
From To Colour 1		Lithology 1	C	Colour 2	Description 2	Lithology	2 Water Found
0 1	CLAYEY	TILL					
	OL/ () L					SHALE & CONG	GLOM
1 520	our III I	SANDSTONE				SHALE & CON	GLOM
	ODATE:					SHALE & CON	GLOM
	OZ.IIZ.					SHALE & CON	GLOM
			formation	1		SHALE & CONG	
1 520	formation	SANDSTONE			Esti		Yield
1 520 Well Construction In	formation	SANDSTONE Dug Well Inf	ck) (ft)) 	Esti Met	Water mated Yield (igp	Yield
1 520 Well Construction In Total depth below surface (f	formation t) 520	Dug Well Inf Depth of liner (crock	ck) (ft)		Met	Water mated Yield (igp	Yield
Well Construction In Total depth below surface (ff Depth to bedrock (ft) Water bearing fractures ence	formation t) 520	Dug Well Inf Depth of liner (crock Reservoir material	yd)		, Met Rati	Water mated Yield (igp hod e (igpm)	Yield om) 67
Well Construction In Total depth below surface (fr Depth to bedrock (ft) Water bearing fractures ence Outer Well Casing:	formation t) 520 ountered at (ft):	Dug Well Inf Depth of liner (crock Reservoir material Reservoir vol. (cu.)	yd)		Met Rati Dur	Water mated Yield (igp	Yield (bm) 67 (40) (50)
Well Construction In Total depth below surface (ff Depth to bedrock (ft) Water bearing fractures enc Outer Well Casing: From (ft)	formation t) 520	Dug Well Inf Depth of liner (crock Reservoir material Reservoir vol. (cu.) Reservoir material Apron Material Apron depth (ft)	yd) size		Met Rati Dur Dep	Water mated Yield (igp hod e (igpm) ation (hrs)	Yield om) 67 40 50 nd of test (ft)
Well Construction In Total depth below surface (f Depth to bedrock (ft) Water bearing fractures ence Outer Well Casing: From (ft) Diameter (in)	formation t) 520 ountered at (ft): To (ft)	Dug Well Inf Depth of liner (crock Reservoir material Reservoir wol. (cu.) Reservoir material Apron Material Apron depth (ft) Apron thickness (ft)	yd) size		Met Rati Dur Dep Tota	Water mated Yield (igp hod e (igpm) ation (hrs)	Yield om) 67 40 50 and of test (ft)
Well Construction In Total depth below surface (ff Depth to bedrock (ft) Water bearing fractures enc Outer Well Casing: From (ft)	formation t) 520 ountered at (ft): To (ft)	Dug Well Inf Depth of liner (crook Reservoir material Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft)	yd) size		Met Rati Dur Dep Tota Wat	Water mated Yield (igp hod e (igpm) ation (hrs) th to water at er al drawdown (ft)	Yield om) 67 40 50 nd of test (ft) ed to (ft)
Well Construction In Total depth below surface (f Depth to bedrock (ft) Water bearing fractures ence Outer Well Casing: From (ft) Diameter (in)	formation t) 520 ountered at (ft): To (ft)	Dug Well Inf Depth of liner (crock Reservoir material Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.	yd) size		Met Rati Dur Dep Tota Wat Rec	Water mated Yield (igp hod e (igpm) ation (hrs) water at eral drawdown (ft) er level recovered.	Yield om) 67 40 50 and of test (ft)
Well Construction In Total depth below surface (ff Depth to bedrock (ft) Water bearing fractures ence Outer Well Casing: From (ft) Diameter (in) Length of casing above ground	formation t) 520 ountered at (ft): To (ft)	Dug Well Inf Depth of liner (crook Reservoir material Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft)	yd) size		Met Rati Dur Dep Tota Wat Rec Dep	Water mated Yield (igp hod e (igpm) ation (hrs) oth to water at er al drawdown (ft) er level recovers	Yield om) 67 40 50 and of test (ft)
Well Construction In Total depth below surface (fr Depth to bedrock (ft) Water bearing fractures ence Outer Well Casing: From (ft) Diameter (in) Length of casing above ground (ft) Driveshoe make	formation t) 520 ountered at (ft): To (ft)	Dug Well Inf Depth of liner (crock Reservoir material Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.y.) Bottom material	yd) size		Met Rati Dur. Dep Tota Wat Rec Dep Ove	Water mated Yield (igp hod e (igpm) ation (hrs) with to water at er al drawdown (ft) er level recover time (hrs) with to static level or stati	Yield Om) 67 40 50 nd of test (ft) ed to (ft) (ft) se/Date Completed
Well Construction In Total depth below surface (fr Depth to bedrock (ft) Water bearing fractures ence Outer Well Casing: From (ft) Diameter (in) Length of casing above ground (ft) Driveshoe make	formation t) 520 ountered at (ft): To (ft) und:	Dug Well Inf Depth of liner (crock Reservoir material Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.y.) Bottom material	yd) size		Met Rati Duri Dep Tota Wat Rec Dep Ove	Water mated Yield (igp hod e (igpm) ation (hrs) oth to water at er al drawdown (ft) er level recovery time (hrs) oth to static level of well OBSER	Yield om) 67 40 50 and of test (ft) 67 (ft) 69 EVATION WELL
Well Construction In Total depth below surface (fr Depth to bedrock (ft) Water bearing fractures ence Outer Well Casing: From (ft) Diameter (in) Length of casing above ground (ft) Driveshoe make	formation t) 520 ountered at (ft): To (ft) und:	Dug Well Inf Depth of liner (crock Reservoir material Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.y.) Bottom material	yd) size		Met Rati Dur. Dep Tota Wat Rec Dep Ove Well Final status of Water use	Water mated Yield (igp hod e (igpm) ation (hrs) oth to water at er al drawdown (ft) er level recovery time (hrs) oth to static level erflow Status/Water Us MONITO	Yield om) 67 40 50 and of test (ft) 67 (ft) 69 EVATION WELL
Well Construction In Total depth below surface (fr Depth to bedrock (ft) Water bearing fractures ence Outer Well Casing: From (ft) Diameter (in) Length of casing above ground (ft) Driveshoe make	formation t) 520 ountered at (ft): To (ft) und:	Dug Well Inf Depth of liner (crock Reservoir material Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.y.) Bottom material	yd) size		Met Rati Duri Dep Tota Wat Rec Dep Ove	Water mated Yield (igp hod e (igpm) ation (hrs) oth to water at er al drawdown (ft) er level recovery time (hrs) oth to static level of well OBSER MONITO	Yield om) 67 40 50 and of test (ft) 67 (ft) 69 EVATION WELL

NSEL Well No.

761408 DRILLED

Well Type

Environment and Labour

Certified Well Contractor		Well Owner/Contractor Information			
Name MCDONALD, IAN Certificate No. 45 Company ISLAND WELL DRILLERS NS Atlas or Map Book Reference: Atlas or Map Book MAP Map Page No. 43	Well Lo NTS Map Reference : Map Sheet	Well Drilled For: Owner CAPE BRETON DEVELOPMEN or Contractor/Builder/Consultant, etc. Civic Address of Well NS OBS WELL - POINT ACONI (030) Lot Number Subdivision County CAPE BRETON Postal Code Nearest Community in Altlas/Map Book ATLAS POINT ACONI Location ee: GPS (WGS84 UTM): Northing (m) 5133152			
Reference Letter A Reference Number 1 Roamer Letter O Roamer Number 13	Reference Map Tract No. Claim	B Easting (m) 707986 70 Property (PID) Well Location Sketch Available			
Prima From To Colour 1 Description 1 0 14 14 100	Lithology Lithology 1 SHALE & CLAY SANDSTONE	Colour 2	Secondary Lithology Description 2 Lithology 2 Water Found		
Well Construction Information Total depth below surface (ft) 100 Depth to bedrock (ft) 14 Water bearing fractures encountered at (ft): 70	pepth below surface (ft) to bedrock (ft) Depth of liner (crock Reservoir material Reservoir vol. (cu.you Reservoir material support of liner (crock Reservoir material Reservoir material support of liner (crock Reservoir material support of line support of lines (crock Reservoir material support of lines (crock Reservoir ma		Water Yield Estimated Yield (igpm) 10 Method PUMPED Rate (igpm) 10 Duration (hrs) 1 Depth to water at end of test (ft) 1 Total drawdown (ft) 1 Water level recovered to (ft) 1 Recovery time (hrs) 1 Depth to static level (ft) 1 Overflow 10 Well Status/Water Use/Date Completed		
Comments NS OBSERVATION WELL - POIN	IT ACONI (030)		Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL Water use MONITORING Method of drilling ROTARY Date well completed 11-Aug-76		

NSEL Well No.

771538 DRILLED

Well Type

Environment and Labour

Elivironinient dila Eaboui					
Certified Well Contractor			Well Owner/Contractor Information		
Name EDWARDS, HARRY A. Certificate No. 83 Company H. J. EDWARDS WELL DRILLII	or C Civi Lot	c Address of Number Inty HALIFA	wner NS DEPT. OF ENVIRONMENT ler/Consultant, etc. /ell NS OBS WELL - LAWRENCETOWN (043) Subdivision		
			LAWRENCETOWN		
	Well Location	on			
NS Atlas or Map Book Reference :	NTS Map Reference :		GPS (WGS84 UTM) :		
Atlas or Map Book MAP	Map Sheet		Northing (m) 4947712		
Map Page No. 24	Reference Map		Easting (m) 464172		
Reference Letter D					
Reference Number 3	Tract No.		Property (PID)		
Roamer Letter N	Claim		Well Location Sketch Available		
Roamer Number 11	•				
Depth in feet Prima	ary Lithology		Secondary Lithology		
From To Colour 1 Description 1 0 5 5 12 12 152 GRAY 152 165 DARK GRA 165 174 GREENISH	Lithology 1 SAND & GRAVEL & BOU BOULDER & ROCK QUARTZITE SLATE QUARTZITE	Colour 2	Description 2 Lithology 2 Water Found SLATE QUARTZ VEINS SLATE		
Well Construction Information	Dug Well Informa	tion	Water Yield		
Total depth below surface (ft) 175 Depth to bedrock (ft) 10 Water bearing fractures encountered at (ft):	Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd)		Estimated Yield (igpm) 14.5 Method Rate (igpm) 8		
152 155	Reservoir material size		Duration (hrs)		
Outer Well Casing:	Apron Material	·	Depth to water at end of test (ft)		
From (ft) 0 To (ft) 145	Apron depth (ft)		Total drawdown (ft)		
Diameter (in) 6	Apron thickness (ft)		Water level recovered to (ft)		
Length of casing above ground :	Apron width (ft)		Recovery time (hrs)		
(ft) (in)	Apron volume (cu.yd)		Depth to static level (ft)		
Driveshoe make UNKNOWN	Bottom material		Overflow		
Comments NS OBSERVATION WELL - LAW	/RENCETOWN (043)		Well Status/Water Use/Date Completed		
	(0.0)		Final status of well OBSERVATION WELL Water use MONITORING Method of drilling ROTARY Date well completed 16-Mar-77		

NSEL Well No.

782683 DRILLED

Well Type

Environment and Labour (Summary Log)

Certified Well Contractor		Well Owner/Contractor Information
Certified Well Contractor		Well Owner/Somilation Information
Name STEWART, EDMUND	Well Drilled	For: Owner NS DEPT. OF ENVIRONMENT
Certificate No. 4	or Contract	or/Builder/Consultant, etc.
Company E. D. STEWART LTD.	Civic Addre	ss of Well NS OBS WELL - DURHAM (045)
<u> </u>	Lot Numbe	Subdivision
	County	CTOU Postal Code
		mmunity in Altlas/Map Book ATLAS DURHAM
		THE PORT OF
	Well Location	
NS Atlas or Map Book Reference :	NTS Map Reference :	GPS (WGS84 UTM) :
Atlas or Map Book	Map Sheet 11E10	Northing (m) 5052105
Map Page No.	Reference Map	Easting (m) 516224
Reference Letter	Tract No.	Property (PID)
Reference Number Roamer Letter	Claim	Well Location Sketch Available
Roamer Number		
	ary Lithology	Secondary Lithology
From To Colour 1 Description 1 0 20 SANDY	Lithology 1 Colou	r 2 Description 2 Lithology 2 Water Found
20 247 RED	SANDSTONE & SHALE GRAY	SANDSTONE & SHA
Well Construction Information	Dug Well Information	Water Yield
Total depth below surface (ft) 247	Depth of liner (crock) (ft)	Estimated Yield (igpm) 100
Depth to bedrock (ft)	Reservoir material	Method PUMPED
Water bearing fractures encountered at (ft):	Reservoir vol. (cu.yd)	Rate (igpm) 100
	Reservoir material size	Duration (hrs) 72
Outer Well Casing:	Apron Material	Depth to water at end of test (ft)
From (ft) To (ft)	Apron depth (ft)	Total drawdown (ft)
Diameter (in)	Apron thickness (ft)	Water level recovered to (ft)
Length of casing above ground :	Apron width (ft)	Recovery time (hrs)
(ft) (in)	Apron volume (cu.yd)	Depth to static level (ft)
Driveshoe make	Bottom material	Overflow
Comments NS OBSERVATION WELL - DUR	HAM (045)	Well Status/Water Use/Date Completed
		Final status of well OBSERVATION WELL
		Water use MONITORING
		Method of drilling
		Date well completed 01-Jul-78

NSEL Well No.

Environment and Labour

(Summary Log)

772021 DRILLED Well Type

Certified Well Contractor		Well Owner/Contractor Information			
Name HOPPER, RUSSELL	V	Well Drilled For: Ov	wner	NS DEPT. OF DEVELOPMENT	
Certificate No. 20	0	or Contractor/Builde	er/Consultant, etc. CBCL		
Company HOPPER BROS. LTD.	c	Civic Address of W	/ell NS OBS WELL - KENT	TVILLE (048)	
,		Lot Number	Subdivision		
	C	County KINGS		Postal Code	
	N	Nearest Community	y in Altlas/Map Book	LAS KENTVILLE	
	Well Loc	cation			
NS Atlas or Map Book Reference :	NTS Map Reference :		GPS (WGS84 U⁻	ГМ) :	
Atlas or Map Book	Map Sheet	21A2	Northing (m)	4992245	
Map Page No.	Reference Map	Α	Easting (m)	377628	
Reference Letter	Tract No.	71	Property (PID)		
Reference Number	Claim		Well Location Sk	etch Available	
Roamer Letter Roamer Number	,				
	ary Lithology		Secondary Lithology		
From To Colour 1 Description 1 0 55 FINE GRAINED	Lithology 1	Colour 2	Description 2 Lith EDIUM GRAINE SAND	ology 2 Water Found	
55 60 MEDIUM GRAIN	-		DARSE GRAIN SAND		
60 95	GRAVEL			V	
95 380 GRAY 380 400 BROWN ARGILLACEOU	SANDSTONE METASEDIMENT	PURPLE IN	TERBEDDED SHALE		
			1		
Well Construction Information	Dug Well Inform			Water Yield	
Total depth below surface (ft) 400	Depth of liner (crock)	(ft)	Estimated Yie		
Depth to bedrock (ft) 95	Reservoir material		Method	PUMPED	
Water bearing fractures encountered at (ft):	Reservoir vol. (cu.yd)		Rate (igpm)	150	
Outer Well Casing:	Reservoir material siz Apron Material	ze	Duration (hrs)	72	
From (ft) 0 To (ft) 100	Apron depth (ft)			er at end of test (ft) 122	
Diameter (in) 8	Apron thickness (ft)		Total drawdov		
Length of casing above ground :	Apron width (ft)			ecovered to (ft)	
	Apron volume (cu.yd))	Recovery time		
(ft) (in) Driveshoe make	Bottom material		Depth to station	C level (II)	
	T.(II.L.E.(0.40)			ater Use/Date Completed	
Comments NS OBSERVATION WELL - KEN	I VILLE (048)			BSERVATION WELL	
				ONITORING	
I I					
			Method of drilling		

NSEL Well No.

Environment and Labour

(Summary Log)

771077 DRILLED Well Type

Certified Well Contracto	Well Owner/Contractor Information					
Name MCDONALD, IAN Certificate No. 45 Company ISLAND WELL DRILLERS NS Atlas or Map Book Reference: Atlas or Map Book MAP Map Page No. Reference Letter A	Well L NTS Map Reference Map Sheet Reference Map	or Co Civic Lot N Cour Near Location e:	Address of Number CAPE Test Commun 1K1	Owner illder/Consultant, etc Well NS OBS WE Subdivisio BRETON nity in Altlas/Map Both GPS (V	NS D C. LL - SYDNEY (C n Postal ook ATLAS WGS84 UTM) : ng (m) g (m)	DEPT. OF ENVIRONMENT
Reference Number 5	Tract No.	(66	Proper	ty (PID)	
Roamer Letter J	Claim			Well Lo	ocation Sketch A	vailable
Roamer Number 13						
Depth in feet Prin	nary Lithology			Secondary	/ Lithology	
From To Colour 1 Description 1 0 13 13 330	Lithology 1 BOULDER & GRAVE COAL &SHALE & SA		Colour 2	Description 2	Lithology	2 Water Found
Well Construction Information	Dug Well In	formati	ion		Water	Yield
Total depth below surface (ft) 330 Depth to bedrock (ft) 13 Water bearing fractures encountered at (ft):	Depth of liner (crook Reservoir material Reservoir vol. (cu.			Met	imated Yield (igp hod e (igpm)	PUMPED 250
63	Reservoir material	size		·	ation (hrs)	1
Outer Well Casing:	Apron Material				oth to water at er	nd of test (ft)
From (ft) 6 To (ft) 22	Apron depth (ft)			Tota	al drawdown (ft)	
Diameter (in) 6	Apron thickness (ft Apron width (ft)	^{t)}			ter level recover	
Length of casing above ground :	Apron volume (cu.	.yd)			covery time (hrs)	
(ft) (in) UNKNOWN	Bottom material				oth to static level erflow	
Comments NS OBSERVATION WELL - SY	ONEY (050)			Well	Status/Water Us	se/Date Completed
				Final status of	of well OBSER	VATION WELL
				Water use	MONITO	
				Method of dri	-	
ļ				Date well cor	npleted	09-Mar-77

NSEL Well No.

Well Type

871262 DRILLED

Environment and Labour

Name CHISHOLM, WAYNE Certificate No. 2 Company G. W. REID WELL DRILLING LTD. Well Location NS Atlas or Map Book Reference: Altas or Map Book Map Speet Map Page No. Reference Letter Roamer Number Roamer Letter Roamer Number Depth in feet Primary Lithology Primary Lithology Well Construction Information Well Construction Information Dug Well Information Dug Well Information Well Construction Information Dug Well Information Well Construction (the Mean of State Content) Well Construction Information Well Construction Information Dug Well Information Well Construction (the Mean of State Content) Reservoir material Well Construction (the Mean of State Content) Well Construction (the Mean of State Co	Certified Well Contractor	r	Well Owner/Contractor Information			
Company G. W. REID WELL DRILLING LTD. Civic Address of Well NS OBS WELL - NORTH GRANT (054) Lot Number Subdivision County ANTIGONISH Postal Code Nearest Community in Altlas/Map Book LOWER NORTH GRANT Well Location NS Atlas or Map Book Reference: NTS Map Reference: GPS (WGS84 UTM): Atlas or Map Book Map Page No. Reference Map Easting (m) 5055139 Reference Letter C Tract No. Property (PID) Seare Northing (m) 576403 Reference Number A Claim Well Location Sketch Available Property (PID) Well Location Sketch Available Seare Number 12 Depth in feet Primary Lithology Secondary Lithology Well Construction Information Dug Well Information Water Yield Well Construction Information Dug Well Information Water Yield Total depth below surface (ft) 150 Depth of liner (crock) (ft) Estimated Yield (igpm) Method AIR LIFT	Name CHISHOLM, WAYNE					
Lot Number Subdivision County ANTIGONISH Postal Code Nearest Community in Altias/Map Book LOWER NORTH GRANT Well Location Well Location NTS Map Reference : GPS (WGS84 UTM) : Atlas or Map Book Map Sheet Northing (m) 5055139 Map Page No. 29 Reference Map Easting (m) 576403 Reference Letter C Tract No. Property (PID) Well Location Sketch Available Roamer Letter M Well Location Sketch Available Roamer Number 12 Depth in feet Primary Lithology Secondary Lithology Water Found WID SHALE SLATE Well Construction Information Dug Well Information Dug Well Information Water Yield Stimated Yield (igpm) Reservoir material Method AIR LIFT Method AIR LIFT Method AIR LIFT	Certificate No. 2					
County ANTIGONISH Postal Code Nearest Community in Altlas/Map Book LOWER NORTH GRANT Well Location NS Atlas or Map Book Reference: NTS Map Reference: GPS (WGS84 UTM): Atlas or Map Book Map Page No. 29 Reference Map Easting (m) 576403 Reference Letter C Tract No. Property (PID) Well Location Sketch Available Reference Number 12 Depth in feet Primary Lithology Secondary Lithology From To Colour 1 Description 1 Lithology 1 Colour 2 Description 2 Lithology 2 Water Found 0 34 MUD SHALE Well Construction Information Dug Well Information Water Yield Total depth below surface (ft) 150 Depth of liner (crock) (ft) Estimated Yield (igpn) Reservoir material Method AIR LIFT	Company G. W. REID WELL DRILLING	LTD.	ivic Address of	Well NS OBS WELL - NORTH GRANT (054)		
NS Atlas or Map Book Reference : NTS Map Reference : GPS (WGS84 UTM) : Atlas or Map Book Reference : Map Sheet Northing (m) 5055139 Map Page No. 29 Reference Map Easting (m) 576403 Reference Letter C Tract No. Property (PID) Well Location Sketch Available Roamer Letter M Well Location Sketch Available Depth in feet Primary Lithology Secondary Lithology From To Colour 1 Description 1 Lithology 1 Colour 2 Description 2 Lithology 2 Water Found 0 34 MUD 34 150 SHALE SLATE Well Construction Information Dug Well Information Water Yield Total depth below surface (ft) 150 Depth of liner (crock) (ft) Estimated Yield (igpm) Method AIR LIFT	•	L	ot Number	Subdivision		
Well Location NS Atlas or Map Book Reference: Atlas or Map Book Reference: Atlas or Map Book Reference: Map Sheet Map Sheet Northing (m) S055139 Reference Letter Reference Number Roamer Letter Roamer Number Tract No. Claim Depth in feet Primary Lithology Secondary Lithology Well Location Sketch Available Description 1 Description 1 MUD Well Construction Information Dug Well Information Water Yield Total depth below surface (ft) Depth to bedrock (ft) Depth to bedrock (ft) Reservoir material METO CORS (WGS84 UTM): Northing (m) 5055139 Easting (m) 576403 Reference Number Claim Well Location Sketch Available Well Location Sketch Available Well Location Sketch Available Well Construction Information Dug Well Information Water Yield Estimated Yield (igpm) Method AIR LIFT		C	ounty ANTIGO	ONISH Postal Code		
NS Atlas or Map Book Reference : NTS Map Reference : GPS (WGS84 UTM) : Atlas or Map Book Map Page No. Reference Letter C Tract No. Reference Number A Claim Well Location Sketch Available Well Location Sketch Available Depth in feet Primary Lithology Secondary Lithology Water Found 0 34 MUD 34 150 SHALE Well Construction Information Dug Well Information Water Yield Total depth below surface (ft) 150 Depth of liner (crock) (ft) Estimated Yield (igpm) Map Sheet Northing (m) 5055139 Reference Letter Northing (m) 5055139 Easting (m) 576403 Property (PID) Well Location Sketch Available Well Location Sketch Available Description 1 Lithology Secondary Lithology Secondary Lithology Water Found Water Yield Total depth below surface (ft) 150 Depth of liner (crock) (ft) Estimated Yield (igpm) Method AIR LIFT		N	earest Commur	nity in Altlas/Map Book LOWER NORTH GRANT		
Atlas or Map Book Map Sheet Northing (m) 5055139 Reference Letter Reference Letter Reference Number 12 Depth in feet Primary Lithology Secondary Lithology Water Found 0 34 MUD SHALE Well Construction Information Dug Well Information Water Yield Well Construction Information Depth of liner (crock) (ft) Estimated Yield (igpm) Depth to bedrock (ft) 150 Depth of liner (crock) (ft) Reservoir material Method AIR LIFT		Well Loca	ation			
Map Page No. Reference Letter Reference Number Roamer Letter Roamer Number 12 Depth in feet Primary Lithology Secondary Lithology Secondary Lithology	NS Atlas or Map Book Reference :			<u> </u>		
Reference Letter Reference Number Roamer Letter Roamer Number Depth in feet Primary Lithology Depth in feet Primary Lithology Secondary Lithology Secondary Lithology Well Location Sketch Available Depth in feet Primary Lithology Secondary Lithology Water Found O 34 MUD SHALE SLATE Well Construction Information Dug Well Information Water Yield Total depth below surface (ft) Depth to bedrock (ft) Reservoir material Method AIR LIFT		Map Sheet		Northing (m) 5055139		
Reference Number		Reference Map		Easting (m) 576403		
Roamer Letter Roamer Number 12 Depth in feet		Tract No.		Property (PID)		
Depth in feet		Claim		. Well Location Sketch Available		
Depth in feet		-				
From To Colour 1 Description 1 Lithology 1 Colour 2 Description 2 Lithology 2 Water Found 0 34 MUD 34 150 SHALE Well Construction Information Dug Well Information Total depth below surface (ft) Depth of liner (crock) (ft) Depth to bedrock (ft) Reservoir material Method AIR LIFT		199				
Well Construction Information Total depth below surface (ft) Depth to bedrock (ft) Reservoir material MUD SLATE SLATE SLATE Mathod AIR LIFT						
Well Construction Information Dug Well Information Water Yield Total depth below surface (ft) Depth of liner (crock) (ft) Depth to bedrock (ft) Reservoir material Method AIR LIFT		- 0,	Colour 2	Description 2 Lithology 2 Water Found		
Total depth below surface (ft) Depth to bedrock (ft) Reservoir material Depth of liner (crock) (ft) Reservoir material Method AIR LIFT				SLATE \square		
Total depth below surface (ft) Depth to bedrock (ft) Reservoir material Depth of liner (crock) (ft) Reservoir material Method AIR LIFT						
Total depth below surface (ft) Depth to bedrock (ft) Reservoir material Depth of liner (crock) (ft) Reservoir material Method AIR LIFT						
Total depth below surface (ft) Depth of liner (crock) (ft) Depth to bedrock (ft) Reservoir material Method AIR LIFT						
Depth to bedrock (ft) Reservoir material Method AIR LIFT		T				
Michigan Park En 1		-		 		
	Total depth below surface (ft) 150	Depth of liner (crock)		Estimated Yield (igpm)		
Rate (igpm) 20	Total depth below surface (ft) 150 Depth to bedrock (ft)	Depth of liner (crock) Reservoir material		Estimated Yield (igpm)		
	Total depth below surface (ft) 150	Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd)	(ft)	Estimated Yield (igpm) Method AIR LIFT		
Duration (hrs)	Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft)	Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz	(ft)	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 20		
Outer Well Casing: Apron Material Duration (hrs) Depth to water at end of test (ft)	Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft) Outer Well Casing:	Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz Apron Material	(ft)	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) Duration (hrs)		
Outer Well Casing: From (ft) To (ft) 43 Apron Material Depth to water at end of test (ft) Total drawdown (ft)	Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft) Outer Well Casing: From (ft) To (ft) 43	Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz Apron Material Apron depth (ft)	(ft)	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) Duration (hrs) Depth to water at end of test (ft)		
Outer Well Casing: From (ft) To (ft) 43 Apron Material Apron depth (ft) Diameter (in) 6 Apron width (ft)	Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft) Outer Well Casing: From (ft) Diameter (in) To (ft) 6	Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz Apron Material Apron depth (ft) Apron thickness (ft)	(ft)	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 20 Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft)		
Outer Well Casing: From (ft) To (ft) 43 Apron Material Apron depth (ft) Diameter (in) 6 Length of casing above ground: Apron width (ft) Apron width (ft) Apron volume (cu vd) Apron volume (cu vd)	Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft) Outer Well Casing: From (ft) Diameter (in) Length of casing above ground:	Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft)	e	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 20 Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs)		
Outer Well Casing: From (ft) To (ft) 43 Apron Material Apron depth (ft) Diameter (in) 6 Length of casing above ground: (ft) (in) Apron volume (cu.yd) Bottom material Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) 14	Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft) Outer Well Casing: From (ft) Diameter (in) Length of casing above ground: (ft) (in)	Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd)	e	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 20 Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) 14		
Outer Well Casing: From (ft) To (ft) 43 Apron Material Apron depth (ft) Diameter (in) 6 Length of casing above ground: (ft) (in) Driveshoe make Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) 14 Overflow	Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft) Outer Well Casing: From (ft) Diameter (in) Length of casing above ground: (ft) (in)	Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd)	e	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow		
Outer Well Casing: From (ft) To (ft) 43 Apron Material Apron depth (ft) Length of casing above ground: (ft) (in) Apron volume (cu.yd) Depth to water at end of test (ft) Apron width (ft) Water level recovered to (ft) Recovery time (hrs) Depth to water at end of test (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) 14 Overflow Well Status/Water Use/Date Completed	Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft) Outer Well Casing: From (ft) Diameter (in) Length of casing above ground: (ft) (ft) (in) Driveshoe make	Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	e	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 20 Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow Well Status/Water Use/Date Completed		
Outer Well Casing: From (ft) To (ft) 43 Apron Material Apron depth (ft) Total drawdown (ft) Water level recovered to (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) 14 Driveshoe make Comments NS OBSERVATION WELL NORTH GRANT (054) Apron Material Depth to water at end of test (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) 14 Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL	Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft) Outer Well Casing: From (ft) Diameter (in) Length of casing above ground: (ft) (ft) (in) Driveshoe make	Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	e	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 20 Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL		
Outer Well Casing: From (ft) To (ft) 43 Apron Material Apron depth (ft) Diameter (in) 6 Length of casing above ground: (ft) (in) Driveshoe make Comments NS OBSERVATION WELL NORTH GRANT (054) Apron Material Apron M	Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft) Outer Well Casing: From (ft) Diameter (in) Length of casing above ground: (ft) (ft) (in) Driveshoe make	Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	e	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 20 Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) 14 Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL Water use		
Rate (igpm) 20						
	Total depth below surface (ft) 150 Depth to bedrock (ft)	Depth of liner (crock) Reservoir material		Estimated Yield (igpm) Method AIR LIFT		
Reservoir material size	Total depth below surface (ft) 150 Depth to bedrock (ft)	Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd)	(ft)	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 20		
Outer Well Casing: Apron Material Duration (hrs)	Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft)	Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz	(ft)	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) Duration (hrs)		
Outer Well Casing: Apron Material Depth to water at end of test (ft)	Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft) Outer Well Casing:	Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz Apron Material	(ft)	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) Duration (hrs)		
Outer Well Casing: From (ft) To (ft) 43 Apron Material Apron depth (ft) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft)	Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft) Outer Well Casing: From (ft) To (ft) 43	Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz Apron Material Apron depth (ft)	(ft)	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) Duration (hrs) Depth to water at end of test (ft)		
Outer Well Casing: From (ft) To (ft) 43 Apron Material Apron depth (ft) Diameter (in) Apron thickness (ft)	Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft) Outer Well Casing: From (ft) To (ft) 43	Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz Apron Material Apron depth (ft)	(ft)	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 20 Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft)		
Outer Well Casing: From (ft) To (ft) 43 Apron Material Apron depth (ft) Diameter (in) 6 Apron width (ft)	Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft) Outer Well Casing: From (ft) Diameter (in) To (ft) 43	Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz Apron Material Apron depth (ft) Apron thickness (ft)	(ft)	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 20 Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft)		
Outer Well Casing: From (ft) To (ft) 43 Apron Material Apron depth (ft) Diameter (in) 6 Length of casing above ground: Apron width (ft) Apron width (ft) Apron volume (cu vd) Apron volume (cu vd)	Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft) Outer Well Casing: From (ft) Diameter (in) Length of casing above ground:	Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft)	e	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 20 Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs)		
Outer Well Casing: From (ft) To (ft) 43 Apron Material Apron depth (ft) Diameter (in) 6 Length of casing above ground: (ft) (in) Apron volume (cu.yd) Bottom material Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) 14	Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft) Outer Well Casing: From (ft) Diameter (in) Length of casing above ground: (ft) (in)	Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd)	e	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 20 Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) 14		
Outer Well Casing: From (ft) To (ft) 43 Diameter (in) 6 Length of casing above ground: (ft) (in) Driveshoe make Apron Material Apron Material Apron depth (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) 14 Overflow	Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft) Outer Well Casing: From (ft) Diameter (in) Length of casing above ground: (ft) (ft) (in) Driveshoe make	Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	e	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow		
Outer Well Casing: From (ft) To (ft) 43 Apron Material Apron depth (ft) Diameter (in) 6 Length of casing above ground: (ft) in) Apron volume (cu.yd) Driveshoe make NS OBSERVATION WELL NORTH GRANT (054) Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Recovery time (hrs) Depth to static level (ft) 14 Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL	Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft) Outer Well Casing: From (ft) Diameter (in) Length of casing above ground: (ft) (ft) (in) Driveshoe make	Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	e	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 20 Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL		
Outer Well Casing: From (ft) To (ft) 43 Apron Material Apron depth (ft) Diameter (in) 6 Apron thickness (ft) Length of casing above ground: (ft) (in) Driveshoe make NS OBSERVATION WELL NORTH GRANT (054) NS OBSERVATION WELL NORTH GRANT (054) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) 14 Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL Water use OTHER	Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft) Outer Well Casing: From (ft) Diameter (in) Length of casing above ground: (ft) (in) Driveshoe make	Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	e	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) 20 Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) 14 Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL Water use		
Outer Well Casing: From (ft) To (ft) 43 Apron Material Apron depth (ft) Apron thickness (ft) Length of casing above ground: (ft) (in) Driveshoe make NS OBSERVATION WELL NORTH GRANT (054) Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Recovery time (hrs) Depth to static level (ft) 14 Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL	Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft) Outer Well Casing: From (ft) Diameter (in) Length of casing above ground: (ft) (in) Driveshoe make	Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	e	Estimated Yield (igpm) Method AIR LIFT Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft) Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) 14 Overflow Well Status/Water Use/Date Completed Final status of well Water use Method of drilling		

NSEL Well No. DRILLED

Well Type

871263

Environment and Labour

				W 11 0 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C	ertified Well Contractor			Well Owner/Contractor Information
Name CHISHO	DLM, WAYNE		Well Drilled F	For: Owner NS DEPT. OF ENVIRONMENT
Certificate No. 2			or Contractor/	/Builder/Consultant, etc.
Company G. W. R	EID WELL DRILLING L	TD.	Civic Address	s of Well NS OBS WELL - STILLWATER (055)
			Lot Number	Subdivision
			County GUY	YSBOROUGH Postal Code
			Nearest Com	imunity in Altlas/Map Book STILLWATER
		Well Lo	cation	
NS Atlas or Map Book	Reference :	NTS Map Reference :		GPS (WGS84 UTM):
Atlas or Map Book		Map Sheet		Northing (m) 5004212
Map Page No.	30	Reference Map		Easting (m) 579938
Reference Letter	С	Tract No.		Property (PID)
Reference Number	4	Claim		Well Location Sketch Available
Roamer Letter	Р	L		Well Location Sketch Available
Roamer Number	12			
Depth in feet	Prim	ary Lithology		Secondary Lithology
	our 1 Description 1	Lithology 1	Colour 2	
0 24 24 38		MUD ROCK		GRAVEL
38 118		BEDROCK		
Well Construction	on Information	Dug Well Info	rmation	Water Yield
Total depth below surfa	ce (ft) 118	Depth of liner (crock) (ft)	Estimated Yield (igpm)
Depth to bedrock (ft)		Reservoir material		Method AIR LIFT
Water bearing fractures	encountered at (ft)	Reservoir vol. (cu.yo	1)	Rate (igpm) 4.5
		Reservoir material s	ize	Duration (hrs)
Outer Well Casing:		Apron Material		Depth to water at end of test (ft)
From (ft)	To (ft) 44	Apron depth (ft)		Total drawdown (ft)
Diameter (in)	6	Apron thickness (ft)		Water level recovered to (ft)
Length of casing above	ground :	Apron width (ft)		Recovery time (hrs)
(ft) (in)		Apron volume (cu.yo	1)	Depth to static level (ft) 30
Driveshoe make		Bottom material		Overflow
Comments NS OBSE	RVATION WELL STILI	_WATER (055)		Well Status/Water Use/Date Completed
				Final status of well OBSERVATION WELL
				Water use MONITORING
				Method of drilling Date well completed 01-Apr-87

NSEL Well No.

Well Type DRILLED

871264

Environment and Labour

Certified Well Contractor		Well Owner/Contractor Information			
Name CHISHOLM, WAYNE Certificate No. 2 Company G. W. REID WELL DRILLING L NS Atlas or Map Book Reference: Atlas or Map Book Map Page No. 28 Reference Letter E	TD.	Civic Address of ot Number County HALIF	Well NS OBS WELL Subdivision AX nity in Altlas/Map Book	Postal Code Result	PENVIRONMENT R (056) VER HARBOUR 972468 543176
Reference Number 2 Roamer Letter H Roamer Number 14	Claim			ation Sketch Availabl	е
Prim. From To Colour 1 Description 1 0 8 8 18 18 150	Lithology 1 GRAVEL ROCK BEDROCK	Colour 2	Secondary Li	thology Lithology 2	Water Found
Well Construction Information Total depth below surface (ft) 150 Depth to bedrock (ft)	Dug Well Inform Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	ze	Method Rate (i Duratio Depth Total d Water Recove	igpm) on (hrs) to water at end of te drawdown (ft) level recovered to (for the drawdown) to static level (ft)	0.7
Comments NS OBSERVATION WELL SHEE	ET HARBOUR (056)		Well Sta Final status of w Water use Method of drillin Date well compl	OTHER	<u> </u>

NSEL Well No.

870190 DRILLED

Well Type

Environment and Labour

Certified Well Contractor				Well Owner/Contractor Information			
001	sa Tron Contractor		Well Cwilely Collination Information				
Name MOWAT,	DONALD		Well Drilled For: Owner NS DEPT. OF ENVIRONMENT				
Certificate No. 210			or Contractor/Builder/Consultant, etc.				
Company MOWAT'S WELL DRILLING LTD.				ddress of	Well NS OBS WE	LL - CHARLEST	TON (058)
				mber 🗀	Subdivisio	on	
			County	QUEE	NS	Postal	Code
			Neares	t Commu	ınity in Altlas/Map B	ook ATLAS	RIVERSDALE
		Well L	ocation				
NS Atlas or Map Book R	Reference :	NTS Map Reference):		GPS (WGS84 UTM) :	
Atlas or Map Book	MAP	Map Sheet			Northi	ng (m)	4894476
Map Page No.	15	Reference Map			Eastin	g (m)	366778
Reference Letter	В	Tract No.			Prope	rty (PID)	
Reference Number	5	Claim			Well L	ocation Sketch A	vailable 🗆
Roamer Letter	M	,					
Roamer Number	12						
Depth in feet	Prima	ary Lithology				y Lithology	
From To Colou	ur 1 Description 1	Lithology 1	С	colour 2	Description 2	Lithology	2 Water Found
0 20		CLAY				BOULDER	
		SLATE					
20 40		SLATE				GRANITE	Ш
		SLATE					
		SLATE					
	n Information	SLATE Dug Well Info	ormation				Yield
20 40					Est	GRANITE	
20 40 Well Construction		Dug Well Info		·	†	GRANITE Water	
Well Construction Total depth below surface	e (ft) 40 20	Dug Well Info	ck) (ft)		Me	Water imated Yield (igp	om)
Well Construction Total depth below surface Depth to bedrock (ft) Water bearing fractures e	e (ft) 40 20	Dug Well Info Depth of liner (croc Reservoir material	ck) (ft)		Me Rat	Water imated Yield (igp thod te (igpm)	om)
Well Construction Total depth below surface Depth to bedrock (ft) Water bearing fractures e 19 35 Cuter Well Casing:	e (ft) 40 20 encountered at (ft):	Dug Well Info Depth of liner (croc Reservoir material Reservoir vol. (cu.y	ck) (ft)		Me Rat Dui	Water imated Yield (igp thod te (igpm)	AIR LIFT
Well Construction Total depth below surface Depth to bedrock (ft) Water bearing fractures e 19 35 Outer Well Casing: From (ft)	e (ft) 40 20	Dug Well Info Depth of liner (crock Reservoir material Reservoir vol. (cu.y Reservoir material Apron Material Apron depth (ft)	ck) (ft)		Me Rat Dui Dej	Water imated Yield (igp thod te (igpm)	AIR LIFT and of test (ft)
Well Construction Total depth below surface Depth to bedrock (ft) Water bearing fractures e 19 35 Cuter Well Casing:	e (ft) 40 20 encountered at (ft):	Dug Well Info Depth of liner (crock Reservoir material Reservoir vol. (cu.y Reservoir material Apron Material Apron depth (ft) Apron thickness (ft)	ck) (ft)		Me Rat Dui Dej Tot	Water imated Yield (igp thod te (igpm) ration (hrs) oth to water at er	AIR LIFT and of test (ft)
Well Construction Total depth below surface Depth to bedrock (ft) Water bearing fractures e 19 35 Outer Well Casing: From (ft)	e (ft) 40 20 encountered at (ft): To (ft) 6	Dug Well Info Depth of liner (crock Reservoir material Reservoir vol. (cu.y Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft)	ck) (ft)		Me Rat Dui Dej Tot	Water imated Yield (igporthod lie (igpm) ration (hrs) oth to water at er al drawdown (ft)	AIR LIFT and of test (ft) ed to (ft)
Well Construction Total depth below surface Depth to bedrock (ft) Water bearing fractures e 19 35 Outer Well Casing: From (ft) Diameter (in)	e (ft) 40 20 encountered at (ft): To (ft) 6	Dug Well Info Depth of liner (crock Reservoir material Reservoir vol. (cu.y Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft)	ck) (ft)		Me Rat Dui Dej Tot Wa	Water imated Yield (igp thod le (igpm) ration (hrs) oth to water at er al drawdown (ft) ter level recovered.	AIR LIFT and of test (ft) ed to (ft)
Well Construction Total depth below surface Depth to bedrock (ft) Water bearing fractures e 19 35 Outer Well Casing: From (ft) Diameter (in) Length of casing above g	e (ft) 40 20 encountered at (ft): To (ft) 6	Dug Well Info Depth of liner (crock Reservoir material Reservoir vol. (cu.y Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft)	ck) (ft)		Me Rat Dui Dej Tot Wa Rec	Water imated Yield (igp thod ration (hrs) oth to water at er al drawdown (ft) ter level recovery time (hrs)	AIR LIFT and of test (ft) ed to (ft)
Well Construction Total depth below surface Depth to bedrock (ft) Water bearing fractures e 19 35 Outer Well Casing: From (ft) Diameter (in) Length of casing above g (ft) (in) Driveshoe make	e (ft) 40 20 encountered at (ft): To (ft) 6	Dug Well Info Depth of liner (crock Reservoir material Reservoir vol. (cu.y Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.y Bottom material	ck) (ft)		Me Rat Dui Dej Tot Wa Red Dej	Water imated Yield (igporthod lee (igpm) eration (hrs) ooth to water at eral drawdown (ft) ter level recovers time (hrs) ooth to static level erflow	AIR LIFT and of test (ft) ed to (ft) (ft) 6 se/Date Completed
Well Construction Total depth below surface Depth to bedrock (ft) Water bearing fractures e 19 35 Outer Well Casing: From (ft) Diameter (in) Length of casing above g (ft) (in) Driveshoe make	To (ft) 6 around:	Dug Well Info Depth of liner (crock Reservoir material Reservoir vol. (cu.y Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.y Bottom material	ck) (ft)		Me Rat Dui Dej Tot Wa Red Dej	Water imated Yield (ignormal thod te (ignormal) water at er all drawdown (ft) ter level recovery time (hrs) oth to static level erflow Status/Water Us OBSERV	AIR LIFT and of test (ft) ed to (ft) (ft) 6 se/Date Completed
Well Construction Total depth below surface Depth to bedrock (ft) Water bearing fractures e 19 35 Outer Well Casing: From (ft) Diameter (in) Length of casing above g (ft) (in) Driveshoe make	To (ft) 6 around:	Dug Well Info Depth of liner (crock Reservoir material Reservoir vol. (cu.y Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.y Bottom material	ck) (ft)		Me Rat Dut Del Tot Wa Rec Del Ove Well Final status of Water use	Water imated Yield (igporthod lee (igpm) eration (hrs) oth to water at eral drawdown (ft) ter level recovery time (hrs) oth to static level erflow Status/Water Us MONITO	AIR LIFT and of test (ft) ed to (ft) (ft) 6 se/Date Completed
Well Construction Total depth below surface Depth to bedrock (ft) Water bearing fractures e 19 35 Outer Well Casing: From (ft) Diameter (in) Length of casing above g (ft) (in) Driveshoe make	To (ft) 6 around:	Dug Well Info Depth of liner (crock Reservoir material Reservoir vol. (cu.y Reservoir material Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.y Bottom material	ck) (ft)		Me Rat Dui Dej Tot Wa Rec Dej Ove	Water imated Yield (ignormated	AIR LIFT and of test (ft) ed to (ft) (ft) 6 se/Date Completed

NSEL Well No.

Well Type

870189 DRILLED

Environment and Labour

	0 10					
	Certified	Well Contractor		╀		Well Owner/Contractor Information
Name	MOWAT, DON	ALD		Well D	Orilled For: (Owner NS DEPT. OF ENVIRONMENT
Certificate No.	210			or Cor	ntractor/Bu	ilder/Consultant, etc.
<u> </u>		LL DRILLING LTD).	Civic /	Address of	Well NS OBS WELL - HAYDEN LAKE (059)
L	West.			Lot Nu	umber	Subdivision
i				County		
				Neares	st Commur	nity in Altlas/Map Book ATLAS EAST JORDAN
			Well	Location		
NS Atlas or Ma	lap Book Refere	ence :	NTS Map Reference	:e :		GPS (WGS84 UTM) :
Atlas or Map B	300k M/	AP	Map Sheet			Northing (m) 4849195
Map Page No.	. 1	10	Reference Map			Easting (m) 321365
Reference Lett		С	Tract No.			Property (PID)
Reference Nur		5	Claim			Well Location Sketch Available
Roamer Letter		G	ı			
Roamer Numb)er	7				
Depth in fee	et	Prima	ry Lithology] [Secondary Lithology
From To		Description 1	Lithology 1	(Colour 2	Description 2 Lithology 2 Water Found
	10	<u> </u>	CLAY			BOULDER
10 16	60		GREYWACKE			
i						
Well Co	onstruction Infor	rmation	Dug Well In	nformatio	en en	Water Yield
Total depth belo		160	Depth of liner (cro			Estimated Yield (igpm) 3.7
Depth to bedroo		10	Reservoir materia	_		Method AIR LIFT
Water bearing fi		ntered at (ft):	Reservoir vol. (cu.			
30			Reservoir materia	-		Rate (igpm) 3.7
Outer Well Casi	ing:		Apron Material			Duration (hrs)
From (ft)	0 To	o (ft) 20	Apron depth (ft)		$\overline{}$	Depth to water at end of test (ft) Total drawdown (ft)
Diameter (in)		6	•	⊨		Total drawdown (tt)
Length of casing		•	Apron thickness (f	ft)		
	q above ground		Apron thickness (f Apron width (ft)	ft)		Water level recovered to (ft)
(ft)						Water level recovered to (ft) Recovery time (hrs)
(ft)	(in)		Apron width (ft)			Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft)
Driveshoe make	(in)	d :	Apron width (ft) Apron volume (cu. Bottom material			Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow
Driveshoe make	(in)		Apron width (ft) Apron volume (cu. Bottom material			Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow Well Status/Water Use/Date Completed
Driveshoe make	(in)	d :	Apron width (ft) Apron volume (cu. Bottom material			Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL
Driveshoe make	(in)	d :	Apron width (ft) Apron volume (cu. Bottom material			Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow Well Status/Water Use/Date Completed Final status of well Water use MONITORING
Driveshoe make	(in)	d :	Apron width (ft) Apron volume (cu. Bottom material			Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow Well Status/Water Use/Date Completed Final status of well OBSERVATION WELL

(Summary Log)

NSE Well No.

Well Type

870188 DRILLED

Certified Well Contractor					Well Owner/Contractor Information				
Certificate No.	OWAT, DO		ING LTD		or Co Civic Lot N Cour	Address of Number	ilder/Consultant, e Well NS OBS W Subdivisi	etc. ELL - METEGHAN (06 on Postal Code	
				We	ell Location	n			
NS Atlas or Map	Book Refe	rence :		NTS Map Referei	nce :		GPS	(WGS84 UTM):	
Atlas or Map Bo	ok			Map Sheet			North	ing (m)	4900628
Map Page No.		4		Reference Map			Eastir	ng (m)	250890
Reference Lette	r	Α		Tract No.			-1	erty (PID)	
Reference Num	ber	4		Į.			-	•	
Roamer Letter		F		Claim			Well I	Location Sketch Availa	ble
Roamer Numbe	r	16							
Depth in feet			Primar	y Lithology			Seconda	ry Lithology	
From To	Colour 1	Descri	ption 1	Lithology 1		Colour 2	Description 2	Lithology 2	Water Found
0 4 4 200				GRAVEL SLATE					
Well Con	struction Inf	ormation		Dug Well	Informati	on		Water Yield	
Total depth below	v surface (ft)	200	Depth of liner (c	rock) (ft)		Es	stimated Yield (igpm)	
Depth to bedrock	(ft)			Reservoir mater	rial		Me	ethod AIR	LIFT
Water bearing fra	ctures enco	ountered at	(ft):	Reservoir vol. (d	cu.yd)		Ra	ate (igpm)	0.7
90 180				Reservoir mater	rial size				
Outer Well Casin	g:			Apron Material			1	epth to water at end of	tost (ft)
From (ft)		To (ft)	40	Apron depth (ft)				otal drawdown (ft)	lest (it)
Diameter (in)			6	Apron thickness	s (ft)			ater level recovered to	(ft)
Length of casing	above grou	nd :		Apron width (ft)				ecovery time (hrs)	
(ft)	(in)		\neg	Apron volume (cu.yd)			epth to static level (ft)	
Driveshoe make				Bottom material			0/	verflow	
Comments NS	OBSERVA	TION WEL	L METEG	SHAN (060)			We	II Status/Water Use/Da	ite Completed
· '				` '			Final status	of well OBSERVATION	ON WELL
							Water use	MONITORING	3
							Method of d	Irilling	
l I							Date well co	ompleted	31-Mar-87

NSEL Well No.

891722 DRILLED

Well Type

Environment and Labour

Certified Well Contractor			Well Owner/Contractor Info	rmation
Name MOWAT, DONALD Certificate No. 210 Company MOWAT'S WELL DRILLING LT NS Atlas or Map Book Reference: Atlas or Map Book MAP Map Page No. 8 Reference Letter A Reference Number 4	Or Circle Lo Co Ne Well Local NTS Map Reference : Map Sheet Reference Map Tract No.	vic Address of t Number bunty ANNAF earest Commun	Ider/Consultant, etc. Well NS OBS WELL - ANNAPOL Subdivision POLIS Post nity in Altlas/Map Book ATLAS GPS (WGS84 UTM) : Northing (m) Easting (m) Property (PID)	4952588 303029
Roamer Letter H	Claim		Well Location Sketch	Available
Roamer Number 14 Depth in feet Prim	ary Lithology		Secondary Lithology	
From To Colour 1 Description 1 0 71 71 205	Lithology 1 CLAY GRANITE	Colour 2	Description 2 Lithology BOULDER	y 2 Water Found
Well Construction Information	Dug Well Inform	ation	Wate	r Yield
Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft): 120 Outer Well Casing: From (ft) Diameter (in) Cuter the following of t	Depth of liner (crock) (f Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	it)	Estimated Yield (ig Method Rate (igpm) Duration (hrs) Depth to water at e Total drawdown (ff Water level recove Recovery time (hrs Depth to static level Overflow	apm) 0.5 AIR LIFT 0.5 end of test (ft) ered to (ft) s) el (ft)
Comments NS OBSERVATION WELL - ANN	IAPOLIS ROYAL (062)		Final status of well OBSEF	Jse/Date Completed RVATION WELL ORING 20-Dec-89

NSEL Well No.

891721

THO MICOCOLLI				Well Type	DRILLED
Environment and Labour	(Summary	Log)		well Type	DIVICEED
Certified Well Contractor			Well Owner/0	Contractor Information	
Name MOWAT, DONALD Certificate No. 210 Company MOWAT'S WELL DRILLING L	FD.	Civic Address of Wood Number County YARMOU	der/Consultant, etc Vell NS OBS WE	L - HEBRON (063) Postal Code	ENVIRONMENT
	Well Loc				
NC Atles or Man Dook Deference i		ation	CDC (V	VCCQ4 LITM) .	
NS Atlas or Map Book Reference : Atlas or Map Book MAP	NTS Map Reference :			VGS84 UTM) :	2222
	Map Sheet		Northin		2322
Map Page No. 5	Reference Map		Easting	(m) 25	0697
Reference Letter A Reference Number 3	Tract No.		Propert	y (PID)	
Roamer Letter F	Claim		Well Lo	cation Sketch Available	
Roamer Number 14	•				
Depth in feet Prim	ary Lithology		Secondary	Lithology	
From To Colour 1 Description 1	Lithology 1	Colour 2	Description 2	Lithology 2	Water Found
From To Colour 1 Description 1 0 3 3 140 140 144 144 150	Lithology 1 TOPSOIL SLATE QUARTZITE SHALE	Colour 2	Description 2	Lithology 2	Water Found
0 3 3 140 140 144	TOPSOIL SLATE QUARTZITE		Description 2	Lithology 2 Water Yield	Water Found
0 3 3 140 140 144 144 150	TOPSOIL SLATE QUARTZITE SHALE	mation			Water Found
0 3 3 140 144 144 150 Well Construction Information	TOPSOIL SLATE QUARTZITE SHALE Dug Well Inform	mation		Water Yield mated Yield (igpm)	45
0 3 3 140 140 144 144 150 Well Construction Information Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft):	TOPSOIL SLATE QUARTZITE SHALE Dug Well Inform Depth of liner (crock)	mation (ft)	Esti	Water Yield mated Yield (igpm) nod AIR LIF	45
0 3 3 140 140 144 150	TOPSOIL SLATE QUARTZITE SHALE Dug Well Inform Depth of liner (crock) Reservoir material	mation (ft)	Esti Meti Rate	Water Yield mated Yield (igpm) nod AIR LIF	45
0 3 3 140 140 144 144 150 Well Construction Information Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft):	TOPSOIL SLATE QUARTZITE SHALE Dug Well Inform Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd)	mation (ft)	Esti Meti Rate Dura	Water Yield mated Yield (igpm) nod AIR LIF e (igpm)	45 45
Well Construction Information Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft):	TOPSOIL SLATE QUARTZITE SHALE Dug Well Inform Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz	mation (ft)	Esti Meti Rate Dura Dep	Water Yield mated Yield (igpm) nod AIR LIF e (igpm) ation (hrs)	45 45
Well Construction Information Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft): 57 150 00 Outer Well Casing:	TOPSOIL SLATE QUARTZITE SHALE Dug Well Inform Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz Apron Material	mation (ft)	Esti Met Rate Dura Dep Tota	Water Yield mated Yield (igpm) nod AIR LIF e (igpm) ation (hrs) th to water at end of test	45 45
Well Construction Information Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft): 57 150 Outer Well Casing: From (ft) To (ft) 40	TOPSOIL SLATE QUARTZITE SHALE Dug Well Inform Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz Apron Material Apron depth (ft)	mation (ft)	Esti Meti Rate Dura Dep Tota Wat	Water Yield mated Yield (igpm) mod AIR LIF e (igpm) ation (hrs) th to water at end of test all drawdown (ft) er level recovered to (ft)	45 45
Well Construction Information Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft): 57 150 7 150	TOPSOIL SLATE QUARTZITE SHALE Dug Well Inform Depth of liner (crock) Reservoir material Reservoir vol. (cu.yd) Reservoir material siz Apron Material Apron depth (ft) Apron thickness (ft)	mation (ft)	Esti Met Rate Dura Dep Tota Wat Rec	Water Yield mated Yield (igpm) mod AIR LIF e (igpm) ation (hrs) th to water at end of test all drawdown (ft) er level recovered to (ft) overy time (hrs)	45 45
Well Construction Information Total depth below surface (ft) Depth to bedrock (ft) Water bearing fractures encountered at (ft): 57 150 7 150	TOPSOIL SLATE QUARTZITE SHALE Dug Well Inform Depth of liner (crock) Reservoir material Reservoir wol. (cu.yd) Reservoir material siz Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft)	mation (ft)	Esti Meti Rate Dura Dep Tota Wat Rec Dep	Water Yield mated Yield (igpm) mod AIR LIF e (igpm) ation (hrs) th to water at end of test all drawdown (ft) er level recovered to (ft)	45 45
0	TOPSOIL SLATE QUARTZITE SHALE Dug Well Inform Depth of liner (crock) Reservoir material Reservoir material siz Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	mation (ft)	Esti Met Rate Dura Dep Tota Wat Rec Dep Ove	Water Yield mated Yield (igpm) mod AIR LIF e (igpm) ation (hrs) th to water at end of test al drawdown (ft) er level recovered to (ft) overy time (hrs) th to static level (ft)	45 (ft) (ft)
Well Construction Information Total depth below surface (ft) 150 Depth to bedrock (ft) 3 Water bearing fractures encountered at (ft): 57 150 To (ft) 40 Diameter (in) 6 Length of casing above ground: (ft) (in) Driveshoe make	TOPSOIL SLATE QUARTZITE SHALE Dug Well Inform Depth of liner (crock) Reservoir material Reservoir material siz Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	mation (ft)	Esti Meti Rate Dura Dep Tota Wat Rec Dep Ove	Water Yield mated Yield (igpm) mod AIR LIF e (igpm) ation (hrs) th to water at end of test al drawdown (ft) er level recovered to (ft) overy time (hrs) th to static level (ft) rflow	45 (ft) Completed

Method of drilling Date well completed

19-Dec-89

(Summary Log)

NSE Well No.

Well Type

902524

DRILLED

Certified Well Contractor			Well Owner/	Contractor In	formation		
Name MCDONALD, IAN		Well Drilled For:	Owner	N	S DEPT. OF ENVIRONMENT		
Certificate No. 45		or Contractor/Builder/Consultant, etc.					
Company ISLAND WELL DRILLERS		Civic Address of Well NS OBS WELL - MARGAREE (064)					
•		Lot Number	Subdivisio	n			
		County INVER	NESS	Po	stal Code		
		Nearest Commu	nity in Altlas/Map B	ook	MARGAREE VALLEY		
	Well Lo	ocation			-		
NS Atlas or Map Book Reference :	NTS Map Reference	:	GPS (\	WGS84 UTM):		
Atlas or Map Book	Map Sheet		Northir	ng (m)	5137031		
Map Page No. 38	Reference Map		 Eastin	g (m)	655717		
Reference Letter A	Tract No.		Proper	ty (PID)			
Reference Number 1	Claim		-	ocation Sketo	h Available		
Roamer Letter L			Well E	ocation orcic	TAVAIIADIC		
Roamer Number 12							
Depth in feet Prim	ary Lithology		Secondary	y Lithology			
From To Colour 1 Description 1	Lithology 1	Colour 2	Description 2	Litholo	ogy 2 Water Found		
9 150	GRAVEL CONGLOMERATE			TILL			
9 130	CONGLOWERATE						
Well Construction Information	Dug Well Info	ormation		Wa	ter Yield		
Total depth below surface (ft) 150	Depth of liner (crock	() (ft)	Est	imated Yield	(igpm)		
Depth to bedrock (ft)	Reservoir material		Met	thod	AIR LIFT		
Water bearing fractures encountered at (ft):	Reservoir vol. (cu.yo	d)	Rat	e (igpm)	10		
	Reservoir material s	size	Dur	ration (hrs)			
Outer Well Casing:	Apron Material				t end of test (ft)		
From (ft) To (ft) 40	Apron depth (ft)		· ·	al drawdown	<u> </u>		
Diameter (in) 6	Apron thickness (ft)			ter level reco			
Length of casing above ground :	Apron width (ft)		. Red	covery time (h	nrs)		
(ft) (in)	Apron volume (cu.yo	d)	Dep	oth to static le	evel (ft)		
Driveshoe make	Bottom material		Ove	erflow			
Comments NOFRACTUREINCREASEDFR8	0'- NS OBSERVATION W	/ELL	Well	Status/Wate	r Use/Date Completed		
· MARGAREE (064)			Final status of	of well			
			Water use				
			Method of dr		16-Jan-90		

(Summary Log)

NSE Well No.

892288

DRILLED Well Type

Certified Well Contractor		vveii Owner/Contracto	r Information
Name MCDONALD, IAN Certificate No. 45 Company ISLAND WELL DRILLERS NS Atlas or Map Book Reference: Atlas or Map Book Map Page No. 42 Reference Letter A Reference Number 2 Roamer Letter F Roamer Number 10	or Contra Civic Add Lot Numb County Nearest 0 Well Location NTS Map Reference : Map Sheet Reference Map Tract No. Claim	VICTORIA Community in Altlas/Map Book GPS (WGS84 U Northing (m) Easting (m) Property (PID) Well Location SI	DEPT. OF ENVIRONMENT DNISH (065) Postal Code INGONISH TM): 5170473 698083 ketch Available
Depth in feet Prima From To Colour 1 Description 1 0 30 33 30 33 33 33 150 33	Lithology 1 Col GRAVEL GRANITE GRANITE	Secondary Litholog	nology 2 Water Found
Mall Construction Information	Dug Mall Information		Water Viold
Well Construction Information Total depth below surface (ft) 150 Depth to bedrock (ft) Water bearing fractures encountered at (ft): 44 149 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dug Well Information Depth of liner (crock) (ft) Reservoir material Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft) Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	Estimated Yie Method Rate (igpm) Duration (hrs Depth to wate Total drawdo Water level re Recovery tim Depth to stat Overflow	AIR LIFT 100 er at end of test (ft) wn (ft) ecovered to (ft) ie (hrs) ic level (ft)
Comments NS OBSERVATION WELL INGOI	NISH (065)		/ater Use/Date Completed BSERVATION WELL 12-Dec-89

NSE Well No.

832002

Environment	(Summ	ary Log)		Well Type	DRILLED
Certified Well Contractor			Well Owner/Contracto	or Information	
Name JOHNSON, GREGORY I. Certificate No. 6 Company HUB WELL DRILLING LTD. NS Atlas or Map Book Reference : Atlas or Map Book	Well L NTS Map Reference Map Sheet	Lot Number County COLCHES Nearest Community cocation	er/Consultant, etc. ell NS OBS WELL - DEB Subdivision	Postal Code DEBERT	33
Map Page No.	Reference Map	С	Easting (m)	46692	21
Reference Letter	Tract No.	60	Property (PID)		$\overline{}$
Reference Number	Claim		Well Location S	ketch Available	
Roamer Letter				Ĺ	
Roamer Number					
Depth in feet Prima	ary Lithology		Secondary Litholog	iy	
From To Colour 1 Description 1 0 18 18 153	Lithology 1 CLAY CONGLOMERATE	Colour 2	Description 2 Lit SAND /L		ater Found
Well Construction Information	Dug Well In	formation		Water Yield	
Total depth below surface (ft) 153	Depth of liner (crod		Estimated Yi		
Depth to bedrock (ft)	Reservoir material		Method	, , <u> </u>	
Water bearing fractures encountered at (ft):	Reservoir vol. (cu.			<u> </u>	
112	Reservoir material		Rate (igpm)		10
Outer Well Casing:	Apron Material	SIZC	Duration (hrs	l l	
From (ft) To (ft) 26	Apron depth (ft)			ter at end of test (ft)	
Diameter (in) 4	Apron thickness (fi	2)	Total drawdo	_	
Length of casing above ground :	Apron width (ft)	"		recovered to (ft)	
	Apron volume (cu.	yd)	Recovery tim		
(ft) (in)	Bottom material		Depth to stat	tic level (ft)	112
Driveshoe make			Overflow		
Comments NS OBSERVATION WELL DEBE	RT (068)			Vater Use/Date Com	
			<u> </u>	VATER SUPPLY WE	ELL
			L	OOMESTIC	
			Method of drilling		

Date well completed

13-Aug-83

(Summary Log)

NSE Well No.

Well Type

943326 DRILLED

Certified Well Contractor		Well Owner/Contractor Information
Name Certificate No. Standard Well DRILLERS Company	Civic Address of W Lot Number County VICTOR Nearest Communi	der/Consultant, etc. Vell NS OBS WELL - DALEM LAKE (069) Subdivision
NOA! M B I B (Well Location	ODO AMOCOALITAN
NS Atlas or Map Book Reference :	NTS Map Reference :	GPS (WGS84 UTM) :
Atlas or Map Book MAP	Map Sheet	Northing (m) 5124576
Map Page No. 38	Reference Map	Easting (m) 698221
Reference Letter E Reference Number 2	Tract No.	Property (PID)
Reference Number 2 Roamer Letter 0	Claim	Well Location Sketch Available
Roamer Number 12	,	
Depth in feet Prima	ary Lithology	Secondary Lithology
Well Construction Information	Dug Well Information	Water Yield
Total depth below surface (ft) 200	Depth of liner (crock) (ft)	Estimated Yield (igpm)
Depth to bedrock (ft)	Reservoir material	Method
Water bearing fractures encountered at (ft):	Reservoir vol. (cu.yd)	
	Reservoir material size	Rate (igpm)
Outer Well Casing:	Apron Material	Duration (hrs)
From (ft) 0 To (ft) 41	Apron depth (ft)	Depth to water at end of test (ft) Total drawdown (ft)
Diameter (in) 6	Apron thickness (ft)	Water level recovered to (ft)
Length of casing above ground :	Apron width (ft)	Recovery time (hrs)
(ft) (in)	Apron volume (cu.yd)	Depth to static level (ft)
Driveshoe make	Bottom material	Overflow
Comments NS OBSERVATION WELL - DALI	EM LAKE (069)	Well Status/Water Use/Date Completed
	, ,	Final status of well OBSERVATION WELL
		Water use MONITORING
		Method of drilling
		Date well completed 01-Jan-94

Date well completed

(Summary Log)

NSE Well No.

862667

Well Type DRILLED

			C	Certified	Well Cor	ntractor				Well Owner/	Contractor Information	1		
								ĺ						
Na	lame CHAPPELL, WALTER							7 V	Vell Drilled For	: Owner	TOWN OF	AMHERST		
Ce	ertificate N	rtificate No. 32						_ o	r Contractor/B	uilder/Consultant, et	с.		\neg	
	ompany WALTER CHAPPELL WELL DRILLING LTD.						LLINGLTD	- 1 c	Civic Address of Well NS OBS WELL - AMHERST (071)					
	πραιιγ	ificate No. 32 WALTER CHAPPELL WELL DRILLING LT S Atlas or Map Book Reference : NTS Ma las or Map Book MAP Map Sh las or Map Book Map Sh las or Map Sh las or Map Book Map Sh las or Map Sh las or Map Book Map Sh las or M				LLING LID.	_	ot Number	Subdivisio			=		
l											<u> </u>		_	
								С	County CUMBERLAND Postal Code					
								N	learest Comm	unity in Altlas/Map B	ook ATLAS AN	MHERST	╗	
													_	
							W	ell Loca	ation					
	NS Atlas o	or Map	Book	Refere	nce :	_	NTS Map Refere	ence :		GPS (WGS84 UTM) :			
	Atlas or Ma	ар Воо	k [MA	AP		Map Sheet			Northir	ng (m)	5079213		
	Map Page	No.		1	8		Reference Map			Eastin	g (m)	411279		
	Reference	Letter		E	3		Tract No.			Proper	ty (PID)			
	Map Page No. 18 Reference Reference Letter B Tract No. Reference Number 2 Claim Roamer Letter G Primary Lithology From To Colour 1 Description 1 Lith 0 15 TILL 15 45 SANDSTO 45 101 REDDISH SHALE								_		hlo 🗆			
	Roamer Le	etter	Γ	(3		Ciaim	<u> </u>		vvell L	ocation Sketch Availa	nie 🗌		
	Roamer N	umber	Ē	8	3									
ſ	Depth i	n feet	7			Primar	y Lithology			Secondar	y Lithology			
				our 1	Descri		Lithology	1	Colour 2	Description 2	Lithology 2	Water Found	٦	
			001	oui i	Descri	Puon i			Colour Z	Description 2	Littlology 2	vater i dunu		
	-						SANDSTONE							
			REDI	DISH					BROWN					
					FINE GF	RAINED	SANDSTONE							
	109				FINE GF	RAINED								
Щ	114	124	REDI	DISH	FINE GF	RAINED	SANDSTONE			MEDIUM GRAINE			4	
	124	127	BRO	WN	FINE GF	RAINED	SHALE							
	127	130					SHALE				SANDSTONE			
									RED	COARSE GRAINE				
					MEDIUM	1 GRAIN				COARSE GRAINE				
									BROWN					
							MUDSTONE							
					MEDIUM	1 GRAIN					CANDOTC			
	196			DISH			SHALE				SANDSTONE	<u> </u>		
	198			DISH			SILTSTONE							
	202 206		BRO' BRO'				SHALE							
	211		BRO				SILTSTONE				SHALE			
	227			DISH	-		SHALE				OI IALL			
	235		BRO				SILTSTONE		GREENIS					
	258				MEDIUM	1 GRAIN	SANDSTONE		5					
	262			DISH		· · · ·	SHALE							
	263				MEDIUM	1 GRAIN	SANDSTONE							
	277	281	REDI	DISH			SHALE							
	281	294	BRO	WN			SILTSTONE							
	294		BRO				SHALE							
	296	358	BRO	WN	FINE GF	RAINED	SILTSTONE				SHALE			
	358	370	REDI	DISH			SANDSTONE							
	370			YISH			SANDSTONE							
	378	202	RP()	IA/NI			SII TSTONE						1	

Well Construction Information	Dug Well Information	Water Yield
Total depth below surface (ft) 382	Depth of liner (crock) (ft)	Estimated Yield (igpm)
Depth to bedrock (ft)	Reservoir material	Method
Water bearing fractures encountered at (ft): 140 Outer Well Casing: From (ft) To (ft) 20	Reservoir vol. (cu.yd) Reservoir material size Apron Material Apron depth (ft)	Rate (igpm) Duration (hrs) Depth to water at end of test (ft) Total drawdown (ft)
Diameter (in) 6 Length of casing above ground: (ft) (in) Driveshoe make	Apron thickness (ft) Apron width (ft) Apron volume (cu.yd) Bottom material	Water level recovered to (ft) Recovery time (hrs) Depth to static level (ft) Overflow
Comments NS OBSERVATION WELL - AMH	HERST (071)	Well Status/Water Use/Date Completed Final status of well TEST HOLE Water use MONITORING Method of drilling Date well completed 29-Jul-86

(Summary Log)

NSE Well No.

Well Type

721858 DRILLED

Certified Well Contractor		Well Owner/Contractor Information				
Name Certificate No. Company NS Atlas or Map Book Reference: Atlas or Map Book MAP Map Page No. Reference Letter Roamer Letter Roamer Number	Lot Number County CUMBER	wner NS DEPT. OF ENVIRONMENT er/Consultant, etc. /ell NS OBS WELL - KELLEY RIVER (073) Subdivision				
Well Construction Information	Dug Well Information	Water Yield				
Total depth below surface (ft) 38	Depth of liner (crock) (ft)	Estimated Yield (igpm)				
Depth to bedrock (ft)	Reservoir material	Method				
Water bearing fractures encountered at (ft):	Reservoir vol. (cu.yd)					
	Reservoir material size	Rate (igpm)				
Outer Well Casing:	Apron Material	Duration (hrs)				
From (ft) 0 To (ft) 14	Apron depth (ft)	Depth to water at end of test (ft)				
Diameter (in)	Apron thickness (ft)	Total drawdown (ft)				
Length of casing above ground :	Apron width (ft)	Water level recovered to (ft)				
	Apron volume (cu.yd)	Recovery time (hrs)				
(ft) (in)	Bottom material	Depth to static level (ft) Overflow				
Driveshoe make	<u></u>					
Comments NS OBSERVATION WELL - KEL	LEY RIVER (073)	Well Status/Water Use/Date Completed				
		Final status of well OBSERVATION WELL				
		Water use MONITORING				
		Method of drilling				
<u> </u>		Date well completed 01-Jul-72				

NSE Well No.

070613

29-Aug-07

Date well completed

Environment	. , , ,					
Certified Well Contractor						
Name ROGERS, KIRK Certificate No. 307 Company K. D. ROGERS WELL DRILLIN	G LTD.	or Contractor Civic Addre Lot Number County	or/Builde ss of We NGS	er/Consultant, etc. NS OBS WELL - A Subdivision	Postal Code BOR	P 1H0
	Well L	ocation				
NS Atlas or Map Book Reference : Atlas or Map Book ATLAS Map Page No. 46 Reference Letter Z Reference Number 2 Roamer Letter H Roamer Number 6	NTS Map Reference Map Sheet Reference Map Tract No. Claim	:		Northing (m) Easting (m) Property (PID	3819) 55045942	56
Depth in feet Prim	ary Lithology			Secondary Lithol	oav	
From To Colour 1 Description 1 0 112 112 175	Lithology 1 SAND SANDSTONE	Colou	r 2	Description 2	ithology 2 W	Vater Found ✓
Certified Well Contractor Name ROGERS, KIRK Certificate No. 307 Company K. D. ROGERS WELL DRILLING LTD. Well Drilled For: Owner Or Contractor/Builder/Consultant, etc. Civic Address of Well NS OBS WELL - ATLANTA (074) Lot Number Subdivision County KINGS Postal Code BDP 1H0 Nearest Community in Altlas/Map Book ATLAS ATLANTA Well Location NS Atlas or Map Book Reference: NTS Map Reference: GPS (WGS84 UTM): Atlas or Map Book ATLAS Map Sheet Northing (m) 5000758 Map Page No. 46 Reference Map Easting (m) 381956 Reference Letter Z Tract No. Property (PID) 55045942 Reference Number 2 Claim Well Location Sketch Available Reference Multiple Referen						
	-			Estimated		
Depth to bedrock (ft) Water bearing fractures encountered at (ft): 115	Reservoir material Reservoir vol. (cu.) Reservoir material Apron Material Apron depth (ft) Apron thickness (ft Apron width (ft) Apron volume (cu.) Bottom material	yd) Size D		Method Rate (igpn Duration (I Depth to w Total draw Water leve Recovery Depth to s Overflow	AIR LIFT All AIR LIFT AIR LIFT All AIR LIFT All AIR LIFT All AIR LIFT AIR LI	10 24
FRACTURES 115-175 FT. DIST 200+'. WELL LOC EDGE OF WC	TO PRÒP LINE 300+', V			Final status of well Water use	OBSERVATION WE	<u>· </u>

(Summary Log)

NSE Well No.

Well Type

070618

DRILLED

Certified Well Contractor			Well Owner/C	Contractor Information	
Name ROGERS, KIRK Certificate No. 307 Company K. D. ROGERS WELL DRILLIN NS Atlas or Map Book Reference :	G LTD.	Civic Address of Lot Number County KINGS Nearest Commu	Owner ilder/Consultant, etc. Well NS OBS WEI Subdivision nity in Altlas/Map Bo	NS DEPT.	
Atlas or Map Book ATLAS Map Page No. 47 Reference Letter V Reference Number 2 Roamer Letter D Roamer Number 6	Map Sheet Reference Map Tract No. Claim		Northin Easting Propert Well Lo	(m)	384693 le
Prim From To Colour 1 Description 1 0 16 16 175	Lithology SAND SANDSTONE	Colour 2	Secondary Description 2	Lithology 2	Water Found
Well Construction Information	Dug Well In	oformation		Water Yield	
Total depth below surface (ft) 175 Depth to bedrock (ft) 16 Water bearing fractures encountered at (ft): 60 175	Depth of liner (cro- Reservoir material Reservoir vol. (cu. Reservoir material Apron Material Apron depth (ft) Apron thickness (f Apron width (ft) Apron volume (cu. Bottom material	lck) (ft)	Meti Rate Dura Dep Tota Wat Rec Dep	mated Yield (igpm) hod AIR L e (igpm) ation (hrs) th to water at end of te al drawdown (ft) er level recovered to (overy time (hrs) th to static level (ft)	60 1 est (ft) ft) 20 24
NS OBSERVATION WELL - SHE FRACTURES 60-175 FT. WELL FT ABOVE GROUND.	FFIELD MILLS (075) LOC AT EDGE OF FIEL	LD. WELLHEAD 4	Final status o Water use Method of dri Date well con	MONITORING ROTARY	N WELL

APPENDIX B GROUNDWATER CHEMISTRY RESULTS

Table B1. Summary of parameters which have been sampled at each well

Observation Well	General Chemistry	Metals	VOC	Pesticides	Tritium	Perchlorate
Greenwood (003)	✓	✓	√	✓	✓	✓
Fraser Brook (004)	✓	√	✓	✓		✓
Wilmot (005)	✓	\checkmark	\checkmark			
Wolfville (010)	✓	✓	✓	✓	✓	✓
Truro (014)						
Monastery (028)	✓	✓	✓	✓	✓	✓
Point Aconi (030)	✓	✓	✓	✓	✓	✓
Lawrencetown (043)	✓	✓				
Durham (045)	✓	✓	✓	√ *	✓	✓
Kentville (048)	✓	✓	✓	✓	✓	✓
Sydney (050)	✓	✓	✓	✓	✓	✓
North Grant (054)	✓	✓	✓	✓	✓	
Stillwater (055)	✓	✓	✓	✓	✓	
Sheet Harbour (056)						
Charleston (058)						
Hayden Lake (059)	✓	✓	✓	√ *	✓	✓
Meteghan (060)	✓	✓	✓	✓	√	
Annapolis Royal (062)	✓	✓	✓	✓	√	✓
Hebron (063)	✓	✓	✓	√ *	√	✓
Margaree (064)	✓	√	✓	✓	√	
Ingonish (065)						
Debert (068)						
Dalem Lake (069)	✓	✓	√	✓	✓	
Amherst (071)	✓	✓	✓	✓	✓	
Kelley River (073)	✓	✓	✓	✓	✓	
Atlanta (074)	✓	✓	√	✓		
Sheffield Mills (075)	✓	✓	✓	✓		

^{* =} limited suite of pesticides analysed at this site

Table B2: General Chemistry and Metal Results

			I	Greenwood	Fraser Brook	Wilmot	Wolfville	Truro
Parameter	Units	Drinking Water	Detection Limit	(Well 003)	(Well 004)	(Well 005)	(Well 010)	(Well 014)
i diametei	Office	Guideline	Detection Limit	23-Nov-2005	10-Dec-2004	29-Nov-2006	22-Dec-2004	(Well 014)
General Chemistry				23-1404-2003	10-DCC-2004	23-1404-2000	22-000-2004	
Total Alkalinity (Total as CaCO3)	mg/L	T -	5	ND	74	16	25	-
Chloride (CI)	mg/L	250 AO	1	6	5	22	78	
Colour	TCU	15 AO	5	5	ND	ND	ND	
Hardness (CaCO3)	mg/L	500 AO	ŭ	10	79.1	180	101	_
Nitrate + Nitrite	mg/L	10	0.05	ND	ND	30	1.9	_
Nitrite (N)	mg/L	1	0.01	ND	ND	0.02	ND	_
Nitrate (N)	mg/L	10	0.05	ND	ND	30	1.9	-
Nitrogen (Ammonia Nitrogen)	mg/L	-	0.05	0.22	ND	ND	ND	-
Total Organic Carbon (C)	mg/L	-	0.5	2	ND	ND	ND	-
Orthophosphate (P)	mg/L	-	0.01	0.05	0.02	0.07	ND	-
pH	pН	6.5 - 8.5 AO		6.41	7.6	6.7	6.5	-
Reactive Silica (SiO2)	mg/L		0.5	11	7.8	7.9	17	-
Sulphate (SO4)	mg/L	500 AO	2	9	5	27	12	-
Turbidity	NTU	5 AO	0.1	39	0.2	50	0.9	-
Conductivity	uS/cm	-		79	166	410	382	-
Anion Sum	me/L	-		0.372	1.73	3.65	3.08	-
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	1	ND	74	16	25	-
Calculated TDS	mg/L	-	1	40	94	275	196	-
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1	ND	ND	ND	ND	-
Cation Sum	me/L	-		0.549	1.78	3.92	3.3	-
Ion Balance (% Difference)	%	-		19.2	1.56	3.58	3.3	-
Langelier Index (@ 20C)	N/A	-		-	-0.68	-1.75	-2.12	-
Langelier Index (@ 4C)	N/A	-		-	-1.08	-2	-2.52	-
Saturation pH (@ 20C)	N/A	-		-	8.28	8.45	8.62	-
Saturation pH (@ 4C)	N/A	-		-	8.68	8.7	9.02	-
Calcium (Ca)	mg/L	-	0.1	2.2	19.3	56	27.4	-
Magnesium (Mg)	mg/L	-	0.1	1	7.5	8.5	7.8	-
Phosphorus (P)	mg/L	-	0.1	ND	ND	0.2	ND	
Potassium (K)	mg/L	-	0.1	2.4	1	3.1	2	-
Sodium (Na)	mg/L	200 AO	0.1	3.6	4	7.5	28.3	-
Bromide (Br) Fluoride (F)	mg/L	1.5	0.5 0.1	ND ND	0.03 ND	-	0.06 ND	
	mg/L	1.5	0.1	ND	IND	-	ND	
Metals	//	1	10	47	ND.	ND	ND	
Aluminum (Al)	ug/L	- 6	10	ND	ND ND	ND ND	ND ND	=
Antimony (Sb)	ug/L ug/L	10	2 2	2	14	ND ND	ND ND	
Arsenic (As) Barium (Ba)	ug/L ug/L	1000	5	59	5	89	69	
Beryllium (Be)		-	2	ND	ND	ND ND	ND	
Bismuth (Bi)	ug/L	-	2	ND ND	ND ND	ND ND	ND ND	
Boron (B)	ug/L ug/L	5000	5	ND ND	30	14	26	
Cadmium (Cd)	ug/L ug/L	5000	0.3	ND ND	ND	ND	ND	-
Chromium (Cr)	ug/L ug/L	50	2	ND ND	ND ND	ND ND	ND ND	
Cobalt (Co)	ug/L ug/L	-	1	3	ND ND	ND ND	ND ND	
Copper (Cu)	ug/L	1000 AO	2	3	ND ND	ND ND	ND ND	
Iron (Fe)	ug/L	300 AO	50	8700	ND ND	ND ND	230	-
Lead (Pb)	ug/L	10	0.5	1.7	ND ND	2.3	ND	-
Manganese (Mn)	ug/L	50 AO	2	140	ND ND	15	14	-
Molybdenum (Mo)	ug/L	-	2	ND	ND ND	ND	ND	-
Mercury (Hg)	ug/L		0.01			-	.,,,	
Nickel (Ni)	ug/L	_	2	4	ND	3	ND	_
Selenium (Se)	ug/L	10	2	ND	ND	ND	ND	-
Silver (Aq)	ug/L	-	0.5	ND	ND	ND	ND	-
Strontium (Sr)	ug/L	-	5	9	150	160	110	-
Thallium (TI)	ug/L	-	0.1	ND	ND	ND	ND	-
Tin (Sn)	ug/L	-	2	ND	ND	ND	ND	-
Titanium (Ti)	ug/L	-	2	ND	ND	ND	ND	-
	ug/L	20	0.1	0.2	1.5	ND	ND	-
Uranium (U)								
Vanadium (V)	ug/L	-	2	ND	2	ND	ND	-

AO = Aesthetic Objective. ND = not detected

ND() = not detected at the elevated detection limit shown in brackets () $\,$

Table B2: General Chemistry and Metal Results

1						1		1
		Drinking Water		Monastery	Point Aconi	Lawrencetown	Durham	Kentville
Parameter	Units	Guideline	Detection Limit	(Well 028)	(Well 030)	(Well 043)	(Well 045)	(Well 048)
				15-Dec-2006	15-Sep-2005	18-Nov-2004	5-Oct-2005	15-Jun-2005
General Chemistry		1	_					
Total Alkalinity (Total as CaCO3)	mg/L		5	240	140	82	140	20
Chloride (CI)	mg/L	250 AO	1	31	19	150	44	230
Colour	TCU	15 AO	5	ND	ND	ND	ND	ND
Hardness (CaCO3)	mg/L	500 AO		120	140	98.9	86	150
Nitrate + Nitrite	mg/L	10	0.05	ND	ND	ND	ND	1.2
Nitrite (N)	mg/L	1	0.01	ND	ND	ND	ND	ND
Nitrate (N)	mg/L	10	0.05	ND	ND	ND	ND	1.2
Nitrogen (Ammonia Nitrogen)	mg/L	-	0.05	0.14	ND	0.19	0.11	0.06
Total Organic Carbon (C)	mg/L	-	0.5	2.1	ND	ND	ND	ND
Orthophosphate (P)	mg/L	-	0.01	ND	ND	ND	ND	ND
pH	pН	6.5 - 8.5 AO		8.14	8.01	7.3	8.16	6.84
Reactive Silica (SiO2)	mg/L		0.5	11	7.6	7.3	11	11
Sulphate (SO4)	mg/L	500 AO	2	72	10	ND	16	16
Turbidity	NTU	5 AO	0.1	0.2	ND	1	ND	5
Conductivity	uS/cm	-		660	380	695	410	910
Anion Sum	me/L	-		7.13	3.6	5.92	4.31	7.36
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	1	235	140	82	134	20.3
Calculated TDS	mg/L	-	1	417	207	341	243	223
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1	3	1	ND 0.10	2	ND 0.10
Cation Sum	me/L	-		7.51	4.11	6.19	4.22	8.18
Ion Balance (% Difference)	%	-		2.61	6.56	2.27	1.01	5.28
Langelier Index (@ 20C)	N/A	-		0.553	0.41	-0.85	0.382	-1.54
Langelier Index (@ 4C)	N/A	-		0.304	0.16	-1.25	0.132	-1.79
Saturation pH (@ 20C)	N/A	-		7.59	7.6	8.15	7.78	8.38
Saturation pH (@ 4C)	N/A	-		7.84	7.85	8.55	8.03	8.63
Calcium (Ca)	mg/L	-	0.1	31	44	26.1	30	52
Magnesium (Mg)	mg/L	-	0.1	9.3	6.3	8.2	2.7	5.6
Phosphorus (P)	mg/L	-	0.1	ND	ND	ND	0.1	ND (0.2)
Potassium (K)	mg/L		0.1	2.3	4	1.9	1.6	4.9
Sodium (Na)	mg/L	200 AO	0.1	120	30	95.4	57	120
Bromide (Br)	mg/L	-	0.5	ND		0.53	ND	ND
Fluoride (F)	mg/L	1.5	0.1	0.3		0.11	0.3	ND
Metals		1						
Aluminum (Al)	ug/L	-	10	ND	15	ND	16	ND
Antimony (Sb)	ug/L	6	2	ND	ND	ND	ND	ND
Arsenic (As)	ug/L	10	2	6	ND	56	4	ND
Barium (Ba)	ug/L	1000	5	25	40	26	130	64
Beryllium (Be)	ug/L	-	2	ND ND	ND	ND ND	ND ND	ND ND
Bismuth (Bi)	ug/L	-	2	ND 050	ND 05	ND	ND	ND
Boron (B)	ug/L	5000	5	250	35	93	38	5.7
Cadmium (Cd)	ug/L	5	0.3	ND ND	ND	ND ND	ND ND	ND
Chromium (Cr)	ug/L	50	2	ND ND	ND	ND ND	ND	ND ND
Cobalt (Co)	ug/L	-	1	ND 7	ND	ND ND	ND	ND
Copper (Cu)	ug/L	1000 AO	2	7 ND	6	ND ND	ND ND	ND ND
Iron (Fe)	ug/L	300 AO	50		ND 0.6	ND ND	ND ND	ND ND
Lead (Pb)	ug/L	10	0.5	ND 42	0.6	ND 16	ND 31	ND ND
Manganese (Mn)	ug/L	50 AO	2	42	360	16 ND	21	ND ND
Molybdenum (Mo)	ug/L	-	0.01	3 ND	ND	ND	8	ND
Mercury (Hg)	ug/L	1	0.01	ND ND	ND	ND	ND	ND
Nickel (Ni)	ug/L	- 40		ND ND	ND ND			
Selenium (Se)	ug/L	10	2			ND ND	ND ND	ND ND
Silver (Ag)	ug/L	-	0.5	ND 2400	ND 220	ND 4400	ND 4400	ND 240
Strontium (Sr)	ug/L	-	5	2400	230	1100	1100	210
Thallium (TI)	ug/L	-	0.1	ND ND	ND ND	ND ND	ND ND	ND ND
Tin (Sn)	ug/L	-	2	ND	ND	ND ND	ND	ND ND
Titanium (Ti)	ug/L	-	2	ND 0.0	ND	ND ND	ND 0.7	ND ND
Uranium (U)	ug/L	20	0.1	0.6	0.3	ND ND	0.7	ND
Vanadium (V)	ug/L	- 5000 AO	2	ND	ND 19	ND ND	ND	ND 150
Zinc (Zn)	ug/L	5000 AO	5	34	18	ND	21	150

ND = not detected

ND() = not detected at the elevated detection limit shown in brackets () $\,$

Table B2: General Chemistry and Metal Results

		1						T =
		Drinking Water		Kentville	Sydney	North Grant	Stillwater	Sheet Harbour
Parameter	Units	Guideline	Detection Limit	(Well 048)	(Well 050)	(Well 054)	(Well 055)	(Well 056)
		Guidollilo		7-Nov-2007	15-Sep-2005	13-Dec-2006	13-Dec-2006	-
General Chemistry								
Total Alkalinity (Total as CaCO3)	mg/L	-	5	22	83	93	58	-
Chloride (CI)	mg/L	250 AO	1	270	7	30	5	-
Colour	TCU	15 AO	5	ND	ND	ND	ND	-
Hardness (CaCO3)	mg/L	500 AO		180	87	38	58	-
Nitrate + Nitrite	mg/L	10	0.05	0.96	0.17	0.55	0.13	-
Nitrite (N)	mg/L	1	0.01	ND	ND	ND	ND	-
Nitrate (N)	mg/L	10	0.05	0.96	0.17	0.55	0.13	-
Nitrogen (Ammonia Nitrogen)	mg/L	-	0.05	ND	ND	ND	0.09	-
Total Organic Carbon (C)	mg/L	-	0.5	ND	ND	2.5	2.5	-
Orthophosphate (P)	mg/L	-	0.01	0.05	ND	ND	ND	-
pΗ	pН	6.5 - 8.5 AO		7.39	8.03	7.83	7.32	-
Reactive Silica (SiO2)	mg/L		0.5	11	8.6	9.6	12	-
Sulphate (SO4)	mg/L	500 AO	2	19	7	35	6	-
Turbidity	NTU	5 AO	0.1	0.7	0.3	1.1	0.4	-
Conductivity	uS/cm	-		1000	210	340	140	-
Anion Sum	me/L	-		8.5	2.02	3.5	1.44	-
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	1	22	82	93	58	-
Calculated TDS	mg/L	-	1	503	115	209	89	-
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1	ND	ND	ND	ND	-
Cation Sum	me/L	-		8.67	2.07	3.43	1.5	-
Ion Balance (% Difference)	%	-		0.99	1.29	1.07	2.18	-
Langelier Index (@ 20C)	N/A	-		-0.975	0.069	-0.526	-0.962	-
Langelier Index (@ 4C)	N/A	-		-1.22	-0.182	-0.776	-1.21	-
Saturation pH (@ 20C)	N/A	-		8.37	7.96	8.36	8.28	-
Saturation pH (@ 4C)	N/A	-		8.61	8.21	8.61	8.53	-
Calcium (Ca)	mg/L	-	0.1	58	30	12	19	-
Magnesium (Mg)	mg/L	-	0.1	7.5	3	2.2	2.2	-
Phosphorus (P)	mg/L	-	0.1	ND	ND	ND	ND	-
Potassium (K)	mg/L	-	0.1	5.4	1.7	1	1.8	-
Sodium (Na)	mg/L	200 AO	0.1	120	6.6	61	6.8	-
Bromide (Br)	mg/L	-	0.5	ND	ND	ND	ND	-
Fluoride (F)	mg/L	1.5	0.1	ND	0.1	0.6	ND	-
Metals								
Aluminum (Al)	ug/L	-	10	ND	11	46	35	-
Antimony (Sb)	ug/L	6	2	ND	ND	ND	ND	-
Arsenic (As)	ug/L	10	2	ND	ND	3	ND	-
Barium (Ba)	ug/L	1000	5	76	93	88	11	-
Beryllium (Be)	ug/L	-	2	ND	ND	ND	ND	-
Bismuth (Bi)	ug/L	-	2	ND	ND	ND	ND	-
Boron (B)	ug/L	5000	5	6	15	610	8	-
Cadmium (Cd)	ug/L	5	0.3	ND	ND	ND	ND	-
Chromium (Cr)	ug/L	50	2	ND	ND	ND	ND	-
Cobalt (Co)	ug/L	-	1	ND	ND	ND	ND	-
Copper (Cu)	ug/L	1000 AO	2	ND	7	ND	ND	-
Iron (Fe)	ug/L	300 AO	50	410	80	85	ND	-
Lead (Pb)	ug/L	10	0.5	45	ND	ND	ND	-
Manganese (Mn)	ug/L	50 AO	2	12	630	8	37	-
Molybdenum (Mo)	ug/L	-	2	ND	ND	3	ND	-
Mercury (Hg)	ug/L		0.01	0.01		ND	ND	
Nickel (Ni)	ug/L	-	2	ND	ND	ND	ND	-
Selenium (Se)	ug/L	10	2	ND	ND	ND	ND	-
Silver (Ag)	ug/L	-	0.5	ND	ND	ND	ND	-
Strontium (Sr)	ug/L	-	5	260	230	180	64	-
Thallium (TI)	ug/L	-	0.1	ND ND	ND ND	ND	ND	-
Tin (Sn)	ug/L	-	2	ND	ND	ND	ND	-
Titanium (Ti)	ug/L	-	2	ND	ND	ND	ND	-
Uranium (U)	ug/L	20	0.1	ND	ND	1.3	0.5	-
Vanadium (V)	ug/L	-	2	ND	ND	2	ND	-
Zinc (Zn)	ug/L	5000 AO	5	8	6	ND	ND ND	-
(-11)	ugru	0000 AO		J		שויו	140	

ND = not detected

ND() = not detected at the elevated detection limit shown in brackets () $\,$

Table B2: General Chemistry and Metal Results

		Drinking Water		Charleston	Hayden Lake	Meteghan	Annapolis Royal	Annapolis Royal
Parameter	Units	Guideline	Detection Limit	(Well 058)	(Well 059)	(Well 060)	(Well 062)	(Well 062)
		Guideline		-	9-Jun-2005	12-Dec-2006	9-Nov-2005	26-Nov-2007
General Chemistry								
Total Alkalinity (Total as CaCO3)	mg/L	-	5	-	14	67	52	54
Chloride (CI)	mg/L	250 AO	1	-	9.2	16	6	6
Colour	TČU	15 AO	5	-	ND	6	ND	ND
Hardness (CaCO3)	mg/L	500 AO		-	15	85	43	41
Nitrate + Nitrite	mg/L	10	0.05	_	ND	ND	ND	ND
Nitrite (N)	mg/L	1	0.01	-	ND	ND	ND	ND
Nitrate (N)	mg/L	10	0.05	_	ND	ND	ND	ND
Nitrogen (Ammonia Nitrogen)	mg/L	- 10	0.05		ND	0.07	ND	ND
Total Organic Carbon (C)	mg/L	_	0.5	-	0.8	3.3	ND ND	ND
Orthophosphate (P)	mg/L	-	0.01		ND	ND	0.03	0.02
			0.01	-				8.03
pH	pH	6.5 - 8.5 AO	0.5		6.74	7.42	7.3	
Reactive Silica (SiO2)	mg/L	=00 A O	0.5	-	5.9	8.7	14	12
Sulphate (SO4)	mg/L	500 AO	2	-	4.3	13	7	7
Turbidity	NTU	5 AO	0.1	-	ND	59	0.2	15
Conductivity	uS/cm	-		-	70	200	130	140
Anion Sum	me/L	-		-	0.622	2.11	1.38	1.4
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	1	-	13.6	67	52	53
Calculated TDS	mg/L	-	1	-	41.2	124	89	88
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1	-	ND	ND	ND	ND
Cation Sum	me/L	-		-	0.659	2.29	1.44	1.42
Ion Balance (% Difference)	%	-		-	2.9	4.09	2.2	0.71
Langelier Index (@ 20C)	N/A	-		-	-2.86	-0.765	-1.15	-0.431
Langelier Index (@ 4C)	N/A	-		-	-3.11	-1.02	-1.41	-0.682
Saturation pH (@ 20C)	N/A	-		-	9.6	8.19	8.45	8.46
Saturation pH (@ 4C)	N/A	-		-	9.85	8.44	8.71	8.71
Calcium (Ca)	mg/L	-	0.1	-	3.7	22	15	14
Magnesium (Mg)	mg/L	-	0.1	-	1.5	7.3	1.6	1.5
Phosphorus (P)	mg/L	-	0.1	-	ND	ND	ND	ND
Potassium (K)	mg/L	_	0.1	_	0.9	1.7	1	1.2
Sodium (Na)	mg/L	200 AO	0.1	_	7.5	8.5	13	13
Bromide (Br)	mg/L	-	0.5	-	ND	ND	ND	ND
Fluoride (F)	mg/L	1.5	0.1		ND ND	0.6	0.2	0.2
Metals	mg/L	1.0	0.1		ND	0.0	0.2	0.2
Aluminum (Al)	ua/l	-	10	_	25	ND	ND	ND
Antimony (Sb)	ug/L ug/L	6	2		ND	ND ND	ND ND	ND ND
		10	2		ND ND	ND ND		
Arsenic (As)	ug/L			<u> </u>			4	4
Barium (Ba)	ug/L	1000	5		7.4	5	52	66
Beryllium (Be)	ug/L	-	2	-	ND	ND	ND	ND
Bismuth (Bi)	ug/L		2	-	ND	ND	ND	ND
Boron (B)	ug/L	5000	5	-	6.9	47	12	12
Cadmium (Cd)	ug/L	5	0.3	-	ND	ND	ND	ND
Chromium (Cr)	ug/L	50	2	-	ND	ND	ND	ND
Cobalt (Co)	ug/L	-	1	-	ND	ND	ND	ND
Copper (Cu)	ug/L	1000 AO	2	-	37	ND	ND	ND
Iron (Fe)	ug/L	300 AO	50	-	ND	4900	ND	ND
Lead (Pb)	ug/L	10	0.5	-	ND	ND	ND	1
Manganese (Mn)	ug/L	50 AO	2	-	13	60	110	93
Molybdenum (Mo)	ug/L	-	2	-	ND	ND	4	4
Mercury (Hg)	ug/L		0.01			ND		0.02
Nickel (Ni)	ug/L	-	2	-	ND	ND	ND	ND
Selenium (Se)	ug/L	10	2	-	ND	ND	ND	ND
Silver (Ag)	ug/L	-	0.5	_	ND	ND	ND	ND
Strontium (Sr)	ug/L	-	5	-	19	36	59	61
Thallium (TI)	ug/L	-	0.1	-	ND	ND	ND	ND
Tin (Sn)	ug/L	-	2	-	ND	ND ND	ND	ND ND
Titanium (Ti)		+	2		ND ND	ND ND	ND	ND ND
	ug/L	20		<u> </u>		ND ND		
Uranium (U)	ug/L		0.1		ND		1.9	3.6
Vanadium (V)	ug/L	-	2	-	ND	ND	ND	ND
Zinc (Zn)	ug/L	5000 AO	5	-	21	5	ND	ND

ND = not detected

ND() = not detected at the elevated detection limit shown in brackets () $\,$

Table B2: General Chemistry and Metal Results

1				-				
		Drinking Water		Hebron	Margaree	Ingonish	Debert	Dalem Lake
Parameter	Units	Guideline	Detection Limit	(Well 063)	(Well 064)	(Well 065)	(Well 068)	(Well 069)
		Guidollilo		9-Jun-2005	14-Dec-2006	-	-	14-Dec-2006
General Chemistry								
Total Alkalinity (Total as CaCO3)	mg/L	-	5	23	160	-	-	63
Chloride (CI)	mg/L	250 AO	1	49	10	-	-	38
Colour	TCU	15 AO	5	5.8	ND	-	-	ND
Hardness (CaCO3)	mg/L	500 AO		71	210	-	-	120
Nitrate + Nitrite	mg/L	10	0.05	ND	ND	-	-	ND
Nitrite (N)	mg/L	1	0.01	ND	ND	-	-	ND
Nitrate (N)	mg/L	10	0.05	ND	ND	-	-	ND
Nitrogen (Ammonia Nitrogen)	mg/L	-	0.05	ND	0.13	-	-	ND
Total Organic Carbon (C)	mg/L	-	0.5	1.2	3.6	-	-	2.6
Orthophosphate (P)	mg/L	-	0.01	ND	ND	-	-	0.01
pH	pН	6.5 - 8.5 AO		6.29	8.13	-	-	7.8
Reactive Silica (SiO2)	mg/L		0.5	17	12	-	-	12
Sulphate (SO4)	mg/L	500 AO	2	13	93	-	-	8
Turbidity	NTU	5 AO	0.1	150	0.2	-	-	0.3
Conductivity	uS/cm	-		270	510	-	-	260
Anion Sum	me/L	-		2.12	5.48	-	-	2.51
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	1	23.2	160	-	-	62
Calculated TDS	mg/L	-	1	169	311	-	-	150
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1	ND	2	-	-	ND
Cation Sum	me/L	-		3.38	5.5	-	-	2.77
Ion Balance (% Difference)	%	-		22.9	0.182	-	-	4.97
Langelier Index (@ 20C)	N/A	-		-2.47	0.525	-	-	-0.191
Langelier Index (@ 4C)	N/A	-		-2.72	0.276	-	-	-0.442
Saturation pH (@ 20C)	N/A	-		8.76	7.61	-	-	7.99
Saturation pH (@ 4C)	N/A	-		9.01	7.85	-	-	8.24
Calcium (Ca)	mg/L	-	0.1	18	41	-	-	38
Magnesium (Mg)	mg/L	-	0.1	6.3	26	-	-	6.1
Phosphorus (P)	mg/L	-	0.1	ND	ND	-	-	ND
Potassium (K)	mg/L	-	0.1	1.7	1.7	-	-	1.3
Sodium (Na)	mg/L	200 AO	0.1	20	28	-	-	7.5
Bromide (Br)	mg/L	-	0.5	0.5	ND	-	-	ND
Fluoride (F)	mg/L	1.5	0.1	ND	0.6	-	-	0.2
Metals								
Aluminum (AI)	ug/L	-	10	ND	12	-	-	ND
Antimony (Sb)	ug/L	6	2	ND	ND	_	_	ND
Arsenic (As)	ug/L	10	2	ND	ND ND	_	-	4
Barium (Ba)	ug/L	1000	5	14	21	_	_	150
Beryllium (Be)	ug/L	-	2	ND	ND		-	ND
Bismuth (Bi)	ug/L	_	2	ND	ND	_	_	ND
Boron (B)	ug/L	5000	5	8.8	450	-	-	9
Cadmium (Cd)	ug/L	5	0.3	ND	ND	-	-	ND
Chromium (Cr)	ug/L	50	2	ND	ND			ND
Cobalt (Co)	ug/L	-	1	ND ND	ND ND	-	-	ND
Copper (Cu)	ug/L	1000 AO	2	ND ND	ND ND	-	-	ND
Iron (Fe)	ug/L	300 AO	50	27000	ND ND			180
Lead (Pb)	ug/L	10	0.5	ND ND	ND ND	-	-	ND
Manganese (Mn)	ug/L	50 AO	2	440	5	-	-	330
Molybdenum (Mo)	ug/L	- JU AO	2	ND ND	ND ND	-	-	ND
Mercury (Hg)	ug/L	_	0.01	IND	ND ND			ND
Nickel (Ni)	ug/L	_	2	ND	ND ND	-	-	ND ND
Selenium (Se)	ug/L ug/L	10	2	ND ND	ND ND		-	ND ND
Silver (Ag)	ug/L ug/L	-	0.5	ND ND	ND ND	 	-	ND ND
Strontium (Sr)	ug/L ug/L	-	5	91	15000		-	77
Thallium (TI)	ug/L ug/L	-	0.1	ND	ND	-	-	ND
Tin (Sn)	ug/L ug/L	-	2	ND ND	ND ND	-	-	ND ND
Titanium (Ti)		-	2	ND ND	ND ND	-	-	ND ND
Uranium (TI)	ug/L	20	0.1	ND ND	ND ND	-	-	ND ND
	ug/L	20		ND ND				ND ND
Vanadium (V)	ug/L	5000 AO	<u>2</u> 5	ND 16	ND ND	-	-	ND ND
Zinc (Zn)	ug/L	OA UUUG	່	10	ND	-		עאו

ND = not detected

ND() = not detected at the elevated detection limit shown in brackets () $\,$

Table B2: General Chemistry and Metal Results

1	1		1		14 11 5:		
Deservator	Lleite	Drinking Water	Detection Limit	Amherst	Kelley River	Atlanta	Sheffield Mills
Parameter	Units	Guideline	Detection Limit	(Well 071)	(Well 073)	(Well 074)	(Well 075)
Our and Observators				16-Dec-2006	12-Jan-2007	03-Sep-2007	10-Sep-2007
General Chemistry			-	120	1 00	0.5	95
Total Alkalinity (Total as CaCO3)	mg/L	250 AO	5	33	22	95 8	95 6
Chloride (CI)	mg/L		1		8 ND		
Colour	TCU	15 AO	5	ND	ND 40	ND 75	ND 00
Hardness (CaCO3)	mg/L	500 AO	0.05	83	13	75	98
Nitrate + Nitrite	mg/L	10	0.05	1.3	0.07	0.74	0.78
Nitrite (N)	mg/L	10	0.01	ND 4.0	ND 0.07	ND 0.74	ND 0.78
Nitrate (N)	mg/L	10	0.05	1.3		0.74	
Nitrogen (Ammonia Nitrogen)	mg/L	-	0.05	ND	ND	ND	ND
Total Organic Carbon (C)	mg/L	-	0.5	2.3	2.7	ND	ND
Orthophosphate (P)	mg/L	-	0.01	0.04	ND	ND	ND
pH	pH	6.5 - 8.5 AO	0.5	8.08	7.22	8.08	7.99
Reactive Silica (SiO2)	mg/L	F00.40	0.5	11	4.3	11	8.9
Sulphate (SO4)	mg/L	500 AO	2	40	4	4	3
Turbidity	NTU	5 AO	0.1	ND	0.2	ND	ND
Conductivity	uS/cm	-		430	81	210	210
Anion Sum	me/L	-		4.3	0.765	2.26	2.17
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	1	120	22	94	94
Calculated TDS	mg/L	-	1	260	46	135	124
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	1	1	ND 0.740	1	ND 0.04
Cation Sum	me/L	-		4.55	0.746	2.47	2.31
Ion Balance (% Difference)	%	-		2.89	1.26	4.44	3.13
Langelier Index (@ 20C)	N/A	-		0.17	-2.19	0.116	0.147
Langelier Index (@ 4C)	N/A	-		-0.08	-2.44	-0.135	-0.104
Saturation pH (@ 20C)	N/A	-		7.91	9.41	7.96	7.84
Saturation pH (@ 4C)	N/A	-		8.16	9.66	8.22	8.09
Calcium (Ca)	mg/L	-	0.1	26	3.6	27	35
Magnesium (Mg)	mg/L	-	0.1	4.3	1	2.2	2.7
Phosphorus (P)	mg/L	-	0.1	ND	ND	ND	ND
Potassium (K)	mg/L		0.1	1.3	1	2.2	2.5
Sodium (Na)	mg/L	200 AO	0.1	66	11	21	6.8
Bromide (Br)	mg/L		0.5	ND	ND	ND	ND
Fluoride (F)	mg/L	1.5	0.1	0.6	ND	ND	ND
Metals							
Aluminum (AI)	ug/L	-	10	ND	ND	ND	ND
Antimony (Sb)	ug/L	6	2	ND	ND	ND	ND
Arsenic (As)	ug/L	10	2	ND	ND	ND	ND
Barium (Ba)	ug/L	1000	5	170	24	8	18
Beryllium (Be)	ug/L	-	2	ND	ND	ND	ND
Bismuth (Bi)	ug/L	-	2	ND	ND	ND	ND
Boron (B)	ug/L	5000	5	12	14	13	7
Cadmium (Cd)	ug/L	5	0.3	ND	ND	ND	ND
Chromium (Cr)	ug/L	50	2	ND	ND	ND	ND
Cobalt (Co)	ug/L	-	1	ND	ND	ND ND	ND
Copper (Cu)	ug/L	1000 AO	2	ND	ND	ND ND	ND
Iron (Fe)	ug/L	300 AO	50	ND	87	ND ND	ND
Lead (Pb)	ug/L	10	0.5	ND	ND 00	ND ND	ND
Manganese (Mn)	ug/L	50 AO	2	3	20	ND ND	ND
Molybdenum (Mo)	ug/L	-	2	50	ND ND	ND ND	ND
Mercury (Hg)	ug/L	1	0.01	ND	ND	ND ND	ND
Nickel (Ni)	ug/L	-	2	ND ND	ND ND	ND O	ND
Selenium (Se)	ug/L	10	2	ND	ND	2	ND
Silver (Ag)	ug/L	-	0.5	ND 50	ND 00	ND 000	ND 400
Strontium (Sr)	ug/L	-	5	58	20	280	420
Thallium (TI)	ug/L	-	0.1	ND	ND	ND ND	ND
Tin (Sn)	ug/L	-	2	ND	ND	ND	ND
Titanium (Ti)	ug/L	-	2	ND	ND	ND	ND
Uranium (U)	ug/L	20	0.1	3.7	ND	21	8.4
Vanadium (V)	ug/L	-	2	5	ND	ND	ND
Zinc (Zn)	ug/L	5000 AO	5	ND	ND	ND	ND

ND = not detected

ND() = not detected at the elevated detection limit shown in brackets () $\,$

Table B3: Volatile Organic Compound (VOC) Results (ug/L)

	Drinking		Greenwood	Fraser Brook	Wilmot	Wolfville	Truro	Monastery
Parameter	Water	Detection	(Well 003)	(Well 004)	(Well 005)	(Well 010)	(Well 014)	(Well 028)
1 didilictor	Guideline	Limit	,		29-Nov-2006		-	15-Dec-2006
CHLOROBENZENES	Odideline		23-1107-2003	10-Dec-200 -	29-1101-2000	22-Dec-200 1	_	13-Dec-2000
1.2-Dichlorobenzene	200	0.5	ND	ND	ND	ND		ND
1.3-Dichlorobenzene	200		ND ND	ND ND	ND ND	ND ND	-	ND ND
1.4-Dichlorobenzene	5	1	ND ND	ND ND	ND ND	ND ND	-	ND ND
Chlorobenzene	80	1	ND ND	ND ND	ND ND	ND ND	-	ND ND
VOLATILES	60	ı	ND	ND	ND	ND	-	ND
			ND	ND	ND	ND	1	ND
1,1,1-Trichloroethane	-	1	ND	ND	ND	ND	-	ND
1,1,2,2-Tetrachloroethane	-	1	ND	ND	ND	ND	-	ND
1,1,2-Trichloroethane	-	1	ND	ND	ND	ND	-	ND
1,1-Dichloroethane		2	ND	ND	ND	ND	-	ND
1,1-Dichloroethylene	14	2	ND	ND	ND	ND	-	ND
1,2-Dichloroethane	5	1	ND	ND	ND	ND	-	ND
1,2-Dichloropropane	-	1	ND	ND	ND	ND	-	ND
Benzene	-	1	ND	ND	ND	ND	-	ND
Bromodichloromethane	16	1	ND	ND	ND	ND	-	ND
Bromoform	100	1	ND	ND	ND	ND	-	ND
Bromomethane	-	8	ND	ND	ND	ND	-	ND
Carbon Tetrachloride	5	1	ND	ND	ND	ND	-	ND
Chloroethane	-	8	ND	ND	ND	ND	-	ND
Chloroform	100	1	ND	ND	ND	ND	-	ND
Chloromethane	-	8	ND	ND	ND	ND	-	ND
cis-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	-	ND
cis-1,3-Dichloropropene	-	2	ND	ND	ND	ND	-	ND
Dibromochloromethane	100	1	ND	ND	ND	ND	-	ND
Ethylbenzene	2.4 AO	1	ND	ND	ND	ND	-	ND
Ethylene Dibromide	-	1	ND	ND	ND	ND	-	ND
Methylene Chloride(Dichloromethane)	-	3	ND	ND	ND	ND	-	ND
o-Xylene	300 AO	1	ND	ND	ND	ND	-	ND
p+m-Xylene	300 AO	2	ND	ND	ND	ND	-	ND
Styrene	-	1	ND	ND	ND	ND	-	ND
Tetrachloroethylene	30	1	ND	ND	ND	ND	-	ND
Toluene	24 AO	1	ND	ND	ND	ND	-	ND
trans-1,2-Dichloroethylene	-	2	ND	ND	ND	ND	-	ND
trans-1,3-Dichloropropene	-	1	ND	ND	ND	ND	-	ND
Trichloroethylene	50	1	ND	ND	ND	ND	-	ND
Trichlorofluoromethane (FREON 11)	-	8	ND	ND	ND	ND	-	ND
Vinyl Chloride	2	1	ND	ND	ND	ND	-	ND

AO = Aesthetic Objective. ND = not detected

ND() = not detected at the elevated detection limit shown in brackets () All guidelines are health-based MACs or IMACs, unless otherwise indicated. Shaded values exceed guidelines.

Table B3: Volatile Organic Compound (VOC) Results (ug/L)

	5				· - ·			
D	Drinking	Detection		Lawrencetown		Kentville	Sydney	North Grant
Parameter	Water	Limit	(Well 030)	(Well 043)	(Well 045)	(Well 048)	(Well 050)	(Well 054)
	Guideline		15-Sep-2005	18-Nov-2004	5-Oct-2005	7/Nov/2007	15-Sep-2005	13/Dec/2006
CHLOROBENZENES								
1,2-Dichlorobenzene	200	0.5	ND	-	ND	ND	ND	ND
1,3-Dichlorobenzene	-	1	ND	-	ND	ND	ND	ND
1,4-Dichlorobenzene	5	1	ND	-	ND	ND	ND	ND
Chlorobenzene	80	1	ND	-	ND	ND	ND	ND
VOLATILES								
1,1,1-Trichloroethane	-	1	ND	-	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	-	1	ND	-	ND	ND	ND	ND
1,1,2-Trichloroethane	-	1	ND	-	ND	ND	ND	ND
1,1-Dichloroethane	-	2	ND	-	ND	ND	ND	ND
1,1-Dichloroethylene	14	2	ND	-	ND	ND	ND	ND
1,2-Dichloroethane	5	1	ND	-	ND	ND	ND	ND
1,2-Dichloropropane	-	1	ND	-	ND	ND	ND	ND
Benzene	-	1	ND	-	ND	ND	ND	ND
Bromodichloromethane	16	1	ND	-	ND	ND	ND	ND
Bromoform	100	1	ND	-	ND	ND	ND	ND
Bromomethane	-	8	ND	-	ND	ND	ND	ND
Carbon Tetrachloride	5	1	ND	-	ND	ND	ND	ND
Chloroethane	-	8	ND	-	ND	ND	ND	ND
Chloroform	100	1	ND	-	ND	ND	ND	ND
Chloromethane	-	8	ND	-	ND	ND	ND	ND
cis-1,2-Dichloroethylene	-	2	ND	-	ND	ND	ND	ND
cis-1,3-Dichloropropene	-	2	ND	-	ND	ND	ND	ND
Dibromochloromethane	100	1	ND	-	ND	ND	ND	ND
Ethylbenzene	2.4 AO	1	ND	-	ND	ND	ND	ND
Ethylene Dibromide	-	1	ND	-	ND	ND	ND	ND
Methylene Chloride(Dichloromethane)	-	3	ND	-	ND	ND	ND	ND
o-Xylene	300 AO	1	ND	-	ND	ND	ND	ND
p+m-Xylene	300 AO	2	ND	-	ND	ND	ND	ND
Styrene	-	1	ND	-	ND	ND	ND	ND
Tetrachloroethylene	30	1	ND	-	ND	ND	ND	ND
Toluene	24 AO	1	ND	-	ND	ND	ND	ND
trans-1,2-Dichloroethylene	-	2	ND	-	ND	ND	ND	ND
trans-1,3-Dichloropropene	-	1	ND	-	ND	ND	ND	ND
Trichloroethylene	50	1	ND	-	ND	ND	ND	ND
Trichlorofluoromethane (FREON 11)	-	8	ND	-	ND	ND	ND	ND
Vinyl Chloride	2	1	ND	-	ND	ND	ND	ND

Table B3: Volatile Organic Compound (VOC) Results (ug/L)

	Drinking	Detection	Stillwater	Sheet Harbour	Charleston	Hayden Lake	Meteghan	Annapolis Royal
Parameter	Water	Limit	(Well 055)	(Well 056)	(Well 058)	(Well 059)	(Well 060)	(Well 062)
	Guideline	LIIIII	13/Dec/2006	-		9-Jun-2005	13/Dec/2006	9-Nov-2005
CHLOROBENZENES								
1,2-Dichlorobenzene	200	0.5	ND	-	-	ND	ND	ND
1,3-Dichlorobenzene	-	1	ND	-	-	ND	ND	ND
1,4-Dichlorobenzene	5	1	ND	-	-	ND	ND	ND
Chlorobenzene	80	1	ND	-	-	ND	ND	ND
VOLATILES								
1,1,1-Trichloroethane	-	1	ND	-	-	ND	ND	ND
1,1,2,2-Tetrachloroethane	-	1	ND	-		ND	ND	ND
1,1,2-Trichloroethane	-	1	ND	-	-	ND	ND	ND
1,1-Dichloroethane	-	2	ND	-	-	ND	ND	ND
1,1-Dichloroethylene	14	2	ND	-	-	ND	ND	ND
1,2-Dichloroethane	5	1	ND	-	-	ND	ND	ND
1,2-Dichloropropane	-	1	ND	1	-	ND	ND	ND
Benzene	-	1	ND	-	-	ND	ND	ND
Bromodichloromethane	16	1	ND	-		ND	ND	ND
Bromoform	100	1	ND	-	-	ND	ND	ND
Bromomethane	-	8	ND	-	-	ND	ND	ND
Carbon Tetrachloride	5	1	ND	-		ND	ND	ND
Chloroethane	-	8	ND	-	-	ND	ND	ND
Chloroform	100	1	ND	-		3.2	ND	ND (2)
Chloromethane	-	8	ND	-		ND	ND	ND
cis-1,2-Dichloroethylene	-	2	ND	-	-	ND	ND	ND
cis-1,3-Dichloropropene	-	2	ND	-		ND	ND	ND
Dibromochloromethane	100	1	ND	-	-	ND	ND	ND
Ethylbenzene	2.4 AO	1	ND	ı	-	ND	ND	ND
Ethylene Dibromide	-	1	ND	-	-	ND	ND	ND
Methylene Chloride(Dichloromethane)	-	3	ND	1	-	ND	ND	ND
o-Xylene	300 AO	1	ND	-	-	ND	ND	ND
p+m-Xylene	300 AO	2	ND	-		ND	ND	ND
Styrene	-	1	ND	-	-	ND	ND	ND
Tetrachloroethylene	30	1	ND	-	-	ND	ND	ND
Toluene	24 AO	1	1	-	-	ND	ND	2
trans-1,2-Dichloroethylene	-	2	ND	-	-	ND	ND	ND
trans-1,3-Dichloropropene	-	1	ND	-	-	ND	ND	ND
Trichloroethylene	50	1	ND	-	-	ND	ND	ND
Trichlorofluoromethane (FREON 11)	-	8	ND	-	-	ND	ND	ND
Vinyl Chloride	2	1	ND	-	-	ND	ND	ND

Table B3: Volatile Organic Compound (VOC) Results (ug/L)

	Drinking		Annapolis Royal	Hebron	Margaree	Ingonish	Debert	Dalem Lake
Parameter	Water	Detection	(Well 062)	(Well 063)	(Well 064)	(Well 065)	(Well 068)	(Well 069)
. d.doto	Guideline	Limit	26/Nov/2007	(14/Dec/2006	-	-	14/Dec/2006
CHLOROBENZENES	Calacillic		20/1101/2007	0 0011 2000	1 1/200/2000			1 1/200/2000
1.2-Dichlorobenzene	200	0.5	ND	ND	ND	_	_	ND
1.3-Dichlorobenzene	-	1	ND ND	ND ND	ND ND			ND ND
1.4-Dichlorobenzene	5	1	ND ND	ND ND	ND ND	-	-	ND ND
Chlorobenzene	80	1	ND ND	ND	ND ND			ND ND
VOLATILES	00	'	ND	ND	ND	_		ND
1.1.1-Trichloroethane	-	1	ND	ND	ND	I	I	ND
1.1.2.2-Tetrachloroethane	-	1	ND ND	ND	ND ND	-		ND ND
1.1.2-Trichloroethane		1	ND ND	ND	ND ND	-	_	ND ND
1.1-Dichloroethane	-	2	ND ND	ND	ND ND	_		ND ND
1,1-Dichloroethylene	14	2	ND ND	ND	ND ND	-		ND ND
1.2-Dichloroethane	5	1	ND ND	ND	ND ND	-	-	ND ND
1,2-Dichloropropane	-	1	ND ND	ND	ND ND	-	_	ND ND
Benzene	-	1	ND ND	ND	ND ND	-	-	ND ND
Bromodichloromethane	16	1	ND ND	ND	ND ND		-	ND ND
Bromoform	100	1	ND ND	ND ND	ND ND	-		ND ND
Bromomethane	100	8	ND ND	ND ND	ND ND	-	-	ND ND
Carbon Tetrachloride	5	1	ND ND	ND	ND ND	-		ND ND
Chloroethane	-	8	ND ND	ND	ND ND	-		ND ND
Chloroform	100	1	ND	ND	ND		_	ND ND
Chloromethane	-	8	ND ND	ND	ND ND	_		ND ND
cis-1,2-Dichloroethylene	_	2	ND ND	ND	ND ND	-	-	ND ND
cis-1,3-Dichloropropene		2	ND ND	ND	ND		-	ND ND
Dibromochloromethane	100	1	ND ND	ND ND	ND ND			ND ND
Ethylbenzene	2.4 AO	1	ND ND	ND ND	ND ND			ND ND
Ethylene Dibromide	-	1	ND	ND	ND	_	_	ND ND
Methylene Chloride(Dichloromethane)	 	3	ND ND	ND	ND	_	_	ND ND
o-Xvlene	300 AO	1	ND	ND	ND			ND ND
p+m-Xylene	300 AO	2	ND ND	ND ND	ND ND			ND ND
Styrene	-	1	ND ND	ND	ND ND			ND ND
Tetrachloroethylene	30	1	ND	ND	ND	_	_	ND ND
Toluene	24 AO	1	1	ND	ND	_	_	ND
trans-1,2-Dichloroethylene	-	2	ND	ND	ND	_	_	ND
trans-1,3-Dichloropropene	_	1	ND	ND	ND	_	_	ND
Trichloroethylene	50	1	ND	ND	ND	_	_	ND
Trichlorofluoromethane (FREON 11)	-	8	ND	ND	ND	_	_	ND
Vinvl Chloride	2	1	ND	ND	ND	_	_	ND

Table B3: Volatile Organic Compound (VOC) Results (ug/L)

	Drinking		Amherst	Kelley River	Atlanta	Sheffield Mills
Parameter	Water	Detection	(Well 071)	(Well 073)	(Well 074)	(Well 075)
i arameter	Guideline	Limit	(12/Jan/2007	03-Sep-2007	10-Sep-2007
CHLOROBENZENES	Guidellile		10/Dec/2000	12/3411/2007	03-3 c p-2007	10-3ep-2007
	000	0.5	ND	ND	ND	ND
1,2-Dichlorobenzene	200	0.5	ND	ND	ND	ND
1,3-Dichlorobenzene		1	ND	ND	ND	ND
1,4-Dichlorobenzene	5	1	ND	ND	ND	ND
Chlorobenzene	80	1	ND	ND	ND	ND
VOLATILES						
1,1,1-Trichloroethane		1	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	-	1	ND	ND	ND	ND
1,1,2-Trichloroethane	-	1	ND	ND	ND	ND
1,1-Dichloroethane	-	2	ND	ND	ND	ND
1,1-Dichloroethylene	14	2	ND	ND	ND	ND
1,2-Dichloroethane	5	1	ND	ND	ND	ND
1,2-Dichloropropane	-	1	ND	ND	ND	ND
Benzene	-	1	ND	ND	ND	ND
Bromodichloromethane	16	1	ND	ND	ND	ND
Bromoform	100	1	ND	ND	ND	ND
Bromomethane	-	8	ND	ND	ND	ND
Carbon Tetrachloride	5	1	ND	ND	ND	ND
Chloroethane	-	8	ND	ND	ND	ND
Chloroform	100	1	ND	ND	ND	ND
Chloromethane	-	8	ND	ND	ND	ND
cis-1,2-Dichloroethylene	-	2	ND	ND	ND	ND
cis-1,3-Dichloropropene	-	2	ND	ND	ND	ND
Dibromochloromethane	100	1	ND	ND	ND	ND
Ethylbenzene	2.4 AO	1	ND	ND	ND	ND
Ethylene Dibromide	-	1	ND	ND	ND	ND
Methylene Chloride(Dichloromethane)	-	3	ND	ND	ND	ND
o-Xylene	300 AO	1	ND	ND	ND	ND
p+m-Xylene	300 AO	2	ND	ND	ND	ND
Styrene	-	1	ND	ND	ND	ND
Tetrachloroethylene	30	1	ND	ND	ND	ND
Toluene	24 AO	1	ND	ND	ND	ND
trans-1,2-Dichloroethylene	-	2	ND	ND	ND	ND
trans-1,3-Dichloropropene	-	1	ND	ND	ND	ND
Trichloroethylene	50	1	ND	ND	ND	ND
Trichlorofluoromethane (FREON 11)	-	8	ND	ND	ND	ND
Vinyl Chloride	2	1	ND	ND	ND	ND

Table B4: Pesticide Results (ug/L)

	Drinking	D. G. G.	Greenwood	Fraser Brook	Wilmot	Wolfville	Truro	Monastery
Parameter	Water	Detection Limit	(Well 003)	(Well 004)	(Well 005)	(Well 010)	(Well 014)	(Well 028)
	Guideline	LIIIIIL	23-Nov-2005	10-Dec-2004	-	22-Dec-2004	-	15-Dec-2006
Herbicides								
Atrazine	5	0.2	ND	ND	-	ND	-	ND
De-ethyl Atrazine		0.3	ND	ND	-	ND	-	ND
Butylate	40	0.5	ND	ND	-	ND	-	ND
Cyanazine	10	0.5	ND ND	ND ND	-	ND ND	-	ND ND
Desmetryn Diphenylamine		0.3	ND ND	ND ND	-	ND ND	-	ND ND
Eptam		0.1	ND	ND ND		ND	-	ND
Ethalfluralin		0.5	ND	ND	-	ND	_	ND
Hexazinone		0.1	ND	ND	_	ND	-	ND
Metalaxyl		0.3	ND	ND	-	ND	_	ND
Metribuzin	80	0.3	ND	ND	-	ND	-	ND
Metolachlor	50	0.2	ND	ND	-	ND	-	ND
Pirimicarb		0.5	ND	ND	-	ND	-	ND
Profluralin		0.5	ND	ND	-	ND	-	ND
Prometryn		0.2	ND	ND	1	ND	-	ND
Propazine		0.1	ND	ND	-	ND	-	ND
Simazine	10	0.5	ND	ND	-	ND	-	ND
Terbuthylazine		0.1	ND	ND	-	ND	-	ND
Terbutryn		0.2	ND	ND	-	ND	-	ND
Triallate Trialimoton		0.3	ND ND	ND ND	-	ND ND	-	ND ND
Triadimefon Trifluralin	45	0.3	ND ND	ND ND	-	ND ND	-	ND ND
	40	0.2	ND	ND	-	ND	-	ND
Organochlorine Pesticides Alachlor		0.5	ND	ND	_	ND	_	ND
Aldrin + Dieldrin	0.7	0.5	ND	ND ND	-	ND	-	ND ND
BHC, alpha-	0.1	0.3	ND	ND ND		ND ND		ND
BHC, beta-		0.3	ND	ND	_	ND	_	ND
Captan		1	ND	ND	_	ND	-	ND
Chlorbenside		0.1	ND	ND	-	ND	-	ND
Chlordane, alpha-		0.5	ND	ND	-	ND	-	ND
Chlordane, gamma-		0.5	ND	ND	-	ND	-	ND
Chlorfenson (Ovex)		0.2	ND	ND	-	ND	-	ND
Chlorothalonil (Daconil)		1	ND	ND	-	ND	-	ND
Chlorpropham		0.2	ND	ND	-	ND	-	ND
Dacthal (DCPA)		0.1	ND	ND	-	ND	-	ND
4,4'-DDE		0.01	ND (0.1)	ND (0.1)	-	ND (0.1)	-	ND (0.1)
DDT - orthopara (2,4')		0.01	ND (0.2)	ND (0.2)	-	ND (0.2)	-	ND (0.2)
DDT - parapara (4,4') Diallate(e/z)		0.01 0.5	ND (0.2) ND	ND (0.2) ND	-	ND (0.2) ND	-	ND (0.2) ND
Dichlobenil		0.3	ND	ND ND	-	ND	-	ND
Dichloran		0.5	ND	ND ND		ND		ND
Dichlofluanid		0.5	ND	ND	-	ND		ND
Dicofol		0.2	ND	ND	-	ND	-	ND
Endosulfan I		0.5	ND	ND	-	ND	-	ND
Endosulfan II		0.5	ND	ND	-	ND	-	ND
Endosulfan Sulphate		0.5	ND	ND	-	ND	-	ND
Endrin		0.5	ND	ND	-	ND	-	ND
Folpet		1	ND	ND	-	ND	-	ND
Heptachlor		0.5	ND	ND	-	ND	-	ND
Lindane (BHC), gamma-		0.5	ND	ND	-	ND	-	ND
Methidathion	0.5.5	0.3	ND	ND	-	ND	-	ND
Methoxychlor	900	0.1	ND	ND	-	ND	-	No
Mirex		0.3	ND ND	ND ND	-	ND ND	-	ND ND
Nitrofen		0.2	ND ND	ND ND	-	ND ND	-	ND ND
Permethrin-cis/trans Procymidone		0.5 0.2	ND ND	ND ND	-	ND ND	-	ND ND
Pronamide		0.2	ND ND	ND ND	-	ND ND	-	ND ND
Quintozene (Pentachloronitrobenzene)		0.2	ND ND	ND -	-	ND -	-	טאו
Tecnazene		0.5	ND	ND	-	ND	-	ND
Tetradifon		0.3	ND	ND ND	-	ND	-	ND
Tolylfluanid		0.5	ND	ND	_	ND	_	ND
Vinclozolin		0.5	ND	ND	-	ND	-	ND
*					•			· · · · · · · · · · · · · · · · · · ·

Table B4: Pesticide Results (ug/L)

Parameter Herbicides Atrazine	Drinking Water Guideline	Detection Limit	(Well 030)	(Well 043)	Durham (Well 045)	(Well 048)	Kentville	Sydney
Herbicides		Linnit					(Well 048)	(Well 050)
		LIIIII	15-Sep-2005	(VVeii 043)		15-Jun-2005	7/Nov/2007	15-Sep-2005
	Culdeline		13-0ср-2003	_	J-001-2003	13-0011-2003	771407/2007	10-0cp-2000
tti dZiric	5	0.2	ND		ND	ND (1)	ND	ND
De-ethyl Atrazine		0.2	ND		ND	- 145 (1)	ND	ND
Butylate		0.5	ND		ND	_	ND	ND
Cyanazine	10	0.5	ND	-	ND	_	ND	ND
Desmetryn	10	0.3	ND		ND	_	ND	ND
Diphenylamine		0.1	ND	-	ND	_	ND	ND
Eptam		0.5	ND	-	ND	-	ND	ND
Ethalfluralin		0.5	ND	-	ND	_	ND	ND
Hexazinone		0.1	ND	-	ND	-	ND	ND
Vetalaxyl		0.3	ND	_	ND	-	ND	ND
Vetribuzin	80	0.3	ND	-	ND	_	ND	ND
Vetolachlor	50	0.2	ND	-	ND	_	ND ND	ND
Pirimicarb	- 55	0.5	ND	-	ND	-	ND	ND
Profluralin		0.5	ND	-	ND	_	ND	ND
Prometryn		0.2	ND	-	ND	_	ND	ND
Propazine		0.1	ND	_	ND	_	ND	ND
Simazine	10	0.5	ND	-	ND	_	ND	ND
Terbuthylazine		0.1	ND	-	ND	-	ND	ND
Terbutryn		0.2	ND	-	ND	_	ND	ND
Triallate		0.3	ND	-	ND	-	ND	ND
Triadimefon		0.3	ND	-	ND	_	ND	ND
Trifluralin	45	0.2	ND	_	ND	-	ND	ND
Organochlorine Pesticides						l .		
Alachlor		0.5	ND	-	ND	-	ND	ND
Aldrin + Dieldrin	0.7	0.5	ND	_	ND	_	ND	ND
BHC, alpha-	0.1	0.3	ND	-	ND	_	ND	ND
BHC, beta-		0.3	ND	-	ND	-	ND	ND
Captan		1	ND	-	ND	_	ND	ND
Chlorbenside		0.1	ND	-	ND	_	ND ND	ND
Chlordane, alpha-		0.5	ND	_	ND	-	ND	ND
Chlordane, gamma-		0.5	ND	-	ND	_	ND	ND
Chlorfenson (Ovex)		0.2	ND	_	ND	_	ND	ND
Chlorothalonil (Daconil)		1	ND	_	ND	-	ND	ND
Chlorpropham		0.2	ND	_	ND	_	ND	ND
Dacthal (DCPA)		0.1	ND	-	ND	-	ND	ND
4,4'-DDE		0.01	ND (0.1)	-	ND (0.1)	ND	ND	ND (0.1)
DDT - orthopara (2,4')		0.01	ND (0.2)	-	ND (0.2)	ND	ND	ND (0.2)
DDT - parapara (4,4')		0.01	ND (0.2)	-	ND (0.2)	ND	ND	ND (0.2)
Diallate(e/z)		0.5	ND	-	ND	-	ND	ND
Dichlobenil		0.2	ND	-	ND	-	ND	ND
Dichloran		0.5	ND	-	ND	-	ND	ND
Dichlofluanid		0.5	ND	-	ND	-	ND	ND
Dicofol		0.2	ND	-	ND	-	ND	ND
Endosulfan I		0.5	ND	-	ND	-	ND	ND
Endosulfan II		0.5	ND	-	ND	-	ND	ND
Endosulfan Sulphate		0.5	ND	-	ND	-	ND	ND
Endrin .		0.5	ND	-	ND	-	ND	ND
Folpet		1	ND	-	ND	-	ND	ND
Heptachlor		0.5	ND	-	ND	-	ND	ND
Lindane (BHC), gamma-		0.5	ND	-	ND	-	ND	ND
Methidathion		0.3	ND	-	ND	-	ND	ND
Methoxychlor	900	0.1	ND	-	ND	-	ND	ND
Mirex		0.3	ND	1	ND	-	ND	ND
Nitrofen		0.2	ND	ı	ND	-	ND	ND
Permethrin-cis/trans		0.5	ND	1	ND	-	ND	ND
Procymidone		0.2	ND	1	ND	-	ND	ND
Pronamide		0.2	ND	-	ND	-	ND	ND
Quintozene (Pentachloronitrobenzene)		0.5	ND	1	ND	-	ND	ND
Tecnazene		0.5	ND	-	ND	-	ND	ND
Tetradifon		0.2	ND	1	ND	-	ND	ND
Tolylfluanid		0.5	ND	-	ND	-	ND	ND
Vinclozolin		0.5	ND	1	ND	-	ND	ND

Table B4: Pesticide Results (ug/L)

	Drinking		North Grant	Stillwater	Sheet Harbour	Charleston	Havden Lake	Meteghan
Parameter	Water	Detection	(Well 054)	(Well 055)	(Well 056)	(Well 058)	(Well 059)	(Well 060)
T didiffeter	Guideline	Limit		12/Dec/2006	-	-	9-Jun-2005	13/Dec/2006
Herbicides	Galagiiilg		12/200/2000	12/200/2000			0 00.1 2000	10/200/2000
Atrazine	5	0.2	ND	ND	_	_	ND (2.5)	ND
De-ethyl Atrazine		0.3	ND	ND	-	-	-	ND
Butylate		0.5	ND	ND	_	_	_	ND
Cyanazine	10	0.5	ND	ND	_	-	_	ND
Desmetryn		0.3	ND	ND	-	-	-	ND
Diphenylamine		0.1	ND	ND	_	-	_	ND
Eptam		0.5	ND	ND	_	-	-	ND
Ethalfluralin		0.5	ND	ND	_	-	_	ND
Hexazinone		0.1	ND	ND	_	_	-	ND
Metalaxyl		0.3	ND	ND	_	-	_	ND
Metribuzin	80	0.3	ND	ND	_	-	_	ND
Metolachlor	50	0.2	ND	ND	_	-	_	ND
Pirimicarb		0.5	ND	ND	_	-	-	ND
Profluralin		0.5	ND	ND	_	-	_	ND
Prometryn		0.2	ND	ND	_	_	-	ND
Propazine		0.1	ND	ND	_	-	_	ND
Simazine	10	0.5	ND	ND	_	-	-	ND
Terbuthylazine		0.1	ND	ND	-	-	-	ND
Terbutryn		0.2	ND	ND	-	-	-	ND
Triallate		0.3	ND	ND	_	-	_	ND
Triadimefon		0.3	ND	ND	-	-	-	ND
Trifluralin	45	0.2	ND	ND	_	-	-	ND
Organochlorine Pesticides								
Alachlor		0.5	ND	ND	_	-	-	ND
Aldrin + Dieldrin	0.7	0.5	ND	ND	_	_	_	ND
BHC, alpha-	· · · ·	0.3	ND	ND	-	-	-	ND
BHC, beta-		0.3	ND	ND	_	-	_	ND
Captan		1	ND	ND	-	-	-	ND
Chlorbenside		0.1	ND	ND	_	-	_	ND
Chlordane, alpha-		0.5	ND	ND	_	-	-	ND
Chlordane, gamma-		0.5	ND	ND	_	-	_	ND
Chlorfenson (Ovex)		0.2	ND	ND	-	-	-	ND
Chlorothalonil (Daconil)		1	ND	ND	-	-	-	ND
Chlorpropham		0.2	ND	ND	-	-	-	ND
Dacthal (DCPA)		0.1	ND	ND	-	-	-	ND
4,4'-DDE		0.01	ND	ND	-	-	ND	ND
DDT - orthopara (2,4')		0.01	ND	ND	-	-	ND	ND
DDT - parapara (4,4')		0.01	ND	ND	-	-	ND	ND
Diallate(e/z)		0.5	ND	ND	-	-	-	ND
Dichlobenil		0.2	ND	ND	-	-	-	ND
Dichloran		0.5	ND	ND	-	-	-	ND
Dichlofluanid		0.5	ND	ND	-	-	-	ND
Dicofol		0.2	ND	ND	-	-	-	ND
Endosulfan I		0.5	ND	ND	-	-	-	ND
Endosulfan II		0.5	ND	ND	-	-	-	ND
Endosulfan Sulphate		0.5	ND	ND	-	-	-	ND
Endrin		0.5	ND	ND	-	-	-	ND
Folpet		1	ND	ND	-	-	-	ND
Heptachlor		0.5	ND	ND	-	-	-	ND
Lindane (BHC), gamma-		0.5	ND	ND	-	-	-	ND
Methidathion		0.3	ND	ND	-	-	-	ND
Methoxychlor	900	0.1	ND	ND	-	-	-	ND
Mirex		0.3	ND	ND	-	-	-	ND
Nitrofen		0.2	ND	ND	-	-	-	ND
Permethrin-cis/trans		0.5	ND	ND	-	-	-	ND
Procymidone		0.2	ND	ND	-	-	-	ND
Pronamide		0.2	ND	ND	-	-	-	ND
Quintozene (Pentachloronitrobenzene)		0.5	ND	ND	-	-	-	ND
		0.5	ND	ND	-	-	-	ND
Tecnazene					_			
Tecnazene Tetradifon		0.2	ND	ND	-	-	-	ND
		0.2 0.5	ND ND	ND ND	-	-	-	ND ND

Table B4: Pesticide Results (ug/L)

	Drinking		Annanalia Daval	Annanalia Daval	Hohron	Margaroo	Ingonich	Dobort
Parameter	Drinking Water	Detection	(Well 062)	Annapolis Royal (Well 062)	Hebron (Well 063)	Margaree (Well 064)	Ingonish (Well 065)	Debert (Well 068)
Farameter	Guideline	Limit	9-Nov-2005	26/Nov/2007		14/Dec/2006	(vveil 065)	(vveii 000)
Herbicides	Guidellile		9-110V-2003	20/11/07/2007	9-3011-2003	14/Dec/2000	_	
Atrazine	5	0.2	ND	ND	ND (2.5)	ND	_	_
De-ethyl Atrazine	J	0.2	ND ND	ND ND	ND (2.3)	ND		
Butylate		0.5	ND	ND		ND		
Cyanazine	10	0.5	ND	ND	_	ND	-	-
Desmetryn		0.3	ND	ND	_	ND	-	-
Diphenylamine		0.1	ND	ND	_	ND	_	_
Eptam		0.5	ND	ND	-	ND	-	-
Ethalfluralin		0.5	ND	ND	-	ND	-	-
Hexazinone		0.1	ND	ND	-	ND	-	-
Metalaxyl		0.3	ND	ND	-	ND	-	-
Metribuzin	80	0.3	ND	ND	-	ND	-	-
Metolachlor	50	0.2	ND	ND	-	ND	-	-
Pirimicarb		0.5	ND	ND	-	ND	-	-
Profluralin		0.5	ND	ND	-	ND	-	-
Prometryn		0.2	ND	ND	-	ND	-	-
Propazine		0.1	ND	ND	-	ND	-	-
Simazine	10	0.5	ND	ND	-	ND	-	-
Terbuthylazine		0.1	ND	ND	-	ND	-	-
Terbutryn		0.2	ND	ND	-	ND	-	-
Triallate		0.3	ND	ND	-	ND	-	-
Triadimefon		0.3	ND	ND	-	ND	-	-
Trifluralin	45	0.2	ND	ND	-	ND	-	-
Organochlorine Pesticides								
Alachlor		0.5	ND	ND	-	ND	-	-
Aldrin + Dieldrin	0.7	0.5	ND	ND	-	ND	-	-
BHC, alpha-		0.3	ND	ND	-	ND	-	-
BHC, beta-		0.3	ND	ND	-	ND	-	-
Captan		1	ND	ND	-	ND	-	-
Chlorbenside		0.1	ND ND	ND	-	ND ND	-	-
Chlordane, alpha-		0.5 0.5	ND ND	ND ND	-	ND ND	-	-
Chlordane, gamma-		0.5	ND ND	ND ND	-	ND	-	-
Chlorfenson (Ovex) Chlorothalonil (Daconil)		1	ND ND	ND ND	-	ND	-	-
Chlorpropham		0.2	ND ND	ND ND	-	ND	_	-
Dacthal (DCPA)		0.2	ND ND	ND ND	-	ND		
4,4'-DDE		0.01	ND (0.1)	ND	ND	ND	_	
DDT - orthopara (2,4')		0.01	ND (0.1)	ND	ND	ND	_	_
DDT - parapara (4,4')	1	0.01	ND (0.2)	ND	ND	ND	_	-
Diallate(e/z)		0.5	ND	ND	-	ND	_	-
Dichlobenil		0.2	ND	ND	-	ND	-	-
Dichloran		0.5	ND	ND	-	ND	-	-
Dichlofluanid		0.5	ND	ND	-	ND	-	-
Dicofol		0.2	ND	ND	-	ND	-	-
Endosulfan I		0.5	ND	ND	-	ND	-	-
Endosulfan II		0.5	ND	ND	-	ND	-	-
Endosulfan Sulphate		0.5	ND	ND	-	ND	-	-
Endrin		0.5	ND	ND	-	ND	-	-
Folpet		1	ND	ND	-	ND	-	-
Heptachlor		0.5	ND	ND	-	ND	-	-
Lindane (BHC), gamma-		0.5	ND	ND	-	ND	-	-
Methidathion		0.3	ND	ND	-	ND	-	-
Methoxychlor	900	0.1	ND	ND	-	ND	-	-
Mirex		0.3	ND	ND	-	ND	-	-
Nitrofen		0.2	ND NB	ND	-	ND	-	-
Permethrin-cis/trans		0.5	ND NB	ND	-	ND	-	-
Procymidone		0.2	ND	ND	-	ND	-	-
Pronamide		0.2	ND ND	ND ND	-	ND	-	-
Quintozene (Pentachloronitrobenzene)		0.5	ND	ND	-	ND	-	-
Tecnazene		0.5	ND ND	ND ND	-	ND	-	-
Tetradifon		0.2	ND	ND	-	ND	-	-
Tolylfluanid		0.5	ND ND	ND ND	-	ND ND	-	-
Vinclozolin		0.5	ND	ND	-	ND	-	-

Table B4: Pesticide Results (ug/L)

	Drinking	Dots -ti-	Dalem Lake	Amherst	Kelley River	Atlanta	Sheffield Mills
Parameter	Water	Detection Limit	(Well 069)	(Well 071)	(Well 073)	(Well 074)	(Well 075)
	Guideline	Liffill	14/Dec/2006	16/Dec/2006	12/Jan/2007	03-Sep-2007	10-Sep-2007
Herbicides		1					
Atrazine	5	0.2	ND	ND	ND	ND	ND
De-ethyl Atrazine		0.3	ND	ND	ND ND		ND
Butylate	10	0.5	ND ND	ND	ND	ND ND	ND
Cyanazine Desmetryn	10	0.5	ND ND	ND ND	ND ND	ND ND	ND ND
Diphenylamine		0.3	ND	ND	ND	ND ND	ND
Eptam		0.5	ND	ND	ND	ND	ND
Ethalfluralin		0.5	ND	ND	ND	ND	ND
Hexazinone		0.1	ND	ND	ND	ND	ND
Metalaxyl		0.3	ND	ND	ND	ND	ND
Metribuzin	80	0.3	ND	ND	ND	ND	ND
Metolachlor	50	0.2	ND	ND	ND	ND	ND
Pirimicarb		0.5	ND	ND	ND	ND	ND
Profluralin		0.5	ND	ND	ND	ND	ND
Prometryn		0.2	ND	ND	ND	ND	ND
Propazine	40	0.1	ND	ND	ND	ND ND	ND
Simazine Torbuthylazine	10	0.5	ND ND	ND	ND	ND ND	ND ND
Terbuthylazine Terbutryn		0.1	ND ND	ND ND	ND ND	ND ND	ND ND
Triallate		0.2	ND ND	ND ND	ND ND	ND ND	ND ND
Triadimefon		0.3	ND	ND	ND	ND	ND
Trifluralin	45	0.2	ND	ND	ND	ND	ND
Organochlorine Pesticides		0.2		.,,,	.,,		.,,
Alachlor		0.5	ND	ND	ND	ND	ND
Aldrin + Dieldrin	0.7	0.5	ND	ND	ND	ND	ND
BHC, alpha-		0.3	ND	ND	ND	ND	ND
BHC, beta-		0.3	ND	ND	ND	ND	ND
Captan		1	ND	ND	ND	ND	ND
Chlorbenside		0.1	ND	ND	ND	ND	ND
Chlordane, alpha-		0.5	ND	ND	ND	ND	ND
Chlordane, gamma-		0.5	ND	ND	ND	ND	ND
Chlorfenson (Ovex)		0.2	ND	ND	ND	ND	ND
Chlorothalonil (Daconil)		0.2	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorpropham Dacthal (DCPA)		0.2	ND ND	ND	ND	ND ND	ND ND
4,4'-DDE		0.01	ND	ND	ND	ND	ND
DDT - orthopara (2,4')		0.01	ND	ND	ND	ND	ND
DDT - parapara (4,4')		0.01	ND	ND	ND	ND	ND
Diallate(e/z)		0.5	ND	ND	ND	ND	ND
Dichlobenil		0.2	ND	ND	ND	ND	ND
Dichloran		0.5	ND	ND	ND	ND	ND
Dichlofluanid		0.5	ND	ND	ND	ND	ND
Dicofol		0.2	ND	ND	ND	ND	ND
Endosulfan I		0.5	ND	ND	ND	ND	ND
Endosulfan II		0.5	ND	ND	ND	ND	ND
Endosulfan Sulphate		0.5	ND	ND	ND	ND	ND
Endrin Folgat		0.5	ND ND	ND	ND	ND ND	ND
Folpet Hentachlor		0.5	ND ND	ND ND	ND ND	ND ND	ND ND
Heptachlor Lindane (BHC), gamma-		0.5	ND ND	ND ND	ND ND	ND ND	ND ND
Methidathion		0.3	ND ND	ND ND	ND ND	ND ND	ND ND
Methoxychlor	900	0.3	ND	ND	ND	ND	ND
Mirex	000	0.3	ND	ND	ND	ND	ND
Nitrofen		0.2	ND	ND	ND	ND	ND
Permethrin-cis/trans		0.5	ND	ND	ND	ND	ND
Procymidone		0.2	ND	ND	ND	ND	ND
Pronamide		0.2	ND	ND	ND	ND	ND
Quintozene (Pentachloronitrobenzene)		0.5	ND	ND	ND	ND	ND
Tecnazene		0.5	ND	ND	ND	ND	ND
Tetradifon		0.2	ND	ND	ND	ND	ND
Tolylfluanid		0.5	ND	ND	ND	ND	ND ND
Vinclozolin		0.5	ND	ND	ND	ND	

Table B4: Pesticide Results (ug/L)

	Drinking		Greenwood	Fraser Brook	Wilmot	Wolfville	Truro	Monastery
Parameter	Water	Detection	(Well 003)	(Well 004)	(Well 005)	(Well 010)	(Well 014)	(Well 028)
	Guideline	Limit	23-Nov-2005	10-Dec-2004	-	22-Dec-2004	-	15-Dec-2006
Organophosphorus Pesticides								
Aspon		0.2	ND	ND	-	ND	-	ND
Azinphos ethyl		0.5	ND	ND	-	ND	-	ND
Azinphos methyl	20	1	ND	ND	-	ND	-	ND
Bromacil		0.1	ND	ND	-	ND	-	ND (1)
Benfluralin		0.1	ND	ND	-	ND	-	ND
Bromophos		0.1	ND	ND	-	ND	-	ND
Bromophos-ethyl		0.3	ND	ND	-	ND	-	ND
Carbophenothion		0.3	ND	ND	-	ND	-	ND
Chlorfenvinphos(e/z)		0.1	ND	ND	-	ND	-	ND
Chlormephos	00	0.5	ND	ND	-	ND	-	ND
Chlorpyrifos	90	0.2	ND	ND	-	ND	-	ND
Chlorpyriphos-methyl		0.1	ND	ND	-	ND	-	ND
Chlorthiophos		0.3	ND	ND	-	ND	-	ND
Cyanophos		0.2	ND	ND	-	ND	-	ND
Demeton		1	ND	ND	-	ND	-	ND
Diazinon	20	0.3	ND	ND	-	ND	-	ND
Dichlofenthion		0.2	ND	ND	-	ND	-	ND
Dichlorvos/Naled		0.1	ND	ND	-	ND	-	ND
Dicrotophos		0.5	ND	ND	-	ND	-	ND
Dimethoate	20	0.5	ND	ND	-	ND	-	ND
Dioxathion		1	ND	ND	-	ND	-	ND
Disulfoton (Di-Syston)		1	ND	ND	-	ND	-	ND
EPN		0.5	ND	ND	-	ND	-	ND
Ethion		0.2	ND	ND	-	ND	-	ND
Fenchlorphos (Ronnel)		0.1	ND	ND	-	ND	-	
Fenitrothion		0.5	ND	ND	-	ND	-	ND
Fensulfothion		0.1	ND	ND	-	ND	-	ND
Fenthion		0.1	ND	ND	-	ND	-	ND
Fonofos		0.1	ND	ND	-	ND	-	ND
lodofenphos		0.1	ND	ND	-	ND	-	ND
Isofenphos		0.3	ND	ND	-	ND	-	ND
Malaoxon		1	ND	ND	-	ND	-	ND
Malathion	190	0.5	ND	ND	-	ND	-	ND
Mevinphos-cis/trans (Phosdrin)		0.1	ND	ND	-	ND	-	ND
Omethoate		1	ND	ND	-	ND	-	ND
Parathion	50	0.5	ND	ND	-	ND	-	ND
Parathion methyl		0.5	ND	ND	-	ND	-	ND
Phorate (Thimet)	2	0.5	ND	ND	-	ND	-	ND
Phosalone		0.2	ND	ND	-	ND	-	ND
Phosmet		0.2	ND	ND	-	ND	-	ND
Phosphamidon		0.2	ND	ND	-	ND	-	ND
Pirimiphos-ethyl		0.5	ND	ND	-	ND	-	ND
Pirimiphos-methyl		0.2	ND	ND	-	ND	-	ND
Profenophos		0.5	ND	ND	-	ND	-	ND
Pyrazophos		0.1	ND	ND	-	ND	-	ND
Quinalphos		0.3	ND	ND	-	ND	-	ND
Sulfotep		0.1	ND	ND	-	ND	-	ND
Terbufos	1	0.3	ND	ND	-	ND	-	ND
Tetrachlorvinphos (Stirophos)		0.2	ND	-	-	-	-	
Other								
Hexachlorobenzene		0.2	ND	ND	-	ND	-	ND
Iprodione		1	-	-	-	-	-	-
Propiconazole		0.5	-	-	-	-	-	-

Table B4: Pesticide Results (ug/L)

Parameter Drinkir Wate Guideli Organophosphorus Pesticides Aspon Azinphos ethyl Azinphos methyl 20 Bromacil Benfluralin Bromophos Bromophos-ethyl Carbophenothion Chlorfenvinphos(e/z) Chlormephos Chlorpyrifos 90 Chlorpyrifos 90 Chlorpyriphos-methyl Chlorthiophos Cyanophos Demeton Diazinon 20 Dichlofenthion Dichloros/Naled Dicrotophos Dimethoate 20 Dioxathion Disulfoton (Di-Syston) EPN Ethion Fenchlorphos (Ronnel) Fenitrothion Fensulfothion Fensul	Limit	(Well 030) 15-Sep-2005 ND		(Well 045) 5-Oct-2005 ND	Kentville (Well 048) 15-Jun-2005	Kentville (Well 048) 7/Nov/2007 ND	Sydney
Guideli Organophosphorus Pesticides Aspon Azinphos ethyl Azinphos ethyl Azinphos methyl Benfluralin Benfluralin Bromophos Bromophos-ethyl Carbophenothion Chlorfenvinphos(e/z) Chlormephos Chlorpyrifos Chlorpyrifos Chlorpyriphos-methyl Chlorthiophos Cyanophos Dimethoate Diazinon Dichlofenthion Dichlorvos/Naled Dicrotophos Dimethoate Dioxathion Disulfoton (Di-Syston) EPN Ethion Fenchlorphos (Ronnel) Fensulfothion Fonofos Isofenphos Isofenphos Malaoxon	0.2 0.5 1 0.1 0.1 0.3 0.3 0.3 0.1 0.5 0.2 0.1 0.3 0.2 0.1 0.3 0.2 0.1 0.3 0.2 0.1 0.5	15-Sep-2005 ND	- - - - - - - - - - - - - - - - - - -	S-Oct-2005 ND	15-Jun-2005	ND N	15-Sep-2005 ND
Organophosphorus Pesticides Aspon Azinphos ethyl Azinphos methyl Bromacil Benfluralin Bromophos Bromophos-ethyl Carbophenothion Chlorfenvinphos(e/z) Chlormephos Chlorpyrifos 90 Chlorpyrifos Chlorpyriphos-methyl Chlorthiophos Cyanophos Demeton Diazinon Dichlofenthion Dichlofenthion Dichloros/Naled Dicrotophos Dimethoate Dioxathion Disulfoton (Di-Syston) EPN Ethion Fenchlorphos (Ronnel) Fensulfothion	0.2 0.5 1 0.1 0.1 0.3 0.3 0.1 0.5 0.2 0.1 0.3 0.2 1 0.3 0.2 1 0.3 0.5 0.5 0.5 0.5 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	ND N	- - - - - - - - - - - - - - - - - - -	ND N		ND N	ND N
Aspon Azinphos ethyl Azinphos methyl Bromacil Benfluralin Bromophos Bromophos-ethyl Carbophenothion Chlorpenyinphos(e/z) Chlormephos Chlorpyrifos 90 Chlorpyriphos-methyl Chlorthiophos Cyanophos Demeton 20 Diazlinon 20 Dichlofenthion Dichlorenthion 20 Dioxathion 20 Dioxathion 20 Dioxathion 20 Disulfoton (Di-Syston) EPN Ethion Fenchlorphos (Ronnel) Fensulfothion Fensulfothion Fenthion Fonofos Iodofenphos Isofenphos Malaoxon Malaoxon	0.5 1 0.1 0.1 0.3 0.3 0.3 0.1 0.5 0.2 0.1 0.3 0.2 1 0.3 0.2 1 0.3 0.2 0.1 0.5 0.5	ND N	- - - - - - - - - - - - - - - - - - -	ND N		ND N	ND N
Aspon Azinphos ethyl Azinphos methyl Bromacil Benfluralin Bromophos Bromophos-ethyl Carbophenothion Chlorpenyinphos(e/z) Chlormephos Chlorpyrifos 90 Chlorpyriphos-methyl Chlorthiophos Cyanophos Demeton 20 Diazlinon 20 Dichlofenthion Dichlorenthion 20 Dioxathion 20 Dioxathion 20 Dioxathion 20 Disulfoton (Di-Syston) EPN Ethion Fenchlorphos (Ronnel) Fensulfothion Fensulfothion Fenthion Fonofos Iodofenphos Isofenphos Malaoxon Malaoxon	0.5 1 0.1 0.1 0.3 0.3 0.3 0.1 0.5 0.2 0.1 0.3 0.2 1 0.3 0.2 1 0.3 0.2 0.1 0.5 0.5	ND N	- - - - - - - - - - - - - - - - - - -	ND N		ND N	ND N
Azinphos ethyl	0.5 1 0.1 0.1 0.3 0.3 0.3 0.1 0.5 0.2 0.1 0.3 0.2 1 0.3 0.2 1 0.3 0.2 0.1 0.5 0.5	ND N	- - - - - - - - - - - - - - - - - - -	ND N		ND N	ND N
Azinphos methyl 20 Bromacil Benfluralin Benfluralin Bromophos Bromophos-ethyl Carbophenothion Chlorfenvinphos(e/z) Chlormephos Chlorpyrifos 90 Chlorpyrifos-methyl Chlorthiophos Cyanophos Demeton Diazinon 20 Dichlofenthion Dichlorvos/Naled Dicrotophos Dimethoate 20 Dioxathion Disulfotn (Di-Syston) EPN Ethion Fenchlorphos (Ronnel) Fensulfothion Fonofos Isofenphos Isofenphos Malaoxon	1 0.1 0.1 0.3 0.3 0.3 0.1 0.5 0.2 0.1 0.3 0.2 0.1 0.3	ND N	- - - - - - - - - - - - - - - - - - -	ND N		ND N	ND N
Bromacil Benfluralin Bromophos Bromophos-ethyl Carbophenothion Chlorfenvinphos(e/z) Chlormephos Chlorpyrifos Chlorpyrifos Chlorpyriphos-methyl Chlorthiophos Cyanophos Demeton Diazinon Diazinon Dichlorenthion Dichlorvos/Naled Dicrotophos Dimethoate Dioxathion Disulfoton (Di-Syston) EPN Ethion Fenchlorphos (Ronnel) Fensulfothion	0.1 0.1 0.3 0.3 0.1 0.5 0.2 0.1 0.3 0.2 1 0.3 0.2 1 0.3	ND N		ND N	- - - - - - - - -	ND N	ND ND ND ND ND ND ND
Benfluralin Bromophos Bromophos-ethyl Carbophenothion Chlorfenvinphos(e/z) Chlormephos Chlorpyrifos Othlorpyrifos Othlorpyrifos Othlorpyriphos-methyl Chlorhiophos Cyanophos Demeton Diazinon Diazinon Dichlofenthion Dichlorous/Naled Dicrotophos Dimethoate Dioxathion Disulfoton (Di-Syston) EPN Ethion Fenchlorphos (Ronnel) Fensulfothion	0.1 0.3 0.3 0.1 0.5 0.2 0.1 0.3 0.2 1 0.3 0.2 1 0.3 0.2	ND N	- - - - - - - - - -	ND N	- - - - - -	ND	ND ND ND ND ND ND
Bromophos Bromophos-ethyl Carbophenothion Chlorfenvinphos(e/z) Chlormephos Chlorpyrifos 90 Chlorpyrifos 90 Chlorpyriphos-methyl Chlorthiophos Cyanophos Demeton Diazinon Diazinon Diazinon Dichloros/Naled Dicrotophos Dimethoate Dioxathion Disulfoton (Di-Syston) EPN Ethion Fenchlorphos (Ronnel) Fensulfothion Fensulfothion Fensulfothion Fensulfothion Fonofos Iodofenphos Isofenphos Iodofenphos Isofenphos Isof	0.1 0.3 0.3 0.1 0.5 0.2 0.1 0.3 0.2 1 0.3 0.2 0.1 0.5 0.5	ND N		ND N	- - - - - -	ND ND ND ND ND ND ND	ND ND ND ND ND
Bromophos-ethyl Carbophenothion Chlorfenvinphos(e/z) Chlomephos Chlorpyrifos 90 Chlorpyrifos 90 Chlorpyriphos-methyl Chlorthiophos Cyanophos Demeton Diazinon 20 Dichlofenthion Dichlorvos/Naled Dicrotophos Dimethoate 10 Dioxathion Disulfotn (Di-Syston) EPN Ethion Fenchlorphos (Ronnel) Fenitrothion Fensulfothion Fensulfothion Fensulfothion Fensulfothion Fensulfothion Fensulfothion Fensulfothion Fensulfothion Fensulfothion Fonofos Iodofenphos Isofenphos Isofenphos Malaoxon	0.3 0.3 0.1 0.5 0.2 0.1 0.3 0.2 1 0.3 0.2 0.1 0.5	ND N		ND	- - - - -	ND ND ND ND ND	ND ND ND ND
Carbophenothion Chlorfenvinphos(e/z) Chlormephos Chlorpyrifos 90 Chlorpyrifos 90 Chlorpyriphos-methyl Chlorthiophos Cyanophos Demeton Diazinon Dichlorvos/Naled Dicrotophos Dimethoate Dioxathion Disulfotn (Di-Syston) EPN Ethion Fenchlorphos (Ronnel) Fensulfothion Fonofos Iddofenphos Isofenphos Malaoxon	0.3 0.1 0.5 0.2 0.1 0.3 0.2 1 0.3 0.2 0.1 0.3	ND N		ND ND ND ND ND ND	- - - -	ND ND ND ND	ND ND ND ND
Chlorfenvinphos(e/z) Chlormephos Chlorpyrifos 90 Chlorpyriphos-methyl Chlorbyos Cyanophos Demeton Diazinon Dichlofenthion Dichlorvos/Naled Dicrotophos Dimethoate Dioxathion Disulfoton (Di-Syston) EPN Ethion Fenchlorphos (Ronnel) Fensulfothion	0.1 0.5 0.2 0.1 0.3 0.2 1 0.3 0.2 0.1 0.5	ND	- - - - -	ND ND ND ND ND	- - - -	ND ND ND ND	ND ND ND
Chlormephos Chlorpyrifos 90 Chlorpyriphos-methyl Chlorthiophos Cyanophos Demeton Diazinon 20 Dichlofenthion Dichloros/Naled Dicrotophos Dimethoate 20 Dioxathion Disulfoton (Di-Syston) EPN Ethion Fenchlorphos (Ronnel) Fensulfothion Fensulfothion Fensulfothion Fensulfothion Fenthion Fonofos Iodofenphos Isofenphos Isofen	0.5 0.2 0.1 0.3 0.2 1 0.3 0.2 0.1 0.5	ND ND ND ND ND ND ND ND	- - - -	ND ND ND ND	- - -	ND ND ND	ND ND
Chlorpyrifos 90 Chlorpyriphos-methyl 90 Chlorthiophos Cyanophos Demeton 0 Diazinon 20 Dichlofenthion 0 Dichlorvos/Naled 0 Dicrotophos 0 Dimethoate 20 Disusthion 0 Disulfoton (Di-Syston) EPN Ethion Fenchlorphos (Ronnel) Fensitrothion Fensulfothion Fensulfothion Fenthion Fonofos lodofenphos Isofenphos Isofenphos Malaoxon Malaoxon	0.2 0.1 0.3 0.2 1 0.3 0.2 0.1 0.5	ND	- - - -	ND ND ND ND		ND ND	ND
Chlorpyriphos-methyl Chlorthiophos Cyanophos Demeton Diazinon Dichlofenthion Dichlorvos/Naled Dicrotophos Dimethoate Dioxathion Disulfoton (Di-Syston) EPN Ethion Fenchlorphos (Ronnel) Fensulfothion Fensulfothion Fensulfothion Fensulfothion Fenthorphos Lodofenphos Lodofe	0.1 0.3 0.2 1 0.3 0.2 0.1 0.5	ND ND ND ND ND	- - -	ND ND ND	-	ND	
Chlorthiophos Cyanophos Demeton Diazinon Dichlorenthion Dichlorvos/Naled Dicrotophos Dimethoate Dioxathion Disulfotn (Di-Syston) EPN Ethion Fenchlorphos (Ronnel) Fenitrothion Fensulfothion Fensulfothion Fensulfothion Fonofos Iodofenphos Isofenphos Malaoxon	0.3 0.2 1 0.3 0.2 0.1 0.5	ND ND ND ND	- - -	ND ND			
Cyanophos Demeton Diazinon Diazinon Dichlofenthion Dichloros/Naled Dicrotophos Dimethoate Dioxathion Disulfoton (Di-Syston) EPN Ethion Fenchlorphos (Ronnel) Fenitrothion Fensulfothion Fensulfothion Fonofos Iodofenphos Isofenphos Malaoxon	0.2 1 0.3 0.2 0.1	ND ND ND ND	-	ND			ND
Demeton Diazinon 20	1 0.3 0.2 0.1 0.5	ND ND ND			-	ND	ND
Diazinon 20	0.3 0.2 0.1 0.5	ND ND		ND	-	ND	ND
Dichlofenthion Dichlorvos/Naled Dicrotophos Dimethoate Dioxathion Disulfoton (Di-Syston) EPN Ethion Fenchlorphos (Ronnel) Fenitrothion Fensulfothion Fensulfothion Fonofos Iodofenphos Isofenphos Malaoxon	0.2 0.1 0.5	ND		ND	ND (2)	ND	ND
Dichlorvos/Naled Dicrotophos Dimethoate Dioxathion Disulfoton (Di-Syston) EPN Ethion Fenchlorphos (Ronnel) Fenitrothion Fensulfothion Fensulfothoos Isofenphos Isofenphos Isofenphos Malaoxon	0.1 0.5		-	ND	-	ND	ND
Dicrotophos Dimethoate 20 Dioxathion Disulfoton (Di-Syston) EPN Ethion Fenchlorphos (Ronnel) Fensulfothion Fensulfothion Fensulfothion Fonofos Iodofenphos Isofenphos Malaoxon	0.5	ND	_	ND	-	ND	ND
Dimethoate		ND	_	ND	-	ND	ND
Dioxathion Disulfoton (Di-Syston) EPN Ethion Fenchlorphos (Ronnel) Fensulfothion Fensulfothion Fenthion Fonofos Iodofenphos Isofenphos Malaoxon		ND	_	ND	-	ND	ND
Disulfoton (Di-Syston) EPN Ethion Fenchlorphos (Ronnel) Fenitrothion Fensulfothion Fenthion Fonofos Iodofenphos Isofenphos Malaoxon	1	ND	_	ND	-	ND	ND
EPN Ethion Fenchlorphos (Ronnel) Fenitrothion Fensulfothion Fenthion Fonofos Iodofenphos Isofenphos Malaoxon	1	ND	-	ND	-	ND	ND
Ethion Fenchlorphos (Ronnel) Fenitrothion Fensulfothion Fenthion Fenofos Iodofenphos Isofenphos Malaoxon	0.5	ND	-	ND	-	ND	ND
Fenchlorphos (Ronnel) Fenitrothion Fensulfothion Fenthion Fonofos Iodofenphos Isofenphos Malaoxon	0.2	ND	_	ND	-	ND	ND
Fenitrothion Fensulfothion Fenthion Fonofos Iodofenphos Isofenphos Malaoxon	0.1	ND	_	ND	-	ND	ND
Fensulfothion Fenthion Fonofos Iodofenphos Isofenphos Malaoxon	0.5	ND	_	ND	-	ND	ND
Fenthion Fonofos Iodofenphos Isofenphos Malaoxon	0.1	ND	-	ND	-	ND	ND
Fonofos Iodofenphos Isofenphos Malaoxon	0.1	ND	-	ND	-	ND	ND
lodofenphos Isofenphos Malaoxon	0.1	ND	_	ND	-	ND	ND
Isofenphos Malaoxon	0.1	ND	-	ND	-	ND	ND
Malaoxon	0.3	ND	-	ND	-	ND	ND
	1	ND	_	ND	-	ND	ND
	0.5	ND	-	ND	ND (2)	ND	ND
Mevinphos-cis/trans (Phosdrin)	0.1	ND	-	ND	- '	ND	ND
Omethoate	1	ND	-	ND	-	ND	ND
Parathion 50	0.5	ND	-	ND	ND (2)	ND	ND
Parathion methyl	0.5	ND	-	ND	ND (2)	ND	ND
Phorate (Thimet) 2	0.5	ND	-	ND	- '	ND	ND
Phosalone	0.2	ND	-	ND	-	ND	ND
Phosmet	0.2	ND	-	ND	-	ND	ND
Phosphamidon	0.2	ND	-	ND	-	ND	ND
Pirimiphos-ethyl	0.5	ND	-	ND	-	ND	ND
Pirimiphos-methyl	0.2	ND	-	ND	-	ND	ND
Profenophos	0.5	ND	-	ND	-	ND	ND
Pyrazophos	0.1	ND	-	ND	-	ND	ND
Quinalphos	0.3	ND	-	ND	-	ND	ND
Sulfotep	0.1	ND	-	ND	-	ND	ND
Terbufos 1	0.3	ND	-	ND	-	ND	ND
Tetrachlorvinphos (Stirophos)	0.2	ND	_	ND	-	ND	ND
Other		1		· · · · ·			
Hexachlorobenzene		ND	-	ND	_ 1	ND	ND
Iprodione	0.2	-	-	- 140		ND	-
Propiconazole	0.2	+ -			-	ND ND	-

Table B4: Pesticide Results (ug/L)

	Drinking		North Grant	Stillwater	Sheet Harbour	Charleston	Havden Lake	Meteghan
Parameter	Water	Detection	(Well 054)	(Well 055)	(Well 056)	(Well 058)	(Well 059)	(Well 060)
	Guideline	Limit	12/Dec/2006	12/Dec/2006	-	-	9-Jun-2005	13/Dec/2006
			8					
Organophosphorus Pesticides								
Aspon		0.2	ND	ND	-	-	_	ND
Azinphos ethyl		0.5	ND	ND	-	-	_	ND
Azinphos methyl	20	1	ND	ND	_	_	_	ND
Bromacil		0.1	ND	ND	-	-	-	ND
Benfluralin		0.1	ND	ND	_	_	_	ND
Bromophos		0.1	ND	ND	-	_	-	ND
Bromophos-ethyl		0.3	ND	ND	_	_	-	ND
Carbophenothion		0.3	ND	ND	_	_	_	ND
Chlorfenvinphos(e/z)		0.1	ND	ND	-	_	-	ND
Chlormephos		0.5	ND	ND	_	_	_	ND
Chlorpyrifos	90	0.2	ND	ND	_	_	_	ND
Chlorpyriphos-methyl	- 00	0.1	ND	ND	_	_	_	ND
Chlorthiophos		0.1	ND	ND	-	-		ND
Cyanophos		0.2	ND	ND	-	-		ND
Demeton		1	ND	ND				ND
Diazinon	20	0.3	ND	ND	-	_	ND (5)	ND
Dichlofenthion	20	0.2	ND	ND			- 140 (0)	ND
Dichlorvos/Naled	-	0.2	ND	ND	-	-		ND
Dicrotophos		0.5	ND	ND	_		_	ND
Dimethoate	20	0.5	ND	ND	-	-		ND
Dioxathion	20	1	ND	ND				ND
Disulfoton (Di-Syston)	-	1	ND	ND	-	-	-	ND
EPN	1	0.5	ND	ND		-		ND
Ethion	-	0.2	ND	ND	-	-	-	ND
Fenchlorphos (Ronnel)	-	0.2	ND	ND	-	-	-	ND
Fenitrothion	1	0.5	ND	ND	-	-		ND
Fensulfothion		0.5	ND	ND		-		ND
Fenthion	-	0.1	ND	ND	-	-		ND
Fonofos	-	0.1	ND ND	ND ND	-	-	-	ND ND
		0.1	ND	ND				ND
lodofenphos	_	0.1	ND ND	ND ND	-	-	-	ND ND
Isofenphos Malaoxon	-	1	ND ND	ND ND	-	-		ND ND
Malathion	190	0.5	ND ND	ND	-	-	ND (5)	ND ND
	190	0.5	ND ND	ND			ND (5)	ND ND
Mevinphos-cis/trans (Phosdrin) Omethoate	_	1	ND ND	ND	-	-	-	ND ND
	50	0.5	ND ND	ND ND		-	ND (E)	ND ND
Parathion	50	0.5	ND ND	ND ND	-	-	ND (5) ND (5)	ND ND
Parathion methyl Phorate (Thimet)	2	0.5	ND ND	ND ND	-	-	ND (5)	ND ND
		0.5		ND	-		-	
Phosalone Phosalone	-	0.2	ND ND	ND ND	-	-	-	ND ND
Phosmet	_	0.2	ND ND	ND ND				ND ND
Phosphamidon	_				-	-	-	
Pirimiphos-ethyl	_	0.5 0.2	ND ND	ND	-	-	-	ND
Pirimiphos-methyl			ND ND	ND	-	-	-	ND
Profenophos	_	0.5	ND ND	ND	-	-	-	ND ND
Pyrazophos	_	0.1	ND	ND	-	-	-	ND
Quinalphos		0.3	ND	ND	-	-	-	ND
Sulfotep		0.1	ND	ND	-	-	-	ND
Terbufos	1	0.3	ND	ND	-	-	-	ND
Tetrachlorvinphos (Stirophos)		0.2	ND	ND	-	-	-	ND
Other								
Hexachlorobenzene		0.2	ND	ND	-	-	ı	ND
Iprodione		1	-	-	-	-	-	-
Propiconazole		0.5	-	-	-	-	-	-

Table B4: Pesticide Results (ug/L)

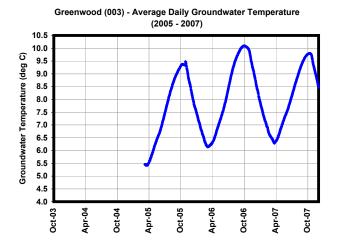
	Drinking		Annapolis Royal	Annapolis Royal	Hebron	Margaree	Ingonish	Debert
Parameter	Water	Detection	(Well 062)	(Well 062)	(Well 063)	(Well 064)	(Well 065)	(Well 068)
Farameter	Guideline	Limit	9-Nov-2005	26/Nov/2007		14/Dec/2006	(well 065)	(vveii 000)
	Guideilile		9-1107-2003	20/1404/2007	9-3011-2003	14/Dec/2000	_	_
Organophosphorus Pesticides	-							
Aspon		0.2	ND	ND	-	ND	-	_
Azinphos ethyl		0.5	ND	ND	_	ND	-	_
Azinphos datyl	20	1	ND	ND	_	ND	_	
Bromacil		0.1	ND	ND	_	ND	-	_
Benfluralin	1	0.1	ND	ND	_	ND	-	_
Bromophos		0.1	ND	ND	_	ND	-	_
Bromophos-ethyl		0.3	ND	ND	_	ND	-	_
Carbophenothion		0.3	ND	ND	-	ND	-	_
Chlorfenvinphos(e/z)		0.1	ND	ND	-	ND	-	-
Chlormephos		0.5	ND	ND	-	ND	-	-
Chlorpyrifos	90	0.2	ND	ND	-	ND	-	_
Chlorpyriphos-methyl		0.1	ND	ND	-	ND	-	-
Chlorthiophos		0.3	ND	ND	-	ND	-	-
Cyanophos		0.2	ND	ND	-	ND	-	-
Demeton		1	ND	ND	-	ND	-	-
Diazinon	20	0.3	ND	ND	ND (5)	ND	-	-
Dichlofenthion		0.2	ND	ND	- ` '	ND	-	-
Dichlorvos/Naled		0.1	ND	ND	-	ND	-	-
Dicrotophos		0.5	ND	ND	-	ND	-	-
Dimethoate	20	0.5	ND	ND	-	ND	-	-
Dioxathion		1	ND	ND	-	ND	-	-
Disulfoton (Di-Syston)		1	ND	ND	-	ND	-	-
EPN		0.5	ND	ND	-	ND	-	-
Ethion		0.2	ND	ND	-	ND	-	-
Fenchlorphos (Ronnel)		0.1	ND	ND	-	ND	-	-
Fenitrothion		0.5	ND	ND	-	ND	-	-
Fensulfothion		0.1	ND	ND	-	ND	-	-
Fenthion		0.1	ND	ND	-	ND	-	-
Fonofos		0.1	ND	ND	-	ND	-	-
lodofenphos		0.1	ND	ND	-	ND	-	-
Isofenphos		0.3	ND	ND	-	ND	1	-
Malaoxon		11	ND	ND	-	ND	-	-
Malathion	190	0.5	ND	ND	ND (5)	ND	-	-
Mevinphos-cis/trans (Phosdrin)		0.1	ND	ND	-	ND	-	-
Omethoate		11	ND	ND	-	ND	-	-
Parathion	50	0.5	ND	ND	ND (5)	ND	-	-
Parathion methyl		0.5	ND	ND	ND (5)	ND	-	-
Phorate (Thimet)	2	0.5	ND	ND	-	ND	-	-
Phosalone		0.2	ND	ND	-	ND	-	-
Phosmet		0.2	ND	ND	-	ND	-	-
Phosphamidon		0.2	ND	ND	-	ND	-	-
Pirimiphos-ethyl		0.5	ND	ND	-	ND	-	-
Pirimiphos-methyl		0.2	ND	ND	-	ND	-	-
Profenophos		0.5	ND	ND	-	ND	-	-
Pyrazophos	4	0.1	ND	ND	-	ND	-	-
Quinalphos	4	0.3	ND	ND	-	ND	-	-
Sulfotep	4	0.1	ND	ND	-	ND	-	-
Terbufos	1	0.3	ND	ND	-	ND	-	-
Tetrachlorvinphos (Stirophos)		0.2	ND	ND	-	ND	-	-
Other							1	
Hexachlorobenzene	1	0.2	ND	ND	-	ND	-	-
Iprodione		1	-	ND	-	-	-	-
Propiconazole		0.5	-	ND	-	-	-	-

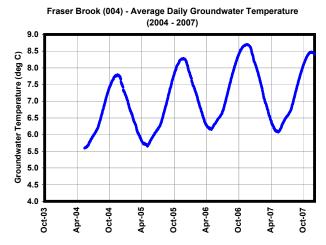
Table B4: Pesticide Results (ug/L)

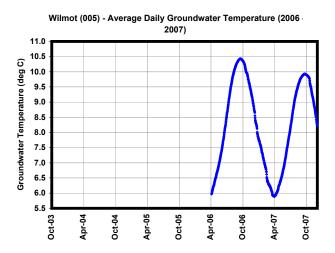
	Drinking		Dalem Lake	Amherst	Kelley River	Atlanta	Sheffield Mills
Parameter	Drinking Water	Detection					
Parameter	Guideline	Limit	(Well 069)	(Well 071) 16/Dec/2006	(Well 073) 12/Jan/2007	(Well 074) 03-Sep-2007	(Well 075) 10-Sep-2007
	Guideline		14/Dec/2006	16/Dec/2006	12/Jan/2007	03-Sep-2007	10-Sep-2007
Organophosphorus Pesticides	1						
Aspon		0.2	ND	ND	ND	ND	ND
Azinphos ethyl		0.5	ND	ND	ND	ND	ND
Azinphos methyl	20	1	ND	ND	ND	ND	ND
Bromacil	20	0.1	ND	ND	ND	ND	ND
Benfluralin		0.1	ND	ND	ND	ND	ND
Bromophos		0.1	ND	ND	ND	ND	ND
Bromophos-ethyl		0.3	ND	ND	ND	ND	ND
Carbophenothion		0.3	ND	ND	ND	ND	ND
Chlorfenvinphos(e/z)		0.1	ND	ND	ND	ND	ND
Chlormephos		0.5	ND	ND	ND	ND	ND
Chlorpyrifos	90	0.2	ND	ND	ND	ND	ND
Chlorpyriphos-methyl	- 55	0.1	ND	ND	ND	ND	ND
Chlorthiophos		0.3	ND	ND	ND	ND	ND
Cyanophos		0.3	ND ND	ND ND	ND	ND ND	ND
Demeton		1	ND ND	ND ND	ND ND	ND ND	ND ND
Diazinon	20	0.3	ND ND	ND ND	ND	ND	ND
Dichlofenthion		0.2	ND	ND	ND	ND	ND
Dichlorvos/Naled		0.1	ND	ND	ND	ND	ND
Dicrotophos		0.5	ND	ND	ND	ND	ND
Dimethoate	20	0.5	ND	ND	ND	ND	ND
Dioxathion	20	1	ND	ND	ND	ND	ND
Disulfoton (Di-Syston)		1	ND ND	ND	ND	ND	ND
EPN		0.5	ND	ND	ND	ND	ND
Ethion		0.2	ND	ND	ND	ND	ND
Fenchlorphos (Ronnel)		0.1	ND	ND	ND	ND	ND
Fenitrothion		0.5	ND	ND	ND	ND	ND
Fensulfothion		0.1	ND	ND	ND	ND	ND
Fenthion		0.1	ND	ND	ND	ND	ND
Fonofos		0.1	ND	ND	ND	ND	ND
Iodofenphos		0.1	ND	ND	ND	ND	ND
Isofenphos		0.3	ND	ND	ND	ND	ND
Malaoxon		1	ND	ND	ND	ND	ND
Malathion	190	0.5	ND	ND	ND	ND	ND
Mevinphos-cis/trans (Phosdrin)	100	0.1	ND	ND	ND	ND	ND
Omethoate		1	ND	ND	ND	ND	ND
Parathion	50	0.5	ND	ND	ND	ND	ND
Parathion methyl	- 55	0.5	ND	ND	ND	ND	ND
Phorate (Thimet)	2	0.5	ND	ND	ND	ND	ND
Phosalone		0.2	ND	ND	ND	ND	ND
Phosmet		0.2	ND	ND	ND	ND	ND
Phosphamidon		0.2	ND	ND ND	ND	ND	ND
Pirimiphos-ethyl		0.5	ND	ND	ND	ND	ND
Pirimiphos-ctryl		0.2	ND	ND ND	ND	ND	ND
Profenophos		0.5	ND	ND	ND	ND	ND
Pyrazophos		0.1	ND ND	ND ND	ND	ND	ND
Quinalphos		0.3	ND	ND	ND	ND	ND
Sulfotep		0.1	ND ND	ND ND	ND ND	ND	ND
Terbufos	1	0.1	ND	ND	ND	ND	ND
Tetrachlorvinphos (Stirophos)	 	0.2	ND ND	ND	ND	ND	ND
Other		U.L	110	140	110	140	140
Hexachlorobenzene		0.2	ND	ND	ND	ND	ND
Iprodione	1	1	ND -	- ND	- ND	ND -	ND -
•	1	0.5	-	-	<u> </u>	-	-
Propiconazole	I .	0.5	-	-	-	-	-

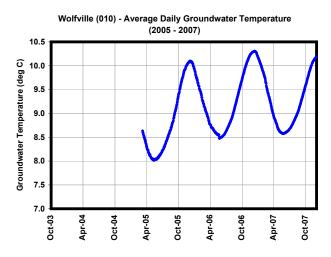
Table B5: Tritium Results

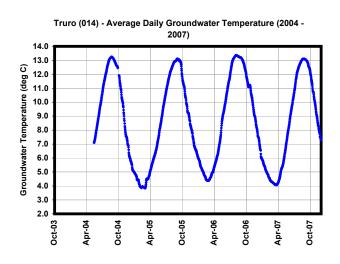
Observation Well	Date Sampled	Tritium	Accuracy	Age Estimate
	-	Level (TU)	(+/- TU)	(Recent is >1952)
Wolfville (010)	22/Dec/2004	4.7	0.4	Mix/Recent
Hayden Lake (059)	9/Jun/2005	3.4	0.3	Mix
Hebron (063)	9/Jun/2005	4.6	0.4	Mix/Recent
Kentville (048)	15/Jun/2005	3.8	0.3	Mix
Point Aconi (030)	15/Sep/2005	3.62	0.34	Mix
Sydney (050)	15/Sep/2005	4.92	0.43	Mix/Recent
Durham (045)	5/Oct/2005	2.04	0.28	Mix
Annapolis Royal (062)	9/Nov/2005	0.27	0.17	Old
Greenwood (003)	23/Nov/2005	5.76	0.47	Recent
Meteghan ('060)	12/Dec/2006	0.46	0.14	Old
North Grant ('054)	13/Dec/2006	1.95	0.22	Mix
Stillwater ('055)	13/Dec/2006	3.82	0.34	Mix
Margaree ('064)	14/Dec/2006	0.41	0.14	Old
Dalem Lake ('069)	14/Dec/2006	3.61	0.3	Mix
Monastery ('028)	15/Dec/2006	0.94	0.17	Old
Amherst ('071)	16/Dec/2006	4	0.32	Mix/Recent
Kelley River ('073)	12/Jan/2007	3.78	0.32	Mix

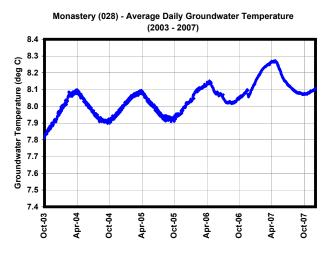

Age Estimate Guide	Tritium Level (TU)
Recent - (recharged after 1952) =	>5
Mix - Mixture of recent and old =	1 to 4
Mix/Recent - Mixture of mostly recent	
with a small portion being old	4 to 5
Old (recharged before 1952) =	<1
Source: Clark and Fritz, 1997	

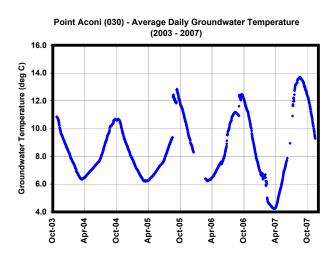

Table B6: Perchlorate Results

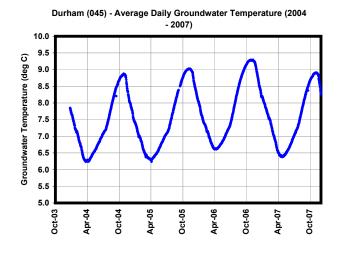

Observation Well	Date Sampled	Recommended Guidance	Detection Limit	Perchlorate Result
		Value (Health Canada, 2007)		
		(ug/L)	(ug/L)	(ug/L)
Fraser Brook (004)	10-Dec-2004	6	0.2	ND
Wolfville (010)	22-Dec-2004	6	0.2	ND
Hayden Lake (059)	9-Jun-2005	6	0.011	0.014
Hebron (063)	9-Jun-2005	6	0.011	ND
Kentville (048)	15-Jun-2005	6	0.011	0.05
Point Aconi (030)	15-Sep-2005	6	0.011	ND
Sydney (050)	15-Sep-2005	6	0.011	ND
Durham (045)	5-Oct-2005	6	0.011	ND
Annapolis Royal (062)	9-Nov-2005	6	0.011	ND
Greenwood (003)	23-Nov-2005	6	0.011	ND
Monastery (028)	15-Dec-2006	6	0.011	ND

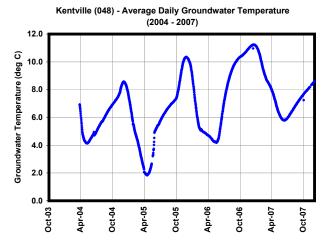

ND = Not Detected

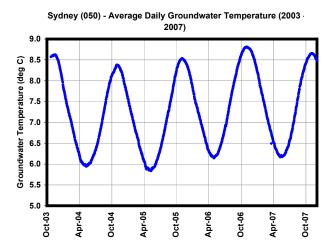

APPENDIX C GROUNDWATER TEMPERATURE GRAPHS

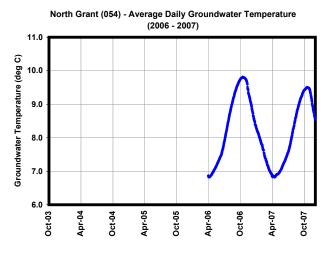


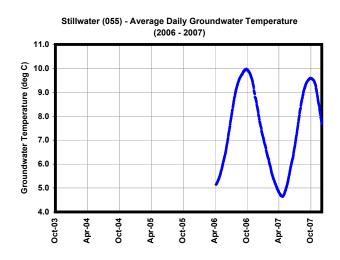


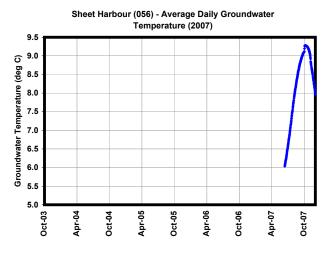


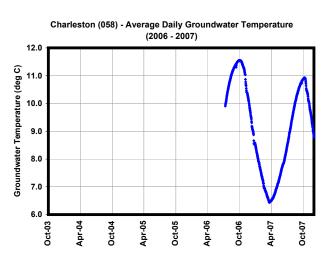


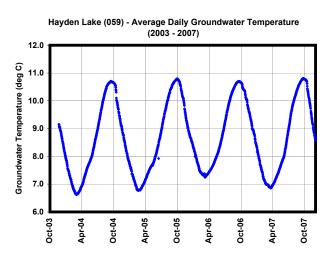


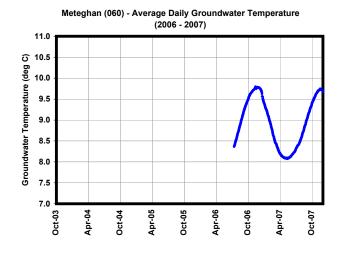


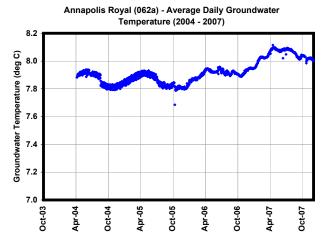


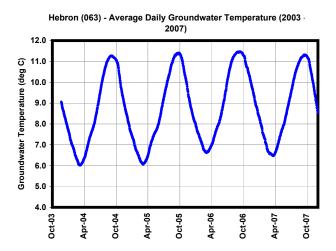


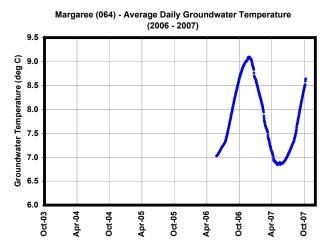


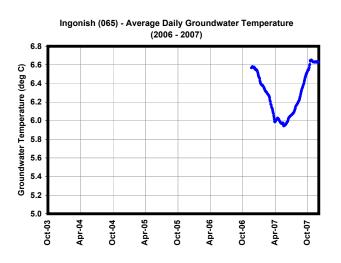


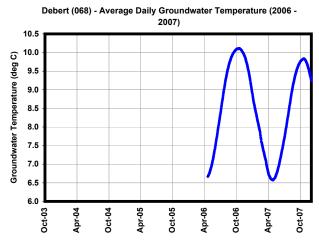


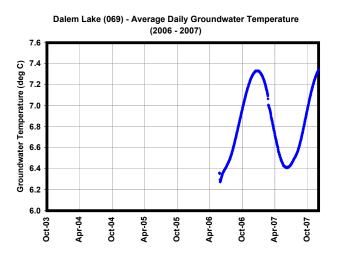


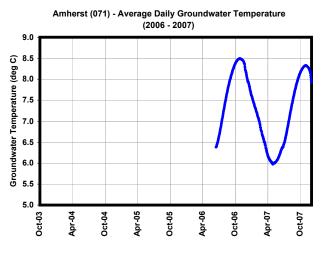


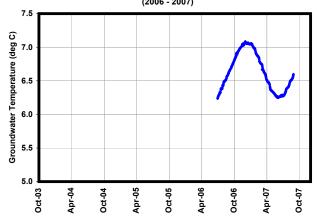












Kelley River (073) - Average Daily Groundwater Temperature (2006 - 2007)

APPENDIX D WATER LEVEL TREND ANALYSIS

Table D1. Water Level Statistical Trend Analyses

Observation Well	Well	First	Last	n ¹	Mann-Ker	idall Statistics	0
Observation well	Number	Year	Year	n	S ²	Q ³ (cm/year)	Confidence Level⁴
Greenwood	003	1968	2007	19	-31	-0.3	60%
Fraser Brook	004	1968	2007	18	47	0.3	95%
Wilmot	005	1967	2007	17	8	0.1	60%
Wolfville	010	1970	2007	19	-125	-2.7	100%
Truro	014	1974	2007	15	3	0.4	50%
Monastery	028	1979	2007	9	NA	NA	NA
Point Aconi	030	1979	2007	15	23	0.7	85%
Lawrencetown	043	1979	2007	11	-11	-2.4	75%
Durham	045	1980	2007	22	69	2.2	95%
Kentville	048	1983	2007	14	-39	-0.8	95%
Sydney	050	1985	2007	13	-54	-5.4	100%
North Grant	054	1988	2007	6	NA	NA	NA
Stillwater	055	1988	2007	5	NA	NA	NA
Charleston	058	1989	2007	5	NA	NA	NA
Hayden Lake	059	1988	2007	13	52	1.6	100%
Meteghan	060	1988	2007	7	NA	NA	NA
Annapolis Royal	062	1992	2007	6	NA	NA	NA
Hebron	063	1993	2007	6	NA	NA	NA
Margaree	064	1991	2007	6	NA	NA	NA
Ingonish	065	1991	2007	5	NA	NA	NA
Dalem Lake	069	1994	2007	4	NA	NA	NA

Notes:

- 1. n is the number of "usable" years. For a year of data to be considered a "usable", data must be available for at least 75% of the year, unless otherwise noted. Trend analyses were not completed for wells with less than 10 years of usable data.
- 2. S is the Mann-Kendall statistic, which is based on the differences between data values. Positive values indicate upward trends and negative values indicate downward trends (Gilbert, 1987).
- 3. Q is Sen's estimator of slope. Positive values indicate upward trends and negative values indicate downward trends (Gilbert, 1987).
- 4. The trend is considered to be statistically significant if the confidence level is at least 80%.
- 5. NA = Not Applicable (there were insufficient data to complete a trend analysis at this well).