Appendix 7: Archaeology Reporting and Approvals

Communities, Culture & Heritage

1747 Summer Street Halifax, Nova Scotia B3H 3A6 *Tel:* (902) 424-6475 *Fax:* (902) 424-0560

December 21, 2012

Mr. Steve Garcin Cultural Resource Management Group Ltd. 6040 Almon Street Halifax, NS B3K 1T8

Dear Mr. Garcin:

RE: Heritage Research Permit Report A2012NS147- MacLellans Brook Wind

We have received and reviewed your interim report on work conducted under the terms of Heritage Research Permit A2012NS147 of an archaeological resource impact assessment of the proposed MacLellans Brook Wind Farm, Pictou County.

The report details the screening and reconnaissance of the proposed MacLellans Brook Wind Farm project area near Stellarton by CRM Group Limited in October 2012. The screening and reconnaissance included background and historical research of the proposed project area, an exercise in predictive modeling for First Nations archaeological resources, and detailed pedestrian survey. No sub-surface testing took place. The background study indicated that the project area exhibits low potential for both Precontact and/or historic archaeological resources. The field reconnaissance indicated that the project area exhibits low overall potential for Precontact and/or historic archaeological resources. No archaeological resources were encountered or observed during project. The study area is set back from any significant watercourse and occupies uneven and at times swampy terrain.

Based on the above, the reporter recommends that the study area as defined in the report be cleared of any requirement for future archaeological investigation. Also, in the unlikely event that archaeological deposits or human remains are encountered during activities associated with the MacLellans Brook Wind Farm project, all work in the associated areas should stop and the Coordinator of Special Places contacted.

Staff agree with the recommendations and find the report acceptable as submitted. If you have any questions or concerns, please do not hesitate to contact me.

Sincerely.

Laura Bennett Coordinator, Special Places

EON WINDELECTRIC

MACLELLANS BROOK WIND FARM PROJECT ARCHAEOLOGICAL SCREENING & RECONNAISSANCE SHELBURNE COUNTY, NOVA SCOTIA

2012 ARCHAEOLOGICAL SCREENING AND RECONNAISSANCE REPORT

Submitted to: Eon WindElectric and the Special Places Program

Prepared by: Cultural Resource Management Group Limited 6040 Almon Street Halifax, Nova Scotia B3K 1T8

> Consulting Archaeologist: Steve Garcin Report Preparation: Steve Garcin

Heritage Research Permit Number: A2012NS146

CRM Group Project Number: 2012-0015-03

NOVEMBER 2012

The following report may contain sensitive archaeological site data. Consequently, the report must not be published or made public without the written consent of Nova Scotia's Coordinator of Special Places Program, Department of Communities, Culture and Heritage.

TABLE OF CONTENTS

	Pa	age
1.0	INTRODUCTION	1
2.0	STUDY AREA	. 2
3.0	METHODOLOGY	. 5
4.0	 RESULTS OF SCREENING AND RECONNAISSANCE	6 6 . 10
5.0	CONCLUSIONS AND RECOMMENDATIONS	14
6.0	REFERENCES CITED	15

LIST OF FIGURES

Figure 1:	General Study Area	3
Figure 2:	Detailed Study Area	4
Figure 3:	A.F. Church - 1867	.8
Figure 4:	1902 Faribault Geological Map	9

LIST OF PLATES

Plate 1:	View north along access road	2
Plate 2:	View northwest along access road	10
Plate 3:	View of cleared area surrounding meteorological tower	11
Plate 4:	View north of low potential terrain within the study area	11
Plate 5:	View southeast of existing trail within the study area	12
Plate 6:	View north of clearing within the study area	12
Plate 7:	view east of swampy terrain within the study area	13

EON WINDELECTRIC MACLELLANS BROOK WIND FARM PROJECT ARCHAEOLOGICAL SCREENING & RECONNAISSANCE PICTOU COUNTY, NOVA SCOTIA

1.0 INTRODUCTION

Eon WindElectric is proposing the development of its wind energy site near Stellarton, Nova Scotia (*Figure 1*). In order to investigate the potential for encountering archaeological resources during any development of the facility, Cultural Resource Management (CRM) Group was retained by Eon WindElectric to undertake archaeological screening and reconnaissance of the proposed wind energy site.

The archaeological screening and reconnaissance was directed by Staff Archaeologist, Steve Garcin with the assistance of archaeological technician Andrew Livingstone. Reconnaissance was conducted on October 24, 2012.

The archaeological investigation was conducted according to the terms of Heritage Research Permit A2012NS147 (Category 'C'), issued to Garcin by the Special Places Program. This report describes the archaeological screening and reconnaissance of the MacLellans Brook Wind Project study area, presents the results of these efforts and offers cultural resource management recommendations.

2.0 STUDY AREA

The Eon WindElectric wind energy site is located near the town of Stellarton, situated within Pictou County (*Figures 1&2*). The development will involve the construction of five wind turbines with associated access roads. Access to the study area can be gained off Brookville Road, approximately 2.5 kilometres to the east of the community of Churchville.

PLATE 1. View north along access road.

3.0 METHODOLOGY

Eon WindElectric retained CRM Group to undertake archaeological screening and reconnaissance of the proposed MacLellans Brook Wind Project. The objective of the archaeological assessment was to evaluate archaeological potential within the area that will be impacted by development of the wind farm project. To address this objective, CRM Group developed a work plan consisting of the following components: a review of relevant site documentation to develop an archaeological potential model (screening); archaeological reconnaissance of the areas that may be impacted by development activities; and, a report summarizing the results of the background research and field survey, as well as providing cultural resource management recommendations.

3.1 Background Study

The archival research component of the archaeological screening and reconnaissance was designed to explore the land use history of the study area and provide information necessary to evaluate the area's archaeological potential. To achieve this goal, CRM Group utilized documentary resources available through various institutions including the Nova Scotia Archives, Nova Scotia Land Information Centre, the Department of Natural Resources and the Nova Scotia Museum.

The background study included a review of relevant historic documentation incorporating land grant records, legal survey and historic maps, as well as local and regional histories. Topographic maps and aerial photographs, both current and historic, were also used to evaluate the study area. This data facilitated the identification of environmental and topographic features that would have influenced human settlement and resource exploitation patterns. The historical and cultural information was integrated with the environmental and topographic data to identify potential areas of archaeological sensitivity.

3.2 Field Reconnaissance

The goals of the archaeological field reconnaissance were to conduct a visual inspection of the study area, document any areas of archaeological sensitivity or archaeological sites identified during the course of visual inspection, and design a strategy for testing areas of archaeological potential, as well as any archaeological resources identified within the study area. Although the ground search did not involve sub-surface testing, the researchers were watchful for topographic or vegetative anomalies that might indicate the presence of buried archaeological resources. The process and results of the field reconnaissance were documented in field notes and photographs.

A hand-held Global Positioning System (GPS) unit was used to record UTM coordinates for all survey areas, as well as any identified diagnostic artifacts, formal tools, isolated finds and site locations.

4.0 **RESULTS**

4.1 Background Study

The following discussion details the environmental and cultural setting of the study area. This background study provides a framework for the evaluation of archaeological potential and the initial interpretation of any resources encountered during the field component of the assessment.

4.1.1 Environmental Setting

A number of environmental factors such as water sources, physiographic features, soil types and vegetation have influenced settlement patterns and contribute to the archaeological potential of the area.

Water Sources

Proximity to water, for both drinking and transportation, is a key factor in identifying Precontact and historic Native, as well as early Euro-Canadian, archaeological potential. The most immediate water sources located near the study area include MacLellans Brook and Forbes Lake. The East River, located approximate 5 kilometres to the west of the study area is the closest significant water source and would have been an important trade and transportation route in both Precontact and Historic periods.

Topography

The MacLellans Brook Wind Farm study area is located within the French River subdistrict in the greater terrestrial region known as Dissected Margins (Davis & Browne 1996: 38-39). The area is characterized by foothills, with kame fields and esker systems evident throughout the landscape. The area, dissected by many streams and rivers, is hilly with steep, narrow valleys (Davis & Browne 1996: 38-39).

Soils

The study area is covered by *Barney Association* soils. *Barney* soils, developed from a shale parent material, consist of gravelly to silty loam over gravelly loam till. *Barney* soils are moderately stony and nonrocky (Webb 1990: 30-31).

Vegetation

The forest growth within this ecological region is characterized by a mixed forest consisting of balsam fir, red and white spruce, red maple and birch (Davis & Browne 1996: 39).

Fauna

The fauna of this area is similar to that of the Cobequid Hills, which is characterized by populations of deer, moose and many species of bird. Brook Trout and Brown Trout are common species in the smaller tributaries (Davis & Browne 1996: 339).

4.1.2 Native Land Use

The land within the study area was once part of the greater Mi'kmaq territory known as *Agg Piktuk*, meaning 'The Explosive Place'. Numerous lakes and watercourses spread

throughout the general area would have been important transportation and trade corridors providing a resource base for the Mi'kmaq and their ancestors prior to the arrival of European settlers.

East River, which is located approximately 5 kilometres to the west of the study area, would have been an important transportation route facilitating travel inland from the Northumberland Strait at Pictou Harbour, and a significant source of salmon and other fish species. However, the study area is relatively far removed from any significant watercourse and therefore would have been less suitable as a location for settlement.

A review of the Maritime Archaeological Resource Inventory (MARI), a provincial archaeological site database maintained by the Nova Scotia Museum, determined that there are no registered Precontact or early historic Native archaeological resources located within the study area. The closest registered Precontact site is BjCp-3, an isolated find consisting of a Precontact celt, located approximately 8 kilometres northwest of the study area. There are two other registered sites within a 10 kilometre radius of the study area. Archaeological sites BjCp-5 and BjCp-6 are both historic sites registered as the "Albion Iron Foundry" and "Stellarton Pumphouse" respectively.

Based on its unfavourable environmental setting and limited potential of significant Native land use (its distance from any significant water source and known sites), the Northeast MacLellans Brook Wind Farm study area is ascribed diminished potential for encountering Precontact and/or early historic Native archaeological resources.

4.1.3 Property History

The study area is located at Irish Mountain, which may have been named after Patrick Finner, an Irishman thought to be one of the first European settlers, along with Donald Ross, to have occupied the general area (PANS: 310). Review of the historic land grant map indicates that the study area is located on portions of lands granted to Peter Fraser, Alexander Fraser, John Duff, and Finlay McMullen (Grant Sheet 087).

A review of historic mapping for the areas yielded no sign of any historic development or dwellings within the study area. A small number of buildings are indicated along what is now Brookville Road, adjacent to the study area. This can be seen from the 1867 *Topographical Township Map of Pictou County, Nova Scotia* produced by A.F. Church. (*Figure 3*). By 1902, the Faribault geological map shows a road and a small cluster of buildings at what would be the western edge of the study area (*Figure 4*). The majority of the study area, however, remains unoccupied.

4.1.4 Archaeological Potential

Based on the various components of the background study, including environmental setting, Native land use and property history, the vicinity of the study area is considered to exhibit low potential for encountering Precontact and/or historic archaeological resources.

4.2 Field Reconnaissance

The archaeological reconnaissance was undertaken on October 24, 2012 under clear conditions. The goal of the visit was to assess the area for archaeological potential and investigate any topographical and/or cultural features that had been identified as areas of elevated potential during the background research. A detailed pedestrian survey was conducted in order to inspect the proposed access road routes, as well as the proposed turbine locations.

The proposed development will involve the construction of five wind turbine sites and associated access roads. An existing road connects Brookville Road with the top of Irish Mountain, where a Meteorological Tower has been established (*Plates 2 & 3*). The majority of the existing, and proposed, access road leading to the proposed tower locations is situated on sloping terrain considered unsuitable for habitation.

In general, the study area is characterized by undulating to sloping terrain on top of Irish Mountain (*Plate 4*). Numerous existing trails have been cut through the area and it has undergone some logging activity in the past (*Plates 5 & 6*). Vegetation cover is comprised of a mixed forest of primarily spruce, fir, maple and birch with blueberry, bunchberry, ferns and other shrubs as ground cover. Numerous area of poorly drained, swampy terrain were also encountered throughout the study area (*Plate 7*).

No historic features or artifacts were observed during the field reconnaissance of the MacLellans Brook Wind Farm Project. Furthermore, given that the study area is set back from any significant water courses and occupies an uneven terrain, the area is considered to exhibit low overall potential for Precontact and/or historic archaeological resources.

PLATE 2. View northwest along access road.

PLATE 3. View of cleared area surrounding meteorological tower.

PLATE 4. View north of low potential terrain within the study area.

PLATE 5. View southeast of existing trail within the study area.

PLATE 6. View north of clearing within the study area.

PLATE 6. View east of swampy terrain within the study area.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The 2012 archaeological screening and reconnaissance of the MacLellans Brook Wind Farm Project consisted of historical background research and a visual inspection of the study area. It did not involve sub-surface testing. The background research and field reconnaissance conducted by CRM Group determined the study area to exhibit low potential for encountering Precontact and/or early historic Native archaeological resources

Based on these results, CRM Group offers the following management recommendations for the study area:

- 1. It is recommended that the study area, as defined and depicted in this report, be cleared of any requirement for future archaeological investigation.
- 2. In the unlikely event that archaeological deposits or human remains are encountered during activities associated with the MacLellans Brook Wind Farm Project, all work in the associated area(s) should be halted and immediate contact made with the Coordinator of the Special Places Program (Laura Bennett: 902-424-6475).

6.0 **REFERENCES CITED**

Church, Ambrose F. 1864	<i>Topographical Township Map of Pictou County, Nova Scotia.</i> A.F. Church & Co.: Halifax.
Davis, Derek S. & Su	e Browne (eds)
1996	The Natural History of Nova Scotia Volume 2: Theme Regions. Nimbus Publishing & the Nova Scotia Museum: Halifax.
Department of Land a	and Forests.
1946	Crown Land Grant Index Sheet 87 – Pictou and Colchester Counties. Nova Scotia Department of Natural Resources.
Faribault, E, R.	
1902	Province of Nova Scotia, Pictou County, Stellarton Sheet 43. Geological Survey of Canada.
Public Archives of No	ova Scotia
	Place-names and Places of Nova Scotia. Halifax: PANS.
Webb, K.T.	
1990	Soils of Pictou County, Nova Scotia. Report No. 18. Nova Scotia Soil Survey. Truro, Nova Scotia.

Appendix 8: Rare Plant Inventory and Analysis

MacLellan's Brook: Plant Survey and Initial Report on Wet Areas.

Submitted by Nick Hill (Fern Hill Institute Plant Conservation) and Jim Jotcham (Marbicon Inc.) on December 20, 2012.

Survey Dates: June 22, 2012 (Nick Hill and Jim Jotcham with Andrew Arbuckle), August 15, 2012 (Nick Hill).

Purpose: To characterize the ecological habitats, to identify all vascular plants observed at an early and late summer trip, and to incidentally locate wet areas.

Qualification: The wet areas listed are 1) not an exhaustive representation of what is there, and 2) have not been formally designated as "wetland" (no soil work) not have there areas been delineated. The map is useful, however, as a guide for future field work as it relates to the most effective laying out of roadways.

SUMMARY

a) All five proposed turbine locations are suitable. There are no plants of concern in turbine areas nor any significant wetland areas (ie. none $> 100m^2$) in the turbine areas.

b) Drainage is largely predictable. There is good relief, hills are well drained and wetlands follow for the most part, discrete and linear drainage pathways.

c) The concentration of wetland areas occurs between Turbines 1 and 2 and Turbines 5 and 3. Roadways can only provisionally be situated (e.g. between T1 and T5 or T2 and T3); more wetland work can identify where these roadways will run.

d) The areas to avoid are clear and these are the swamps symbolized by W on the map and the stream course symbolized by Br. The latter is a linear feature of greatest ecological value, in part because it has a chain of marshes and vernal pools and supports a population of a yellow-listed sedge (S1/S2 NSDNR ranked "tender sedge", *Carex tenera*).

1. PLANT COMMUNITIES AND RARE SPECIES

A review of the species data from the Atlantic Canada Conservation Data Centre (ACCDC) showed that a large number of rare or unusual plants were found in the vicinity. These records are largely restricted to river valleys and/or gypsum outcrops. The site under consideration, "MacLellan's Brook" (aka Irish Mountain) has infertile soils. A 1990 soil survey of Pictou Co lists the area as part of the Barney soils characterized as gravelly loam to silt loam over firm strongly acidic, olive to olive gray, gravelly loam glacial till. Under forest, Barney soils have 3-10 cm of extremely acidic, poorly decomposed mor humus. Despite the hardwood cover, such upland forest areas do not typically support rare plants (Hill and Garbary, 2011).

The total list of vascular plants combining botanical finds of Jim Jotcham and N. Hill (June 22, 2012) and of N. Hill (Aug. 15, 2012) is provided in a separate excel file (MacLPlants.xls) reporting 169 native Green-listed plants (NSDNR= Secure), one native Yellow-listed plant (S1/S2, Sensitive, NSDNR ranking) and 13 exotic or introduced species. The high native to non-native ratio reflects the habitat integrity of the area. Upland habitats are either second growth (ca. 80 year old) hardwood communities dominated by sugar maple, yellow birch and beech (*Acer saccharum, Betula alleghaniensis,* and *Fagus grandifolia*) or recently clear cut hardwoods. The understory in the intact forest is a mixture of ferns (Christmas fern, *Polystichum acrostichoides;* evergreen woodfern, *Dryopteris intermedia*), forbs (sasparilla, *Aralia nudicaulis;* starflower, *Trientalis borealis;* woodland aster, *Oclemena acuminata*), various sedges (*Carex brunnescens, C. leptonervia, C. debilis*) and shrubs (moose maple, *Acer pensylvanicum,* Canada honeysuckle, *Lonicera canadensis;* beaked hazel, *Corylus cornuta*). The cut-over areas supports a rank growth of tall perennials as well as various shrubs.

Greater species richness and soil fertility occurs in seeps, along stream beds and in swamps. Wet areas vary from seeps at the toes of slopes in hardwood woodlands (S series of waypoints) to swamps on flatter ground (W series) to those associated with streams running between steep ridges (Br series). Seeps are the smallest wet area type and depending on their soils profiles, they may or may not be classed as wetlands. Typically they support a diversity of herbs (e.g. touch-me-not, *Impatiens capensis*; lady fern, Athyrium felix-femina; bedstraw, *Galium triflorum;* three-seeded sedge, *Carex trisperma;* bladder sedge, *Carex intumescens*) growing in richer soils. Swamps are the largest wetlands in this landscape. The vegetation in these swamps is white ash, yellow birch, red maple (*Fraxinus americana, Betula alleghaniensis* and *Acer rubrum*) in the tree layer, rough alder and Canada holly (*Alnus incana*, and *Ilex verticillata*) in the shrub layer with ferns (e.g. cinnamon and New York: *Osmunda cinnamomea* and *Thelypteris novaboracensis*), graminoids (e.g. tringed sedge, *Carex crinita*, fowl manna-grass, *Glyceria striata*) and various forbs (e.g. violets, *Viola cucullata;* enchanter's nightshade, *Circaea alpina*).

The swamps (W series of wetlands) have good integrity and wildlife value and will need to be delineated if there is development near them. At present, the turbine areas do not interfere with any of these wetlands. The Br ("brook") series of points are a linear feature defined by the ridge slopes on either side; this would be called a "vault" in parts of Nova Scotia and here it is a stream system that has a narrow floodplain area along sloping stream course and a wide basin (e.g. 50m width) where the stream course levels out. These wide basin areas are flooded in spring and are vernal pools. They will be highly values by Department Environment because they are an unusual wetland type and because they are breeding areas for amphibians. These vernal pools hold water late in spring and there may be little plant cover except for sensitive fern (*Onoclea sensibilis*). We found the rare (S1/S2; GSNS "sensitive") tender sedge, *Carex tenera*, in this habitat at Br3 on the wetland map. One patch of tender sedge (ca. 2m by 1m) grows with softleaf sedge (*Carex disperma*) on a rotten log in the vernal pool (45.504399N, 62.604104W).

"Tender Sedge", *Carex tenera*, growing with Soft Leaf Sedge (*Carex disperma*).

ender Sedge, Carex tenera

3. WETLAND AVOIDANCE

Most significant are wetlands that run from S4 through the Br series (Br to Br4) along a stream course that narrows and widens with slope. The repeating marsh areas can create vernal pools (described above) with high ecological value. This was the habitat of the Yellow-listed "tender sedge" (section 2, above).

Corridor from S4 to Br4 is a stream course that receives runoff from steep surrounding terrain (e.g. ferny slope at left). The stream alternates between flat marshy areas (e.g. Royal Fern marsh above photo at right) and steeper, narrow areas of intermittent flow.

In addition, the swamp land (see the W series of points) will need to be avoided or to be delineated if roads are planned near these sites. The Google map below shows wet areas in blue markers and shows that roadways between the two northern turbines and the two turbines to the south (T5 and T3) will need careful lay-out. At this time, we cannot say whether there are fully upland road passage ways to the west and east of the central zone where wet area density is high. There appears to be a potential roadways from T5 to T1 (between swamps W3 and W4, and W1 and W5). This would require field truthing. Also, it appears that a road north from T3 will intersect the large swamp W1 (see several W1 points and connection to a westerly W1 waypoint indicating that it is the same wetland). In this case, a road from T3 to T2 would need to be situated to the east of the stream course represented by Br series of points.

We have not recorded the total number or areas of wetlands so although this document looks promising in terms of wetland avoidance, some wetland dedicated field work is needed with a map of proposed roadways in order to minimize financial and ecological costs. Seeps (S series) are smaller but they need to be checked to determine whether they are wetlands (by soil pits) and if so, how large they are (ie. are they $> 100m^2$)

WET AREAS located in blue symbols. S = seeps (small wet areas), W or JJ = wetlands (mostly swamp), Br = stream course corridor wetlands including vernal pools.

TURBINES in yellow (1-5) are at least 50m away from these wet areas above. ROAD ways need to avoid W areas (not delineated here) and brook (Br) corridor.

This map reflects incidental wetland findings only and not an exhaustive systematic survey.

4. TURBINE AREAS

There are no botanical concerns or significant wetland areas in 50m radii of the turbines. There are wetland areas between T1/T2 and T3/T5 and planning for roadways needs to avoid the large swampy area (W series) and the stream corridor (Br to Br4) in particular.

TURBINE 1: Sugar maple and yellow birch dominated upland.

TURBINE 2: Sugar maple overstory with thick understory of Evergreen Woodfern

TURBINE 3. No Photo. Area is upland and largely cutover. There are undisturbed patches of sugar maple with hobblebush, hazel, Canada holly, Christmas fern and Solomon's Plume (*Acer saccharum, Viburnum lantanoides, Corylus cornuta, Polystrichum acrostichoides* and *Maianthemum racemosum*).

TURBINE 4. Cleared hardwood forest with vigorous growth of raspberry, goldenrods, elder and other light-demanding plants (*Rubus idaeus, Solidago canadensis, Solidago gigantea, Euthamia graminifolia,* and *Sambucus racemosa).* Note small (<100 m²) wet areas nearby.

TURBINE 5. Young sugar maple/white ash woodland with extensive fir understory

COORDINATE DATA FOR WET AREAS

Wet	Wet	Latitude	Longitude
Туре	Туре		
Seep	S1	45 30' 28.63"	-62 36' 28.22"
Seep	S2	45 30' 33.68"	-62 36' 15.00"
Seep	S3	45 30' 22.28"	-62 36' 17.24"
Seep	S4	45 30' 23.04"	-62 36' 12.68"
Seep	S5	45 30' 19.90"	-62 36' 18.95"
Stream	BR	45 30' 21.91"	-62 36' 10.75"
Stream	BR1	45 30' 21.11"	-62 36' 12.28"
Stream	BR2	45 30' 19.43"	-62 36' 12.94"
Stream	BR3	45 30' 15.60"	-62 36' 14.77"
Stream	BR4	45 30' 14.83"	-62 36' 16.59"
Swamp	W1	45 30' 14.35"	-62 36' 20.56"
Swamp	W1	45 30' 17.04"	-62 36' 20.96"
Swamp	W1	45 30' 12.19"	-62 36' 27.38"
Swamp	W2	45 30' 11.49"	-62 36' 27.15"
Swamp	W3	45 30' 11.75"	-62 36' 30.16"
Swamp	W4	45 30' 14.28"	-62 36' 33.33"
Swamp	W5	45 30' 17.47"	-62 36' 32.14"
Swamp	W6	45 30' 19.92"	-62 36' 35.88"
Jotcham	JJ1	45 30' 18.29"	-62 36' 33.90"
Jotcham	JJ2	45 30' 09.48"	-62 36' 27.71"

Note: Wetland sites S, BR and W are from Hill surveys, JJ sites are from Jotcham survey.

REFERENCES

Hill, N.M. and D.J. Garbary. 2011. Habitat may limit herb migration at the northern edge of the Appalachian Deciduous Forest. Botany 89: 635-645.

Webb, K.T. 1990. Soils of Pictou County. Report #18, Nova Scotia Soil Survey. Research Branch Agriculture Canada. 183 pp. (plus maps) <u>http://sis.agr.gc.ca/cansis/publications/surveys/ns/index.html</u>

Forbes Lake: Rare and uncommon species possibly present at site (ACCDC data base, centered on Forbes Lake area)

Summary

There are 31 species ranked from S1 to S3 by ACCDC which fall within a 10 km radius of the Forbes Lake site. These are grouped by habitat and by rank as follows.

More than two thirds of these species are associated with riverine habitat or wetland, a finding that Blaney who conducted surveys here in 2003 and is responsible for finding many of the records in the field in Pictou area, confirms (personal communication with NH, June 18, 2012). Of the dryland species, 4 of 10 are associated with calcium rich soils (limestone or gypsum outcrops).

Riverine, bottomland or other wetland habitats: 21 species

(#1-4 = S1 Ranked)

1) *Desmodium canadense,* Canada tick-trefoil, occurs on alluvial thickets and river banks (Hinds, 2000). Known long from "three Pictou rivers" (Roland and Smith, 1969). (GS2, may be at risk)

2) *Elymus wiegandii,* Wiegand's wild rye, is a robust grass to be expected on riverbanks in the Pictou area (GS2: may be at risk).

3) *Elymus hystrix* var *bigeloviana*, (syn. *Hystrix patula*, old name) bottlebrush grass, occurs in wooded bottomland (GS2: may be at risk)

4) *Dicanthelium acuminatum* var *lindheimeri*, wooly panic grass, to be expected on sandy and gravelly shores (Voss and Reznicek, 2012). The S1? suggests that this plant may be undercollected and its status is under consideration. The taxon was subsumed in Nova Scotia under a no longer used name, *Panicum lanuginosum*. Collections will be keyed out using Flora of Michigan (Voss and Reznicek, 2012). (GS2: may be at risk)

(#5-13 = S2 Ranked)

5) *Triosteum aurantiacum*, orange-fruited tinker's coffee, is rare but locally abundant on alluvial soils, in thickets and in woodland openings. (GS3: sensitive)

6) *Viola nephrophylla,* northern bog violet, grows in bogs, beside streams and in wet woods. (GS3: sensitive)

7) *Caulophyllum thalictroides*, blue cohosh, found on wooded riverbanks or in thickets in rich alluvial soils. (GS2: May be at risk)

8) *Spiranthes lucida,* shining ladies' tresses, a rare orchid of wet areas (e.g. stream banks). Blooms 2nd to 4th week of July (Munden, 2001). (GS2: may be at risk)

9) Anemone virginiana, Virginia anemone: "intervales and streamsides. Calcareous and slaty ledges, shores and thickets" (Zinck, 1998). (GS3: sensitive)

10) *Juncus dudleyi,* Dudley's rush, in moist areas and along rocky shores. S2? ranking may reflect the confusion over this taxon which is accepted as a species in Hinds and Flora North America but is treated as a variety of the common *Juncus tenuis* in Zinck (Roland's Flora of Nova Scotia). (GS3, sensitive)

11) *Fraxinus nigra*, black ash, is found in swamps and river bottomland. (GS3: sensitive)

12) Lilium canadense, Canada lily, occurs in the open on riverbanks and in riverside thickets in Nova Scotia on rich alluvial soils. (GS3 sensitive)
12) Batmaium aium langt magnut found on "lakesharas or massured as of stream.

13) *Botrycium simplex,* least moonwort, found on "lakeshores or mossy edges of streams or waterfalls" (Zinck, 1998: 30). (GS3 sensitive)

14) *Osmorhiza longistylis*, smooth sweet cicely, occurs in rich deciduous forest and intervales. (GS3: sensitive)

(#15-21 = S3 Ranked)

15) *Campanula aparinoides,* marsh bellflower, known from wet meadows, ditches and river banks (Hinds, 2000; Zinck, 1998). (GS3 sensitive)

16) *Equisetum variegatum*, variegated horsetail, is known from streambanks and wet thickets in NS (Zinck, 1998) and associated with calcareous soils in NB. In NS, it may occur in quite disturbed, open seepy areas. (GS4, secure)

17) *Polygonum scandens,* climbing false buckwheat, is found in thickets along intervales in NS (Zinck, 1998). (GS3 sensitive)

18) *Verbena hastata,* blue vervain, occupies shores of rivers, river bottoms and wet meadows (Hinds, 2000). (GS4 secure)

19) *Laportea canadensis,* Canada wood nettle is known from alluvial woods in rich soils. (GS3 sensitive)

20) *Megalodonta beckii,* water beggars ticks, found in slow-moving streams and shallow ponds in NS (Zinck, 1998). (GS3 sensitive)

21) *Potamogeton praelongus,* white stemmed pondweed, is usually found in deep water (Zinck, 1998). (GS3 sensitive)

Upland Habitat: Forest and open dry land. 10 species

(Note: 4 of the 10 are associated with calcareous soils)

(#22 = S1 Ranked)

22) *Carex pellita,* Wooly sedge, is not listed in either the Floras of Nova Scotia (Roland and Smith, 1969; Zinck, 1998) or New Brunswick (Hinds, 2000), however the latter manual lists *Carex lanuginosa* (as "wooly sedge") which refers to *Carex pellita* (Reznicek and Catling, 2002). A range of habitats are listed (wet to dry) but there is indication that it is more frequent in calcareous soils (Reznicek and Catling, 2002). (GS2, may be at risk)

(#23-26, + #12 = S2 Ranked spp.)

12) Osmorhiza longistylis, smooth sweet cicely, occurs in rich deciduous forest and intervales. (GS3: sensitive). This species can occur in rich upland or intervale associated with streams.

23) *Dicanthelium linearifolium,* narrow-leaved panic grass, found in the open in dry sandy soils. S2? ranking reflects the taxonomic difficulty of separating this from the common and weedy, *D. depauperatum*; the separation rests on the length and shape of the spikelet (Hinds, 2000). (GS3 sensitive)

24) *Carex hirtifolia*, pubescent sedge, is found in calcareous regions (Zinck, 1998) and may grow in dry woodland (Hinds, 2000). (GS3 sensitive)

25) *Symphyotrichum ciliolatum,* fringed blue aster, found in old fields, woodland edges and roadsides (Hinds, 2000). Flowers August to September. (GS3 sensitive)

26) *Cypripedium parviflorum*, yellow lady's slipper, found in calcareous soils (gypsum and limestone regions). Two varieties (vars *makasin* and *pubescens*; the latter is larger and more hairy) have same ranking in Nova Scotia (GS3 sensitive)

(#27-31= S3 Ranked spp.)

27) *Packera paupercula,* balsam groundsel, mainly found on gypsum outcrops in NS (Zinck, 1998). (GS4 secure)

28) *Carex rosea,* rosy sedge, is known from dry deciduous woods and thickets in NS (Zinck, 1998). (GS4 secure)

29) *Polygonum pensylvanicum,* Pennsylvania smartweed, known from disturbed habitats: ditches, grain fields and dyked marsh (Zinck, 1998). (GS4 secure)

30) Agrimonia gryposepala, hooked agrimony, is found at the margin of rich wood sand in intervales and their slopes (Zinck, 1998). (GS4 secure)

31) *Botrycium dissectum*, cut-leaved moonwort, is found in sandy and gravelly soils in the open (Zinck, 1998). (GS4 secure)

References

Flora of North America, eflora: <u>http://www.efloras.org/flora_page.aspx?flora_id=1</u>

Hinds, H.R. 2000. Flora of New Brunswick. Biology Department, University of New Brunswick, Fredericton, New Brunswick.

Roland, A.E. and E.C. Smith. 1969. The Flora of Nova Scotia. Nova Scotia Museum Publication, Halifax. Nova Scotia.

Voss, E.G. and A.A. Reznicek. 2012. Field Manual of Michigan Flora. University of Michigan Press, Ann Arbor, Michigan.

Zinck, M.1998. Roland's Flora of Nova Scotia. Nimbus Publishing and Nova Scotia Museum, Halifax, Nova Scotia. **Plant List from Field Work**

STATUS	Common Name	Scientific Name
GREEN	Balsam Fir	Abies balsamea
GREEN	Striped Maple	Acer pensylvanicum
GREEN	Red Maple	Acer rubrum
GREEN	Sugar Maple	Acer saccharum
GREEN	Mountain Maple	Acer spicatum
GREEN	Common Yarrow	Achillea millefolium
GREEN	Red Baneberry	Actaea rubra
GREEN	Rough Bentgrass	Agrostis scabra
GREEN	Spreading Bentgrass	Agrostis stolonifera
GREEN	Speckled Alder	Alnus incana
GREEN	Annual Ragweed	Ambrosia artemisiifolia
GREEN	Downy Serviceberry	Amelanchier arborea
GREEN	Pearly Everlasting	Anaphalis margaritacea
GREEN	Wild Sarsaparilla	Aralia nudicaulis
GREEN	Swamp Jack-In-The-Pulpit	Arisaema triphyllum
GREEN	Lady-Fern	Athyrium filix-femina
GREEN	Yellow Birch	Betula alleghaniensis
GREEN	Paper Birch	Betula papyrifera
GREEN	Gray Birch	Betula populifolia
GREEN	Devil's Beggar-Ticks	Bidens frondosa
GREEN	Bearded Short-Husk	Brachyelytrum septentrionale
GREEN	Blue-Joint Reedgrass	Calamagrostis canadensis
GREEN	Pennsylvania Bitter-Cress	Cardamine pensylvanica
GREEN	Black Sedge	Carex arctata
GREEN	Brownish Sedge	Carex brunnescens
GREEN	Fibrous-Root sedge	Carex communis
GREEN	Fringed Sedge	Carex crinita
GREEN	White-Edge Sedge	Carex debilis
GREEN	Short-Scale Sedge	Carex deweyana
GREEN	Softleaf Sedge	Carex disperma
GREEN	Graceful Sedge	Carex gracillima
GREEN	Bladder Sedge	Carex intumescens
GREEN	Finely-Nerved Sedge	Carex leptonervia
GREEN	Shallow Sedge	Carex lurida
GREEN	New England Sedge	Carex novae-angliae
GREEN	Rough Sedge	Carex scabrata
GREEN	Stalk-Grain Sedge	Carex stipata
GREEN	Blunt Broom Sedge	Carex tribuloides
GREEN	Three-Seed Sedge	Carex trisperma
GREEN	Fireweed	Chamerion angustifolium
GREEN	White Turtlehead	Chelone glabra
GREEN	American Golden-Saxifrage	Chrysosplenium americanum
GREEN	Small Enchanter's Nightshade	Circaea alpina
GREEN	Carolina Spring-Beauty	Claytonia caroliniana
GREEN	Virginia Virgin-Bower	Clematis virginiana
GREEN	Clinton Lily	Clintonia borealis
GREEN	Goldthread	Coptis trifolia
GREEN	Early Coralroot	Corallorhiza trifida
GREEN	Dwarf Dogwood	Cornus canadensis

GREEN	Beaked Hazelnut	Corylus cornuta
GREEN	Pink Lady's Slipper	Cypripedium acaule
GREEN	Poverty Oat-Grass	Danthonia spicata
GREEN	Eastern Hay-Scented Fern	Dennstaedtia punctilobula
GREEN	Silvery Spleenwort	Deparia acrostichoides
GREEN	Crinkled Hairgrass	Deschampsia flexuosa
GREEN	Northern Bush-Honeysuckle	Diervilla lonicera
GREEN	Parasol White-Top	Doellingeria umbellata
GREEN	Roundleaf Sundew	Drosera rotundifolia
GREEN	Spinulose Shield Fern	Dryopteris carthusiana
GREEN	Evergreen Woodfern	Dryopteris intermedia
GREEN	Crested Shield-Fern	Dryopteris cristata
GREEN	Three-Way Sedge	Dulichium arundinaceum
GREEN	Beechdrops	Epifagus virginiana
GREEN	Hairy Willow-Herb	Epilobium ciliatum
GREEN	Field Horsetail	Equisetum arvense
GREEN	Woodland horsetail	Equisetum sylvaticum
GREEN	American Beech	Fagus grandifolia
GREEN	Red Fescue	Festuca rubra
GREEN	Virginia Strawberry	Fragaria virginiana
GREEN	White Ash	Fraxinus americana
GREEN	Rough Bedstraw	Galium asprellum
GREEN	Sweet-Scent Bedstraw	Galium triflorum
GREEN	Herb-Robert	Geranium robertianum
GREEN	Large-Leaved Avens	Geum macrophyllum
GREEN	Purple Avens	Geum rivale
GREEN	Fowl Manna-Grass	Glyceria striata
GREEN	Northern Oak Fern	Gymnocarpium dryopteris
GREEN	American Witch-Hazel	Hamamelis virginiana
GREEN	Canada Hawkweed	Hieraciium canadense
GREEN	Shining Fir-Clubmoss	Huperzia lucidula
GREEN	Canadian St. John's-Wort	Hypericum canadense
GREEN	Black Holly	llex verticillata
GREEN	Spotted Jewel-Weed	Impatiens capensis
GREEN	Canada Rush	Juncus canadensis
GREEN	Soft Rush	Juncus effusus
GREEN	Slender Rush	Juncus tenuis
GREEN	Canada Lettuce	Lactuca canadensis
GREEN	American Fly-Honeysuckle	Lonicera canadensis
GREEN	Mountain-Fly Honeysuckle	Lonicera villosa
GREEN	Hairy Woodrush	Luzula acuminata
GREEN	Common Woodrush	Luzula multiflora
GREEN	Stiff Clubmoss	Lycopodium annotinum
GREEN	Treelike Clubmoss	Lycopodium dendroideum
GREEN	Wild Lily-of-The-Valley	Maianthemum canadense
GREEN	Solomon's-Plume	Maianthemum racemosum
GREEN	I hree-Leat Solomon's-Plume	Malanthemum trifolium
GREEN	Ostrich fern	Matteuccia struthiopteris
GREEN	Indian Cucumber-Root	Medeola virginiana
GREEN	American Cow-Wheat	Melampyrum lineare

GREEN	Partridge-Berry	Mitchella repens
GREEN	Grove Sandwort	Moehringia lateriflora
GREEN	One-Flower Wintergreen	Moneses uniflora
GREEN	Small Forget-Me-Not	Myosotis laxa
GREEN	Whorled Aster	Oclemena acuminata
GREEN	Small Sun-Drops	Oenothera perennis
GREEN	Sensitive Fern	Onoclea sensibilis
GREEN	One-Side Wintergreen	Orthilia secunda
GREEN	Hairy Sweet-Cicely	Osmorhiza claytonii
GREEN	Cinnamon Fern	Osmunda cinnamomea
GREEN	Interrupted Fern	Osmunda clatoniana
GREEN	Royal Fern	Osmunda regalis
GREEN	Eastern Hop-Hornbeam	Ostrya virginiana
GREEN	White Wood-Sorrel	Oxalis montana
GREEN	Upright Yellow Wood-Sorrel	Oxalis stricta
GREEN	Northern Beech Fern	Phegopteris connectilis
GREEN	White Spruce	Picea glauca
GREEN	Black Spruce	Picea mariana
GREEN	Red Spruce	Picea rubens
GREEN	Small Green Woodland Orchid	Platanthera clavellata
GREEN	Leafy White Orchis	Platanthera dilatata
GREEN	Kentucky Bluegrass	Poa pratensis
GREEN	Drooping Bluegrass	Poa saltuensis
GREEN	Fringed Black Bindweed	Polygonum cilinode
GREEN	Pennsylvania Smartweed	Polygonum pensylvanicum
GREEN	Arrow-Leaved Tearthumb	Polygonum sagittatum
GREEN	Rock Polypody	Polypodium virginianum
GREEN	Christmas Fern	Polystichum acrostichoides
GREEN	Large-Tooth Aspen	Populus grandidentata
GREEN	Old-Field Cinquefoil	Potentilla simplex
GREEN	Tall Rattlesnake Root	Prenanthes altissima
GREEN	Three-Leaved Rattlesnake-Root	Prenanthes trifoliolata
GREEN	Self-Heal	Prunella vulgaris
GREEN	Fire Cherry	Prunus pensylvanica
GREEN	American wintergreen	Pyrola americana
GREEN	Northern Red Oak	Quercus rubra
GREEN	Kidney-Leaved Buttercup	Ranunculus abortivus
GREEN	Hooked Crowfoot	Ranunculus recurvatus
GREEN	Skunk Currant	Ribes glandulosum
GREEN	Allegheny Blackberry	Rubus allegheniensis
GREEN	Bristly Dewberry	Rubus hispidus
GREEN	Red Raspberry	Rubus idaeus
GREEN	Dwarf Red Raspberry	Rubus pubescens
GREEN	a bramble	Rubus recurvicaulis
GREEN	Bebb's Willow	Salix bebbiana
GREEN	Red Elderberry	Sambucus racemosa
GREEN	Purple Oat	Schizachne purpurascens
GREEN	Cottongrass Bulrush	Scirpus cyperinus
GREEN	Small-Fruit Bulrush	Scirpus microcarpus
GREEN	Hooded Skullcap	Scutellaria galericulata
GREEN	Strict Blue-Eyed-Grass	Sisyrinchium montanum
--------	------------------------	-----------------------------
GREEN	Clasping Twisted-Stalk	Streptopus amplexifolius
GREEN	Broad-Leaved Goldenrod	Solidago flexicaulis
GREEN	Rough Goldenrod	Solidago rugosa
GREEN	Northern Mountain Ash	Sorbus decora
GREEN	Heart-Leaf Aster	Symphyotrichum cordifolium
GREEN	Farewell-Summer	Symphyotrichum lateriflorum
GREEN	New York Fern	Thelypteris noveboracensis
GREEN	Marsh Fern	Thelypteris palustris
GREEN	Northern Starflower	Trientalis borealis
GREEN	Nodding Trillium	Trillium cernuum
GREEN	Eastern Hemlock	Tsuga canadensis
GREEN	Broad-Leaved Cattail	Typha latifolia
GREEN	Sessile-Leaf Bellwort	Uvularia sessilifolia
GREEN	Late Lowbush Blueberry	Vaccinium angustifolium
GREEN	Small Cranberry	Vaccinium oxycoccos
GREEN	Gypsy-Weed	Veronica officinalis
GREEN	Marsh-Speedwell	Veronica scutellata
GREEN	Alderleaf Viburnum	Viburnum lantanoides
GREEN	Marsh Blue Violet	Viola cucullata
YELLOW	Slender Sedge	Carex tenera
EXOTIC	Sweet Vernal Grass	Anthoxanthum odoratum
EXOTIC	Orchard Grass	Dactylis glomerata
EXOTIC	Hempnettle	Galeopsis tetrahit
EXOTIC	a hawkweed	Hieracium lachenalii
EXOTIC	Mouse-eared Hawkweed	Hieracium pilosella
EXOTIC	Tall Hawkweed	Hieracium piloselloides
EXOTIC	Oxe-eye Daisy	Leucanthemum vulgare
EXOTIC	Muskflower	Mimulus moschatus
EXOTIC	Self Heal	Prunella vulgaris
EXOTIC	Creeping Buttercup	Ranunculus repens
EXOTIC	Dandelion	Taraxacum officinale
EXOTIC	Coltsfoot	Tussilago farfara
EXOTIC	Common Speedwell	Veronica officinalis

Appendix 9: ACCDC Report

DATA REPORT 4404: New Glascow, NS

Prepared 4 March, 2011 by S.H. Gerriets

CONTENTS OF REPORT

1.0 Preface 1.1 Restrictions 1.2 Additional Information 2.0 Rare and Endangered Taxa 2.1 Flora 2.2 Fauna Map 1: Flora and Fauna **3.0 Special Areas** 3.1 Managed Areas 3.2 Significant Areas Map 2: Special Areas 4.0 Taxa Lists 4.1 Fauna 4.2 Flora 4.3 Range Maps 5.0 Source Bibliography

1.0 PREFACE

The Atlantic Canada Conservation Data Centre (ACCDC) is part of a network of circa 85 NatureServe data centres and heritage programs in 50 states, 10 provinces and 1 territory, plus several Central and South American countries. The NatureServe network is more than 30 years old and shares a common conservation data methodology. The ACCDC was founded in 1997, and maintains data for the jurisdictions of New Brunswick, Nova Scotia, Prince Edward Island, Newfoundland and Labrador. Although a non-governmental agency, the ACCDC is supported by 6 federal agencies, plus 4 provincial governments, outside grants and data processing fees. URL: www.ACCDC.com.

Upon request and for a fee, the ACCDC reports known observations of rare and endangered flora and fauna, in and near a specified study area. As a supplement to that data, the ACCDC includes locations of managed areas with some level of protection, and also known sites of ecological interest. Data summarised in each report is attached as DBF files which may be opened from within data software (Excel, Access) or mapped in GIS (ArcView, MapInfo, AutoCAD).

1.1 RESTRICTIONS

The ACCDC makes a strong effort to verify the accuracy of all the data that it manages, but it shall not be held responsible for any inaccuracies in data that it provides. By receiving ACCDC data, recipients assent to the following limits of use:

- a.) Data is restricted to use by trained personnel who are sensitive to its potential threat to rare and endangered taxa.
- b.) Data is restricted to use by the specified Data User; any third party requiring data must make its own data request.
- c.) The ACCDC requires Data Users to cease using and delete data 12 months after receipt.
- d.) ACCDC data responses are restricted to that data in our Data System at the time of the data request.
- e.) Data is qualified as to location (Precision) and time (SurveyDate); cf Data Dictionary for details.
- f.) ACCDC data reports are not to be construed as exhaustive inventories of taxa in an area.
- g.) The non-occurrence of a taxon cannot be inferred by its absence in an ACCDC data report.

1.2 ADDITIONAL INFORMATION

Please direct biological questions about ACCDC data to: Sean Blaney, ACCDC: (506) 364-2658, and technical data queries to: Stefen Gerriets, ACCDC: (506) 364-2657.

For provincial information on rare taxa and protected areas, or information on game animals, deer yards, old growth forest, archeological sites, fish habitat etc, please contact Sherman Boates, NSDNR: (902) 679-6146.

2.0 RARE AND ENDANGERED TAXA

A 100km buffer around the study area contains 2528 records of 400 taxa from 88 sources, a relatively low-to-moderate density of records (quintile 2): 0.08 rec/km2.

2.1 FLORA

A 100km buffer around the study area contains 1006 records of 242 vascular, 66 records of 16 nonvascular flora (see attached *ob.dbf).

2.2 FAUNA

A 100km buffer around the study area contains 1101 records of 62 vertebrate, 355 records of 80 invertebrate fauna (cf attached *ob.dbf). Sensitive data: Wood Turtles are PRESENT in the study area (cf attached WOTU.rtf).

Map 1: Known observations of rare and/or protected flora and fauna within buffered study area.

larvae

1.7 within 10s of meters

page 2 of 10

3.0 SPECIAL AREAS

3.1 MANAGED AREAS

The GIS scan identified 5 Managed Areas with some degree of protected status, in the vicinity of the study area (see attached *ma.dbf).

3.2 SIGNIFICANT AREAS

No biologically significant sites were identified.

Map 2: Boundaries and/or locations of known Managed and Significant Areas within 5km of study area.

4.0 TAXON LISTS

Rare and/or endangered taxa within the buffered area listed in order of concern, beginning with legally listed taxa, with the number of observations per taxon and the distance in kilometers from study area centroid to the closest observation. [p] = vascular plant, [n] = nonvascular plant, [a] = vertebrate animal, [i] = invertebrate animal, [c] = community.

4.1 FLORA

	scientific name	common name	prov. rarity	prov. status	COSEW IC o	bs	dist.km
n	Erioderma pedicellatum (Atlantic pop.)	Boreal Felt Lichen (Atlantic pop.)	S1S2	Endangered	E	48	46 ±10
р	lsoetes prototypus	Prototype Quillwort	S2	Vulnerable	SC	2	83 ±0.1
р	Lilaeopsis chinensis	Eastern Lilaeopsis	S2	Vulnerable	SC	1	96 ±0
n	Pseudevernia cladonia	Ghost Antler Lichen	\$2\$3		SC	1	0± 08
р	Floerkea proserpinacoides	False Mermaldweed	S2	Endersered	NAR	3	46 ±10
р	Cypripedium arietinum	Ram's-Head Lady's-Silpper	51	Endangered		1	75 ±0.1
p	Ditrichum rhynchostogium		5152	vumerable		0	52 ± 0.5
n	Brybnia graminicolor	a Moss	S1			1	75 ±0.1
n	Opbioglossum pusillum	Northern Adder's-tongue	S1			1	99 +0
P n	Adiantum pedatum	Northern Maidenhair Fern	S1			1	55 ±0
p D	Sparganium fluctuans	Floating Burreed	S1			1	86 +5
p	Potamogeton nodosus	Long-leaved Pondweed	S1			1	74 ±5
p	Stuckenia filiformis	Thread-leaved Pondweed	S1			1	96 ±0
p	Sphenopholis intermedia	Slender Wedge Grass	S1			1	100 ±0
p	Festuca subverticillata	Nodding Fescue	S1			1	83 ±5
p	Elymus hystrix var. bigeloviana	Spreading Wild Rye	S1			4	9 ±1
p	Elymus wiegandii	Wiegand's Wild Rye	S1			6	8 ±0
р	Bromus latiglumis	Broad-Glumed Brome	S1			1	99 ±0
р	Spiranthes ochroleuca	Yellow Ladies'-tresses	S1			1	95 ±0.1
р	Malaxis brachypoda	White Adder's-Mouth	S1			1	86 ±10
р	Listera australis	Southern Twayblade	S1			1	94 ±0
р	Allium tricoccum	Wild Leek	S1			2	35 ±0.1
р	Juncus vaseyi	Vasey's Rush	S1			1	90 ±10
р	Iris prismatica	Slender Blue Flag	S1			2	51 ±10
р	Scirpus pedicellatus	Stalked Bulrush	S1			1	80 ±1
р	Cyperus lupulinus ssp. macilentus	Hop Flatsedge	S1			4	17 ±10
р	Carex wiegandii	Wiegand's Sedge	S1			1	58 ±5
р	Carex tuckermanii	Tuckerman's Sedge	S1			3	19 ±0.1
р	Carex tincta	Tinged Sedge	S1			2	67 ±1
р	Carex plantaginea	Plantain-Leaved Sedge	51			3	29 ±0
р		Woolly Sedge	51			4	5 ±0
p	Carex nayuenii	Garbar's Sedge	51			2	34 ±3
p	Carex bromaidan	Bromoliko Sodao	51			2	35 ±0
P	Carex promotes	Silvery flowered Sedge	51			1	90 ±0
P		Silvery-ilowered Sedge	S1			1	67 ±0 5
P n	Viola canadensis	Canada Violet	S1			1	46 +10
P n		Dwarf Clearweed	S1			5	40 ±10
P n	Dirca palustris	Eastern Leatherwood	S1			4	78 +10
p D	Scrophularia lanceolata	Lance-leaved Figwort	S1			1	86 +10
p	Ranunculus pensylvanicus	Pennsylvania Buttercup	S1			1	78 ±0
p	Montia fontana	Water Blinks	S1			1	100 ± 1
p	Ribes americanum	Wild Black Currant	S1			2	54 ±5
p	Desmodium canadense	Canada Tick-trefoil	S1			3	4 ±0
p	Cuscuta cephalanthi	Buttonbush Dodder	S1			4	20 ±1
p	Crassula aquatica	Water Pygmyweed	S1			1	98 ±5
p	Hudsonia tomentosa	Woolly Beach-heath	S1			2	18 ±10
p	Suaeda maritima ssp. richii	White Sea-blite	S1			3	62 ±10
р	Lobelia spicata	Pale-Spiked Lobelia	S1			4	74 ±10
р	Cochlearia tridactylites	Limestone Scurvy-grass	S1			4	73 ±10
р	Ageratina altissima	White Snakeroot	S1			2	58 ±10
р	Hieracium umbellatum	Umbellate Hawkweed	S1			1	58 ±5
р	Pseudognaphalium obtusifolium	Eastern Cudweed	S1			1	70 ±1
р	Bidens hyperborea	Estuary Beggarticks	S1			2	58 ±1
р	Antennaria parlinii	Parlin's Pussytoes	S1			2	35 ±0
р	Zizia aurea	Golden Alexanders	S1			8	34 ±1
р	Sanicula odorata	Clustered Sanicle	S1			4	11 ±0
n	Dicranum bonjeanii	a Moss	S1?			1	99 ±0.1
р	Dichantheilum acuminatum var. Iindheimeri	Woolly Panic Grass	S1?			1	8 ±0.1
р	Schoenopiectus robustus	Sturdy Bulliush	S1?			2	74 ±10
p	Viola sagillata val. Ovala	Allow-Leaved Violet	012			2	09 ±1
p	Cratague submollis	Quebec Hawthorn	S12			5	20 ±0
P	Crataegus submonis	Robinson's Hawthorn	S12			3	18 ±50 1
۲ n	Amelanchier stolonifera	Running Serviceberry	Q12			2	56 +1
۲ n	Humulus lupulus var lupuloides	Common Hon	Q12			2	58 ±5
р р	Hypericum maius	Large St. John's-wort	S12			1	99 +0
۲ D	Chenopodium rubrum	Red Pigweed	S12			3	17 +10
p	Atriplex acadiensis	Maritime Saltbush	S12			1	23 ±10
p	Solidago hispida	Hairy Goldenrod	S1?			1	34 ±10
'n	Polytrichum formosum	a Hair-Cap Moss	S1S2			1	96 ±1
n	Platydictya subtilis	a Moss	S1S2			1	96 ±1
n	Campylostelium saxicola	a Moss	S1S2			1	96 ±1
р	Sparganium hyperboreum	Northern Burreed	S1S2			2	87 ±0.1
р	Platanthera flava var. herbiola	Tubercled Orchid	S1S2			1	41 ±0

Da	ta Report 4404: New Glascow, NS			page	5 of 10
р	Juncus greenei	Greene's Rush	S1S2	3	64 ±5
р	Carex tenera	Tender Sedge	S1S2	4	22 ±5
p	Carex pensylvanica	Pennsylvania Sedge	S1S2 S1S2	3	32 ±0
р р	Gratiola neglecta	Clammy Hedge-Hyssop	S1S2 S1S2	2	50 ±10
p	Galium labradoricum	Labrador Bedstraw	S1S2	2	91 ±0.1
p	Hepatica nobilis var. obtusa	Round-lobed Hepatica	S1S2	9	27 ±0
р	Anemone virginiana var. alba	Virginia Anemone	S1S2	2	44 ±10
p n	Ruperzia selago	Fstuarine Sedae	5153 5153	ю 1	50 ±5 67 +0 5
p	Equisetum pratense	Meadow Horsetail	S2	6	45 ±0.1
p	Woodsia glabella	Smooth Cliff Fern	S2	1	75 ±10
р	Dryopteris fragrans var. remotiuscula	Fragrant Wood Fern	S2	5	45 ±10
р	Asplenium trichomanes-ramosum	Green Spleenwort	S2	1	85 ±10
p n	Aspienium tricnomanes Potamogeton friesij	Fries' Pondweed	52 S2	1	96 ±0.1
p	Piptatherum canadense	Canada Rice Grass	S2	3	64 ±1
p	Spiranthes Iucida	Shining Ladies'-Tresses	S2	6	5 ±0
р	Platanthera macrophylla	Large Round-Leaved Orchid	S2	5	34 ±5
p	Platanthera flava var. flava	Lubercled Orchid	S2	1	35 ±10
p n	Listera convallarioides	Broad-Leaved Twavblade	52 S2	3	35 ±10 99 +0 1
p	Goodyera tesselata	Checkered Rattlesnake-Plantain	S2	2	68 ±0.5
p	Goodyera repens	Lesser Rattlesnake-plantain	S2	2	54 ±1
р	Goodyera pubescens	Downy Rattlesnake-Plantain	S2	1	80 ±1
р	Cypripedium reginae	Showy Lady's-Slipper	S2	12	22 ±10
p	Allium schoepoprasum var. sibiricum	Yellow Lady's-slipper	52 52	4	30 ±10
р р	Vallisneria americana	Wild Celery	S2	3	63 ±1
p	Eriophorum gracile	Slender Cottongrass	S2	5	53 ±10
p	Carex hystericina	Porcupine Sedge	S2	3	42 ±0
р	Carex comosa	Bearded Sedge	S2	3	64 ±0.1
р	Carex atlantica ssp. capillacea	Atlantic Sedge	S2	2	67 ±10
p n	Tiarella cordifolia	Heart-leaved Foamflower	52 S2	9 11	4 ±0 14 +10
p	Parnassia palustris var. parviflora	Marsh Grass-of-Parnassus	S2	1	45 ±1
p	Comandra umbellata	Bastard's Toadflax	S2	1	68 ±10
р	Salix sericea	Silky Willow	S2	1	98 ±1
р	Salix pedicellaris	Bog Willow	S2	4	27 ±10
p	Galium boreale Papunculus flammula var flammula	Northern Bedstraw	S2 S2	1	84 ±5
р р	Caltha palustris	Yellow Marsh Marigold	S2	1	21 ±0.1
p	Anemone virginiana var. virginiana	Virginia Anemone	S2	1	59 ±10
p	Anemone virginiana	Virginia Anemone	S2	3	5 ±1
р	Anemone quinquefolia	Wood Anemone	S2	8	42 ±0.1
р	Anemone canadensis	Canada Anemone	S2	2	85 ±0.1
p n	Primula mistassinica	Mistassini Primrose	52 S2	3	34 +10
р р	Plantago rugelii	Rugel's Plantain	S2	3	12 ±0
p	Rumex salicifolius var. mexicanus	Triangular-valve Dock	S2	1	88 ±10
р	Polygonum arifolium	Halberd-leaved Tearthumb	S2	8	53 ±1
р	Oenothera fruticosa ssp. glauca	Narrow-leaved Evening Primrose	S2	3	27 ±10
p n	Chamaesyce polygonifolia	Seaside Spurge	52 S2	1	20 ±10 52 +1
р D	Vaccinium caespitosum	Dwarf Bilberry	S2	1	46 ±1
p	Vaccinium boreale	Northern Blueberry	S2	3	71 ±1
p	Empetrum eamesii ssp. eamesii	Pink Crowberry	S2	1	88 ±5
р	Triosteum aurantiacum	Orange-fruited Tinker's Weed	S2	17	4 ±0
p	Stellaria humitusa Minuartia graenlandiga	Saltmarsh Starwort	S2 S2	6	69 ±0.1
р р	Arabis drummondii	Drummond's Rockcress	52 S2	2	60 +1
p	Betula michauxii	Newfoundland Dwarf Birch	S2	12	52 ±0.5
p	Betula pumila	Bog Birch	S2	7	81 ±0
р	Caulophyllum thalictroides	Blue Cohosh	S2	12	5 ±0
p	Impatiens pallida	Pale Jewelweed	S2 S2	2	57 ±10
p n	Rudbeckia laciniata var daspereauensis	Cut-Leaved Coneflower	52 S2	5	37 ±10
р р	Rudbeckia laciniata	Cut-Leaved Coneflower	S2	7	37 ±0
p	Lactuca hirsuta var. sanguinea	Hairy Lettuce	S2	3	89 ±5
р	Hieracium robinsonii	Robinson's Hawkweed	S2	2	35 ±10
р	Erigeron philadelphicus	Philadelphia Fleabane	S2	3	44 ±5
p	Panax tritolius Osmorbiza, longistylis	Smooth Sweet Cicely	52	6	6± 20
р р	Conioselinum chinense	Chinese Hemlock-parslev	S2	2	22 ±5
'n	Calliergon giganteum	a Moss	S2?	1	89 ±1
n	Buxbaumia aphylla	Bug On a Stick	S2?	2	84 ±0.5
n	Brachythecium albicans	a Moss	S2?	1	96 ±1
n	Amonum orispum Dichanthelium linearifolium	a MOSS Narrow-leaved Papic Gross	52? 600	1	84 ±0.5
ч р	Juncus dudlevi	Dudlev's Rush	S2?	3	4 +0
p	Eleocharis ovata	Ovate Spikerush	S2?	1	40 ±0.5
p	Carex peckii	Peck's Sedge	S2?	2	51 ±0.1
р	Carex houghtoniana	Houghton's Sedge	S2?	1	63 ±5
p	Epilopium coloratum	Purple-verned Willowherb	S2?	2	15 ±1
p	Hieracium kalmii var. kalmii	Kalm's Hawkweed	S2?	0 1	41 +5
۳					0

Da	ta Report 4404: New Glascow, NS			page	e 6 of 10
р	Hieracium kalmii	Kalm's Hawkweed	S2?	1	32 ±1
n	Sphagnum wulfianum	a Peatmoss	S2S3	1	82 ±0.1
n	Fissidens bryoides	a Moss	S2S3	1	96 ±1
n	Dicranella subulata	Awl-Leaved Fork Moss	S2S3	3	82 ±1
n	Amblystegium varium	a Moss	S2S3	1	75 ±0.5
р	Botrychium simplex	Least Moonwort	S2S3	3	6 ±0
p	Botrychium lanceolatum var. angustisegmentum	I riangle Moonwort	5253	4	6 ±0
p	Lycopodium nickeyi	Northern Clubmone	5253	1	61 ±0.1
p	Detemogeten zesterifermis	Flat stommad Bandwood	5253	5	62 IE
p	Polamogeton zostemormis	Piahardoon's Pondwood	5253	5	52 ±0
P	Potamogeton obtusifolius	Blunt-leaved Pondweed	5255	2 5	36 ±1
P n	Panicum tuckermanii	Tuckerman's Panic Grass	5255	2	77 ±0
P n	Calamagrostis stricta var stricta	Slim-stemmed Reed Grass	5255	2	96 ±0
P n	Calamagrostis stricta	Slim-stemmed Reed Grass	S2S3	4	84 ±0
P n		Short-awned Fortail	5255 \$2\$3	7	40 +1
P n	Spiranthes romanzoffiana	Hooded Ladies'-Tresses	S2S3	,	65 +5
P D	Cyprinedium parviflorum	Yellow Lady's-slipper	S2S3	7	6 +10
р р	Coeloglossum viride var virescens	Long-bracted Frog Orchid	S2S3	1	86 +0 1
p	Lilium canadense	Canada Lilv	S2S3	44	5 ±0
p	Triglochin gaspensis	Gaspé Arrowgrass	S2S3	1	99 ±5
p	Eleocharis olivacea	Yellow Spikerush	S2S3	2	50 ±0.1
p	Carex hirtifolia	Pubescent Sedge	S2S3	18	5 ±0
p	Carex adusta	Lesser Brown Sedge	S2S3	5	53 ±0.5
p	Salix pellita	Satiny Willow	S2S3	1	98 ±1
p	Polvaonum raii	Sharp-fruited Knotweed	S2S3	1	90 ±1
p	Polvaonum ramosissimum var. ramosissimum	Bushy Knotweed	S2S3	3	90 ±5
p	Polygonum ramosissimum	Bushy Knotweed	S2S3	3	85 ±0.1
p	Polvaonum buxiforme	Small's Knotweed	S2S3	2	56 ±10
p	Polygala sanguinea	Blood Milkwort	S2S3	8	11 ±1
p	Fraxinus nigra	Black Ash	S2S3	25	4 ±0
p	Hedeoma pulegioides	American False Pennyroyal	S2S3	5	11 ±5
p	Halenia deflexa	Spurred Gentian	S2S3	1	63 ±1
p	Hypericum dissimulatum	Disquised St John's-wort	S2S3	2	85 ±10
p	Suaeda calceoliformis	Horned Sea-blite	S2S3	6	21 ±1
p	Symphyotrichum ciliolatum	Fringed Blue Aster	S2S3	7	5 ±0
p	Asclepias incarnata ssp. pulchra	Swamp Milkweed	S2S3	3	65 ±1
p	Schizaea pusilla	Little Curlygrass Fern	S3	2	81 ±0
p	Botrychium dissectum	Cut-leaved Moonwort	S3	3	10 ±1
p	lsoetes acadiensis	Acadian Quillwort	S3	1	72 ±1
p	Equisetum variegatum	Variegated Horsetail	S3	5	4 ±0
p	Sparganium natans	Small Burreed	S3	10	26 ±1
p	Dichanthelium clandestinum	Deer-tongue Panic Grass	S3	2	59 ±5
p	Platanthera orbiculata	Small Round-leaved Orchid	S3	13	26 ±0
p	Platanthera hookeri	Hooker's Orchid	S3	2	75 ±0.1
p	Platanthera grandiflora	Large Purple Fringed Orchid	S3	14	48 ±1
p	Corallorhiza trifida	Early Coralroot	S3	8	27 ±0
p	Juncus subcaudatus	Woodland Rush	S3	4	17 ±10
p	Carex rosea	Rosy Sedge	S3	6	5 ±0
р	Carex Iupulina	Hop Sedge	S3	3	13 ±0
р	Carex eburnea	Bristle-leaved Sedge	S3	3	58 ±5
р	Verbena hastata	Blue Vervain	S3	22	4 ±0.1
р	Laportea canadensis	Canada Wood Nettle	S3	6	7 ±0
р	Limosella australis	Southern Mudwort	S3	9	58 ±1
р	Geocaulon lividum	Northern Comandra	S3	1	68 ±0.1
р	Salix petiolaris	Meadow Willow	S3	5	29 ±0
р	Agrimonia gryposepala	Hooked Agrimony	S3	8	7 ±0
р	Rhamnus alnifolia	Alder-leaved Buckthorn	S3	13	71 ±5
р	Ranunculus gmelinii	Gmelin's Water Buttercup	S3	8	53 ±5
р	Pyrola asarifolia	Pink Pyrola	S3	7	37 ±0
р	Rumex maritimus	Sea-Side Dock	S3	6	20 ±0
р	Polygonum scandens	Climbing False Buckwheat	S3	11	4 ±0
р	Polygonum pensylvanicum	Pennsylvania Smartweed	\$3	8	5 ±0
р	Epilobium strictum	Downy Willowherb	\$3	6	74 ±0.5
р	Teucrium canadense	Canada Germander	S3	2	21 ±5
р	Proserpinaca pectinata	Comb-leaved Mermaidweed	S3	1	31 ±1
р	Proserpinaca palustris var. crebra	Marsh Mermaidweed	\$3	2	66 ±5
р	Bartonia virginica	Yellow Bartonia	\$3	1	98 ±10
р	Viburnum edule	Squashberry	S3	1	28 ±0
р	Stellaria longitolia	Long-leaved Starwort	S3	5	35 ±1
p	Campanula aparinoldes		53	18	4 ±0
р	Packera paupercula	Baisam Groundsel	53	4	4 ±0
р		vv ater Beggarticks	53	7	/ ±0.5
p	Engeron nyssopriollus	nyssop-leaved Fleabane	53	3	45 ±0.1
p	bioens connata	Purple-stemmed Beggarticks	53	9	64 ±0.1
p	Ascreptas incarnata	Swamp Milkweed	১ ১ চ০০	15	4/ ±10
p	Forypoulum apparachianum	Apparachian Polypody	53?	3	48 ±0
þ	Lycopodium sabinifalium	Ground-Eir	ວວ? ອວງ	4	49 ±5
P	Eyeopoulum saumilionum	White stammed Deadward	501 522	4	5± 00 ≀
þ	r oranogeron praetongus Carex tribulaides	Right Broom Sodas	ວວ? ອວງ	10	C± I ▲· C1
h	Carex cryptolenis	Hidden-scaled Sedan	C22	1	42 ±1
P	Carex foenee	Hav Sedae	S32	I F	34 TO
۲ n		Southern Bog Clubmoss	S3S4	0 /	34 ±0
۲ n	Fauisetum scirpoides	Dwarf Scouring-Rush	S3S4	7	<u></u> 48 ±1
۲ n	Cystopteris bulbifera	Bulblet Bladder Fern	\$3\$4	7	46 +0 1
۲	-,		0001	,	.5 ±0.1

Da	ata Report 4404: New Glascow, NS			page	7 of 10
р	Trisetum spicatum	Narrow False Oats	S3S4	1	4 ±0
р	Liparis Ioeselii	Loesel's Twayblade	S3S4	8	53 ±5
p	Juncus nodosus	Knotted Rush	S3S4	7	52 ±5
p	Sisyrinchium angustifolium	Narrow-leaved Blue-eyed-grass	S3S4	2	5 ±0
р	Lindernia dubia	Yellow-seeded False Pimperel	S3S4	10	4 ±0
p	Sanguinaria canadensis	Bloodroot	S3S4	12	4 ±0
р	Utricularia gibba	Humped Bladderwort	S3S4	2	56 ±10
р	Atriplex franktonii	Frankton's Saltbush	S3S4	2	50 ±1
р	Isoetes lacustris	Lake Quillwort	S4	9	47 ±1
р	Solidago simplex var. randii	Sticky Goldenrod	SH	2	71 ±1

4.2 FAUNA

	scientific name	common name	prov. rarity	prov. status	COSEW IC	; obs	dist.km
а	Sterna dougallii	Roseate Tern	S1B	Endangered	E	16	68 ±1
а	Calidris canutus rufa	Red Knot rufa ssp	S2S3M	Endangered	E	16	21 ±0.5
а	Salmo salar pop. 1	Atlantic Salmon - inner Bay of Fundy pope	s S2		E	15	20 ±10
а	Glyptemys insculpta	Wood Turtle	S3	Vulnerable	Т	59	6 ±10
а	Morone saxatilis	Striped Bass	S1		Т	3	58 ±10
а	Caprimulgus vociferus	Whip-Poor-W ill	S1?B		Т	4	48 ±5
а	Dolichonyx oryzivorus	Bobolink	S3S4B		Т	176	3 ±0.5
а	Histrionicus histrionicus pop. 1	Harlequin Duck - Eastern pop.	S2N	Endangered	SC	6	73 ±10
а	Passerculus sandwichensis princeps	Savannah Sparrow princeps ssp	S1B		SC	2	78 ±0.1
а	Bucephala islandica (Eastern pop.)	Barrow's Goldeneye (Eastern pop.)	S1N		SC	4	23 ±0.1
а	Asio flammeus	Short-eared Owl	S1S2		SC	4	23 ±5
i	Alasmidonta varicosa	Brook Floater	S1S2		SC	9	27 ±0.1
i	Danaus plexippus	Monarch	S2B		SC	3	53 ±1
а	Euphagus carolinus	Rusty Blackbird	S2S3B		SC	77	6 ±5
а	Aegolius funereus	Boreal Owl	S1B		NAR	3	64 ±0.1
а	Fulica americana	American Coot	S1B		NAR	6	33 ±5
а	Hemidactylium scutatum	Four-toed Salamander	S3		NAR	11	55 ±0.1
а	Sialia sialis	Eastern Bluebird	S3B		NAR	13	17 ±5
а	Sterna hirundo	Common Tern	S3B		NAR	102	17 ±10
а	Accipiter gentilis	Northern Goshawk	S3S4		NAR	36	8 ±5
а	Alces americanus	Moose	S1	Endangered		16	17 ±10
а	Sorex dispar	Long-tailed Shrew	S1			1	85 ±10
i	Chromagrion conditum	Aurora Damsel	S1			2	55 ±1
i	Enallagma aspersum	Azure Bluet	S1			3	55 ±1
i	Enallagma minusculum	Little Bluet	S1			2	84 ±0.1
i	Coenagrion resolutum	Taiga Bluet	S1			1	74 ±0.1
i	Leucorrhinia frigida	Frosted Whiteface	S1			1	84 ±0.1
i	Celithemis elisa	Calico Pennant	S1			1	84 ±0.1
i	Williamsonia fletcheri	Ebony Boghaunter	S1			1	75 ±0.5
i	Somatochlora minor	Ocellated Emerald	S1			2	88 ±0.1
i	Somatochlora kennedyi	Kennedy's Emerald	S1			1	89 ±1
i	Somatochlora incurvata	Incurvate Emerald	S1			3	90 ±1
i	Somatochlora franklini	Delicate Emerald	S1			3	82 ±1
i	Somatochlora forcipata	Forcipate Emerald	S1			3	84 ±1
i	Somatochlora cingulata	Lake Emerald	S1			3	84 ±0.1
i	Dorocordulia lepida	Petite Emerald	S1			2	55 ±1
i	Boyeria vinosa	Fawn Darner	S1			2	84 ±1
i	Basiaeschna janata	Springtime Darner	S1			3	88 ±1
i	Aeshna subarctica	Subarctic Darner	S1			2	55 ±1
i	Ophiogomphus mainensis	Maine Snaketail	S1			1	38 ±0.1
i	Gomphus ventricosus	Skillet Clubtail	S1			1	95 ±0.5
i	Oeneis jutta ascerta	Jutta Arctic	S1			1	56 ±0.1
i	Polygonia gracilis	Hoary Comma	S1			2	8 ±1
i	Erora laeta	Early Hairstreak	S1			1	97 ±0.5
i	Callophrys henrici	Henry's Elfin	S1			1	91 ±0.1
i	Satyrium liparops strigosum	Striped Hairstreak	S1			1	92 ±10
i	Satyrium acadica	Acadian Hairstreak	S1			3	22 ±1
i	Lycaena hyllus	Bronze Copper	S1			2	58 ±0
а	Perimyotis subflavus	Eastern Pipistrelle	S1?			3	76 ±5
а	Acipenser oxyrinchus	Atlantic Sturgeon	S1?			2	78 ±10
а	Vireo gilvus	Warbling Vireo	S1?B			4	48 ±5
а	Toxostoma rufum	Brown Thrasher	S1?B			3	8 ±5
а	Tringa solitaria	Solitary Sandpiper S	1?B,S4S5M			4	58 ±0.5
а	Hylocichla mustelina	Wood Thrush	S1B			12	17 ±5
а	Progne subis	Purple Martin	S1B			2	72 ±0.5
а	Gallinula chloropus	Common Moorhen	S1B			4	58 ±5
а	Nycticorax nycticorax	Black-crowned Night-heron	S1B			1	62 ±5
а	Calidris minutilla	Least Sandpiper	S1B,S5M			1	84 ±5
а	Picoides dorsalis	American Three-toed Woodpecker	S1S2			2	67 ±5
i	Stylurus scudderi	Zebra Clubtail	S1S2			3	80 ±0.5
i	Ophiogomphus rupinsulensis	Rusty Snaketail	S1S2			2	80 ±0.5
i	Nymphalis vaualbum j-album	Compton Tortoiseshell	S1S2			2	53 ±1
а	Passerina cyanea	Indigo Bunting	S1S2B			3	66 ±5
а	Eremophila alpestris	Horned Lark	S1S2B,S4N			4	68 ±5
а	Charadrius semipalmatus	Semipalmated Plover	S1S2B,S5M			7	42 ±5
а	Loxia curvirostra	Red Crossbill S	1S2B,SNAN			1	89 ±5
а	Myotis septentrionalis	Northern Long-eared Bat	S2			5	58 ±1
а	Salmo salar	Atlantic Salmon	S2			65	3 ±50.1
а	Asio otus	Long-eared Owl	S2			8	14 ±0.1
i	Lampsilis radiata	Eastern Lampmussel	S2			28	1 ±0.1
i	Lestes eurinus	Amber-W inged Spreadwing	S2			2	55 ±1
i	Leucorrhinia glacialis	Crimson-Ringed Whiteface	S2			10	55 ±1
i	Epitheca princeps	Prince Baskettail	S2			2	75 ±0.5

Da	ta Report 4404: New Glascow, NS			page	8 of 10
i	Gomphus spicatus	Dusky Clubtail	S2	6	74 ±0.1
i	Gomphus descriptus	Harpoon Clubtail	S2	1	83 ±1
1	Nymphalis milberti	Milbert's Tortoiseshell	S2	4	72 ±1
;	Religence caturus	Satur Commo	52	1	88 ±1
÷	Boloria chariclea	Arctic Fritillary	52 52	2	04 ±0.1
i	Callophrys lanoraieensis	Bog Elfin	S2 S2	2	87 ±1
i	Callophrys niphon	Eastern Pine Elfin	S2	1	89 ±1
i	Satyrium calanus	Banded Hairstreak	S2	1	66 ±1
i	Lycaena dospassosi	Salt Marsh Copper	S2	7	54 ±0.1
i	Pieris oleracea	Mustard White	S2	15	30 ±1
i	Amblyscirtes vialis	Common Roadside-Skipper	S2	3	22 ±1
	Amblyscirtes hegon	Salt and Pepper Skipper	S2	1	94 ±1
1	I horybes pylades	Northern Cloudywing	S2	3	10 ±1
a	Lasiurus cinereus	Roary Bat	52? 500P	11	91 ±10
a	Piranga olivaçea	Scarlet Tanader	S2B	5	34 ±3 6 ±5
a	Mviarchus crinitus	Great Crested Elycatcher	S2B	4	16 +5
a	Empidonax traillii	Willow Flycatcher	S2B	1	70 ±5
a	Rallus limicola	Virginia Rail	S2B	16	44 ±5
а	Anas clypeata	Northern Shoveler	S2B	7	79 ±5
а	Anas acuta	Northern Pintail	S2B	19	56 ±10
а	Bucephala clangula	Common Goldeneye	S2B,S5N	39	18 ±10
i	Alasmidonta undulata	Triangle Floater	S2S3	11	41 ±10
i	Erynnis juvenalis	Juvenal's Duskywing	S2S3	2	53 ±1
a	Icterus galbula	Baltimore Oriole	S2S3B	27	6 ±5
a	Pooecetes grammeus	Ped packed Phalarapa	5253B 5253M	15	35 ±5
a i	Amphiagrion saucium	Fastern Red Damsel	S235M	1	73 ±0.5 55 ±1
i	Nehalennia gracilis	Sphagnum Sprite	S3	10	55 ± 1
i	Sympetrum semicinctum	Band-W inged Meadowhawk	S3	9	74 ±0.1
i	Sympetrum danae	Black Meadowhawk	S3	6	47 ±1
i	Nannothemis bella	Elfin Skimmer	S3	1	100 ±0.1
i	Somatochlora williamsoni	Williamson's Emerald	S3	2	99 ±0.5
i	Somatochlora walshii	Brush-Tipped Emerald	S3	6	55 ±1
1	Somatochlora elongata	Ski-Tailed Emerald	\$3	11	57 ±1
1	Epitheca spinigera	Spiny Baskettail	S3 82	5	88 ±0.1
;	Comphaeschaa furcillata	Harlequin Darper	53	2	95 ±0 1
÷	Boveria grafiana	Ocellated Darner	55 S3	5	64 +1
i	Aeshna eremita	Lake Darner	S3	12	55 ±1
i	Aeshna constricta	Lance-Tipped Darner	S3	7	21 ±1
i	Aeshna clepsydra	Mottled Darner	S3	4	67 ±1
i	Ophiogomphus carolus	Riffle Snaketail	S3	13	32 ±1
i	Lanthus parvulus	Northern Pygmy Clubtail	S3	7	36 ±1
1	Cordulegaster maculata	Twin-Spotted Spiketail	S3	16	77 ±1
1	Enodia anthedon	Northern Pearly-Eye	S3	2	22 ±1
;	Polygonia faunus	Green Comma	53 53	3	91 ±0.1
i	Funbydryas phaeton	Baltimore Checkerspot	53 S3	9	23 +1
i	Hesperia comma laurentina	Laurentian Skipper	S3	8	20 ±1
i	Hesperia comma	Common Branded Skipper	S3	3	40 ±1
а	Coccyzus erythropthalmus	Black-billed Cuckoo	S3?B	38	6 ±5
а	Mimus polyglottos	Northern Mockingbird	S3B	10	8 ±5
а	Sterna paradisaea	Arctic Tern	S3B	27	53 ±5
i	Polygonia interrogationis	Question Mark	S3B	5	22 ±1
а	I ringa melanoleuca	Greater Yellowlegs	S3B,S5M	27	12 ±0.5
a	Mergus serrator	Red-breasted Merganser	S3B,S5N	47	18 ±5
a	Numenius phaeonus	Whimbrel	S3M S3M	8	20 ±0.5
a	Pluvialis dominica	American Golden-Plover	S3M	13	20 +0 5
a	Calidris maritima	Purple Sandpiper	S3N	11	29 ±0.5
а	Cardinalis cardinalis	Northern Cardinal	S3S4	5	6 ±5
а	Cepphus grylle	Black Guillemot	S3S4	24	36 ±1
i	Polygonia progne	Gray Comma	S3S4	6	27 ±1
į	Speyeria aphrodite	Aphrodite Fritillary	S3S4	8	5 ±100
1	Callophrys pollos	Hoary Elfin	5354	1	66 ±1
1	reniseda tarquinius	naivester	5354 5354B	/ 27	23 ±1
a	Sayonis procee	Lastern Fillene	00040	31	0 ±3

4.3 RANGE MAPS

The legally protected taxa listed below are linked to the study area by predictive range maps based upon expert estimates of distribution. Ranges of rank 1 indicate possible occurrence, those of rank 2 and 3 increasingly less probable.

	scientific name	common name	prov. rarity	prov. status	COSEW IC	range rank
а	Glyptemys insculpta	Wood Turtle	S3	Vulnerable	Т	- 1
р	Listera australis	Southern Twayblade	S2			1
p	lsoetes prototypus	Prototype Quillwort	S2	Vulnerable	SC	1
n	Erioderma pedicellatum	Boreal Felt Lichen (Atlantic pop.)	S1S2	Endangered	E	2
а	Alces alces (NS mainland)	Moose	S1	Endangered		1

5.0 SOURCE BIBLIOGRAPHY

The recipient of this data shall acknowledge the ACCDC and the data sources listed below in any documents, reports, publications or presentations, in which this dataset makes a significant contribution.

recs source

- Lepage, D. 2009. Maritime Breeding Bird Atlas Database. Bird Studies Canada, Sackville NB, 143,498 recs. 430
- 279 Erskine, A.J. 1992. Maritime Breeding Bird Atlas Database. NS Museum & Nimbus Publ., Halifax, 82,125 recs.
- Benjamin, L.K. (compiler). 2007. Significant Habitat & Species Database. Nova Scotia Dept Natural Resources, 8439 recs. 226
- Brunelle, P.-M. (compiler). 2009. ADIP/MDDS Odonata Database: data to 2006 inclusive. Atlantic Dragonfly Inventory Program (ADIP), 24200 recs. 183 148 Newell, R.E. 2000. E.C. Smith Herbarium Database. Acadia University, Wolfville NS, 7139 recs.
- Blaney, C.S & Spicer, C.D.; Popma, T.M.; Basquill, S.P. 2003. Vascular Plant Surveys of Northumberland Strait Rivers & Amherst Area Peatlands. 128 Nova Scotia Museum Research Grant, 501 recs.
- 113
- Pronych, G. & Wilson, A. 1993. Atlas of Rare Vascular Plants in Nova Scotia. Nova Scotia Museum, Halifax NS, I:1-168, II:169-331. 1446 recs. Catling, P.M., Erskine, D.S. & MacLaren, R.B. 1985. The Plants of Prince Edward Island with new records, nomenclatural changes & corrections & 96 deletions, 1st Ed. Research Branch, Agriculture Canada, Ottawa, Publication 1798. 22pp.
- Hicks, Andrew. 2009. Coastal Waterfowl Surveys Database, 2000-08. Canadian Wildlife Service, Sackville, 46491 recs (11153 non-zero). 66
- Layberry, R.A. & Hall, P.W., LaFontaine, J.D. 1998. The Butterflies of Canada. University of Toronto Press. 280 pp+plates. 64
- Chardine, J.W. & et al. 2008. Colonial Waterbird Database. Canadian Wildlife Service, Sackville, 2699 sites, 9623 recs (7882 obs). 53
- 50 Morrison, Guy. 2006. Maritime Shorebird Survey (MSS) database. Canadian Wildlife Service, Ottawa, 52 taxa, 570 sites, 11496 surveys. 59704 recs.
- Zinck, M. & Roland, A.E. 1998. Roland's Flora of Nova Scotia. Nova Scotia Museum, 3rd ed., rev. M. Zinck; 2 Vol., 1297 pp. Newell, R.E. 2005. E.C. Smith Digital Herbarium. E.C. Smith Herbarium, Irving Biodiversity Collection, Acadia University, Web site: 49 44 http://luxor.acadiau.ca/library/Herbarium/project/. 582 recs.
- 43 Roland, A.E. & Smith, E.C. 1969. The Flora of Nova Scotia, 1st Ed. Nova Scotia Museum, Halifax, 743pp.
- Blaney, C.S. 2000. Fieldwork 2000. Atlantic Canada Conservation Data Centre. Sackville NB, 1265 recs 43
- Blaney, C.S.; Spicer, C.D.; Popma, T.M.; Hanel, C. 2002. Fieldwork 2002. Atlantic Canada Conservation Data Centre. Sackville NB, 2037 recs. Cameron, R.P. 2009. Erioderma pedicellatum database, 1979-2008. Dept Environment & Labour, 103 recs. 40
- 36
- Curley, F.R. 2005. PEF&W Collection 2003-04. PEI Fish & Wildlife Div., 716 recs. 26
- 24 Blaney, C.S.; Mazerolle, D.M.; Oberndorfer, E. 2007. Fieldwork 2007. Atlantic Canada Conservation Data Centre. Sackville NB, 13770 recs.
- 21 Scott, F.W. 2002. Nova Scotia Herpetofauna Atlas Database. Acadia University, Wolfville NS, 8856 recs
- 20 Benjamin, L.K. (compiler). 2001. Significant Habitat & Species Database. Nova Scotia Dept of Natural Resources, 15 spp, 224 recs.
- 19 Pulsifer, M.D. 2002. NS Freshwater Mussel Fieldwork. Nova Scotia Dept Natural Resources, 369 recs.
- Harding, R.W. 2008. Harding Personal Insect Collection 1999-2007. R.W. Harding, 309 recs 18
- Blaney, C.S. 2003. Fieldwork 2003. Atlantic Canada Conservation Data Centre. Sackville NB, 1042 recs. 17
- 16 Erskine, D. 1960. The plants of Prince Edward Island, 1st Ed. Research Branch, Agriculture Canada, Ottawa., Publication 1088. 1238 recs.
- Belland, R.J. 2010. Database of Prince Edward Island moss specimens. Devonian Botanic Garden, University of Alberta, 748 recs. 16 15 Chaput, G. 2002. Atlantic Salmon: Maritime Provinces Overview for 2001. Dept of Fisheries & Oceans, Atlantic Region, Science Stock Status Report D3-14, 39 recs
- Blaney, C.S.; Spicer, C.D. 2001, Fieldwork 2001, Atlantic Canada Conservation Data Centre, Sackville NB, 717 recs. 14
- Blaney, C.S.; Spicer, C.D.; Mazerolle, D.M. 2005. Fieldwork 2005. Atlantic Canada Conservation Data Centre. Sackville NB, 2333 recs. 13
- Powell, B.C. 1967. Female sexual cycles of Chrysemy spicta & Clemmys insculpta in Nova Scotia. Can. Field-Nat., 81:134-139. 26 recs. 11
- Hall, R.A. 2003. NS Freshwater Mussel Fieldwork. Nova Scotia Dept Natural Resources, 189 recs. 9
- Blaney, C.S.; Spicer, C.D.; Rothfels, C. 2004. Fieldwork 2004. Atlantic Canada Conservation Data Centre. Sackville NB, 1343 recs. 9
- Doucet, D.A. 2009. Census of Globally Rare, Endemic Butterflies of Nova Scotia Gulf of St Lawrence Salt Marshes, Nova Scotia Dept of Natural 8 Resources, Species at Risk, 155 recs.
- Blaney, C.S.; Mazerolle, D.M.; Klymko, J; Spicer, C.D. 2006. Fieldwork 2006. Atlantic Canada Conservation Data Centre. Sackville NB, 8399 recs. 8 Blaney, C.S.; Mazerolle, D.M. 2008. Fieldwork 2008. Atlantic Canada Conservation Data Centre. Sackville NB, 13343 recs.
- Benjamin, L.K. & Boreal Felt Lichen, Mountain Avens, Orchid and other recent records. 2009. Nova Scotia Dept Natural Resources, 105 recs. 8
- Archibald, D.R. 2003. NS Freshwater Mussel Fieldwork. Nova Scotia Dept Natural Resources, 213 recs. 8
- Goltz, J.P. & Bishop, G. 2005. Confidential supplement to Status Report on Prototype Quillwort (Isoetes prototypus). Committee on the Status of Endangered Wildlife in Canada, 111 recs.
- Gilhen, J. 1984. Amphibians & Reptiles of Nova Scotia, 1st Ed. Nova Scotia Museum, 164pp.
- Oldham, M.J. 2000. Oldham database records from Maritime provinces. Oldham, M.J; ONHIC, 487 recs. 6
- 6 Edsall, J. 2007. Personal Butterfly Collection: specimens collected in the Canadian Maritimes, 1961-2007. J. Edsall, unpubl. report, 137 recs.
- 6
- Downes, C. 1998-2000. Breeding Bird Survey Data. Canadian Wildlife Service, Ottawa, 111 recs. Cam, S. 1999. Cam Stevens field data from PEI vegetation plots. Sent along with specimens to C.S. Blaney. UNB masters research project, 732 recs. 6 Benjamin, L.K. (compiler). 2002. Significant Habitat & Species Database. Nova Scotia Dept of Natural Resources, 32 spp, 683 recs. 6
- Popma, T.M. 2003. Fieldwork 2003. Atlantic Canada Conservation Data Centre. Sackville NB, 113 recs.
- Neily, T.H. 2010. Erioderma Pedicellatum records 2005-09. Mersey Tobiatic Research Institute, 67 recs.
- Giberson, D. 2008. UPEI Insect Collection. University of Prince Edward Island, 157 recs. 5
- Curley, F.R. 2007. PEF&W Collection. PEI Fish & Wildlife Div., 199 recs. 5
- Adams, J. & Herman, T.B. 1998. Thesis, Unpublished map of C. insculpta sightings. Acadia University, Wolfville NS, 88 recs. NSDNR. 2007. Restricted & Limited Use Land Database (RLUL). 5
- 5
- Olsen, R. Herbarium Specimens. Nova Scotia Agricultural College, Truro. 2003.
- 4
- Kelly, G. 2005. Fraxinus nigra. Dept of Agricuture, Fisheries, Aquaculture & Forestry. Pers. comm. to C.S. Blaney, Mar. 2, 11 recs. Hall, R. 2008. Rare plant records in old fieldbook notes from Truro area. Pers. comm. to C.S. Blaney. 6 recs, 6 recs. 4
- Daury, R.W. & Bateman, M.C. 1996. The Barrow's Goldeneye (Bucephala islandica) in the Atlantic Provinces and Maine. Canadian Wildlife Service, 4 Sackville, 47pp.
- Basquill, S.P. 2003. Fieldwork 2003. Atlantic Canada Conservation Data Centre, Sackville NB, 69 recs.
- Speers, L. 2001. Butterflies of Canada database. Agriculture & Agri-Food Canada, Biological Resources Program, Ottawa, 190 recs. 3
- Smith, M.E.M. 2008. AgCan Collection. Agriculture Canada, Charlottetown PE, 44 recs.
- 3 Rousseau, J. 1938. Notes Floristiques sur l'est de la Nouvelle-Ecosse in Contributions de l'Institut Botanique de l'Universite de Montreal. Universite de
- Montreal, 32, 13-62. 11 recs.
- MacDonald, M. 2008. PEI Power Corridor Floral Surveys, 2004-08. Jacques Whitford Ltd, 2238 recs (979 rare). 3
- Hall, R.A. 2001. S., NS Freshwater Mussel Fieldwork. Nova Scotia Dept Natural Resources, 178 recs. 3
- Doucet, D.A. 2007. Lepidopteran Records, 1988-2006. Doucet, 700 recs.
- Clayden, S.R. 1998. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, 19759 recs. 3
- Cameron, R.P. 2009. Nova Scotia nonvascular plant observations, 1995-2007. Nova Scotia Dept Natural Resources, 27 recs 3
- 3
- Blaney, C.S. Miscellaneous specimens received by ACCDC (botany). Various persons. 2001-08. Benjamin, L.K. 2009. D. Anderson Odonata Records for Cape Breton, 1997-2004. Nova Scotia Dept Natural Resources, 1316 recs. 3
- Whittam, R.M. 1999. Status Report on the Roseate Tern (update) in Canada. Committee on the Status of Endangered Wildlife in Canada, 36 recs. Standley, L.A. 2002. Carex haydenii in Nova Scotia. , Pers. comm. to C.S. Blaney. 4 recs.
- Spicer, C.D. 2004. Specimens from CWS Herbarium, Mount Allison Herbarium Database. Mount Allison University, 5939 recs. 2 Sollows, M.C,. 2008. NBM Science Collections databases: mammals. New Brunswick Museum, Saint John NB, download Jan. 2008, 4983 recs.
- 2 Kelly, Glen 2004. Botanical records from 2004 PEI Forestry fieldwork. Dept of Environment, Energy & Forestry, 71 recs.

Data Report 4404: New Glascow, NS

1

- Hill, N. 2003. Floerkea proserpinacoides at Heatherdale, Antigonish Co. 2002. , Pers. comm. to C.S. Blaney. 2 recs. 2
- Cameron, R.P. 2005. Erioderma pedicellatum unpublished data. NS Dept of Environment, 9 recs. Bredin, K.A. 2002. NS Freshwater Mussel Fieldwork. Atlantic Canada Conservation Data Centere, 30 recs. 2
- 2 Whittam, R.M. 2000. Senecio pseudoarnica on Country Island. , Pers. comm. to S. Gerriets. 1 rec. 1
- Robinson, C.B. 1907. Early intervale flora of eastern Nova Scotia. Transactions of the Nova Scotia Institute of Science, 10:502-506. 1 rec.
- Neily, P.D. Plant Specimens. Nova Scotia Dept Natural Resources, Truro. 2006.
- Morrison, Guy. 2007. Maritime Shorebird Survey (MSS) database. Canadian Wildlife Service, Ottawa, 1149 recs (1373 by species).
- MacQuarrie, K. 1991-1999. Site survey files, maps. Island Nature Trust, Charlottetown PE, 60 recs.
- Macaulay, N. Notes on newly discovered Hepatica nobilis var. obtusa population in Cumberland Co. NS. Pers. comm. to S. Blaney, 1 rec. Jacques W hitford Ltd. 2003. Cananda Lily location. Pers. Comm. to S. Blaney. 2pp, 1 rec. 1 rec. 1
- 1
- Glen, W. 1991. 1991 Prince Edward Island Forest Biomass Inventory Data. PEI Dept of Energy and Forestry, 10059 recs.
- 1
- Curley, F.R. 2003. Glen Kelly records for Betula pumila & Asclepias syriaca on PEL. Pers. comm. to C.S. Blaney. 9 recs. Clayden, S.R. 2006. Pseudevernia cladonia records. NB Museum. Pers. comm. to S. Blaney, Dec, 4 recs. Brunelle, P.-M. (compiler). 2010. ADIP/MDDS Odonata Database: NB, NS Update 1900-09. Atlantic Dragonfly Inventory Program (ADIP), 935 recs. Benjamin, L.K., NSDNR Fieldwork & Consultants Reports. 2009. Nova Scotia Dept Natural Resources, 143 recs. 1
- 1
- Benedict, B. Connell Herbarium Specimens, Digital photos. University New Brunswick, Fredericton. 2005. 1
- Benedict, B. Connell Herbarium Specimen Data . University New Brunswick, Fredericton. 2003. 1

Appendix 10: Moose PGI Protocol

Pellet Group Inventory Data Collection Protocol

Rational:

Determining absolute numbers, densities, and distribution for wild animal populations can be difficult. Reliable results are often compromised by physical limitations of terrain, budgets, manpower, and environmental conditions. When direct observations are impractical or impossible, indirect signs of animal presence through track, browse, and pellet surveys may be sufficient.

To compliment aerial surveys and/or winter track surveys for moose, pellet group inventory surveys (PGI's) can be used to assess moose presence/absence and distribution in the previous winter. Where the use of aerial surveys is impractical because of low moose density and/or low sightability due to heavy cover, winter track surveys and spring PGI's will be the best source of information.

PGI Surveys at Wind Power Sites:

In the case of wind power projects, we need to go beyond detecting the presence of moose in the vicinity of the development and use survey results to determine actual proximity of moose to the site. Depending on the population density of moose in the area, this information could potentially shed light on the question of whether or not moose behavior is affected by the presence of wind turbines. Therefore, the optimal layout for pellet surveys is similar for winter track transects: extending outward in a radial fashion from a central point. This point could be the location of an individual turbine for a small project, or the actual project footprint where the site covers a larger area. However, depending on topography and moose habitat available, this arrangement may not be practical, in which case simply establishing transects where detection of moose is most likely, is acceptable.

It is not necessary for radiating transects to be equidistant from each other as they extend outward; it is more important that they go through habitat where moose are likely to occur. However, they should also pass through as much of the representative landscape surrounding the project site as possible, where the habitat is appropriate. In other words, transects should be fairly evenly spaced out and not clumped, unless much of the area does not provide adequate moose habitat (cleared farmland for example). It is also recommended that the established winter track lines not be used for pellet surveys, and that separate track transects be created.

Transect lines will preferably be a minimum of 1km in length, but this may vary for several reasons. DNR biologists should be consulted for input regarding transect length and location.

Timing of Surveys:

Pellet surveys are completed once annually in the spring, between snow melt and the spring growth of herbaceous vegetation, typically in April. When ground vegetation makes it difficult to find deer or moose pellets, it is too late to conduct the survey.

Procedure:

Walking the transect line, record GPS coordinates and the number of individual moose and deer pellet piles found. Count all piles whose perceived center falls within 1 metre of your transect, and which are lying on top of the major leaf drop from last fall. Note pellets observed outside of the 1 metre zone, and record the GPS location and approximate distance from the line. GPS coordinates for the start and end points of the transect should also be recorded.

All coordinates should be recorded using a mapping GPS unit capable of uploading to ARCVIEW/ARCGIS. Unusual sightings, such as a moose or deer carcass, should be photographed with a digital camera and coordinates recorded. If live moose are encountered, to minimize disturbance, record a GPS location as quickly as possible and move on. Do not attempt to approach the animal or take pictures of it.

Observer Requirements:

Participants <u>must</u> be able to recognize moose and deer tracks, browse and scats, and be familiar with the use of mapping GPS and compass.

Reporting:

Results of pellet surveys should be presented to DNR, along with other related surveys, in a digital and hard copy report form annually, and contain a clean version of field data sets and a map showing surveyed transects and observation points.

Protocol for Mainland Moose Snow Tracking Survey January 2012

Rational:

Determining absolute numbers, densities, and distribution for wild animal populations can be difficult. Reliable results are often compromised by physical limitations of terrain, budgets, manpower, and environmental conditions. When direct observations are impractical or impossible, indirect signs of animal presence through track, browse, and scat surveys may be sufficient.

To compliment aerial surveys for moose snow-tracking surveys to assess presence, absence, and distribution, track surveys can be completed: (1) by snowmobile, using an established network of trails and roads; or (2) on foot, following established transect lines. Where the use of aerial surveys is impractical because of low moose density and/or low sightability due to heavy cover, winter track surveys and spring PGI's will be the best source of information.

Track Surveys at Wind Power Sites:

In the case of wind power projects, we need to go beyond detecting the presence of moose in the vicinity of the development and use survey results to determine actual proximity of moose to the site. Depending on the population density of moose in the area, this information could potentially shed some light on the question of whether or not moose behavior is affected by the presence of wind turbines. Therefore, the optimal layout is for the track transects to extend outward in a radial fashion from a central point. This point could be the location of an individual turbine for a small project, or the actual project footprint where the site covers a larger area.

It is not necessary for transects to be equidistant from each other as they extend outward; it is more important that they go through habitat where moose are likely to occur. However, they should also pass through as much of the representative landscape surrounding the project site as possible, where the habitat is appropriate. In other words, transects should be fairly evenly spaced out and not clumped, unless much of the area does not provide adequate moose habitat (cleared farmland for example). It is also recommended that the established Pellet Group Inventory lines (PGI's) not be used for track surveys, and that separate track transects be created.

Transect lines will preferably be a minimum of 1km in length, but this may vary for several reasons. DNR biologists should be consulted for input regarding transect length and location.

Track surveys conducted by snowmobile on trails and roads at the site can provide useful complimentary information, and should be done along with transects if possible. However, the transect surveys should be viewed as the priority if there are time limitations, such as impending weather changes. Snow-track surveys on trails could be done in conjunction with DNR, and possibly members of the local snowmobile club, provided the observes have the necessary qualifications.

Timing of Surveys:

Trail and transect surveys should be completed three times annually, throughout the study area. Ideally surveys are conducted in December, late January, and mid March; however, they may have to be done opportunistically, as dictated by appropriate snow and weather conditions.

Observer Requirements:

Observers should work in teams of two. Participants <u>must</u> be able to recognize moose and deer tracks, browse and scats, and use mapping GPS and compass.

Weather:

Snow tracking results are best 3-7 days following $a \ge 10$ cm snowfall. Surveys should not be conducted during periods of rain, snowfall, or blowing snow.

Data Recording:

UTM coordinates should be recorded using GPS wherever moose and deer track-ways cross survey trails or transects, occur within or adjacent to survey trails or transects, or localized activity occurs. All coordinates should be recorded using a mapping GPS unit capable of uploading to ARCVIEW/ARCGIS. Unusual sightings (i.e. a moose or deer carcass, bear den, etc.) should be photographed with a digital camera and UTM coordinates recorded. If live moose are encountered, to minimize disturbance, record a GPS location as quickly as possible and move on. Do not attempt to approach the animal or take pictures of it.

Reporting:

Survey results should be presented to DNR in digital and hard copy report form annually, and contain a clean version of all three track count field data sets and a map showing searched trails or transects and observation points.

Appendix 11: Community Engagement Documentation

April 18th, 2012

Community Information Session – Presentation Slide Deck

Watts Wind Energy

- Nova Scotia CEDIF wind energy development company formed by engineering and corporate finance professionals including the principles of Seaforth Engineering and Eon WindElectric.
- Sixteen years of renewable energy experience.

Seaforth Engineering

Based in Dartmouth, NS Main areas of business:

- Marine Engineering
- Renewable Energy original manufacturer the AOC 15/50 wind turbine, Morgan Falls

Eon WindElectric

- Wind energy service provider
- Development and Construction Management for large and small wind energy projects
- Service, Maintenance
- Involved in over 250 MW of Wind Projects in Atlantic Canada

Watts Wind Energy History

- Formed to develop projects owned by Nova Scotians
- Previous project work projects owned outside the province.
- Developed the Watts Wind Project

Watts Section Project

- Single 1.5 MW Vensys V77
- · Watts Section Nova Scotia
- · Power sold to NS Power for 20 years
- Enough green energy to electrify 400 homes
- Owned 100 percent by Nova Scotians

The Turbine Manufacturer Vensys Туре Vensys 77 Rated power 1500 kW Cut-in wind speed 3 m/s Rated wind speed 12.5 m/s Rotor diameter 77 m Swept area 4657 sqm Tower height(s) 85 m direct drive Drive

Vensys is headquartered at Wellesweiler, Germany and has been in the wind energy business since 1990. Vensys wind turbines are direct drive designs and function with a minimum of components.

Nova Scotia Renewable Feed In Tariffs

NOVA SCOTIA

- ComFIT program special rate for power produced by community owned wind projects.
- Accepting applications
 Summer 2011
- Definition of Community
- Irish Mountain a good possible candidate

Irish Mountain Community Project

December 2010 met with NSPI to determine best sites for grid connection.
Began actively looking for sites in the area January 2011.
Met town of New Glasgow
Wind Resource assessment
Environmental Considerations
Community Consultation
Measure wind speeds

Benefits to Community

- Local ownership good investment
- Community Fund
- Tax Revenue for Municipality for 20 years
- Construction jobs
- Tourism
- Operation and Maintenance work
- Green Energy Produced and Consumed Locally Not a large wind farm, transmission
- Will displace 10000 tons of coal used for electricity generation per year

Investment Opportunity

 CEDIF – Community Economic Development Investment Fund

- RRSP Eligible
- ComFIT rate

June 24th, 2011

Community Information Session – Presentation Slide Deck

Who We Are

- Nova Scotia wind energy development company formed by engineering, corporate finance and legal professionals including the principles of Seaforth Engineering and Eon WindElectric.
- Sixteen years of renewable energy experience.

Seaforth Engineering

Based in Dartmouth, NS Main areas of business:

- Marine Engineering
- Renewable Energy original manufacturer the AOC 15/50 wind turbine

Eon WindElectric

- Wind energy service provider
- Development and Construction Management
- Service, Maintenance
- Involved in over 200 MW of Wind Projects in Atlantic Canada

Development Company

- Formed to develop projects owned by Nova Scotians
- Previous project work projects owned outside the province.
- Developed the Watts Wind Project

Wind Turbine: Single 1.5 WW Vensys V77 Location: Watts Section Nova Scotia Power for 20 years Enough green energy to electrify 400 homes Owned 100 percent by Nova Scotians

The Turbine Manufacturer Vensys Туре Vensys 77 1500 kW Rated power Cut-in wind speed 3 m/s Rated wind speed 12.5 m/s Rotor diameter 77 m Swept area 4657 sqm Tower height(s) 85 m direct drive Drive

Vensys is headquartered at Wellesweiler, Germany and has been in the wind energy business since 1990. Vensys wind turbines are direct drive designs and function with a minimum of components.

Nova Scotia Renewable Feed In Tariffs

NOVA SCOTIA

- ComFIT program special rate for power produced by community owned wind projects.
- Accepting applications
 Summer 2011
- Definition of Community
- Irish Mountain is a good candidate

New Glasgow Community Project

- December 2010 met with NSPI to determine best sites for grid connection.
- Began actively looking for sites in the area January 2011.
- Met town of New Glasgow
- Wind Resource assessment
- Environmental Considerations
- Community Consultation

Benefits to Community

- Local ownership good investment
- Tax Revenue for Municipality for 20 years
- Construction jobs
- Tourism
- Operation and Maintenance work
- Lease payments Town of New Glasgow
- Green Community

Investment Opportunity

 CEDIF – Community Economic Development Investment Fund

- RRSP Eligible
- ComFIT rate

Office of the Chief Administrative Officer

September 16, 2011

Seaforth Power Corporation & Watts Energy Inc. c/o Mr. Stan Mason 300 Prince Albert Road Dartmouth, NS B2Y 4J2

Dear Mr. Mason:

On behalf of the Town of New Glasgow, we would like to extend our support of the Seaforth/Watts Energy proposed wind energy development project within the Municipality of the County of Pictou on Town of New Glasgow owned property.

The Town of New Glasgow is an active participant in the FCM Partners for Climate Protection initiative as well as ICLEI Climate Adaptation Initiative and we have a strong commitment to environment stewardship through our Integrated Community Sustainability Plan.

We look forward to seeing your project progress and working with you along the way. If you require further information, please do not hesitate to me. Thank you again for your interest in our region.

We remain,

Yours Very Truly,

Lisa M. MacDonald CAO Town of New Glasgow

Pictou County Chamber of Commerce

Business Service Centre, 980 East River Road, New Glasgow, Nova Scotia, Canada B2H 3S8 Tel: 902-755-3463 – Fax: 902-755-2848 – email: info@pictouchamber.com www.pictouchamber.com

Aug 15th 2011

To Whom It May Concern

The Pictou County Chamber of Commerce would like to express its support for the Forbes Lake Community Wind Development near Churchville, Pictou County. It is the Chamber's view that renewable energy is good for both Pictou County and Nova Scotia

The Chamber therefore supports the proposed wind energy development at the Forbes Lake site. We appreciate the commitment to hiring local contractors and making an investment in this potential project available to community members. We look forward to continued discussions as this project moves forward.

Sincerely,

Faus Johnson Executive Director Appendix 12: Aboriginal Engagement

January 15, 2013

Chief Gerard Julian Paqtnkek Mi'kmaw Nation 19 RR 1, AFTON NS BOH 1A0

Re: McLellans Brook Wind Farm

Dear Chief Julian,

As a follow up to our information package sent on July 6th, 2011 (via email to John Prosper) we would like to update you and the band council of Pictou Landing First Nation as to the progress of the McLellans Brook Wind Farm (MBWF). Watts Wind Energy Inc. (Watts) is a Community Economic Development Investment Fund (CEDIF) focused on the construction of community owned wind energy projects. Watts was awarded a contract from the Department of Energy on April 13th, 2012 for a six megawatt wind project near McLellans Brook.

The MBWF is located about 10 kilometers south of New Glasgow in Pictou County. The site is located in the community of McLellans Brook which is approximately 2km east of Forbes Lake. Current schedule is to begin site works in spring of 2013 with commissioning planned for early 2014. Attached is a map, outlining the location of the wind farm. Specific project details and company information can be found online at http://wattswind.com/portfolio/mclellans-brook/.

Watts is registering a Nova Scotia environmental assessment (EA) document in the coming week and will be completing additional engagement and requisite approvals as the project proceeds.

Please do not hesitate to contact me at 902-468-3579, or smason@wattswind.com.

Sincerely

Stan Mason, President Watts Wind Energy Inc. Enclosures: [1]

Legend

١

Po

- Hwy 104
- 🛎 Hwy 348
- ----- Paved Roads
- —— Unpaved
- Driveway
- Watercourse
- MBWF location
- Forbes Lake Water Supply Area
- Natural Watershed
- Lake Waterbody
- DNR Wetland

FIGURE 1.1

General Site Location

Drawn by: AWA	Date: 2013/01/02	
Project #: 2012043	Scale @ 11"x17"	
0 750 1,500 L I I I Meter	0 3,000 rs	
Coord. System: NAD83 CSRS UTM Z20N N Projection: Trasnverse Mercator Units: Meters		

January 15, 2013

Chief Andrea Paul Pictou Landing First Nation 6537 Pictou Landing Road Trenton, NS BOK 1XO

Re: McLellans Brook Wind Farm

Dear Chief Paul,

As a follow up to our letter in September 2011 (addressed to Chief Aileen Francis) we would like to update you and the band council of Pictou Landing First Nation as to the progress of the McLellans Brook Wind Farm (MBWF). Watts Wind Energy Inc. (Watts) is a Community Economic Development Investment Fund (CEDIF) focused on the construction of community owned wind energy projects. Watts was awarded a contract from the Department of Energy on April 13th, 2012 for a six megawatt wind project near McLellans Brook.

The MBWF is located about 10 kilometers south of New Glasgow in Pictou County. The site is located in the community of McLellans Brook which is approximately 2km east of Forbes Lake. Current schedule is to begin site works in spring of 2013 with commissioning planned for early 2014. Attached is a map, outlining the location of the wind farm. Specific project details and company information can be found online at http://wattswind.com/portfolio/mclellans-brook/.

Watts is registering a Nova Scotia environmental assessment (EA) document in the coming week and will be completing additional engagement and requisite approvals as the project proceeds.

Please do not hesitate to contact me at 902-468-3579, or smason@wattswind.com.

Sincerely,

Stan Mason, President Watts Wind Energy Inc. Enclosures: [1]

Lake Waterbody

DNR Wetland

FIGURE 1.1

General Site Location

General Site Location		
Drawn by: AWA	Date: 2013/01/02	
Project #: 2012043	Scale @ 11"x17"	
0 750 1,500 L I I I Meter	0 3,000 	
Coord. System: NAD83 CSRS UTM Z20N Projection: Trasnverse Mercator Units: Meters		

Watts Wind Energy

Watts Wind Energy 300 Prince Albert Rd. Suite 200 Dartmouth, Nova Scotia B2Y 4J2

Chief Aileen Francis Pictou Landing First Nations Council of Pictou Landing Band, Site 6 Box 55 R.R. #2 Pictou Co. BOK 1XO

Chief Francis,

Please see the attached information package regarding our proposed development in Churchville, Pictou County. Watts Wind Energy is a Nova Scotia based company dedicated to developing community owned wind energy projects. We would like to ensure this project does not negatively impact First Nations interests and would be pleased to meet with you to discuss in greater detail.

Sincerely, 0 Paul Pynn VP, Watts Wind Energy

Watts Wind Energy

Watts Wind Energy 300 Prince Albert Rd. Suite 200 Dartmouth, Nova Scotia B2Y 4J2

Paq'tnkek First Nation R.R. #1 Afton, Antigonish County, NS BOH 1A0

Chief Michael Gerard Julian,

Please see the attached information package regarding our proposed development in Churchville, Pictou County. Watts Wind Energy is a Nova Scotia based company dedicated to developing community owned wind energy projects. We would like to ensure this project does not negatively impact First Nations interests and would be pleased to meet with you to discuss in greater detail.

Sincerely,

Paul Pynn VP, Watts Wind Energy

Pictou County Wind Farm

Andrew Arbuckle <aarbuckle@eonwind.com>

Wed, Jul 6, 2011 at 3:45 PM

To: Johnr.prosper@paqtnkek.ca

John,

I spoke with a gentleman at your local band office who gave me your contact information.

I work for a company that installs wind turbines and consults to the industry for large wind turbine installations.

We are proposing a project in the Pictou County area, in particular, Churchville.

Attached is an information package describing the project, our company and the Community Feed-In-Tariff program which allows for the development of these types of projects.

Please do not hesitate to contact me for more information on becoming involved or staying informed on the project.

Kind Regards,

Andrew

Andrew Arbuckle Project Engineer, Eon WindElectric

Phone: +1 902 482 8687 Mobile: +1 902 401 1076 Fax: +1 866 314 5349

200-300 Prince Albert Rd. Dartmouth, NS B2Y 4J2

www.eonwind.com

Pictou County Wind Farm

John Prosper <johnr.prosper@paqtnkek.ca> To: Andrew Arbuckle <aarbuckle@eonwind.com> Thu, Jul 7, 2011 at 10:58 AM

Hi Andrew;

I have forwarded this information on to Chief and Council. John Prosper

[Quoted text hidden]

Summary of Aboriginal Engagement - Watts Wind Energy Inc. - ComFIT Projects

Wednesday, April 13th, 2011 – Meeting with Maritime Aboriginal Peoples Council (MAPC) Tuesday, May 10th, 2011 – Meeting with Mi'kmaq Rights Initiative (MRI) at the Negotiations Office. Monday, 18th July, 2011 – Meeting with Annapolis Valley First Nations (ANVI)

Watts Wind Energy made a effort to meet with and discuss the development of our various ComFIT projects to all potentially impacted Aboriginal Groups and Bands across the Nova Scotia. The intent with the engagement process was to inform each group of the option to partner, or invest in Watts Wind Energy ComFIT projects, and determine if there are any potentially detrimental impacts on each of the groups surrounding each individual project. Below is a description of the discussions thattook place during each of the meetings with the individual groups.

MAPC:

The meeting with the MAPC took place at the MAPC offices between Watts Wind Energy Inc. principals, and MAPC representatives Joshua McNeely and Roger Hunka. The first hour of the meeting Mr. Hunka and Mr. McNeely described the role of the MAPC and their affiliation with the Native Council of Nova Scotia. A brief summary of the history of the Mi'kmaq in Atlantic Canada was given by Mr. Hunka, followed by more detailed information regarding the environmental and cultural responsibilities MAPC maintain for the Mi'kmaq of Nova Scotia.

Watts Wind Energy Inc. explained the details of the ComFIT program, and how it may apply to the Aboriginals of Nova Scotia. The various projects across Nova Scotia that Watts Wind Energy Inc. was developing was discussed in great detail. Contact information was left for Mr. Hunka and Mr. McNeely, and hard copy documents (see attached) were sent.

MRI:

The meeting with the MRI took place at the MRI offices between Watts Wind Energy Inc. principals, and MRI representatives Twila Gaudet and Eric Christmas. Watts Wind Energy Inc. described the various ComFIT projects that were being developed across the province. The importance of the Mi'kmaq Ecological Knowledge Study was discussed, as well as the opportunity to partner with Watts Wind Energy Inc. on the further development of ComFIT projects. Documentation detailing Watts Wind Energy Inc. projects was left with MRI representatives Ms. Gaudet and Mr. Christmas. Hard copy documentation was also sent to the Negotiation Offices in Truro (see attached).

ANVI:

Watts Wind Energy representatives met with AVFN to discuss the potential project on Canaan Mountain, in the County of Kings. Watts Wind Energy discussed the details of the project, including the ComFIT process, the exact location of the development in Kings County, and the proposed turbine type. Please see the attached correspondence with the AVFN.

Watts Wind Energy Inc.

Watts Wind Energy Inc. 300 Prince Albert Rd. Suite 200 Dartmouth, Nova Scotia B2Y 4J2

Jay Hartling, Senior Strategist, Provincial Consultation 5251 Duke St., 5th Floor PO Box 1617 Halifax, NS B3J 2Y3 Canada

Ms. Hartling,

Please see the attached information package regarding our proposed wind energy development sites across Nova Scotia. Watts Wind Energy is a Nova Scotia based company dedicated to developing community owned wind energy projects. Watts Wind Energy Inc. is pursuing 7 separate wind energy projects under the Department of Energy's Community Feed-In-Tariff (ComFIT). We would like to make the Office of Aboriginal Affairs aware of our projects, and inform the department that engagement with the all mainland Chief and Band Councils will occur as part of the development process.

Sincerely,

Paul Pynn VP, Watts Wind Energy

ComFIT Projects

Andrew Arbuckle <aarbuckle@eonwind.com>

Wed, Apr 27, 2011 at 4:26 PM

To: "Janice M. Maloney" <janicemaloney@mikmaqrights.com> Cc: twilagaudet@mikmaqrights.com

Janice and Twila,

As a follow-up to my phone message we would like to discuss our various ComFIT projects and how we may be able to work with the Mi'kmaq of Nova Scotia to develop successful, community owned, wind energy projects.

Attached is a map we are using to track the location of our various projects. Please feel free to contact me for any other documentation or details.

Talk Soon!

Andrew

Andrew Arbuckle Project Engineer, Eon WindElectric

Phone: <u>+1 902 482 8687</u> Mobile: <u>+1 902 401 1076</u> Fax: <u>+1 866 314 5349</u>

200-300 Prince Albert Rd. Dartmouth, NS B2Y 4J2

www.eonwind.com

051 - All ComFITs - 27-April-2011 - Site and Band Map - Google Earth.jpg 160K

ComFIT Projects

Twila Gaudet <twilagaudet@mikmaqrights.com>

Wed, Apr 27, 2011 at 5:26 PM

To: Andrew Arbuckle <arbuckle@eonwind.com>, ericchristmas@mikmaqrights.com Cc: "Janice M. Maloney" <janicemaloney@mikmaqrights.com>

Thank-you Mr. Arbuckle. I have copied our Energy Advisor, Eric Christmas on this message as he will contact you to arrange a meeting date. Twila

Sent from my iPhone

[Quoted text hidden]

<051 - All ComFITs - 27-April-2011 - Site and Band Map - Google Earth.jpg>

Watts Wind Energy Inc.

Watts Wind Energy Inc. 300 Prince Albert Road Suite 200 Dartmouth, Nova Scotia B2Y 4J2

Twila Gaudet, BA, LL.B - Consultation Liaison Kwilmu'kw Maw-klusuaqn Negotiation Office 851 Willow Street, Truro, NS B2N 6N8

Twila,

Thanks for the opportunity to meet with the Kwilmu'kw Maw-klusuaqn Negotiation (KMK) Office on May 13th, 2011 regarding our 7 potential ComFIT wind energy sites across Nova Scotia. Please see the attached information packages which describe our proposed wind energy development sites across Nova Scotia.

All sites are at a very preliminary stage of development; however we are interested in making KMK, and the Chiefs and Council aware of our development efforts. Our intent with the engagement process is to ensure the various projects do not negatively impact First Nation interests and to determine whether the First Nations groups across Nova Scotia are interested in participating as investors, contractors, or suppliers. We are also aware of the importance of a Mi'kmaq Ecological Knowledge Study for all commercial wind turbine installations. We will be in close contact with KMK and all nearby Chiefs and Band Councils regarding the success of our various sites in the coming months.

Please feel free to contact me at 902-482-8687 ext. 226 or ppynn@eonwind.com if you have any questions or concerns about any of the attached documents.

Sincerely,

Paul Pynn VP, Watts Wind Energy Inc.

cc: Eric Christmas

Enclosures (7)

Watts Wind Energy

Watts Wind Energy 300 Prince Albert Rd. Suite 200 Dartmouth, Nova Scotia B2Y 4J2

Main Office The Confederacy of Mainland Mi'kmaq PO Box 1590 (57 Martin Crescent, B2N 6N7) Truro, NS B2N 5V3

Dear Mr. Peters,

Please see the attached information package regarding our proposed wind energy developments throughout Nova Scotia. Watts Wind Energy is a Nova Scotia based company dedicated to developing community owned wind energy projects. We would like to ensure this project does not negatively impact First Nations interests and would be please to meet with you to discuss in greater detail.

All sites are at a very preliminary stage of development; however we are interested in making the Confederacy of Mainland Mi'kmaq aware of our development efforts. Our intent with the engagement process is to ensure the various projects do not negatively impact First Nation interests and to determine whether the First Nations groups across Nova Scotia are interested in participating as investors, contractors, or suppliers. We are also aware of the importance of a Mi'kmaq Ecological Knowledge Study for all commercial wind turbine installations. We will be in close contact with the Comfederacy and all nearby Chiefs and Band Councils regarding the success of our various sites in the coming months.

Sincerely,

Paul Pynn VP, Watts Wind Energy

Watts Wind Energy Inc.

Watts Wind Energy Inc. 300 Prince Albert Road Suite 200 Dartmouth, Nova Scotia B2Y 4J2

Joshua McNeely, Regional Facilitator Maritime Aboriginal Peoples Council 172 Truro Heights Road Truro Heights, Nova Scotia B6L 1X1

Joshua,

Thanks for giving us the opportunity to meet with the Maritime Aboriginal Peoples Council (MAPC) on April 13th, 2011. As discussed at the meeting, please see the attached information packages for our 7 proposed wind energy projects across Nova Scotia.

Our sites are at an early stage of development and we are preparing to apply for the upcoming Community Feed In Tarriff (ComFIT). We would like to re-iterate our intent to continue consulting with both on and off-reserve Mi'kmaq groups across the province to ensure our projects do not negatively impact First Nation interests. In addition, we offer the opportunity for the members of MAPC to participate as shareholders, contractors or suppliers. We are also aware of the importance of a Mi'kmaq Ecological Knowledge Study for all commercial wind turbine installations. We look forward to continued discussion with MAPC as our projects progress.

Please feel free to contact me at 902-482-8687 ext. 226 or ppynn@eonwind.com if you have any questions or concerns about any of the attached documents.

Sincerely,

Paul Pynn VP, Watts Wind Energy Inc.

Enclosures (7)

Watts Wind Energy Inc. Information Package Nova Scotia ComFIT Projects

Figure 1: 1.5MW Vensys Wind Turbine Installed in Sheet Harbour, NS 2011

Watts Wind Energy Inc.

Who We Are

Watts Wind Energy is a Nova Scotia company focused on developing community based wind energy projects. The directors have a long history in the renewable energy industry. Starting with a 700kW run-of-river hydro plant installed in 1995, we've since been involved in the installation of over 250MW (\$600 million) of wind energy projects in Atlantic Canada.

Our management team is comprised of a highly experienced multi-disciplinary team of engineers, corporate finance and legal professionals.

Community Wind and the ComFIT

The government of Nova Scotia, through its Renewable Electricity Plan, has mandated that 25 per cent of electricity supply must come from renewable sources by 2015 with the goal of increasing to 40% by 2025. To achieve this, and encourage community

Figure 2: Single 1.2MW Vensys Turbine Installed by Eon WindElectric

based projects, the government will announce a community feed in tariff (ComFIT) in the summer of 2011. A feed in tariff allows developers to sign simple, stable power contracts which ensure long term revenue. To be eligible for this special ComFIT rate, projects must be majority owned by one or a combination of the following groups:

- a municipality
- Mi'kmaq band council
- Cooperative
- Not-for-profit
- Community Economic Development Corporation (CEDIF)
- University

Watts Wind Energy partners with community groups to develop projects. We have also formed a CEDIF (see below) to allow individual Nova Scotians to receive an additional tax benefit from investing in our wind energy projects.

Community Economic Development Corporations (CEDIFs)

Nova Scotians invest over \$600 million dollars annually in RRSP's. Less than 2% of this is reinvested in Nova Scotia. Under the CEDIF structure, investors are rewarded for investing locally in the form of equity tax credits against income earned in the province. Your investment in a CEDIF can be held outside or in and RRSP or can be transferred from an existing RRSP. In each case, the investor is entitled to a 35% non-refundable provincial income tax credit. There is also as subsequent tax credit of 20% if held for 5 years and 10% if held for an additional 5 years.

Figure 3: Assemble of Rotor for Watts Section Project (2011).

Watts Wind Energy Inc.

In 2008, NS Power issued a request for wind power. Our team responded with a proposal to install a single 1.5MW wind turbine in the community of Watts Section, NS. Our bid was successful and we subsequently raised \$2M dollars from Nova Scotia investors to finance the project. The turbine was installed under budget and on schedule and is currently producing revenue as expected. More information on this project can be found at www.wattswindproject.com.

Project Information – Forbes Lake

Watts Wind Energy has identified property (PID 00873273) owned by the Municipality of the Town of New Glasgow in the Churchville area (see map below) as a possible candidate for a community based wind energy project. Preliminary discussions with officials at the County of Pictou, the surrounding residents, Nova Scotia Power and Pictou County planners have begun. A preliminary wind resource assessment has been carried out. We are reviewing the site to identify potential environmental or constructability concerns.

Figure 10: Churchville site layout and wind turbine configuration.

Amherst Project

Bayswater Project Ketch Harbour Project

Pictou Landing First Nation Forbes Lake Project Pag'tnkek First Nation

Millbrook First Nation

Annapolis Valley First Nation Glooscap First Nation

Shubenacadie First Nation

Bear River First Nation

Beaver River Project

cadia First Nation

• Tuskett Falls Project

120 km

Data SIO, NOAA, U.S. Navy, NGA, GEBCO © 2011 Cnes/Spot Image Image USDA Farm Service Agency

45°10'56.99" N 63°08'57.67" W elev 52 m

N

(0)

• ()

Eye alt 500.36 km 🔘