APPENDIX A

Consultant Biographies

Craig Hodder

GIS Technologist

EDUCATION

2000-2002 B.A., Economics, Carleton University, Ottawa, Ontario
 1997-2000 Sydney Academy High School, Sydney, NS – Graduated with distinction in the International Baccalaureate Program

PROJECTS

Jamaica Cadastral Conversion Project. The conversion of land parcels using IKONOS satellite imagery as the ground control. Involved in implementing QC procedures.

Involved in the implementation of the Membertou community plan.

Involved in the Wentworth/Membertou softcopy photogrammetry projects.

SKILLS

Computer Assisted Drafting (AutoCAD) ArcView, ArcMap DVP Softcopy photogrammetry

EXPERIENCE

2002 to Present	 GIS Technician - Membertou Geomatics Consultants Assist a team of GIS specialists and provide GIS data to various projects. Provide consulting services including needs analysis and gap analysis to assist clients in meeting their GIS requirements Assist Membertou First Nation to meet their community planning goals and objectives
2002 - 2003	 Eastcan Geomatics Limited – Involved in a training program Trained in data capturing, data converting. Data converting includes AutoCAD training and softcopy photogrammetry. Involved with quality assurance/quality control aspects.

Dave Moore

1982	Construction Technology Holland College, Charlottetown, P E.I.
2000	Bachelor of Design (Honours), Environmental Planning, Minor Degree in Digital Media Nova Scotia College of Art and Design, Halifax, N.S.
2007	Master of Urban and Regional Planning Queen's University, Kingston, ON.

Membertou

GEOMATICS CONSULTANTS

PROJECTS

Membertou Connector Road, Business Case and Routing Study (CBCL)

Habitat Threats – Sedimentation – Bras d'Or Lakes Watershed (UINR)

Physical, infrastructure and policy design, Community Plan, Membertou First Nation

Parking lot and storm drainage design, Membertou Trade and Convention Centre and Membertou Entertainment Centre

On-site project management, multi-residential condominiums, Chandler's Cove, Chester, N.S.

Numerous design and research projects with both public and private engineering and architectural organizations

SKILLS

Remote Sensing (PCI Geomatics)AutoCad (Autodesk)SSPS StatisticsCivil Design (Autodesk)3D Studio Max (Autodesk)IDRISI Raster GISArcView and ArcMap (ESRI)MapInfoMS Office

EXPERIENCE

2003 to Present	Planner\GIS Technician - Membertou Geomatics Consultants
1999-2001	CAD Technician/Planner, W.M. Fares & Associates, Halifax, N.S.
1985- 1995	Survey Supervisor\Cartographic Assistant, Public Works and Government Services Canada
1984- 1985	Estimator\Technician, MBB-Trecan, Halifax, N.S.
1983- 1984	Project Manager, Research Project, Municipality of Chester

Jason Googoo

Manager

EDUCATION

1999-2001 Centre of Geographic Sciences (C.O.G.S) – Computer Technician/Analyst Diploma
 1998 University College of Cape Breton (UCCB) – BA Degree in Sociology

PROJECTS

Jamaica Cadastral Conversion Project. The conversion of land parcels using IKONOS satellite imagery as the ground control. Involved in implementing QC procedures.

Involved in the implementation of the Membertou community plan.

Flood Model Project. Simulated a flood based on Truro, NS. Created several routines which modified and displayed aerial photographs as a flood progressed.

Implemented the Membertou Fisheries into a G.I.S. project.

SKILLS

Computer Assisted Drafting (AutoCAD) ArcView, ArcMap Various scripting and programming (VB/VBA, Perl, C/C++, java/javascript

EXPERIENCE

2002 to Present	 Manager - Membertou Geomatics Consultants Responsible for supervision and job performance evaluations for staff. Assist a team of GIS specialists and provide GIS data to various projects. Provide consulting services including needs analysis and gap analysis to assist clients in meeting their GIS requirements Assist Membertou First Nation to meet their community planning goals and objectives
2002 - 2003	 Eastcan Geomatics Limited – Involved in a training program Trained in data capturing, data converting. Data converting includes AutoCAD training and softcopy photogrammetry. Involved with quality assurance/quality control aspects.

Melanie Smith, MES Environmental Specialist (Strum)

Ms. Smith coordinates and project manages environmental assessments for various types of projects including bridge and other infrastructure replacements, wind farms and other developments. She also develops the work scope and manages the completion of all associated field components that support the EA submission. This includes assessment of wetlands, watercourses, wildlife, birds, noise, shadow flicker, fish/fish habitat, vegetation, benthic community, contaminants, archaeology, and species at risk. Ms. Smith is also responsible for completing the environmental effects assessment and developing project specific mitigation measures. Ms. Smith has also worked in a regulatory capacity with Ontario's Ministry of the Environment as a Project Officer in the Environmental Assessment and Approvals Branch. In this capacity, Ms. Smith was responsible for reviewing and coordinating the technical review of environmental assessment reports for large highway projects and landfill sites, providing guidance to proponents, responding to media and stakeholder inquiries, and providing advice to senior management regarding the approval of environmental assessment submissions.

Andy Walter, B.Sc Hort

Environmental Specialist (Strum)

Mr. Walter is a qualified wetland delineator in Nova Scotia. Andy has completed multiple wetland delineation projects for proposed wind farm development sites in Nova Scotia, in addition to hundreds of other large and small scale assessments in support of land development within the province. Projects often involve the completion of species at risk assessments, function assessments, and detailed wetland characterization in support of wetland alteration applications. In addition, Mr. Walter routinely coordinates and completes post construction monitoring at wetland alteration sites, including soil, vegetation, hydrology, species at risk, and stream assessments as necessary, and authors the associated monitoring reports. An experienced biologist through his work in wetlands, streams, and forests, Mr. Walter is also skilled at identifying plants in a variety of habitat types, and is active in completing flora and fauna surveys, as well as habitat characterization. In this regard, Andy relates habitat observations to the wildlife community in an area, always with a focus on identifying suitable habitat for species of conservation concern. He is knowledgeable in the area of provincial and federal approvals processes and works closely with senior staff to prepare regulatory submissions.

1.0 Environmental Consultants

1.1 Garrett Bell, B.Sc.E, Environmental Technologist

Mr. Bell graduated from the University of New Brunswick in Fredericton, NB, with a B.Sc.E (Geological engineering). He has more than ten years in characterizing and evaluating natural resources including geology, soil, hydrology, mineral resources, vegetation and wildlife. Mr. Bell is responsible for collection of all types of environmental data from available sources including field investigations, and providing environmental monitoring/ protection services. He has extensive experience in environmental impact assessment and environmental management including review of Project Environmental Protection Plans. Mr. Bell specializes in wetland ecology, plant species at risk, and ecological land classification/ resource management.

1.2 Shawnna Cox, B.Sc., Biologist

Ms. Cox graduated from the University of New Brunswick in Fredericton, NB, with a B.Sc. in Biology. She received additional training in electrofishing and rare plant identification. Ms. Cox has ten years of experience in areas of Natural Resource Management, Environmental Impact Assessment, Environmental Monitoring, Environmental Management and Project Planning, as well as Habitat Delineation and Protection. In particular, she has experience in detailed fish and aquatic habitat assessments, water sampling, benthic invertebrates sampling, wetland habitat assessment and delineation, and species at risk surveys (plants, salmonids, wood turtles, etc.).

1.3 Scott Sangster, BSc, Environmental Scientist

Mr. Sangster graduated from Saint Mary's University, Halifax, NS with a B.Sc. in Environmental Studies, and from Niagara College, Niagara On The Lake, ON with a Certificate in Environmental Management. Mr. Sangster has five years combined experience managing, preparing, and reviewing environmental assessments with AMEC Earth & Environmental, Halifax International Airport Authority, and Nova Scotia Environment and Labour. In particular, he has extensive experience in developing and implementing environmental protection and monitoring plans for rare plants. Mr. Sangster was part of a team that successfully transplanted a small number of rare plants to Acadia University for scientific research.

1.4 Marion Sensen, PhD., Botanist

Dr. Sensen is a biologist specializing in botany with a doctorate in lichenology. She received her credentials from Heinrich- Heine University in Duesseldorf, Germany. Since moving to Canada, she gained more than ten years of experience with Nova Scotia and Atlantic Canada flora, both as a member on the Nova Scotia Wild Flora Society, and professionally. During her postdoctoral research at St. Mary's University in Halifax, she concentrated on air pollution monitoring with lichens. She has carried out wetlands environmental effects monitoring programmes, environmental constraints mapping, plant inventories and rare plant surveys.

2.0 Ornithological Consultants

2.1 Clarence Stevens

Mr. Stevens is a well-known and respected naturalist specializing in ornithology. He has more than 25 years of birding experience, and is trained in methods of scientific bird observation and data collection. He is the author of numerous books and articles on birds in Nova Scotia, e.g. "Backyard Birds of Nova Scotia" and a 310 page regional birding guide. Also, for now 15 years he has been writing on birds for a birding column that appears in a regional newspaper. He has volunteered numerous hours for important projects such as six years spent gathering data for the Maritime Breeding Bird Atlas, and serving as the provincial coordinator for the Piping Plover Guardianship programme. He has carried out bird surveys for numerous larger and smaller infrastructures projects in Nova Scotia, New Brunswick and Prince Edward Island, such as the Sable Gas Pipeline, and highway construction or twinning projects. He also carried out an Assessment of Bird Hazards to aircraft at both Shearwater and Greenwood Airbases. Some survey projects included plant and small mammals surveys.

2.2 Fulton Lavender

Mr. Lavender is a well known and respected naturalist specializing in ornithology. He has more than 35 years birding experience, and is trained in methods of scientific bird observation and data collection. He has carried out numerous bird surveys for large and small infrastructure and scientific projects in Nova Scotia, New Brunswick and Ontario. His most recent projects include: the Maritimes and NorthEast Gas Pipeline, several wind farm projects, a diamond mine, as well as several years of collecting bird data for Parks Canada at Fundy National Park.

3.0 Archaeological consultants

3.1 Dr. Stephen A. Davis, B.A, M.A.

Dr. Stephen A. Davis is the President of the independent, Halifax- based company "Davis Archaeological Consultants Limited" (DAC). He holds a D.Phil in prehistory from the University of Oxford, M.A. in Anthropology (specialization in prehistoric archaeology) from Memorial University of Newfoundland, and a B.A. (Honours) in Anthropology from the University of New Brunswick, Fredericton. His formal training has been augmented with thirty-one years of teaching archaeology, part-time at the University of Oxford, Memorial University of Newfoundland and St. Francis Xavier University. Dr. Davis is presently a tenured Professor of Anthropology at Saint Mary's University, Halifax. He has recently been granted the President's Award for Excellence in Research (Saint Mary's University).

Through research and consultancy experience over a thirty-year period, Dr. Davis brings a wealth of archaeological experience to any cultural project. Although his specialization is the prehistory of Atlantic Canada, he has worked on projects in Spain, Norway, Maine, the British Isles, N.W.T., Ontario and the Canadian Arctic. With a growing public interest in protecting cultural resources of all types, Dr. Davis has become involved with numerous projects involving historic site archaeology. During his professional career he has directed archaeological investigations of fifteen prehistoric sites, twenty-five historic sites and conducted one hundred and twenty cultural resource assessment surveys under the guidelines for a Category C Permit (Nova Scotia Museum). These activities have resulted in over 100 publications in the form of books, book chapters, journal articles and contractual documents.

3.2 April MacIntyre, B.A., Senior Technologist

April D. MacIntyre is a M.A. student at Memorial University of Newfoundland (specialization in historic archaeology) and holds a B.A. (Honours) in Anthropology from Saint Mary's University. She has been employed in the consulting field since 1999 on various projects including the Little Dutch Church burial mitigation, the Maritimes and Northeast Pipeline Project, the Shubenacadie Portobello Inclined Plane assessment, the Halifax Regional Municipality Parkade, and the Halifax Regional Municipality Sewage Treatment Plant. Prior to her employment as a consulting archaeologist, Ms. MacIntyre was involved with various archaeological projects at Saint Mary's University. Her specialization is in the historic archaeology of Nova Scotia and she is currently conducting research on a nineteenth-century Scottish homestead in Cape Breton. She works through "Davis Archaeological Consultants Limited" (DAC).

3.3 Kelly J. Peters, B.A., First Nations Technician

Kelly J. Peters is a recent graduate of Anthropology (Bachelor of Arts) at Saint Mary's University (2003) and is actively involved in the protection of aboriginal rights and resources. He has been employed by the *Treaty & Aboriginal Rights Research Centre of Nova Scotia* and the *Confederacy of Mainland Mi'kmaq* to research archaeological resources and historic documents pertaining to aboriginal peoples. He has also been employed as a consultant on various aboriginal as well as historic archaeological resource impact assessment including the Maritimes and Northeast Pipeline project and the National Historic Palaeo-Indian site at Debert for the Mi'kmawey Debert Cultural Centre. He works through "Davis Archaeological Consultants Limited" (DAC).

APPENDIX B

Fish Habitat Survey Data Sheets (2006)

Rive	r: Wi	nter	Creek					S	tart P	oint:				End Poi	nt	:						Stream/River No.
Pers	onnel:	SC						D	ate: S	eptemi	ber 8 ^t	^h & 9 th	¹ , 2004	1								Stream Order No.
UNIT NO.	STREAM TYPE	CHANNEL TYPE	CHAINAGE END	LENGTH (m)	AVE W	IDTH)			st	JBSTRATE (%)				AVE DEPTH WET WIDTH (cm)	0-! UNDE BA	50% RCUT INK	0 · OVER-HAI VEGE	-50% NGING BANK STATION	LARGE WOODY DEBRIS IN STREAM (m)	EMBEDDEDNESS (CRITERIA) 1: <20% 2: 20% - 35% 3: 35% ≥ 50%	INSTREAM VEGETATION	COMMENTS
					WET	BANK CHANNEL	BEDROCK	BOULDER	ROCK	RUBBLE	GRAVEL	SAND	FINES		L	R	L	R		4: >50%		
1	24	1	27	27	1	1.5	0	0	40	20	0	10	30	30	0	0	30	30	0.5	3	N	ATV crossing; no visible flow
2	3/24	1	31	11 63	1	1	0	0	50	30	0	0	20	10-30	0	5	10	10	3	3	N	Wood debris obstruction @31 m
2	24	-	54	03	1	1	0	0	30	50	0	0	20	30	0	10	5	5	1	3	IN	between pools
4	24	1	105	11	1.5	1.5	0	0	30	50	0	0	20	35	0	0	10	10	0.5	3	N	Very small riffles between natural dead water pools
5	3	1	117	12	0.6	0.6	0	0	20	60	0	0	20	15	5	5	0	0	0	3	N	
6	24	1	140	23	2	2	0	0	30	50	0	0	20	30	5	0	0	0	0.5	3	N	Wood and leaf debris obstructions
7	3	1	156	16	1	1.5	0	30	40	0	0	0	30	5	0	0	0	0	0	1	N	Some underground flow due to size of boulders and rock substrate
8	3	1	169	13	1	1	0	5	40	30	0	0	25	10	0	0	5	5	0.2	1	N	
9	3	1	185	16	1	1	0	5	40	30	0	0	25	10	10	0	5	5	0	1	N	Flows underground around large boulders
10	3/24	1	223	38	1	1	0	5	40	40	0	0	15	10-30	5	5	5	5	0.5	3	N	
11	3	1	253	30	1	1	0	5	30	50	0	0	15	15	5	5	5	5	0.5	3	N	Wood and leaf debris
12	3/24	1	301	48	2	2	0	10	40	30	20	0	0	10-30	0	0	10	10	1.5	3	N	Deer carcass remnants on right bank
13	3/24	1	320	19	2	2	0	10	40	30	20	0	0	10-30	0	10	5	5	0.8	3	N	
14	3/8	1	340	20	2	2	0	10	30	40	10	0	10	10-20	0	10	5	5	1	3	N	
15	3/24	1	451	110	1.5	1.5	0	10	30	40	10	0	0	10-25	0	0	5	5	1	3	N	
			-							1	-				1							
				SI	FREAM TYPE							CHANNEL	TYPE			SU	BSTRATE		FLOW TYPE		POOL R	ATING (reverse side)
	FASTWA	TER				POOL	s													CRIT	ERIA (NO.)	% OF POOLS IN SITE (LETTER)
 Fal Cas Rif (GR/RB) Rif Rif S. Rif (Sand) 	l cade fle fle (R/B) fle	 Sheet ledge) Chute Run Rapid 	10. 11. 12. 13.	Midchannel Convergence Lateral Beaver	 Trend Plung Flatv Bogar 	ch 18. ge 19. water 20. h 21.	Eddy Gabion Log Structure Road Crossing	22. Wood 23. Man-M 24. Natur	Debris Made Dam ral Deadwater	1. M * 2. S * 3. S stream ty * 4. H * - Spec	Main (if mea Gide Channel Split (if ri Tpes) Rogan Sify Left (I	(water div (water div ver is spli)), Right (R	fers to main erted by is t into variant) or Middle	n area of river) lands) pus different (M)	1. Be 2. Bo 3. Ro 4. Ru 5. Gr 6. Sa 7. Fi mm	edrock , L oulder = ock = ubble = ravel = nes =	edge 180 54 2.6 0.00 0.0005	> 461 mm - 460 mm - 179 mm - 53 mm - 2.5 mm - 0.05	 Survey Stream Spring Brook/River Trib Spring Seep 	Pool Depth 1 - Instream Co 2 - Instream Co Pool Depth 3 - Instream Co 4 - Instream Co	3 1.5 m .ver 3 30% .5 to 1.5m .ver 5 - 30% .ver > 30%	a - 3 30% b - 3 10% to 30% c - < 10% a - 3 50% b - < 50%

DNR&E / DFO - NEW BRUNSWICK

STREAM SURVEY and HABITAT ASSESSMENT

06-00

<u>1</u> of <u>3</u>

River	Winter Cre	ek pl																					
									STREAM BA	ANKS								POOL	RATING		POOL TAIL		
VALLEY SLOPE	BANK HEIGHT	FLOOD PLAIN	SHADE											0 _{2.} (Mg/1)	pH	WATER TEMP.	FISH SPECIES						% TURBULENCE
	(m)	WIDTH (m)	(%)	BARE	GRASSES	SHRUBS	TREES		LEFT BANK (0-50%)	ERC	SION (%)	RIGHT BANK (0-50%)				°c		NO.	LETTER	EMBEDDEDNESS (CRITERIA) 1: <20%	MEAN SUBSTRATE SIZE (cm)	% FINES	
																				2: 20% - 35% 3: 35% ≥ 50%			
L	0.5	10	70	0	20	30	50	50	BARE STABLE	0	50	DARE STABLE	ERODING 0							41 >504			
L	0.5	10	60	0	(moss) 20	30	50	50	0	0	50	0	0	_									
L	0.5	10	70	10	(moss) 50	20	30	45	5	0	50	0	0						-				
L	0.5	10	60	10	(moss) 50	20	30	50	0	0	50	0	0										
T.	0.5	10	70	10	(moss)	20	30	50	0	0	50	0	0	_	_								
T.	0.5	10	40		(moss)	20	25	50	0	0	50	0	0		_				-				
	0.5	10	40	5	(moss)	20	25	50	0	0	50	0	0		_								
	0.5	10	40	10	(moss)	20	25	50	0	0	50	0	0										
	0.5	10	10	10	(moss)	20	2.J E 0	50	0	0	50	0	0										
, T	0.5	10	60	10	(moss)	20	50	50	0	0	50	0	0		_								
Г	0.5	10	60	10	(moss)	20	60	50	U	U	50	U	U										
L	0.5	10	60	10	10	20	60	50	0	0	50	0	0	-									
L	0.5	10	60	10	(moss)	20	60	50	0	0	50	0	0		-								
L	0.8	10	40	10	(moss) 10 (moss)	20	60	50	0	0	50	0	0										
L	0.8	20	30	10	30 (moss)	30	30	50	0	0	45	5	0										
NUTE: 1	or selected site s	study, these coli	umns (reverse	e side) shou	ld be done for a	habitat asses	sment					WATER F	LOW MEASUREN	ENT									
	RIFFLE GR	ADIENT						DEPTH (cm)		AVERAGE	DEPTH SUM / 4					FI	OAT TIME (sec)						
	DROD			NIT	STREAM	WET						COEFI (0.9 - s	FICIENT smooth)	LENGTH							,	LOW	
M	M	GRADIEN %	"ì	No.	TYPE	(m)	1/4 way	1/2 way	3/4 way	CENTIMETERS	METERS ((m) (0.8 -	rough)	(3m)	1/4 way	1/2 way	3/4 way	A	/ERAGE			Cms	
					ÿ	0.0	1.0	10		U.L.	0.002				0.00		0.10		0.00				
Formula (C	MS) – W (m) × D (m) × ((m)	W	pere: W – wid	th D = depth	L – length A is a c	pefficient for the stre	am bottom													
i ornula (c	(10) – <u>11 (</u> 11	T	(sec)		***	1010. 11 = 1110	ui, D = depui,	E = lengin, A la a d	Semicient for the stree	an bottom													
CRIT	ERIA:																						
1.05	ite: water denth	equal to or gres	iter than chan	nel width										4 Lindercut Bank	- % of bank overh	ann (above water ed	e for stream type S	necify left (L) or	right (B)				
2. Rif 3. Si	le: GR/RB - is a R/B - is a riff le channels - tre	Inffle flowing over at as a separate	er a gravel an & through larg stream type	nd/or rubble ge substrate	bottom s (eg. rock and	/or boulder), s	ome of which	protrudes the surfa	ce					5. Over-hanging E 6. Visual Embedd 7. Woody Debris	Bank Vegetation - % ledness - % of san - total width should	% of vegetation overh ds or fines surroundi l be >10 cm in diame	ang for stream type. So ng the larger substration	Specify L or R tes,up to 100%	ngar (iv)				
A= 0.8 for	rough bottom																						

River Persc	: Wi onnel:	nter SC	Cree	k				S D	tart I ate: S	oint: Septemi	ber 8 ^{tl}	h & 9 th	, 2004	End Poi 4	nt	:						Stream/River No. Stream Order No.
UNIT NO.	STREAM TYPE	CHANNEL TYPE	CHAINA END	GE LENGTH (m)	AVE W	IDTH)			s	UBSTRATE (%)				AVE DEPTH - WET WIDTH (cm)	0-5 UNDE BA	50% RCUT NK	0- OVER-HAN VEGE	-50% NGING BANK TATION	LARGE WOODY DEBRIS IN STREAM (m)	EMBEDDEDNESS (CRITERIA) 1: <20% 2: 20% - 35% 3: 35% ≥ 50%	INSTREAM VEGETATION	COMMENTS
					WET	BANK CHANNEL	BEDROCK	BOULDER	ROCK	RUBBLE	GRAVEL	SAND	FINES		L	R	L	R		4: >50%		
16	3/16	1	471	20	1.2	2	0	10	10	40	20	10	0	10/20	0	0	0	0	1	2	N	
17	3	1	497	26	0.8	1.5	0	0	20	40	20	10	10	15	0	0	0	5	0	3	N	
18	16	1	506	9	2	2	0	0	10	40	30	10	10	20	0	10	10	10	0	3	N	
19	3	1	509	3	0.8	1	0	0	10	50	20	10	10	10	0	10	0	0	0	3	N	
20	10	1	513	4	1.4	2	0	0	10	50	20	10	10	20	10	0	0	0	0	3	N	
21	3	1	516	3	1	1.2	0	0	10	50	20	10	10	10	0	0	0	0	0	3	N	
22	10	1	523	7	1	1	0	0	10	50	20	10	10	25	10	0	0	0	0	3	N	
23	3/10	1	535	12	1	2	0	0	10	60	10	10	10	10-25	0	0	5	10	0	3-4	N	
24	3/16	1	547	12	1.5	2	0	0	10	60	20	10	0	10-25	0	0	0	0	0.5	3	N	
25	16	1	563	16	1.5	2	0	0	0	40	20	20	20	20	5	5	10	20	3	3	N	
26	16	1	587	24	1.5	2	0	0	0	40	20	20	20	20	5	5	50	50	2	3	N	
27	3/16	1	606	19 ().8	1	0	0	20	30	0	20	30	20	0	0	20	20	0.5	3	N	
28	3/16	1	650	44	0.5-1.0	1	0	0	30	25	0	25	20	10-20	0	0	30	30	1	3	N	
29	3	1	665	15	1	2 5	0	0	10	40	0	20	30	15	0	0	10	0	0	4	N	
30	3/16	1	701	36	1	1.5	0	5	40	35	0	0	20	5-25	5	5	10	20	1	3	N	
50	5/10	-	/01	50	-	1.5	Ū	5	40	55	0	0	20	5 25	5	5	10	20				
				ST	TREAM TYPE							CHANNEL	TYPE			SUI	BSTRATE		FLOW TYPE		POOL RAT	ING (reverse side)
	FASTWA	TER				POOLS	5													CRIT	ERIA (NO.)	% OF POOLS IN SITE (LETTER)
 Fall Casc Riff (GR/RB) 	ade le	 6. Sheet (ledge) 7. Chute 8. Run 	1	0. Midchannel 1. Convergence 2. Lateral 3. Beaver	14. Trend 15. Plung 16. Flatw 17. Bogar	ch 18. ge 19. water 20.	Eddy Gabion Log Structure Road Crossing	22. Wood 23. Man-M 24. Natur	Debris Made Dam ral Deadwate	1. M * 2. S r * 3. S stream ty	ain (if meas ide Channel plit (if riv pes)	surement re (water div ver is spli	fers to main erted by is t into varia	n area of river) lands) ous different	1. Be 2. Bo 3. Ro 4. Ru 5. Gr 6. Sa 7. Fi	drock , L ulder = ck = bble = avel = nd = nes =	edge 180 54 2.6 0.06 0.005	> 461 mm - 460 mm - 179 mm - 53 mm - 2.5 mm - 0.05	 Survey Stream Spring Brook/River Trib Spring Seep 	Pool Depth 1 - Instream C 2 - Instream C	3 1.5 m over 3 30% over < 30%	a - 3 30% b - 3 10% to 30% c - < 10%
 Riff Riff 	le (R/B) le	9. Rapid			590.					* 4. E * - Spec	ogan ify Left (L), Right (R) or Middle	(M)	mm					3 - Instream C 4 - Instream C	.5 CO 1.5m over 5 - 30% over > 30%	a - 3 50% b - < 50%

DNR&E / DFO - NEW BRUNSWICK

STREAM SURVEY and HABITAT ASSESSMENT

<u>2</u> of <u>3</u>

06-00

RIVEL	winter crea	eĸ																					
									STREAM BAN	iks								POOL	RATING		POOL TAIL		
VALLEY SLOPE	BANK HEIGHT	FLOOD PLAIN WIDTH	SHADE		VEGETAT	ION (%)				ERC	SION (%)			0 _{2.} (Mg/l)	pH	WATER TEMP.	FISH SPECIES						% TURBULENCE
	()	(m)	()	BARE GROUND	GRASSES	SHRUBS	TREES		LEFT BANK (0-50%)			RIGHT BANK (0-50%)				e		NO.	LETTER	EMBEDDEDNESS (CRITERIA) 1: <20%	MEAN SUBSTRATE SIZE (cm)	% FINES	
								STABLE	BARE STABLE	ERODING	STABLE	BARE STABLE	ERODING							2: 20% - 35% 3: 35% ≥ 50% 4: >50%			
L	0.8	20	60	10	30	20	40	50	0	0	50	0	0										
L	0.8	20	20	10	30	10	50	50	0	0	50	0	0										
L	0.5	20	60	0	30	10	60	50	0	0	40	10	0										
L	0.5	20	50	10	30	0	60	50	0	0	30	20	0										
L	0.5	20	50	10	30	0	60	30	20	0	30	20	0										
L	0.50.5	20	50	0	30	10	60	50	0	0	50	0	0										
L	0.5	20	50	0	30	10	60	50	0	0	50	0	0										
L	0.5	20	30	0	20	10	70	50	0	0	50	0	0										
L	0.5	20	30	0	20	10	70	50	0	0	50	0	0										
L	0.5	20	40	0	30	30	40	50	0	0	50	0	0										
L	0.5	20	60	0	0	90	10	50	0	0	50	0	0										
L	0.5	10	60	0	40	50	10	50	0	0	50	0	0										
L	0.8	10	70	0	40	20	40	50	0	0	50	0	0										
L	0.5	10	70	0	10	40	50	50	0	0	50	0	0										
L	0.4	20	50	5	20	15	60	50	0	0	50	0	0										

NOTE	: * For se	elected site stu	udy, these columns (reverse side) sh	hould be done for a	a habitat assess	ment					WATER FLOW MEASU	REMENT					
	RIFFLE GRADIENT DEPTH (cm) AVERAGE DEPTH SUM / 4 FLOAT TIME (sec) WET VET COEFFICIENT COEFFICIENT Image: Coefficient text (sec)																	
LEI	Unite oncount Unit STREAM NO. WET WIDTH (m) Value (m) Value (m) <thvalue (m)</thvalue 															FLOW Cms		
Form	ula (CMS)	= <u>W (m)</u>	x D (m) x A T(x L (m) sec)	W	here: W = width	, D = depth, L =	length, A is a c	oefficient for the	stream bottom	•					•	•	

CRITERIA:	
1. Chute: water depth equal to or greater than channel width 2. Riffle: GR/RB - is a riffle flowing over a gravel and/or rubble bottom R/B - is a riffle flowing over & through large substrates (eg. rock and /or boulder), some of which protrudes the surface	 Undercut Bank - % of bank overhang (above water edge for stream type. Specify left (L) or right (R) Over-banging Bank Vegetation - % of vegetation overhang for stream type. Specify L or R Visual Embeddedness - % of sands or fines surrounding the larger substrates up to 100%

A= 0.8 for rough bottom

06-	00								s	DI	NR&E	/ DF	D - N	EW BRU	NSW]	ICK ESSM	FNT					<u>3</u> (of <u>3</u>
Rive: Perso	r: Wi onnel:	nter SC	Creek	:				S	Start I Date: S	Point: Septem	ber 8 ^t	h & 9 th	¹ , 2004	End Poi	.nt	:							Stream/River No. Stream Order No.
UNIT NO.	STREAM TYPE	CHANNEL TYPE	CHAINAGE END	LENGTH (m)	AVE	WIDTH (m)			:	UBSTRATE (%)				AVE DEPTH - WET WIDTH (cm)	0- UNDI BJ	50% ERCUT ANK	0- OVER-HAN VEGE	-50% WGING BANK TATION	LARGE WOODY DEBRIS IN STREAM (m)	EMBEDDEDNESS (CRITERIA) 1: <20% 2: 20% - 35%	INSTREAM VEGETATION		COMMENTS
					WET	BANK CHANNEL	BEDROCK	BOULDER	ROCK	RUBBLE	GRAVEL	SAND	FINES		L	R	L	R		3: 35% ≥ 50% 4: >50%			
31	3	1	708	7	0.8	1.2	0	0	60	30	0	0	10	10	0	0	5	5	0	2	2	Stream g	gradient increases
32	10	1	714	6 20	2	2	0	0	50	30	0	10	20	30	0	0	5	5	0	3	3	-	
34	10	1	745	11	1	1	0	0	50	30	0	0	20	35	0	0	5	5	0.5	3	3		
35	3	1	762	17	0.8	1.2	0	0	60	20	0	0	20	20	0	0	5	5	1	3	3		
36	3 1 799 37 0.8 1 0 60 20 0 20 15 0 0 20 10 0.4 24 1 841 42 2 2.5 0 0 20 30 0 10 40 80 0 0 30 20 1.5															0.4	3	3	a.				
37	24	1 1/32 37 0.0 1 0 0 00 20 24 1 841 42 2 2.5 0 0 20 30 0 10 40 80 0 30 20 1.5															1.5	4	4	Stream (opens up into bog area		
		24 1 841 42 2 2.5 0 0 20 30 0 10 40 80 0 0 30 20 1.5 </td <td></td> <td></td> <td></td> <td></td>																					
<u> </u>																							
				s	STREAM TYPE							CHANNEL	TYPE			SU	BSTRATE		FLOW TYPE		POOL R	RATING (rev	verse side)
	FASTWAT	ER			-	POOI	s													CRIT	FERIA (NO.)		% OF POOLS IN SITE (LETTER)
 Fal Cas Rif (GR/RB) 	l cade fle	 Sheet ledge) Chute Run 	10. 11. 12.	Midchannel Convergence Lateral Beaver	 14. Tre 15. Plu 16. Fla 17. Bog 	ench 18. inge 19. atwater 20. gan 21.	Eddy Gabion Log Structure Road Crossing	22. Wood 23. Man- 24. Natu	Debris Made Dam ral Deadwate	1. M * 2. S r * 3. S stream ty	Main (if mea Side Channel Split (if ri Ypes)	surement re . (water div ver is spli	fers to main erted by is t into varia	n area of river) lands) pus different	1. Be 2. Bo 3. Ro 4. Ru 5. Ga 6. Sa 7. Fi	edrock , L oulder = ock = ubble = ravel = and = ines =	edge 180 54 2.6 0.06 0.0005	> 461 mm - 460 mm - 179 mm - 53 mm - 2.5 mm - 0.05	 Survey Stream Spring Brook/River Trib Spring Seep 	Pool Depth 1 - Instream C 2 - Instream C Pool Depth	∃ 1.5 m tover ∃ 30% tover < 30%		a - 3 30% b - 3 10% to 30% c - < 10%
 Rif: (Sand) 	tie (R/B) fle	9. Rapid								* 4. I * - Spec	Bogan Sify Left (I), Right (R) or Middle	(M)	mm					3 - Instream C 4 - Instream C	over 5 - 30% over > 30%		a - ∃ 50% b - < 50%

River	Winter Cree	ek p3																					
									STREAM BA	NKS								POOL	RATING		POOL TAIL		
VALLEY SLOPE	BANK HEIGHT	FLOOD PLAIN WIDTH	SHADE		VEGETAT	ION (%)				ERC	SION (%)			0 _{2.} (Mg/1)	рн	WATER TEMP.	FISH SPECIES						% TURBULENCE
	()	(m)	()	BARE GROUND	GRASSES	SHRUBS	TREES		LEFT BANK (0-50%)			RIGHT BANK (0-50%)				e		NO.	LETTER	EMBEDDEDNESS (CRITERIA) 1: <20%	MEAN SUBSTRATE SIZE (cm)	% FINES	
								STABLE	BARE STABLE	ERODING	STABLE							3: 35% ≥ 50% 4: >50%					
L	0.4	10	40	0	30	10	60	50	0	0	50	0	0									1	
L	0.4	10	30	0	30	20	50	50	0	0	50	0	0										
L	0.6	10	40	0	20	40	40	50	0	0	45	0	0										
L	0.6	10	30	0	30	40	30	50	0	0	50	0	0									í l	
L	0.6	10	30	0	20	60	20	50	0	0	50	0	0										
L	0.6	15	40	0	20	50	30	50	0	0	50	0	0									L	
L	0.4	40	10	0	30	60	10	50	0	0	50	0	0									 '	
																						'	l
			-																			'	
							1													1		·	
							1							1					1	1		r	1
							1	1	1			1		1			1			1	1		
																	Ī						
NOTE: * Fe	or selected site s	tudy, these colu	mns (reverse	side) should I	be done for a h	nabitat asses	sment					WATER FL					•			•			<u></u>

	RIFFLE GRA	ADIENT					DEPTH (cm)		AVERAGE D	EPTH SUM / 4				F	LOAT TIME (sec)		
LENGTH M	DROP M	GRADIENT %	UNIT No.	STREAM TYPE	WET WIDTH (m)	1/4 way	1/2 way	3/4 way	CENTIMETERS	METERS (m)	COEFFICIENT (0.9 - smooth) (0.8 - rough)	LENGTH (3m)	1/4 way	1/2 way	3/4 way	AVERAGE	FLOW Cms
Formula (C	1 (CMS) = <u>W (m) x D (m) x A x L (m)</u> Where: W = width, D = depth, L = length, A is a coefficient for the stream bottom TSec)																

CRITERIA:	
1. Chute: water depth equal to or greater than channel width	4. Undercut Bank - % of bank overhang (above water edge for stream type. Specify left (L) or right (R)
Riffle: GR/RB - is a riffle flowing over a gravel and/or rubble bottom	Over-hanging Bank Vegetation - % of vegetation overhang for stream type. Specify L or R
R/B - is a riffle flowing over & through large substrates (eg. rock and /or boulder), some of which protrudes the surface	6. Visual Embeddedness - % of sands or fines surrounding the larger substrates up to 100%
Side channels - treat as a separate stream type	Woody Debris - total width should be >10 cm in diameter

A= 0.8 for rough bottom

DNR&E / DFO - NEW BRUNSWICK STREAM SURVEY and HABITAT ASSESSMENT

River: Winter Creek Tributary

Start Point: at ATV crossing

<u>1</u> of <u>2</u>

Stream/River No.

Date: September 8th, 2004 Personnel: SC Stream Order No. AVE DEPTH - WET WIDTH LARGE WOODY DEBRIS IN STREAM 0-50% OVER-HANGING BANK 0-50% SUBSTRATE AVE WIDTH (CRITERIA) UNDERCUT BANK INSTREAM 1: <20% 2: 20% - 35% 3: 35% ≥ 50% 4: >50% COMMENTS UNIT STREAM CHANNEL CHATNAGE LENGTH (m) (%) (cm) VEGETATION (m) VEGETATION NO. TYPE TYPE END (m) BANK RUBBLE GRAVEL FINES WET SAND L Hard bottom under couple inches of 24 1 16 16 0.8 30 50 10 20 3-4 Yes nuck ATV trail @ 104m u/s of start Unit 3 discontinuous water with Under 50 34 ground with stagnant ponds flow moss and wispy rasse from 70-104 no fish abita 10 Under 24 64 14 0.8 0.8 20 30 50 40 20 Yes Headwater stream characteristics 1 10 Under onding water shallow flow ground ground flow flow Very boggy riparian area on Right 10 Under 10 Under 24/3 1 66 2 1.0 1.0 20 30 50 20 30 40 3-4 No Bank grour groun flow flow 3/8 1 120 54 0.4 0.5 40 10 20 30 10 0 0 50 50 Ω 3 No Heavily vegetated with shrubs over hannel 24 1.5 1.5 40 0.6 No It is actually a distinct ATV trail 1 20 30 20 0 0 2 0 0 0 0 hat has been flooded by slow water 0.3 Hard Bottom under 2 inches of muck 40 0.3 No 24 52 1.0 1.5 20 30 50 10 No Hard Bottom under 2 inches of muck Under 62 lows Underground 1 ground flow 5 70 0.4 10 40 10 1 0.5 30 20 10 0 0 0 0 2 2 No 11 5/24 1 79 1.2 1.2 30 30 35 20 0 0 0 0 0.5 No 5 3 83 0.4 20 40 12 dry 1 0.4 20 20 0 0 0 0 0 dry No 13 5/24 1 95 0.8 1.0 10 10 20 30 30 15 0 0 0 0.1 0 3 No 120 0.8 1.0 25 30 15 14 1 10 20 15 0 0 0 0 0 3 At 109 m small natural dam on 3 No stream 153 No 24 1 1.0 1.2 5 10 30 50 10 0 0 0 15 0 0

	STREAM TYPE		CHANNEL TYPE	SUBSTRATE	FLOW TYPE	POOL RATING (1	reverse side)
FASTWATER		POOLS				CRITERIA (NO.)	% OF POOLS IN SITE (LETTER)
1. Fall 6. Sheet (ledge) 2. Cascade 7. Chute 3. Riffle 8. Run 4. Riffle (R/B) 9. Rapid 5. Riffle (Sand)	10. Midchannel 14. Trench 11. Convergence 15. Plunge 12. Lateral 16. Flatwater 13. Beaver 17. Bogan	 18. Eddy 19. Gabion 20. Log Structure 21. Road Crossing 22. Wood Debris 23. Man-Made Dam 24. Natural Deadwater 	 Main (if measurement refers to main area of river) 2. Side Channel (water diverted by islands) 3. Split (if river is split into various different stream types) 4. Bogan - Specify Left (L), Right (R) or Middle (M) 	1. Bedrock , Ledge 2. Boulder = > 461 mm 3. Rock = 160 - 460 mm 5. Gravb = 0.0 - 53 mm 6. Sand = 0.06 - 2.5 mm 7. Fines = 0.0005 - 0.05 mm	 Survey Stream Spring Brook/River Trib Spring Seep 	Pool Depth 3 1.5 m 1 - Instream Cover 3 30% 2 - Instream Cover < 30% Pool Depth .5 to 1.5m 3 - Instream Cover 5 - 30% 4 - Instream Cover > 30%	a - 3 30% b - 3 10% to 30% c - < 10% a - 3 50% b - < 50%

06-00

:upstream at ATV crossing into bog

End Point

									STREAM	BANKS									POOL	RATING		POOL TAIL		
VALLEY SLOPE	BANK HEIGHT (m)	FLOOD PLAIN WIDTH	SHADE		VEGETAT	NON (%)				ERO	SION (%)			O (Mg	2. I /1)	рН	WATER TEMP.	FISH SPECIES						% TURBULENCE
	(_)	(m)	(-)	BARE GROUND	GRASSES	SHRUBS	TREES		LEFT BANK (0-50%)			RIGHT BANK (0-50%)					c		NO.	LETTER	EMBEDDEDNESS (CRITERIA) 1: <20%	MEAN SUBSTRATE SIZE (cm)	% FINES	
								STABLE	BARE STABL	E ERODING	STABLE	BARE STABLE	ERODI	NG							2: 20% - 35% 3: 35% ≥ 50% 4: >50%			
L	0.3	15	80		30	30	40	50			50							No fish in U/S section						
L	0.3	15	80		30	30	40	50			50													
L	0.3	20	60		60 Mosses	10	30	50			50													
L	0.3	20	80		30	30	40	50			50							1						
L	0.3	20	90		30	60	10	50			50													
L	0.8	20	0	0	85	5	10	50	0	0	50	0	0											
L	0.3	10	70	0	50	30	20	50	0	0	50	0	0											
L	0.3	10	60	0	30	30	40	50	0	0	50	0	0											
L			100	flows	under	ground						*												
L	0.1	10	40	10	30	10	50	50	0	0	50	0	0											
L-M	0.5	5	40	10	30	20	40	50		_	50													
M	0.5	8	40	10	30	20	40	50	-	-	50													
M	0.5	8	20	0	25	25	40 50	50		-	50													
M	0.5	8	40	20	30	20	30	50			50													
						I							I											
NOTE: * Fo	r selected site st	tudy, these colu	nns (reverse s	side) should	be done for a	habitat assess	sment					WATER FL	OW MEASUR	EMENT										
																						_		
	RIFFLE GRA	DIENT						DEPTH (cm)		AVERAGE I	DEPTH SUM / 4						FLO	AT TIME (sec)						
						WET						COEFF	ICIENT											
LENGTH M	DROP M	GRADIEN %		IIT : D.	STREAM TYPE	WIDTH (m)	1/4 way	1/2 way	3/4 way	CENTIMETERS	METERS (m) (0.8 - rough) (3m)		LENGTH (3m)	1/4 way	1	1/2 way	3/4 way	AVE	RAGE		FL	.OW ims		
Formula (C	(m) W (m)	xD (m) xA	Y I	(m)	Wh	ere W – widt	h D – denth I	- length A is a c	pefficient for the st	eam bottom					1		I				1			

T ____(sec)

CRITERIA:	
1. Chute: water depth equal to or greater than channel width 2. Riffle: GR/RB - is a riffle flowing over a gravel and/or rubble bottom R/B - is a riffle flowing over a through large substrates (eg. rock and /or boulder), some of which protrudes the surface 3. Side channels - treat as a separate stream type	 Undercut Bank - % of bank overhang (above water edge for stream type. Specify left (L) or right (R) Over-hanging Bank Vegetation -% of vegetation overhang for stream type. Specify Lor R Visual Embeddedness -% of sands or times surrounding the larger substrates,up to 100% Woody Detains - totak with should be >10 cm in diameter

A= 0.8 for rough bottom

DNR&E / DFO - NEW BRUNSWICK STREAM SURVEY and HABITAT ASSESSMENT

River: Winter Creek Tributary

Start Point: At ATV crossing

End Point

: upstream at ATV crossing into bog

Stream/River No.

Personnel: SC Date:										epteml	ber 8 ^{ti}	^h , 200	4								S	tream Order No.
UNIT NO.	STREAM TYPE	CHANNEL TYPE	CHAINAGE END	LENGTH (m)	AVE (I	WIDTH n)	575500T		SU	UBSTRATE (%)	(D.).IDI		171104	AVE DEPTH - WET WIDTH (cm)	0-5 UNDE BA	50% RCUT NK	0. OVER-HAI VEGE	-50% NGING BANK TATION	LARGE WOODY DEBRIS IN STREAM (m)	EMBEDDEDNESS (CRITERIA) 1: <20% 2: 20% - 35% 3: 35% ≥ 50%	INSTREAM VEGETATION	COMMENTS
					WET	CHANNEL	BEDROCK	BOULDER	ROCK	ROBBLE	GRAVEL	SAND	FINES		г	ĸ	г	R		4: >50%		
16	5/24	1	246		0.8	0.8			5		15	20	50	10-20	0	0	0	0		Not a flowing channel	No	
17	Moist mud	1	271			1.0							100		0	0	0	0	0	4	No	Flows underground in some areas - hard to follow
18	24	1	302		0.8	1.0			10	10		10	70		0	0	0	0	0	3-4	No	At 302 m flows underground to 308 m
19	Under ground		308	Flows	Under	Ground												0	0	4	No	Flows underground
20	0																					
												At 355 m	Hits	Winter	Creek							
							+ +															
							+ +															
							1 1															
				s	TREAM TYPE							CHANNEL	TYPE			SU	BSTRATE		FLOW TYPE		POOL RJ	ATING (reverse side)
	FASTWA	TER				POO	DLS													CRIT	ERIA (NO.)	% OF POOLS IN SITE (LETTER)
 Fall Casc Riff (GR/RB) Riff Riff Riff Riff (Cand) 	ade le le (R/B) le	 6. Sheet (ledge) 7. Chute 8. Run 9. Rapid 	10. 11. 12. 13.	Midchannel Convergence Lateral Beaver	14. Trer 15. Plur 16. Flat 17. Bogs	nch 18. nge 19. water 20. nn 21.	Eddy Gabion Log Structure Road Crossing	22. Wood 23. Man-M 24. Natur	Debris Ade Dam al Deadwater	1. M * 2. S * 3. S stream ty * 4. B * - Spec	ain (if mea ide Channel plit (if ri pes) ogan ify Left (L	surement re: (water divo ver is split), Right (R	fers to main erted by is t into vario) or Middle	n area of river) Lands) pus different (M)	1. Be 2. Bo 3. Ro 4. Ru 5. Gr 6. Sa 7. Fi mm	drock , L ulder = ck = bble = avel = nd = nes =	edge 180 54 2.6 0.06 0.0005	> 461 mm - 460 mm - 179 mm - 53 mm - 2.5 mm - 0.05	 Survey Stream Spring Brook/River Tril Spring Seep 	Pool Depth 1 - Instream Cr 2 - Instream Cr Pool Depth 3 - Instream Cr 4 - Instream Cr	∃ 1.5 m over ∃ 30% over < 30% .5 to 1.5m over 5 - 30% over > 30%	a - 3 30% b - 3 10% to 30% c - < 10% a - 3 50% b - < 50%

06-00

<u>2</u> of <u>2</u>

River.	winter cree	k iributary																					
	VALLEY BANK								STREAM	BANKS								POOL	RATING		POOL TAIL		
VALLEY SLOPE	BANK HEIGHT	FLOOD PLAIN	SHADE		VEGETAT	TON (%)				FRC	STON (%)			0 _{2.} (Mg/1)	рн	WATER TEMP.	FISH SPECIES						% TURBULENCE
	(m)	WIDTH (m)	(%)	BARE	CRASSES	GUPTIES	TDEEC		LEFT BANK			RIGHT BANK				°c		NO	LETTED	EMBEDDEDNESS (CRITERIA)	MEAN SUBSTRATE SIZE	% FINES	
				GROOND	GRASSES	SHRUBS	INEED		(0-50%)			(0-50%)						NO.	DETTER	2: 20% - 35% 3: 35% ≥ 50%	(011)		
L	0.8	8	60	5	30	10	55	50	BARE STABL	E ERODING	50	BARE STABLE	ERODING		-				1	4: >50%			
L	0.8	5	70		30	0	70	50	0	0	50	0	0										
L	0.8	5	70		30	0	70	50	0	0	50	0	0										
L	0	Under			Mosses 60		40																
L	0.4	ground 5	20		60		40																
															_								
															_								
				-												_							
NOTE: * Fo	r selected site st	udy, these colu	mns (reverse	side) should	be done for a h	abitat assess	sment																
		-					1					WATER FL	OW MEASUREMEN	т									
	RIFFLE GRA	DIENT						DEPTH (cm)		AVERAGE	DEPTH SUM / 4					FL	DAT TIME (sec)						
	DROR	CRADIEN	. U		STREAM	WET WIDTH						COEFF (0.9 - st	CIENT nooth) L	ENGTH							FL	.ow	
M	M	%	· •	lo.	TYPE	(m)	1/4 way	1/2 way	3/4 way	CENTIMETERS	METERS (r	n) (0.8 - r	ough)	(3m)	1/4 way	1/2 way	3/4 way	AV	ERAGE	_	C	ms	
Formula (C	MS) = <u>W</u> (m)	xD (m) xA	хL	(m)	Whe	ere: W = widt	h, D = depth, I	= length, A is a co	efficient for the str	ream bottom													
		т.	<u>(</u> sec)					-															
CRITE	RIA:																						
1. Chu 2. Riff 3. Sid	te: water depth e e: GR/RB - is a r R/B - is a riffle e channels - trea	equal to or great riffle flowing ove e flowing over & it as a separate	er than chan ar a gravel an through larg stream type	nel width d/or rubble bo e substrates	ttom (eg. rock and /c	or boulder), so	ome of which p	protrudes the surface	e				45	. Undercut Bank - . Over-hanging Ba . Visual Embedde . Woody Debris -	 % of bank overha ank Vegetation - % idness - % of sand total width should 	ng (above water edg of vegetation overhats s or fines surroundir be >10 cm in diamet	e for stream type. Sp ng for stream type. S g the larger substrate er	ecity left (L) or Specify L or R as,up to 100%	right (R)				
A= 0.8 for	ough bottom		- VF-											,									

APPENDIX C

Wetland Characterization – 2012 Field Assessment

Wetland ID	Wetland Type	Landscape Position	Landform	Water Flow	Soil Type	Surface/ Hydrological	Doi	minant Vegetation	
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Conditions	Herbs	Shrubs	Trees
A – northern portions (photo 3)	Treed Swamp	Lotic Stream	Basin	Outflow	Organic	 Intermittent standing water Saturated Surfaces Groundwater within 10 cm 	 three seeded sedge (Carex trisperma) bunchberry (Cornus canadensis) sheep laurel (Kalmia angustifolia) 	 larch (<i>Larix</i> <i>laricina</i>) balsam fir (<i>Abies</i> <i>balsamea</i>) black spruce (<i>Picea mariana</i>) 	 balsam fir (<i>Abies</i> balsamea) black spruce (<i>Picea</i> mariana)
A – southern portions (photo 4)	Treed / Shrub Swamp	Lotic Stream	Basin	Outflow	Organic	 Saturated Surfaces Groundwater within 10 cm 	 cinnamon fern (Osmunda cinnamomea) sheep laurel (Kalmia angustifolia) black spruce (Picea mariana) snowberry (Gaultheria hispidula) Labrador tea (Ledum groenlandicum) 	 balsam fir (<i>Abies</i> balsamea) black spruce (<i>Picea mariana</i>) birch spp¹ (<i>Betula</i> spp) maple spp¹ (<i>Acer</i> spp) speckled alder (<i>Alnus incana</i>) 	 balsam fir (<i>Abies</i> balsamea) black spruce (<i>Picea</i> mariana) birch spp¹ (<i>Betula</i> spp)
B (photo 5)	Treed Swamp	Terrene (inferred)	Basin	Outflow (via drainage)	Organic on boulders	 Saturated at surface Groundwater within 15 cm 	 three seeded sedge (Carex trisperma) sheep laurel (Kalmia angustiolia) cinnamon fern (Osmunda cinnamomea) 	 balsam fir (Abies balsamea) maple spp¹ (Acer spp) birch spp¹ (Betula spp) 	 balsam fir (Abies balsamea) maple spp¹ (Acer spp) birch spp¹ (Betula spp)

Table A: Wetland Characterization – 2012 Field Assessment

Wetland ID	Wetland	Landscape Position	Landform	Water	Soil	Surface/ Hydrological	Do	minant Vegetation	
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Conditions	Herbs	Shrubs	Trees
C – northern portions (photo 6)	Treed / Shrub Swamp	Lotic Stream	Basin	Outflow (inferred)	Organic	 Saturated at surface Groundwater within 15 cm 	 black spruce (<i>Picea mariana</i>) sheep laurel (<i>Kalmia</i> angustiolia) cinnamon fern (Osmunda cinnamomea) 	• black spruce (<i>Picea mariana</i>)	• black spruce (<i>Picea</i> <i>mariana</i>)
C – southern portions (photo 7)	Shrub Bog to Graminoid Fen	Lotic Stream	Basin	Outflow (inferred)	Organic	 Saturated at surface Groundwater within 5 cm 	 Labrador tea (Ledum groenlandicum) Cottongrass (Eriophorum spp.) sheep laurel (Kalmia angustiolia) black spruce (Picea mariana) cranberry (Vaccinium spp.) mayflower (Epigaea repens) 	• black spruce (<i>Picea mariana</i>)	n/a
D – northern portions (photo 8)	Treed Swamp	Lotic Stream (inferred)	Sloped	Outflow	Organic	 Saturated at surface Groundwater within 5 cm Intermittent standing water 	 balsam fir (Abies balsamea) three seeded sedge (Carex trisperma) sheep laurel (Kalmia angustifolia) 	• balsam fir (<i>Abies balsamea</i>)	 balsam fir (Abies balsamea) black spruce (Picea mariana)
D – southern portions (photo 9)	Treed Swamp	Lotic Stream (inferred)	Sloped	Throughflow	Organic	 Saturated at surface Groundwater within 10 cm 	 balsam fir (Abies balsamea) three seeded sedge (Carex trisperma) sheep laurel (Kalmia angustifolia) 	 balsam fir (<i>Abies</i> balsamea) black spruce (<i>Picea mariana</i>) 	 balsam fir (Abies balsamea) black spruce (Picea mariana)

Wetland ID	Wetland	Landscape Position	Landform	Water	Soil	Surface/ Hydrological	Do	minant Vegetation	
	1,900				1,750	Conditions	Herbs	Shrubs	Trees
E (photo 10)	Treed Swamp	Lotic Stream	Basin	Outflow (inferred)	Organic	 Saturated at surface Groundwater within 15 cm 	 three seeded sedge (Carex trisperma) sheep laurel (Kalmia angustifolia) balsam fir (Abies balsamea) 	 black spruce (<i>Picea mariana</i>) 	• black spruce (<i>Picea</i> <i>mariana</i>)
F (photo 11)	Treed Swamp	Terrene	Basin	Isolated	Organic	 Saturated Surfaces Groundwater within 15 cm 	 three seeded sedge (Carex trisperma) sheep laurel (Kalmia angustifolia) balsam fir (Abies balsamea) 	 black spruce (<i>Picea mariana</i>) red maple (<i>Acer rubrum</i>) 	 black spruce (<i>Picea</i> <i>mariana</i>) red maple (<i>Acer</i> <i>rubrum</i>)
G (photo 12)	Treed Swamp	Lotic Stream	Basin	Throughflow	Organic on boulders	 Saturated at surface Groundwater within 20 cm 	 balsam fir (Abies balsamea) 	 balsam fir (Abies balsamea) 	 black spruce (Picea mariana)
H – northwestern portions (photo 13)	Treed / Shrub Swamp	Lotic Stream	Basin	Throughflow	Organic	 Saturated within 5cm Groundwater within 20 cm 	 Labrador tea (Ledum groenlandicum) leatherleaf (Chamaedaphne calyculata) sheep laurel (Kalmia angustifolia) teaberry (Gaultheria procumbens) 	 bog huckleberry (Gaylussacia dumosa) balsam fir (Abies balsamea) black spruce (Picea mariana) 	 black spruce (<i>Picea</i> <i>mariana</i>) balsam fir (<i>Abies</i> <i>balsamea</i>)

Wetland ID	Wetland Type	Landscape Position	Landform	Water Flow	Soil Type	Surface/ Hydrological	Do	minant Vegetation	
					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Conditions	Herbs	Shrubs	Trees
H – southeast portions (photo 14)	Shrub Bog	Lotic Pond/Lotic Stream (inferred)	Flat	Outflow	Organic	 Saturated at surface Groundwater within 10 cm Intermittent standing water 	 leatherleaf (Chamaedaphne calyculata) pitcher plant (Sarracenia purpurea) sedge spp¹ (Carex spp) sheep laurel (Kalmia angustifolia) 	 sheep laurel (Kalmia angustifolia) 	n/a
l (photo 15)	Shrub Swamp	Terrene	Basin	Isolated	Organic on boulders	 Saturated within 10 cm Groundwater within 20 cm 	 Leatherleaf (Chamaedaphne calyculata) Labrador tea (Ledum groenlandicum) cinnamon fern (Osmunda cinnamomea) sheep laurel (Kalmia angustifolia) Canada holly (Ilex verticillata) 	 sheep laurel (Abies balsamea) rhodora (Rhododendron canadense) 	n/a

¹ Identification of species not possible due to lack of flower

Photo 1: Wetland 1 (AMEC).

Photo 2: Wetland 1 (AMEC), bordering Winter Creek.

Photo 3: Wetland A (northern portion).

Photo 4: Wetland A (southern portion).

Photo 5: Wetland B.

Photo 6: Wetland C (northern portion).

Photo 7: Wetland C (southern portion).

Photo 8: Wetland D (northern portion).

Photo 9: Wetland D (southern portion).

Photo 11: Wetland F.

Photo 10: Wetland E.

Photo 12: Wetland G.

Photo 13: Watercourse at northwest portion of Wetland H.

Photo 14: Wetland H (southeast portion).

Photo 15: Wetland I.

APPENDIX D

Flora Species Tables

Table D1

ACCDC Data of Recorded Observations of Flora Species Within 100 km of the Project Site

Common Name	Scientific Name	NSDNR Status ¹	COSEWIC Status ²	SARA Status ³	NSESA Status⁴
Acadian quillwort	Isoetes acadiensis	Yellow	Not Listed	Not Listed	Not Listed
alder-leaved buckthorn	Rhamnus alnifolia	Yellow	Not Listed	Not Listed	Not Listed
alpine bilberry	Vaccinium uliginosum	Yellow	Not Listed	Not Listed	Not Listed
alpine bistort	Bistorta vivipara	Red	Not Listed	Not Listed	Not Listed
alpine rush	Juncus alpinoarticulatus	Red	Not Listed	Not Listed	Not Listed
Atlantic sedge	Carex atlantica	Green	Not Listed	Not Listed	Not Listed
balsam groundsel	Packera paupercula	Green	Not Listed	Not Listed	Not Listed
bastard's toadflax	Comandra umbellata	Red	Not Listed	Not Listed	Not Listed
Bebb's sedge	Carex bebbii	Red	Not Listed	Not Listed	Not Listed
black ash	Fraxinus nigra	Yellow	Not Listed	Not Listed	Not Listed
bloodroot	Sanguinaria canadensis	Green	Not Listed	Not Listed	Not Listed
blue cohosh	Caulophyllum thalictroides	Red	Not Listed	Not Listed	Not Listed
blue vervain	Verbena hastata	Green	Not Listed	Not Listed	Not Listed
blunt-leaved pondweed	Potamogeton obtusifolius	Yellow	Not Listed	Not Listed	Not Listed
bog birch	Betula pumila	Yellow	Not Listed	Not Listed	Not Listed
bog willow	Salix pedicellaris	Yellow	Not Listed	Not Listed	Not Listed
boreal aster	Symphyotrichum boreale	Yellow	Not Listed	Not Listed	Not Listed
bristle-leaved sedge	Carex eburnea	Yellow	Not Listed	Not Listed	Not Listed
broad-glumed brome	Bromus latiglumis	Red	Not Listed	Not Listed	Not Listed
brook lobelia	Lobelia kalmii	Red	Not Listed	Not Listed	Not Listed
bulblet bladder fern	Cystopteris bulbifera	Green	Not Listed	Not Listed	Not Listed
buttonbush dodder	Cuscuta cephalanthi	Red	Not Listed	Not Listed	Not Listed
Canada anemone	Anemone canadensis	Red	Not Listed	Not Listed	Not Listed
Canada germander	Teucrium canadense	Yellow	Not Listed	Not Listed	Not Listed
Canada lily	Lilium canadense	Yellow	Not Listed	Not Listed	Not Listed
Canada violet	Viola canadensis	Extirpated	Not Listed	Not Listed	Not Listed
Canada wood nettle	Laportea canadensis	Yellow	Not Listed	Not Listed	Not Listed
climbing false buckwheat	Fallopia scandens	Yellow	Not Listed	Not Listed	Not Listed
clustered sanicle	Sanicula odorata	Red	Not Listed	Not Listed	Not Listed
common scouring-rush	Equisetum hyemale	Green	Not Listed	Not Listed	Not Listed
cuckoo flower	Cardamine pratensis	Red	Not Listed	Not Listed	Not Listed
cut-leaved coneflower	Rudbeckia laciniata	Yellow	Not Listed	Not Listed	Not Listed
cut-leaved moonwort	Botrychium dissectum	Green	Not Listed	Not Listed	Not Listed
deer-tongue panic grass	Dichanthelium clandestinum	Green	Not Listed	Not Listed	Not Listed
disguised St. John's-wort	Hypericum dissimulatum	Yellow	Not Listed	Not Listed	Not Listed
downy willowherb	Epilobium strictum	Yellow	Not Listed	Not Listed	Not Listed
Dudley's rush	Juncus dudleyi	Yellow	Not Listed	Not Listed	Not Listed
dwarf bilberry	Vaccinium caespitosum	Yellow	Not Listed	Not Listed	Not Listed
dwarf scouring-rush	Equisetum scirpoides	Green	Not Listed	Not Listed	Not Listed
early coralroot	Corallorhiza trifida	Green	Not Listed	Not Listed	Not Listed
Eastern white cedar	Thuja occidentalis	Red	Not Listed	Not Listed	Vulnerable
estuarine sedge	Carex vacillans	Undetermined	Not Listed	Not Listed	Not Listed
estuary beggarticks	Bidens hyperborea	Red	Not Listed	Not Listed	Not Listed

Common Name	Scientific Name	NSDNR Statua ¹	COSEWIC	SARA	NSESA
false mermaidwood	Eloarkaa prosarpinacoidas	Status	Status Not at Rick	Not Listed	Not Listed
Farwell's water milfeil	Muriophyllum forwollii	Yellow	Not Listed	Not Listed	Not Listed
Fornald's sorviceborry	Amelanchier fernaldii	Lindetermined	Not Listed	Not Listed	Not Listed
fow floworod spikorush		Dilueterimineu	Not Listed	Not Listed	Not Listed
flat-stommod pondwood	Potomogoton zostoriformio	Vollow	Not Listed	Not Listed	Not Listed
fortail sodgo	Carey alongooidea	Pod	Not Listed	Not Listed	Not Listed
fragrant wood forn	Calex alopecoldea	Keu	Not Listed	Not Listed	Not Listed
Fries' pondwood	Diyopiens nagrans		Not Listed	Not Listed	Not Listed
fringed blue ester	Symphystrichum silislatum	Keu	Not Listed	Not Listed	Not Listed
		f ellow	Not Listed	Not Listed	Not Listed
	Pop dauga	Vellow	Not Listed	Not Listed	Not Listed
gladen glavendere		Pod	Not Listed	Not Listed	Not Listed
golden alexanders	Zizia dui ed	Keu	Not Listed	Not Listed	Not Listed
Green spieen wort		Tellow	Not Listed	Not Listed	Not Listed
Greene srush	Juncus greener	Creen	Not Listed	Not Listed	Not Listed
ground fir		NetListed	Not Listed	Not Listed	Not Listed
bigblond ruch		Not Listed	Not Listed	Not Listed	Not Listed
hooked earimony		renow	Not Listed	Not Listed	Not Listed
Hooked agrimony	Agrimonia gryposepaia	Green	Not Listed	Not Listed	Not Listed
hooker's orchid		Green	Not Listed	Not Listed	Not Listed
humped bladderwart		Crean	Not Listed	Not Listed	Not Listed
humped bladderwort	Erigoron by oppifoliup	Green	Not Listed	Not Listed	Not Listed
inverted bladderwort		Pod	Not Listed	Not Listed	Not Listed
Labrador bodstraw	Galium labradoricum	Vollow	Not Listed	Not Listed	Not Listed
lance-leaved figwort	Scrophularia lanceolata	Lindetermined	Not Listed	Not Listed	Not Listed
large purple fringed orchid	Platanthera grandiflora	Groop	Not Listed	Not Listed	Not Listed
large St. John's-wort	Hypericum maius	Red	Not Listed	Not Listed	Not Listed
Laurentian bladder fern	Cystopteris laurentiana	Red	Not Listed	Not Listed	Not Listed
least moonwort	Botrychium simplex	Vellow	Not Listed	Not Listed	Not Listed
lesser brown sedge	Carex adusta	Yellow	Not Listed	Not Listed	Not Listed
lesser pyrola	Pyrola minor	Yellow	Not Listed	Not Listed	Not Listed
lesser rattlesnake-plantain	Goodvera repens	Yellow	Not Listed	Not Listed	Not Listed
lesser spearwort	Ranunculus flammula	Green	Not Listed	Not Listed	Not Listed
limestone scurvy-grass	Cochlearia tridactvlites	Red	Not Listed	Not Listed	Not Listed
little curlygrass fern	Schizaea pusilla	Green	Not Listed	Not Listed	Not Listed
livid sedae	Carex livida	Red	Not Listed	Not Listed	Not Listed
Loesel's twayblade	Liparis loeselii	Green	Not Listed	Not Listed	Not Listed
long-leaved pondweed	Potamogeton nodosus	Red	Not Listed	Not Listed	Not Listed
long-leaved starwort	Stellaria longifolia	Yellow	Not Listed	Not Listed	Not Listed
low spikemoss	Selaginella selaginoides	Red	Not Listed	Not Listed	Not Listed
maidenhair spleenwort	Asplenium trichomanes	Yellow	Not Listed	Not Listed	Not Listed
marsh bellflower	Campanula aparinoides	Yellow	Not Listed	Not Listed	Not Listed
marsh grass-of-Parnassus	Parnassia palustris	Red	Not Listed	Not Listed	Not Listed
marsh horsetail	Equisetum palustre	Red	Not Listed	Not Listed	Not Listed
marsh mermaidweed	Proserpinaca palustris	Green	Not Listed	Not Listed	Not Listed
meadow horsetail	Equisetum pratense	Yellow	Not Listed	Not Listed	Not Listed
meadow willow	Salix petiolaris	Green	Not Listed	Not Listed	Not Listed

Common Name	Scientific Name	NSDNR Status ¹	COSEWIC Status ²	SARA Status ³	NSESA Status ⁴
Moor rush	Juncus stygius	Yellow	Not Listed	Not Listed	Not Listed
narrow-leaved blue-eved-		Tellow	NOT LISTED	NOT LISTED	NOT LISTED
grass	Sisyrinchium angustifolium	Green	Not Listed	Not Listed	Not Listed
New Jersey rush	Juncus caesariensis	Yellow	Special	Special	Vulnerable
Newfoundland dwarf birch	Betula michauxii	Vellow	Not Listed	Not Listed	Not Listed
Northern arnica	Arnica lonchophylla	Red	Not Listed	Not Listed	Not Listed
Northern blueberry	Vaccinium boreale	Red	Not Listed	Not Listed	Not Listed
Northern bog sedge	Carex gynocrates	Red	Not Listed	Not Listed	Not Listed
Northern bog violet	Viola nephrophylla	Yellow	Not Listed	Not Listed	Not Listed
Northern burreed	Sparganium hyperboreum	Yellow	Not Listed	Not Listed	Not Listed
Northern clubmoss	Dinhasiastrum complanatum	Green	Not Listed	Not Listed	Not Listed
Northern comandra	Geocaulon lividum	Yellow	Not Listed	Not Listed	Not Listed
Northern dewberry	Rubus flagellaris	Undetermined	Not Listed	Not Listed	Not Listed
Northern holly fern	Polystichum lonchitis	Yellow	Not Listed	Not Listed	Not Listed
Northern wild licorice	Galium kamtschaticum	Green	Not Listed	Not Listed	Not Listed
orange-fruited tinker's		Vallaur	Not Listed	Not Listed	Not Listed
weed	Thosteum aurantiacum	Yellow	Not Listed	NOT LISTED	NOT LISTED
pale false manna grass	Torreyochloa pallida	Green	Not Listed	Not Listed	Not Listed
pale jewelweed	Impatiens pallida	Yellow	Not Listed	Not Listed	Not Listed
Pennsylvania smartweed	Persicaria pensylvanica	Green	Not Listed	Not Listed	Not Listed
Philadelphia fleabane	Erigeron philadelphicus	Yellow	Not Listed	Not Listed	Not Listed
pink pyrola	Pyrola asarifolia	Green	Not Listed	Not Listed	Not Listed
porcupine sedge	Carex hystericina	Red	Not Listed	Not Listed	Not Listed
pubescent sedge	Carex hirtifolia	Yellow	Not Listed	Not Listed	Not Listed
purple-stemmed angelica	Angelica atropurpurea	Green	Not Listed	Not Listed	Not Listed
purple-veined willowherb	Epilobium coloratum	Yellow	Not Listed	Not Listed	Not Listed
Quebec hawthorn	Crataegus submollis	Undetermined	Not Listed	Not Listed	Not Listed
red pigweed	Chenopodium rubrum	Red	Not Listed	Not Listed	Not Listed
Richardson's pondweed	Potamogeton richardsonii	Red	Not Listed	Not Listed	Not Listed
rock whitlow-grass	Draba glabella	Red	Not Listed	Not Listed	Not Listed
sage willow	Salix candida	Red	Not Listed	Not Listed	Not Listed
saltmarsh starwort	Stellaria humifusa	Yellow	Not Listed	Not Listed	Not Listed
satiny willow	Salix pellita	Undetermined	Not Listed	Not Listed	Not Listed
scabrous black sedge	Carex atratiformis	Yellow	Not Listed	Not Listed	Not Listed
seabeach ragwort	Senecio pseudoarnica	Yellow	Not Listed	Not Listed	Not Listed
seaside brookweed	Samolus valerandi	Yellow	Not Listed	Not Listed	Not Listed
sharp-fruited knotweed	Polygonum oxyspermum	Undetermined	Not Listed	Not Listed	Not Listed
sharp-fruited rush	Juncus acuminatus	Yellow	Not Listed	Not Listed	Not Listed
shining ladies'-tresses	Spiranthes lucida	Red	Not Listed	Not Listed	Not Listed
short-awned foxtail	Alopecurus aequalis	Yellow	Not Listed	Not Listed	Not Listed
showy lady's-slipper	Cypripedium reginae	Red	Not Listed	Not Listed	Not Listed
Siberian water milfoil	Myriophyllum sibiricum	Green	Not Listed	Not Listed	Not Listed
sitka clubmoss	Diphasiastrum sitchense	Green	Not Listed	Not Listed	Not Listed
slender beakrush	Rhynchospora capillacea	Red	Not Listed	Not Listed	Not Listed
slender blue flag	Iris prismatica	Red	Not Listed	Not Listed	Not Listed
slender cottongrass	Eriophorum gracile	Yellow	Not Listed	Not Listed	Not Listed

Common Name	Scientific Name	NSDNR Status ¹	COSEWIC Status ²	SARA Status ³	NSESA Status⁴
slim-stemmed reed grass	n-stemmed reed grass Calamagrostis stricta		Not Listed	Not Listed	Not Listed
small burreed	Sparganium natans	Green	Not Listed	Not Listed	Not Listed
small round-leaved orchid	Platanthera orbiculata	Green	Not Listed	Not Listed	Not Listed
small-flowered woodrush	Luzula parviflora	Green	Not Listed	Not Listed	Not Listed
smooth cliff fern	Woodsia glabella	Yellow	Not Listed	Not Listed	Not Listed
smooth sweet cicely	Osmorhiza longistylis	Red	Not Listed	Not Listed	Not Listed
soapberry	Shepherdia canadensis	Yellow	Not Listed	Not Listed	Not Listed
Southern bog clubmoss	Lycopodiella appressa	Green	Not Listed	Not Listed	Not Listed
Southern mudwort	Limosella australis	Yellow	Not Listed	Not Listed	Not Listed
Southern twayblade	Listera australis	Red	Not Listed	Not Listed	Not Listed
sparse-flowered sedge	Carex tenuiflora	Red	Not Listed	Not Listed	Not Listed
spurred gentian	Halenia deflexa	Yellow	Not Listed	Not Listed	Not Listed
stalked bulrush	Scirpus pedicellatus	Undetermined	Not Listed	Not Listed	Not Listed
Steller's rockbrake	Cryptogramma stelleri	Red	Not Listed	Not Listed	Not Listed
sticky false asphodel	Triantha glutinosa	Red	Not Listed	Not Listed	Not Listed
stout smartweed	Persicaria robustior	Green	Not Listed	Not Listed	Not Listed
sturdy bulrush	Bolboschoenus robustus	Undetermined	Not Listed	Not Listed	Not Listed
swamp loosestrife	Decodon verticillatus	Yellow	Not Listed	Not Listed	Not Listed
swamp milkweed	Asclepias incarnata	Green	Not Listed	Not Listed	Not Listed
Swedish bunchberry	Cornus suecica	Yellow	Not Listed	Not Listed	Not Listed
sweet wood reed grass	Cinna arundinacea	Red	Not Listed	Not Listed	Not Listed
tender sedge	Carex tenera	Yellow	Not Listed	Not Listed	Not Listed
thread-leaved pondweed	Stuckenia filiformis	Undetermined	Not Listed	Not Listed	Not Listed
tinged sedge	Carex tincta	Red	Not Listed	Not Listed	Not Listed
triangle moonwort	Botrychium lanceolatum	Yellow	Not Listed	Not Listed	Not Listed
triangular-valve dock	Rumex triangulivalvis	Yellow	Not Listed	Not Listed	Not Listed
variegated horsetail	Equisetum variegatum	Green	Not Listed	Not Listed	Not Listed
Virginia anemone	Anemone virginiana	Yellow	Not Listed	Not Listed	Not Listed
water beggarticks	Bidens beckii	Yellow	Not Listed	Not Listed	Not Listed
water blinks	Montia fontana	Red	Not Listed	Not Listed	Not Listed
water pygmyweed	Crassula aquatica	Yellow	Not Listed	Not Listed	Not Listed
white adder's-mouth	Malaxis monophyllos	Red	Not Listed	Not Listed	Not Listed
white mountain saxifrage	Saxifraga paniculata	Yellow	Not Listed	Not Listed	Not Listed
white sea-blite	Suaeda maritima	Green	Not Listed	Not Listed	Not Listed
white snakeroot	Ageratina altissima	Red	Not Listed	Not Listed	Not Listed
white-stemmed pondweed	Potamogeton praelongus	Yellow	Not Listed	Not Listed	Not Listed
Wiegand's wild rye	Elymus wiegandii	Red	Not Listed	Not Listed	Not Listed
wild chives	Allium schoenoprasum	Red	Not Listed	Not Listed	Not Listed
wood anemone	Anemone quinquefolia	Yellow	Not Listed	Not Listed	Not Listed
yellow bartonia	Bartonia virginica	Green	Not Listed	Not Listed	Not Listed
yellow lady's-slipper	Cypripedium parviflorum	Yellow	Not Listed	Not Listed	Not Listed
yellow marsh marigold	Caltha palustris	Yellow	Not Listed	Not Listed	Not Listed
yellow spikerush	Eleocharis flavescens	Yellow	Not Listed	Not Listed	Not Listed
yellow-seeded false pimperel	Lindernia dubia	Green	Not Listed	Not Listed	Not Listed

¹ NSDNR, 2010; ² COSEWIC, 2009a; ³ SARA, 2011; ⁴ NSESA, 2007 Source: ACCDC, 2012

Table D2

Species Observed in 2004 and 2005, Within the Optimized Layout Footprint

Common Name	Scientific Name	NSDNR Status ¹	COSEWIC Status ²	SARA Status ³	NSESA Status⁴
American mountain ash	Sorbus Americana	Green	Not listed	Not listed	Not listed
balsam fir	Abies balsams	Green	Not listed	Not listed	Not listed
Bartrams serviceberry	Amelanchier bartramiana	Green	Not listed	Not listed	Not listed
black huckleberry	Gaylussacia baccata	Green	Not listed	Not listed	Not listed
black spruce	Picea mariana	Green	Not listed	Not listed	Not listed
blue flag (harlequin blue flag)	Iris versicolor	Green	Not listed	Not listed	Not listed
bluejoint reed grass	Calamagrostis Canadensis	Green	Not listed	Not listed	Not listed
bracken fern	Pteridium aquilinum	Green	Not listed	Not listed	Not listed
Broom crowberry	Corema conradii	Green	Not listed	Not listed	Not listed
brown-fruited rush	Juncus pelocarpus	Green	Not listed	Not listed	Not listed
bunchberry	Cornus canadesis	Green	Not listed	Not listed	Not listed
chokecherry	Prunus virginiana	Green	Not listed	Not listed	Not listed
cinnamon fern	Osmunda cinnamomea	Green	Not listed	Not listed	Not listed
Clinton lily (yellow bluebead lily	Clintonia borealis	Green	Not listed	Not listed	Not listed
common hair-grass (wavy hair grass)	Deschampsia flexuosa	Green	Not listed	Not listed	Not listed
common wool-grass (common woolly bulrush)	Scirpus cyperinus	Green	Not listed	Not listed	Not listed
Cotton grass (rough cottongrass)	Eriophorum tenellum	Green	Not listed	Not listed	Not listed
creeping bent grass	Agrostis stolonifera	Green	Not listed	Not listed	Not listed
downy alder (green alder)	Alnus viridis	Green	Not listed	Not listed	Not listed
Eastern spreading wood fern (mountain wood fern)	Dryopteris campyloptera	Green	Not listed	Not listed	Not listed
evergreen wood fern	Dryopteris intermedia	Green	Not listed	Not listed	Not listed
false holly (mountain holly)	Nemopanthus mucronatus	Green	Not listed	Not listed	Not listed
fibrous-root sedge	Carex communis	Green	Not listed	Not listed	Not listed
goldthread	Coptis trifolia	Green	Not listed	Not listed	Not listed
green-fruited burreed	Sparganium emersum	Green	Not listed	Not listed	Not listed
hay-scented fern	Dennstaedtia punctilobula	Green	Not listed	Not listed	Not listed
heart-leaf birch	Betula cordifolia	Green	Not listed	Not listed	Not listed
Indian pipe	Monotropa uniflora	Green	Not listed	Not listed	Not listed
interrupted fern	Osmunda claytoniana	Green	Not listed	Not listed	Not listed
jack pine	Pinus banksiana	Green	Not listed	Not listed	Not listed
Common Labrador	Ledum groenlandicum	Green	Not listed	Not listed	Not listed
tea					
lady-fern	Athyrium filix-femina	Green	Not listed	Not listed	Not listed

leatherleaf	Chamaedaphne calysulata	Green	Not listed	Not listed	Not listed
lions paw	Pernanthes trifoliata		Not listed	Not listed	Not listed
lowbush blueberry	Vaccinium angustifolium	Green	Not listed	Not listed	Not listed
mountain cranberry	Vaccinium vitis-idaee	Green	Not listed	Not listed	Not listed
mountain fly	Lonicera villosa	Green	Not listed	Not listed	Not listed
honeysuckle					
narrow-leaved	Spiraea alba	Green	Not listed	Not listed	Not listed
meadow-sweet					
(white					
meadowsweet)					
New York fern	Thelypteris	Green	Not listed	Not listed	Not listed
	noveboracensis				
Northern beech fern	Phegopteris connectilis	Green	Not listed	Not listed	Not listed
Northern sedge	Carex folliculata	Green	Not listed	Not listed	Not listed
Northern starflower	Trientalis borealis	Green	Not listed	Not listed	Not listed
pale laurel (pale bog	Kalmia polifolia	Green	Not listed	Not listed	Not listed
laurel)					
paper birch	Betula papyrifera	Green	Not listed	Not listed	Not listed
partridge berry	Mitchella repens	Green	Not listed	Not listed	Not listed
pin cherry	Prunis pennsylvanica	Green	Not listed	Not listed	Not listed
pink lady's-slipper	Cypripedium acaule	Green	Not listed	Not listed	Not listed
pointed wood-rush	Luzula acuminata	Green	Not listed	Not listed	Not listed
(hairy woodrush)		-			
red chokeberry	Aronia arbutifolia	Green	Not listed	Not listed	Not listed
red maple	Acer rubrum	Green	Not listed	Not listed	Not listed
red raspberry	Rubum idaeus	Green	Not listed	Not listed	Not listed
red spruce	Picea rubens	Green	Not listed	Not listed	Not listed
red-top grass	Agrostis alba		Not listed	Not listed	
rhodora	Rhododendron canadense	Green	Not listed	Not listed	Not listed
rose twisted-stalk	Streptopus roseus	Green	Not listed	Not listed	Not listed
round-leaved	Cornus rugosa	Green	Not listed	Not listed	Not listed
aogwood		0	NL (Paral		
round leaved	Drosera rotundifolia	Green	Not listed	Not listed	Not listed
sundew	Soilidaga rupaga	Croon	Notlictod	Notlistad	Notlistad
addeprod	SoliidagoTusosa	Green	NULIISLEU	Not listed	Notlisted
Savin-leaved	Dinhasiastrum sitchonso	Green	Not listed	Not listed	Not listed
Clubmoss (Sitka	Dipitasiastrum sitemense	Green	NULIISLEU	NOLIISLEU	NULIISLEU
Clubmoss)					
shadbush (Canada	Amelanchier Canadensis	Green	Not listed	Not listed	Not listed
serviceberry)		Croon	i tot notod	i tot notou	i tot notod
sheep laurel	Kalmia angustifolia	Green	Not listed	Not listed	Not listed
speckled alder	Alnus incana	Green	Not listed	Not listed	Not listed
sphagnum moss	Sphagnum sp.		Not listed	Not listed	Not listed
star sedge	Carex echinata	Green	Not listed	Not listed	Not listed
swamp rose	Rosa nitida	Green	Not listed	Not listed	Not listed
sweet gale	Myrica gale	Green	Not listed	Not listed	Not listed
sweet vernal grass	Anthoxanthum odoratum	Exotic	Not listed	Not listed	Not listed
tall white aster	Aster umbellatus		Not listed	Not listed	Not listed
tamarack	Larix laricina	Green	Not listed	Not listed	Not listed
Eastern teaberry	Gaultheria procumbens	Green	Not listed	Not listed	Not listed
trailing arbutus	Epigaea repens	Green	Not listed	Not listed	Not listed
twinflower	Linnaea borealis	Green	Not listed	Not listed	Not listed
two-seeded sedge	Carex disperma	Green	Not listed	Not listed	Not listed

velvet-leaved	Vaccinium myrtilloides	Green	Not listed	Not listed	Not listed
blueberry					
weak sedge (white-	Carex debilis	Green	Not listed	Not listed	Not listed
edged Sedge)					
white beakrush	Rhynchospora alba	Green	Not listed	Not listed	Not listed
white wood-sorrel	Ozalis montana		Not listed	Not listed	Not listed
wild lily-of-the-	Maianthemum canadense	Green	Not listed	Not listed	Not listed
valley					
wild raisin (Northern	Viburnum nudum	Green	Not listed	Not listed	Not listed
wild raisin)					
wild sarsaparilla	Aralia nudicaulis	Green	Not listed	Not listed	Not listed
American witch-	Hamamelis virginiana	Green	Not listed	Not listed	Not listed
hazel					
wood aster	Aster acuminatus		Not listed	Not listed	Not listed
yellow birch	Betula alleghaniensis	Green	Not listed	Not listed	Not listed

Source: AMEC, 2006

APPENDIX E

Significant Fauna Species and Habitats within 50 km of the Project Site

WLDNUM	Scientific Name	Common Name
GU898	Odocoileus virginianus	White-tailed Deer
GU900	Odocoileus virginianus	White-tailed Deer
GU921	Odocoileus virginianus	White-tailed Deer
GU988	Odocoileus virginianus	White-tailed Deer
IN102	Odocoileus virginianus	White-tailed Deer
IN108	Odocoileus virginianus	White-tailed Deer
IN109	Odocoileus virginianus	White-tailed Deer
IN112	Odocoileus virginianus	White-tailed Deer
IN113	Odocoileus virginianus	White-tailed Deer
IN122	Odocoileus virginianus	White-tailed Deer
IN123	Odocoileus virginianus	White-tailed Deer
IN210	Odocoileus virginianus	White-tailed Deer
IN285	Glyptemys insculpta	Wood Turtle
IN343	Glyptemys insculpta	Wood Turtle
IN93	Odocoileus virginianus	White-tailed Deer
IN94	Odocoileus virginianus	White-tailed Deer
IN97	Odocoileus virginianus	White-tailed Deer
RI241	Halichoerus grypus	Gray Seal
RI248	Odocoileus virginianus	White-tailed Deer
RI254	Halichoerus grypus	Gray Seal
RI256	Odocoileus virginianus	White-tailed Deer
RI265	Halichoerus grypus	Gray Seal
RI276	Odocoileus virginianus	White-tailed Deer
RI308	Odocoileus virginianus	White-tailed Deer
RI310	Odocoileus virginianus	White-tailed Deer
RI359	Odocoileus virginianus	White-tailed Deer
RI404	Odocoileus virginianus	White-tailed Deer
RI407	Odocoileus virginianus	White-tailed Deer
RI409	Odocoileus virginianus	White-tailed Deer
RI411	Odocoileus virginianus	White-tailed Deer
RI413	Odocoileus virginianus	White-tailed Deer
RI415	Odocoileus virginianus	White-tailed Deer
RI422	Odocoileus virginianus	White-tailed Deer
RI438	Odocoileus virginianus	White-tailed Deer
RI606	Odocoileus virginianus	White-tailed Deer
RI647	Odocoileus virginianus	White-tailed Deer
RI664	cave	significant area

Source: NSDNR, 2012a

APPENDIX F

Birds Species Tables

Table F1

ACCDC Data of Recorded Observations of Bird Species Within 100 km of the Project Site (2012)

Common Name	Scientific Name	NSDNR Status ¹	COSEWIC Status ²	SARA Status ³	NSESA Status ⁴
American Bittern	Botaurus lentiginosus	Yellow	Not Listed	Not Listed	Not Listed
American Coot	Fulica americana	Undetermined	Not at Risk	Not Listed	Not Listed
American Golden- Plover	Pluvialis dominica	Yellow	Not Listed	Not Listed	Not Listed
American Three-toed Woodpecker	Picoides dorsalis	Undetermined	Not Listed	Not Listed	Not Listed
Arctic Tern	Sterna paradisaea	Red	Not Listed	Not Listed	Not Listed
Baltimore Oriole	lcterus galbula	Red	Not Listed	Not Listed	Not Listed
Bank Swallow	Riparia riparia	Red	Not Listed	Not Listed	Not Listed
Barn Swallow	Hirundo rustica	Yellow	Threatened	No Status	Not Listed
Bay-breasted Warbler	Dendroica castanea	Yellow	Not Listed	Not Listed	Not Listed
Bicknell's Thrush	Catharus bicknelli	Red	Threatened	Special Concern	Vulnerable
Black Guillemot	Cepphus grylle	Green	Not Listed	Not Listed	Not Listed
Black-backed Woodpecker	Picoides arcticus	Yellow	Not Listed	Not Listed	Not Listed
Black-billed Cuckoo	Coccyzus erythropthalmus	Red	Not Listed	Not Listed	Not Listed
Black- crowned Night-heron	Nycticorax nycticorax	Red	Not Listed	Not Listed	Not Listed
Black-legged Kittiwake	Rissa tridactyla	Yellow	Not Listed	Not Listed	Not Listed
Blackpoll Warbler	Dendroica striata	Yellow	Not Listed	Not Listed	Not Listed
Blue-winged Teal	Anas discors	Red	Not Listed	Not Listed	Not Listed
Bobolink	Dolichonyx oryzivorus	Yellow	Threatened	No Status	Not Listed
Boreal Chickadee	Poecile hudsonicus	Yellow	Not Listed	Not Listed	Not Listed
Boreal Owl	Aegolius funereus	Undetermined	Not at Risk	Not Listed	Not Listed
Brant	Branta bernicla	Yellow	Not Listed	Not Listed	Not Listed
Brown- headed Cowbird	Molothrus ater	Green	Not Listed	Not Listed	Not Listed
Canada Warbler	Wilsonia canadensis	Red	Threatened	Threatened	Not Listed
Cape May Warbler	Dendroica tigrina	Yellow	Not Listed	Not Listed	Not Listed
Chimney	Chaetura pelagica	Red	Threatened	Threatened	Endangered

Swift					
Cliff Swallow	Petrochelidon	Red	Not Listed	Not Listed	Not Listed
	pvrrhonota				
Common	Bucenhala clanqula	Green	Not Listed	Not Listed	Not Listed
Goldeneve	Buccphala clangula	Green		NOT LISTOU	
Common	Gavia immer	Red	Not at Risk	Not Listed	Not Listed
Loon	Gavia inimer	Neu	NOT AL INISK	NOL LISIEU	
Common	Chardailas minor	Ded	Threatened	Threatened	Threatened
Nighthowk	Chordenes minor	Reu	Threatened	Inteateneo	Threatened
Common Torn	Starna birunda	Vallow	Not at Diak	NotListad	NotListad
Common Term		Yellow	Not at Risk	Not Listed	Not Listed
Eastern	Sialia sialis	reliow	NOT AT RISK	NOT LISTED	Not Listed
Bluebird	T	Malla	Next Parts 1	Next Parent	Next Parts 1
Eastern	Tyrannus tyrannus	Yellow	Not Listed	Not Listed	Not Listed
Kingbird					
Eastern	Sayornis phoebe	Yellow	Not Listed	Not Listed	Not Listed
Phoebe					
Eastern	Contopus virens	Yellow	Not Listed	Not Listed	Not Listed
Wood-Pewee		-			
Fox Sparrow	Passerella iliaca	Green	Not Listed	Not Listed	Not Listed
Gray Catbird	Dumetella carolinensis	Red	Not Listed	Not Listed	Not Listed
Gray Jay	Perisoreus canadensis	Yellow	Not Listed	Not Listed	Not Listed
Great	Phalacrocorax carbo	Yellow	Not Listed	Not Listed	Not Listed
Cormorant					
Greater	Tringa melanoleuca	Yellow	Not Listed	Not Listed	Not Listed
Yellowlegs	-				
Harlequin	Histrionicus histrionicus	Red	Special	Special	Endangered
Duck			Concern	Concern	0
Hudsonian	Limosa haemastica	Yellow	Not Listed	Not Listed	Not Listed
Godwit					
Hudsonian	Numenius phaeopus	Yellow	Not Listed	Not Listed	Not Listed
Whimbrel					
Indigo	Passerina cyanea	Undetermined	Not Listed	Not Listed	Not Listed
Bunting	2				
Killdeer	Charadrius vociferus	Yellow	Not Listed	Not Listed	Not Listed
Least	Calidris minutilla	Green	Not Listed	Not Listed	Not Listed
Sandpiper					
Long-eared	Asio otus	Red	Not Listed	Not Listed	Not Listed
Owl					
Northern	Cardinalis cardinalis	Green	Not Listed	Not Listed	Not Listed
Cardinal					
Northern	Morus bassanus	Green	Not Listed	Not Listed	Not Listed
Gannet					
Northern	Accipiter gentilis	Green	Not at Risk	Not Listed	Not Listed
Goshawk	germe				
Northern	Mimus polyalottos	Green	Not Listed	Not Listed	Not Listed
Mockingbird					
Northern	Anas acuta	Red	Not Listed	Not Listed	Not Listed
Pintail					
Olive-sided	Contopus cooperi	Red	Threatened	Threatened	Not Listed
Flycatcher			meatoriou	meatoriou	
Philadelphia	Vireo philadelphicus	Undetermined	Not Listed	Not Listed	Not Listed
Vireo		Shactonnindu			
Pied-hilled	Podilymbus podicens	Yellow	Not Listed	Not Lietad	Not Listed
Grebe					
	1	1			

Pine	Pinicola enucleator	Red	Not Listed	Not Listed	Not Listed
Grospeak	Creireus reiseus	Mallau	Nat Lista d	Nat Lista d	Nat Lista d
Pine Siskin Dining Blover	Spinus pinus	reliow	INOT LISTED	INOT LISTED	INOT LISTED
Piping Plover	Drogno oubio	Red	Endangered	Endangered	Endangered
Purple Wartin	Colidria maritima	Keu	Not Listed	Not Listed	Not Listed
Purple	Calions manuma	reliow	Not Listed	Not Listed	NOT LISTED
Ped Knot	Calidris canutus	Rod	Endangered	No Status	Endangered
Ped-broasted	Morgus sorrator	Green	Not Listed	Not Listed	Not Listed
Merganser	Mergus serraior	Green	NOT LISTED	NOT LISTED	NOT LISTED
Roseate Tern	Sterna dougallii	Red	Endangered	Endangered	Endangered
Rose-	Pheucticus	Yellow	Not Listed	Not Listed	Not Listed
breasted	ludovicianus				
Grosbeak					
Rusty	Euphagus carolinus	Red	Special	Special	Not Listed
Blackbird			Concern	Concern	
Savannah	Passerculus	Green	Special	Special	Not Listed
Sparrow	sandwichensis		Concern	Concern	
Scarlet Tanager	Piranga olivacea	Undetermined	Not Listed	Not Listed	Not Listed
Semipalmated	Charadrius	Green	Not Listed	Not Listed	Not Listed
Plover	semipalmatus				
Semipalmated	Calidris pusilla	Yellow	Not Listed	Not Listed	Not Listed
Sandpiper					
Solitary	Tringa solitaria	Green	Not Listed	Not Listed	Not Listed
Sandpiper					
Spotted	Actitis macularius	Yellow	Not Listed	Not Listed	Not Listed
Tennessee	Vormiuoro porogrino	Vallow	NotListad	NotListad	NotListad
Warbler	vennivora peregrina	renow	NOI LISIEU	NOI LISIEU	NOL LISIEU
Vesper	Pooecetes gramineus	Red	Not Listed	Not Listed	Not Listed
Sparrow	-				
Virginia Rail	Rallus limicola	Undetermined	Not Listed	Not Listed	Not Listed
Warbling	Vireo gilvus	Undetermined	Not Listed	Not Listed	Not Listed
Vireo					
Whip-Poor-	Caprimulgus vociferus	Red	Threatened	Threatened	Not Listed
Will					
Willet	Tringa semipalmata	Red	Not Listed	Not Listed	Not Listed
Willow Flycatcher	Empidonax traillii	Yellow	Not Listed	Not Listed	Not Listed
Wilson's	Gallinago delicata	Yellow	Not Listed	Not Listed	Not Listed
Snipe	eannage aonoaid	10101			
Wilson's	Wilsonia pusilla	Yellow	Not Listed	Not Listed	Not Listed
Warbler					
Wood Thrush	Hylocichla mustelina	Undetermined	Not Listed	Not Listed	Not Listed
Yellow-bellied	Empidonax flaviventris	Yellow	Not Listed	Not Listed	Not Listed
Flycatcher					

¹ NSDNR, 2010; ² COSEWIC, 2012; ³ SARA, 2011; ⁴ NSESA, 2007 Source: ACCDC, 2012

Table F2

Significant Bird S	pecies and Habitats	within 50 km of th	e Project Site

WLDNUM	Scientific Name	Common Name
AT436	saline pond	migratory birds
RI271	Haliaeetus leucocephalus	Bald Eagle
RI272	Pandion haliaetus	Osprey
RI273	Sterna paradisaea	Arctic Tern
RI703	Pandion haliaetus	Osprey
RI705	Somateria mollissima	Common Eider
RI706	Somateria mollissima	Common Eider
RI707	Somateria mollissima	Common Eider
RI708	Somateria mollissima	Common Eider
RI714	Accipiter gentilis	Northern Goshawk
RI716	Haliaeetus leucocephalus	Bald Eagle
RI717	Haliaeetus leucocephalus	Bald Eagle
RI718	Haliaeetus leucocephalus	Bald Eagle
RI719	Pandion haliaetus	Osprey
RI720	N/A	Tern (unclassified)
RI721	N/A	Tern (unclassified)
RI722	N/A	Tern (unclassified)
RI723	N/A	Tern (unclassified)
RI724	N/A	Tern (unclassified)
RI725	N/A	Tern (unclassified)
GU875	Somateria mollissima	Common Eider
GU876	N/A	significant area
GU877	Somateria mollissima	Common Eider
GU887	N/A	migratory birds
GU888	N/A	migratory birds
GU899	Haliaeetus leucocephalus	Bald Eagle
GU906	Haliaeetus leucocephalus	Bald Eagle
GU914	Branta canadensis	Canada Goose
GU915	Somateria mollissima	Common Eider
GU923	Sterna dougallii	Roseate Tern
GU938	Sterna dougallii	Roseate Tern
GU990	Histrionicus histrionicus	Harlequin Duck
GU991	Histrionicus histrionicus	Harlequin Duck
GU993	Phalacrocorax auritus	Double-crested Cormorant
GU994	Phalacrocorax auritus	Double-crested Cormorant
GU995	N/A	Tern (unclassified)
RI286	Haliaeetus leucocephalus	Bald Eagle
RI287	Haliaeetus leucocephalus	Bald Eagle
RI288	Ardea herodias	Great Blue Heron
RI289	Gavia immer	Common Loon
RI290	Pandion haliaetus	Osprey
RI291	N/A	Waterfowl (unclassified)
RI292	Haliaeetus leucocephalus	Bald Eagle

RI293	Ardea herodias	Great Blue Heron	
RI294	Haliaeetus leucocephalus	Bald Eagle	
RI295	N/A	Waterfowl (unclassified)	
RI296	Sterna hirundo	CommonTern	
RI297	Somateria mollissima	Common Eider	
RI298	Haliaeetus leucocephalus	Bald Eagle	
RI300	N/A	Tern (unclassified)	
RI301	Haliaeetus leucocephalus	Bald Eagle	
RI302	Haliaeetus leucocephalus	Bald Eagle	
RI303	Haliaeetus leucocephalus	Bald Eagle	
GU1007	N/A	Tern (unclassified)	
GU871	N/A	Waterfowl (unclassified)	
GU872	Somateria mollissima	Common Eider	
GU873	Somateria mollissima	Common Eider	
GU874	Somateria mollissima	Common Eider	
RI261	Haliaeetus leucocephalus	Bald Eagle	
RI262	Gavia immer	Common Loon	
RI263	Gavia immer	Common Loon	
RI265	Somateria mollissima	Common Eider	
RI266	Sterna paradisaea	Arctic Tern	
RI267	Haliaeetus leucocephalus	Bald Eagle	
RI268	Gavia immer	Common Loon	
RI269	N/A	Waterfowl (unclassified)	
RI270	N/A	Tern (unclassified)	
RI274	Gavia immer	Common Loon	
RI275	Pandion haliaetus	Osprey	
RI277	Haliaeetus leucocephalus	Bald Eagle	
RI278	Gavia immer	Common Loon	
RI279	Haliaeetus leucocephalus	Bald Eagle	
RI280	Ardea herodias	Great Blue Heron	
RI689	Pandion haliaetus	Osprey	
RI694	Haliaeetus leucocephalus	Bald Eagle	
RI695	Haliaeetus leucocephalus	Bald Eagle	
RI696	Haliaeetus leucocephalus	Bald Eagle	
RI697	Pandion haliaetus	Osprey	
RI698	Haliaeetus leucocephalus	Bald Eagle	
RI699	Haliaeetus leucocephalus	Bald Eagle	
RI700	Haliaeetus leucocephalus	Bald Eagle	
RI701	Haliaeetus leucocephalus	Bald Eagle	
RI702	Pandion haliaetus	Osprey	
GU1002	N/A	Tern (unclassified)	
GU1004	N/A	Tern (unclassified)	
GU1005	N/A	Tern (unclassified)	
GU1006	N/A	Tern (unclassified)	
GU855	N/A	migratory birds	
GU858	N/A	migratory birds	
GU940	N/A	Tern (unclassified)	
GU985	Haliaeetus leucocephalus	Bald Eagle	

GU992	Histrionicus histrionicus	Harlequin Duck	
IN101	Gavia immer	Common Loon	
IN121	Sterna hirundo	CommonTern	
IN237	N/A	Tern (unclassified)	
IN409	Haliaeetus leucocephalus	Bald Eagle	
IN55	Haliaeetus leucocephalus	Bald Eagle	
IN59	Haliaeetus leucocephalus	Bald Eagle	
IN60	Haliaeetus leucocephalus	Bald Eagle	
IN64	Haliaeetus leucocephalus	Bald Eagle	
IN65	Haliaeetus leucocephalus	Bald Eagle	
IN68	Haliaeetus leucocephalus	Bald Eagle	
IN8	Phalacrocorax auritus	Double-crested Cormorant	
RI234	Haliaeetus leucocephalus	Bald Eagle	
RI237	N/A	Tern (unclassified)	
RI241	Somateria mollissima	Common Eider	
RI246	Anas crecca	Green-winged Teal	
RI254	Somateria mollissima	Common Eider	
RI255	Haliaeetus leucocephalus	Bald Eagle	
RI258	Pandion haliaetus	Osprey	
RI259	Sterna hirundo	CommonTern	
RI281	Haliaeetus leucocephalus	Bald Eagle	
RI282	Bubo virginianus	Great Horned Owl	
RI283	Gavia immer	Common Loon	
RI284	Pandion haliaetus	Osprey	
RI285	N/A	Waterfowl (unclassified)	
RI305	Pandion haliaetus	Osprey	
RI306	Haliaeetus leucocephalus	Bald Eagle	
RI307	Gavia immer	Common Loon	
RI309	Haliaeetus leucocephalus	Bald Eagle	
RI311	Gavia immer	Common Loon	
RI312	Haliaeetus leucocephalus	Bald Eagle	
RI313	Bubo virginianus	Great Horned Owl	
RI314	Haliaeetus leucocephalus	Bald Eagle	
RI315	Haliaeetus leucocephalus	Bald Eagle	
RI316	N/A	Tern (unclassified)	
RI318	Haliaeetus leucocephalus	Bald Eagle	
RI319	N/A	Tern (unclassified)	
RI320	Haliaeetus leucocephalus	Bald Eagle	
RI321	Haliaeetus leucocephalus	Bald Eagle	
RI322	Gavia immer	Common Loon	
RI323	Phalacrocorax auritus	Double-crested Cormorant	
RI324	Sterna hirundo	Common Tern	
RI325	Haliaeetus leucocephalus	Bald Eagle	
RI326	Gavia immer	Common Loon	
RI327	Ardea herodias	Great Blue Heron	
RI328	Haliaeetus leucocephalus	Bald Eagle	
RI329	Haliaeetus leucocephalus	Bald Eagle	
RI330	Haliaeetus leucocephalus	Bald Eagle	

RI331	Ardea herodias	Great Blue Heron	
RI332	N/A	Waterfowl (unclassified)	
RI333	Pandion haliaetus	Osprey	
RI334	Pandion haliaetus	Osprey	
RI335	Haliaeetus leucocephalus	Bald Eagle	
RI336	Haliaeetus leucocephalus	Bald Eagle	
RI337	Gavia immer	Common Loon	
RI338	Haliaeetus leucocephalus	Bald Eagle	
RI339	Pandion haliaetus	Osprey	
RI340	N/A	Waterfowl (unclassified)	
RI341	Haliaeetus leucocephalus	Bald Eagle	
RI342	Ardea herodias	Great Blue Heron	
RI345	N/A	Tern (unclassified)	
RI346	Haliaeetus leucocephalus	Bald Eagle	
RI347	Gavia immer	Common Loon	
RI348	Haliaeetus leucocephalus	Bald Eagle	
RI349	Haliaeetus leucocephalus	Bald Eagle	
RI352	Pandion haliaetus	Osprey	
RI358	Somateria mollissima	Common Eider	
RI360	Sterna hirundo	Common Tern	
RI361	Haliaeetus leucocephalus	Bald Eagle	
RI364	N/A	Tern (unclassified)	
RI366	Gavia immer	Common Loon	
RI367	Numenius phaeopus	Whimbrel	
RI375	Numenius phaeopus	Whimbrel	
RI376	N/A	Tern (unclassified)	
RI382	Haliaeetus leucocephalus	Bald Eagle	
RI392	Sterna paradisaea	Arctic Tern	
RI430	N/A	Tern (unclassified)	
RI435	N/A	Tern (unclassified)	
RI441	Phalacrocorax carbo	Great Cormorant	
RI442	N/A	Tern (unclassified)	
RI445	Phalacrocorax carbo	Great Cormorant	
RI574	Haliaeetus leucocephalus	Bald Eagle	
RI678	Haliaeetus leucocephalus	Bald Eagle	
RI681	Haliaeetus leucocephalus	Bald Eagle	
RI682	Haliaeetus leucocephalus	Bald Eagle	
RI683	Haliaeetus leucocephalus	Bald Eagle	
RI684	Pandion haliaetus	Osprey	
RI685	Pandion haliaetus	Osprey	
RI686	Haliaeetus leucocephalus	Bald Eagle	
RI687	Pandion haliaetus	Osprey	
R1688	Haliaeetus leucocephalus	Bald Eagle	

Source: NSDNR, 2012a

APPENDIX G

EMI Study Proposal

CLIENT NOVA SCOTIA POWER INCORPORATED (NSPI)

RADAR and Telecommunications System Impact Assessment

Prepared by: GENIVAR Inc

GENIVAR Inc 505 René-Lévesque West, 8th floor Montreal, Quebec, Canada H2Z 1Y7 Phone : 418-780-0878 Fax: 418-780-4182 Email: wind@genivar.com www.genivar.com

PROPOSAL FOR PROFESSIONAL SERVICES

JUNE 2012

APPROVALS

winer lavery d

Written by: Barry Turner, Ph.D., ACM, Senior Meteorologist

Date: June 7, 2012

Reviewed and Approved by: Alain Charette, Eng.

Date: June 7, 2012

PROPOSAL FOR PROFESSIONAL SERVICES

JUNE 2012

1

TABLE OF CONTENTS

RADAR AND TELECOMMUNICATIONS SYSTEM IMPACT ASSESSMENT

1.	TECHNICAL PROPOSAL	1
1.1	1.1 Organizational Capabilities	
1.2	Technical Requirements	3
1.3	Implementation Plan	4
1.3	.1 Phase 1: Analysis and Mapping of Registered communications	4
1.3	.2 Phase 2: Agency contacts	4
1.3	.3 Phase 3: On-Site Review and Preliminary Report	4
1.3	.4 Phase 4: Stakeholder consultation and Final Report	4
1.3	.5 Implementation Timeline	4
1.3	.6 Key Personnel	5
2.	PRICE PROPOSAL	6
2.1	FEES	6
2.2	PAYMENT AND WORK EXECUTION TERMS	6

1 TECHNICAL PROPOSAL

1.1 ORGANIZATIONAL CAPABILITIES

Providing engineering services since 1959, GENIVAR is one of North America's leading engineering companies providing both private and public-sector clients with a full range of consulting services throughout the project cycle, from planning and design to construction and maintenance. Our clients operate in various market segments, including the building, industrial, power, urban infrastructure, transportation and environmental sectors.GENIVAR is one of Canada's largest engineering services companies by number of employees, with more than 4,800 managers, professionals, technicians, technologists and support staff in some 80 offices in Canada and abroad (www.genivar.com).

In particular, GENIVAR is one of Canada's largest wind power consulting companies, with over 20 years of experience and over 30 professionals dedicated to the GENIVAR Wind group. We offer independent energy analysis, constraint analysis, electrical system design, civil design, electrical interconnection, environmental permits, financial analysis/pro forma's, contact review including interconnection, turbine supply, construction and O & M and authorization of payment certificates.

GENIVAR's head office is located in Montreal, with various regional offices including one in Dartmouth, Nova Scotia. The analysis of potential electromagnetic interference is an important part of our constraint analysis for planned wind farms. Some clients only require a mapping of consultation zones and contacting of federal agencies according to guidelines of the Radio Advisory Board of Canada (RABC) and the Canadian Wind Energy Association (CanWEA)¹. In some cases, GENIVAR also conducted on-site investigations to identify non-registered communication systems, handled follow-up discussions with concerned parties and conducted further propagation analysis. Precise details of studies are generally confidential, but previous electromagnetic interference studies completed by GENIVAR include work for the following companies:

Company	Study Locations	
Minas Basin Pulp & Power	Nova-Scotia	
Alberta Wind Energy Corp.	Alberta	
Algonquin Power	Quebec	
EarthFirst Canada Inc.	British Columbia	
EDF Energies Nouvelles	Quebec and Ontario	
Enbridge	Saskatchewan	
ENEL Green Power	Newfoundland and Alberta	
Finavera Wind Energy	British Columbia	
Gilead Power	Ontario	
Nexen Inc.	Alberta	
Northland Power	Quebec	
Pteragen Canada Inc	Alberta	
Shear Wind Inc.	Nova Scotia, Saskatchewan and Alberta	
Shell Canada	Alberta	
Sky Harvest Windpower Corp.	Saskatchewan	
GDF Suez Energy North America	Saskatchewan, Alberta	
Suncor Energy	Ontario, Saskatchewan, Alberta	

¹ Radio Advisory Board of Canada (RABC) and Canadian Wind Energy Association (CanWEA), *Technical Information and Coordination Process Between Wind Turbines and Radiocommunication and Radar Systems*, V8.0 (Draft 1), 2010.

1.2 TECHNICAL REQUIREMENTS

The study will analyze any potential negative impacts of the planned Canso wind farm with radio communications and radar systems

All registered communication transmissions in Canada are listed in the Technical and Administrative Frequency Lists (TAFL) database of Industry Canada. Processing this data will provide a preliminary inventory of communications activity in and around the project area. Communications will be categorized into their respective type and function, including communication distribution systems, satellite, radar, airport, broadcasting (AM, FM and TV), fixed and base stations (point-to-point and point-to-multipoint), cellular networks and microwave links. Additional information concerning airport and weather radar, and navigational beacons will be used to expand the search for potentially affected services.

Consultation zones will be calculated for each type of communication according to the guidelines of the Radio Advisory Board of Canada (RABC) and the Canadian Wind Energy Association (Can-WEA). These guidelines are designed to address potential shadowing, mirror-type reflection, clutter and signal scattering effects. Effects on over-the-air television reception will also be considered.

Various agencies will need to be contacted concerning non-disclosed communication systems and monitoring systems. Responses will be gathered, as they are received, from the Canadian Coast Guard, Department of National Defence (DND), Environment Canada, NAV CANADA, Industry Canada and the Royal Canadian Mounted Police (RCMP). An initial review of any previous correspondence between Nova Scotia Power Incorporated (NSPI) and any of these agencies concerning the Canso Wind Power Project will be made to avoid duplication of efforts or confusion. NSPI will take responsibility for any of these agency consultations that continue beyond GENIVAR's involvement in the project.

An additional on-site survey will be conducted to seek out any additional unregistered communications in the area. Any visible communication systems and antennas will be photographed and posted information concerning equipment owners will be documented. This information will be crossreferenced with previously gathered information to identify any other consultation zones and concerned parties.

A preliminary report will be prepared outlining all these findings. It will include an explanation of the RABC and CanWEA guidelines, a summary of communication and monitoring systems in the area, lists and maps of consultation zones to be considered, names and contact details of stakeholders for each relevant consultation zone and a record of exchanges with the various contacted agencies.

Up to this point in the project, some uncertainty in the planned turbine layout can be accommodated. Layout updates of the preliminary report can be provided, with the analysis and mapping of consultation zones adjusted for changes in turbine type and location within the same project area. If multiple turbine layouts are under consideration at the time of agency contacts, details of the layout with the greatest potential impact will be used. If the final choice of turbine layout is different, some agencies will wish to be informed of the change. If an uncertain turbine layout is changed and finalized during our work on the project, GENIVAR will send the updated information to the concerned agencies.

GENIVAR will then contact stakeholders with consultation zones intersecting the project area and final turbine layout. Any stakeholder concerns will be discussed and documented, with a review of the extent of impact and possible mitigation measures in each case. At this stage, GENIVAR will collaborate with NSPI in exchanges with stakeholders where action may be needed.

A final report will be prepared, expanding on the preliminary report to include any additional responses from agencies, a record of contacts with stakeholders and an evaluation of remaining issues to be addressed by NSPI. Geographical information associated with communication and monitoring systems, consultation zones and map products in the report will be made available in shapefile format (.shp, .shx, .dbf) and associated files.

1.3 IMPLEMENTATION PLAN

The project implementation will proceed in four principal phases:

1.3.1 PHASE 1: ANALYSIS AND MAPPING OF REGISTERED COMMUNICATIONS

Potential interference with radio communications will be analyzed using data available in the Industry Canada Database (TAFL) including all registered communication transmissions in Canada. Consultation zones are calculated for each type of communication.

Deliverables at the end of Phase 1 will be initial maps of consultation zones and the respective GIS files if requested at this stage.

1.3.2 PHASE 2: AGENCY CONTACTS

GENIVAR will contact various agencies to investigate proprietary communication or monitoring equipment that may not be found in the TAFL database. As they become available, responses from the agencies will be considered.

1.3.3 PHASE 3: ON-SITE REVIEW AND PRELIMINARY REPORT

An on-site review of visible communications systems will be made to identify any additional unregistered communication facilities on or near the Canso project area.

Deliverables at the end of Phase 3 will be a preliminary report to summarize potential interference and consultation zones identified in Phases 1 through Phase 3, details of any correspondence with the agencies contacted in Phase 2, contact information for potential stakeholders, and updated maps and GIS files.

The purpose of this report will be to identify stakeholders with potential interference problems and prepare for detailed correspondences with selected stakeholders for mitigation planning.

1.3.4 PHASE 4: STAKEHOLDER CONSULTATION AND FINAL REPORT

Stakeholders with consultation zones intersecting project lands will be contacted. Where there is actual potential for interference or concerns, mitigation options will be discussed.

Details of these consultations along with any recommendations for mitigation methods or further consultation will be added will be added to produce a final version of the project report.

1.3.5 IMPLEMENTATION TIMELINE

The following implementation timeline assumes a start date on July 9th, immediately after a positive notification from NSPI concerning this proposal.

Phase	Timeline
Phase 1: Analysis and Mapping of Registered Communications	9 Jul 2012 – 20 Jul 2012
Phase 2: Agency Contacts	16 Jul 2012 – 20 Jul 2012
Phase 3: On-Site Review and Preliminary Report	23 Jul 2012 – 10 Aug 2012
Phase 4: Stakeholder Consultation and Final Report	13 Aug 2012 – 31 Aug 2012

1.3.6 KEY PERSONNEL

Barry Turner, Ph.D. ACM (GENIVAR Montreal)

Barry Turner is a Senior Scientist with GENIVAR, with degrees in physics and meteorology. Before entering the wind energy field, Barry was a project manager and business analyst in the software industry. He earned his Ph.D. in Atmospheric and Oceanic Sciences from McGill University in 1999, and was a Research Associate in that department from 2001 for 2007. Back in the private sector since 2007, Barry has applied his scientific knowledge to problems in wind resource assessment and wind farm constraint analysis. He has completed examinations on risk analysis with the Society of Actuaries, and is an Accredited Consulting Meteorologist of the Canadian Meteorological and Oceanographic Society.

Field and Office Personnel (GENIVAR Dartmouth)

On-site review and detailed stakeholder discussion will involve personnel from the GENIVAR office in Dartmouth, Nova Scotia. This local content during the project will reduce travel costs, provide a greater understanding of the region and easier communication with stakeholders.

2 PRICE PROPOSAL

2.1 FEES

The Table below outlines GENIVAR's price proposal for this project. Fixed pricing is applied for Phase 1, Phase 2, and the preparation of the preliminary report in Phase 3. The on-site review of Phase 3 and all of Phase 4 will be charged according to time and travel expenses, since it is not possible to fully anticipate the complexity of these requirements.

Phase	Details	Price (CAD)
Phase 1: Analysis and Mapping of Registered Communications	Fixed price	\$ 4,500
Phase 2: Agency Contacts	Fixed price	\$ 2,000
Phase 3: On-Site Review	Time and Materials	\$ 8,000
Phase 3: Preliminary Report	Fixed price (\$ 2,500) for Preliminary Report. Fixed price (\$ 1,500) per Turbine Layout Update.	\$ 2,500 + \$ 1,500 per Layout Update (if required)
Phase 4: Stakeholder Consulta- tion and Final Report	Time and Materials	\$ 10,000

2.2 PAYMENT AND WORK EXECUTION TERMS

- Fixed cost activities will be invoiced upon completion; and
- Time and materials activities will be invoiced monthly and according to rates listed in the table of the following page.

Monthly late fees of 1% will be applied to payments that exceed 30 days.

A specific phase will only be executed once we have received the client's written consent to proceed with the work. Also, budgets for Time and Materials tasks will not be exceeded prior to receiving the client's written consent.

Work Classification	CAD Rate/Hr	
==== FIELD WORK ====		
Senior Field Engineer	\$ 170.00	
Field Engineer	\$ 95.00	
Tower Climber	\$ 95.00	
Senior Foreman	\$ 95.00	
Foreman	\$ 85.00	
Instrument Technician	\$ 65.00	
GENIVAR Assistant	\$ 55.00	
Meteorological Tower Coordinator	\$ 80.00	
==== RESOURCE ASSESSMENT ====		
Senior Wind Resource Engineer	\$ 170.00	
Lead Wind Resource Engineer	\$ 120.00	
Wind Resource Engineer	\$ 95.00	
Junior Wind Resource Engineer	\$ 75.00	
GIS Technician	\$ 75.00	
==== PROJECT MANAGEMENT ====		
Senior Project Development Manager	\$ 195.00	
Senior Project Manager	\$ 120.00	
Lead Project Manager	\$ 110.00	
Project Manager	\$ 95.00	
==== SPECIALISTS ====		
Principal Specialist	\$ 140.00	
Senior Specialist	\$ 110.00	
Lead Specialist	\$ 95.00	
Field Specialist	\$ 80.00	
Specialist	\$ 70.00	
Junior Specialist	\$ 60.00	
==== ADMINISTRATION ====		
Senior Administrator	\$ 65.00	
Administrator	\$ 55.00	