

NOVA SCOTIA TRANSPORTATION AND INFRASTRUCTURE RENEWAL Environmental Assessment Highway 107 Burnside to Bedford

Additional Information – Anderson Lake

June 8, 2018

Nova Scotia Transportation and Infrastructure Renewal P. O. Box 186 1672 Granville Street Halifax, Nova Scotia B3J 2N2

Highway 107 Burnside to Bedford – Additional Information

Attention: Sylvie Colomb, Environmental Analyst

The following provides the additional information requested by the Minister of Environment on August 25, 2017, for the proposed Highway 107 Burnside to Bedford Project in Halifax Regional Municipality, Nova Scotia.

Sincerely,

DILLON CONSULTING LIMITED

Kam

Karen March, M.Sc. Dillon Project Manager

KLM:jes

Our file: 13-8348-6000

137 Chain Lake Drive Suite 100 Halifax Nova Scotia Canada B3S 1B3 Telephone **902.450.4000** Fax 902.450.2008

Dillon Consulting Limited

Table of Contents

1.0	Backgr	round	1
	1.1	Environmental Assessment Review Meeting	
	1.2	eDNA Technology	1
	1.3	Background on Whitefish Biology	2
	1.4	Background on Anderson Lake	2
	1.5	Summary of DFO Monitoring of Atlantic Whitefish and Anderson Lake	
2.0	Ander	son Lake eDNA Study Methodology	5
	2.1	Assay Development	
	2.2	Field Program and Analysis	6
3.0	2017 V	Nater Sampling Results	7
	3.1	eDNA Results	7
	3.2	Surface Water Chemistry	7
4.0	Propos	sed Mitigation Summary	7
5.0	Refere	nces	9

Figures

Figure 1	Sample Locations
Figure 2	Spill Containment Extent

Tables

Appendices

A	2017 Temperature, Depth Profiles and Sample Depths
В	Precision Biomonitoring Pre and Post Turnover 2017 Anderson Lake eDNA Reports
С	2017 Water Chemistry

1.0 Background

This document provides additional information to the Environmental Assessment (EA) Registration Document for the Highway 107 Burnside to Bedford Project registered with the Nova Scotia Environmental Assessment Branch of Nova Scotia Environment (NSE) on July 7, 2017. The following information was requested by the Minister of the Environment on August 25, 2017 in order to evaluate potential environmental effects related to the undertaking:

- Provide updated baseline information on fish and fish habitat including Atlantic whitefish (*Coregonus huntsmani*) at Anderson Lake; and
- Based on the updated baseline information, develop appropriate mitigation measures accordingly (where applicable including but not limited to a discussion of highway alignment and/or design options) to mitigate potential project related impacts on Atlantic whitefish and Anderson Lake. Where applicable, provide also updated baseline information and impact analysis regarding all relevant valued environmental components.

1.1 Environmental Assessment Review Meeting

A meeting was held (August 30, 2017), subsequent to the Ministers request for information to discuss the requirements. The meeting was attended by representatives of Nova Scotia Transportation and Infrastructure Renewal (NSTIR), the Environmental Assessment Branch, federal Department of Fisheries and Oceans Canada (DFO), Nova Scotia Department of Fisheries and Aquaculture, and Nova Scotia Department of Natural Resources. Atlantic whitefish is listed as a Species at Risk and is protected federally under the *Species at Risk Act* (SARA – Schedule 1 Endangered) and provincially under the *Nova Scotia Endangered Species Act* (NSESA – Endangered). It is also globally listed by the International Union for Conservation of Nature (IUCN). The only locations known in the world to be inhabited by Atlantic whitefish are the wild populations of landlocked Atlantic whitefish in the Petite Riviere watershed and the stocked fish in Anderson Lake. An historic anadromous population was located in southwest Nova Scotia, the Tusket-Annis system, but this population is believed to be extirpated (COSEWIC 2010).

The historic context of the experimental stocking of Anderson Lake with Atlantic whitefish was reviewed during the meeting, as well as related DFO monitoring. It was concluded that Atlantic whitefish, if present, were at very low levels and thus conventional biological assessment methods were limited in their ability to detect the fish. It was agreed that NSTIR would investigate environmental DNA-Deoxyribonucleic acid (eDNA) methodology in order to provide improved resolution on the potential for the presence of Atlantic whitefish within Anderson Lake.

1.2 eDNA Technology

The eDNA technology is a relatively new and diverse biological assessment tool that was developed over a decade ago, and was first used in North America in 2009-2010 to detect Asian carp in the Great Lakes.

Since then, a wide range of applications have been developed. Analysis involves collection of genetic material that is shed into the environment from living organisms such as from skin, feces, eggs/sperm, fluids (blood, urine) or material from dead or degrading cells. Environmental samples (such as soil or water) are collected, and then DNA present in the samples is extracted and detected using molecular genetic techniques. Based on the DNA identified, information can be obtained regarding the presence of organisms in the environment. This eDNA technique is particularly useful for detecting species present at low abundances, where conventional sampling methods may have limitations such as requiring considerable effort to address presence/absence (Wilson and Wright 2013). It is noted that a positive eDNA detection for a targeted species indicates that DNA was present but does not confirm if the source was a live animal.

1.3 Background on Whitefish Biology

As outlined in the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) Assessment and Status Report (2010), Atlantic whitefish were historically sea-run with migrations to freshwater in fall to spawn. Some of the individuals spent the winter in freshwater and returned to the sea in the spring. However, the remaining known natural wild population is landlocked and primarily remain within headwater lakes in the Petite Riviere watershed. Wild lake populations and captive born fish are observed to spawn from late November to early January (DFO 2009). It is reported that the fish are found more often in surface and midwaters of the lakes (COSEWIC 2010). One juvenile capture was recorded in June of 2000 along the shore zone in a Petite system lake (Hasselman *et al.* 2005). COSEWIC (2010) identifies Atlantic whitefish diet and longevity. The whitefish's diet ranges from zooplankton, to flying insects and small fish. Wild Atlantic whitefish may mature at 2+ years old, but typically between age 3 and 4. Maximum age is estimated to be 4 to 5 years in the wild. However, wild caught and hatchery reared Atlantic whitefish typically lived to 7 to 8 years in captivity (Whitelaw *et al.* 2015).

1.4 Background on Anderson Lake

Anderson Lake is a headwater lake with a total area of 0.62 km², mean depth of 7.8 m, and maximum depth of 26 m (Cook *et al.* 2014). Inflows to the lake include small intermittent (seasonal) watercourses, surface runoff, and groundwater flow through glacial boulder and bedrock. The southern border of the lake includes Department of National Defence (DND) property. An historic jetty remains at the end of a gravel access road in the southwest portion of the lake. DND has conducted environmental sampling in relation to potential contaminants and remediation planning. The remaining shoreline is forested. The lake outlet is a connection channel to a smaller pond (Little Lake) which then flows to Wrights Brook and ultimately Bedford Basin.

The lake shoreline is dominated by bedrock outcrops and boulders. Limited aquatic vegetation is present in shallower coves. Little Lake has more extensive aquatic vegetation (emergent lilies and submergents). Submerged boulder shelves with depths less than 2 m occur in the northern arm and southeastern embayment of the lake. Water quality was determined to be suitable for Atlantic whitefish with a pH in

the order of 6.2 units, low to moderate nutrient concentrations, and good dissolved oxygen levels (Bradford *et al.* 2015). The lake water column is thermally stratified typically starting in mid-May and ending in November with turnover. Summer surface water temperatures can be high (23°C noted), but below the thermocline water temperature is typically less than 9°C, and temperatures around the thermocline offer suitable warm water refuge habitat for whitefish, closer to the optimal growth temperature of 16.5°C (COSEWIC 2010). **Photos 1** and **2** below show Anderson Lake in the fall of 2017.

Photo 1 Bedrock Shoreline and Jetty

Photo 2 Boulder Shoreline

1.5 Summary of DFO Monitoring of Atlantic Whitefish and Anderson Lake

A report on the Atlantic whitefish stocking of Anderson Lake was issued in 2015 (Bradford *et al.* 2015). Stocking of Anderson Lake was undertaken by DFO as trial releases of surplus captive breed fish. A potential benefit of the experiment was the possible range extension of the species supporting recovery efforts. It was considered a trial as the study was not specifically designed to increase the likelihood of a self-sustaining population (Bradford 2017). Anderson Lake was chosen as a stocking location based on generally similar habitat characteristics (water chemistry, temperature, and bedrock geology) to the Petite system; on the natural obstruction of the outlet stream; and, on the absence of predatory invasive fish species that were identified to have been illegally introduced into the Petite system (smallmouth bass and chain pickerel).

The 2015 report identifies the habitat characteristics of the lake, the number of whitefish and the timing of stocking into Anderson Lake, and the monitoring undertaken to that date. Prior to introduction of Atlantic whitefish, fish sampling (gill net) in 2003 and 2004 identified the following fish species to be present in the lake: American eel, banded killifish, brook trout, common shiner, nine-spine stickleback, rainbow smelt and white sucker.

The 2005 to 2012 releases of captive breed and reared Atlantic whitefish to the lake and monitoring undertaken are summarized in **Table 1** below.

Table 1	Summary of Stocking and DFO Trap Net Deployment and Atlantic Whitefish Captures (2005 t	o 2012)
(data fro	m Bradford <i>et al.</i> 2015) (na – not applicable)	

Year	Days Fished	Stocking Data	Date or Month/s	Capture Data	Total Captures
2005	na	1,500 age 1+ year old juveniles	November 4/5	na	na
2006	na	10 age 2+ year old fish with acoustic transmitters and 750 age 1+ juveniles	April 24	na	na
2006	na	5,000 larvae (age 0+ year old)	April 26	na	na
2006	4	na	May 11-16	na	0
2006	na	5 age 2+ fish with acoustic transmitters	May 23	na	na
2006	4	na	June 6-28	Fish identified as from Nov. 5 release	3
2006	na	750 age 1+ juveniles	Oct. 16	na	na
2006	5	na	Nov. 15 – Dec. 1	Average fork length 21; Range 15.6-25.9	7
2007	na	750 age 1+ juveniles and 2,000 larvae (age 0+)	May 1	na	na
2007	28	na	May 15 – June 22	2007 Average fork length 22; Range 19.9-26.2 (includes Nov. data)	6
2007	na	6 age 2+ juveniles with acoustic transmitters and 750 age 1+ juveniles	Oct. 3	na	na
2007	11	na	Nov. 9 – Nov. 30	2007 Average fork length 22; Range 19.9-26.2 (includes spring. data)	14
2008	na	212 age 4+ adults and 184 age 3+ adults	Nov. 25	na	na
2008	35	na	Sep. 29- Dec.16	Average fork length 23.5; Range 21.2- 31.6	32
2009	22	na	Nov.2-Dec.2	Average fork length 26.5; Range 23-33.7 10 - Age 3+, 30 - Age 4+, 2 - Age 5+	44
2010	30	na	Nov.1-Dec.10	Average fork length 28.2; Range 25.7- 31.6	41
2010	22	na	Nov.9-Dec.10	(second shallower set)	0
2012	na	80 ages 5+ and 6+ years old fish	Nov. 5	na	na
2012	22	na	Oct.23-Dec.12	Average fork length 35.3; Range 34.4- 36.2	2

Monitoring of the spring 2006 hatchery releases with acoustic tags is summarized in Cook *et al.* (2014). Monitoring was conducted over 342 days. The study noted that hatchery reared fish were slow to disperse from the release site and the fish swam at the surface for extended periods. It was suggested that the resulting higher densities at the water surface may have increased predation by visual predators (particularly fish eating birds). A high proportion of the releases were "lost" (were unable to be acoustically detected) within the first 100 days. The loss was always during daylight hours and last recorded location did not occur near or at the outflow. Once dispersed, the hatchery reared fish were distributed throughout the lake similarly to wild released fish. Typically fish were found within the thermally stratified photic (light) zone (that is: <10-12 m in water depth).

The 2015 stocking report (Bradford *et al.* 2015) also concluded that losses of the stocked juveniles from predation and perhaps starvation appeared to be high.

DFO has conducted additional monitoring since 2012, including angling assessments as recently as the summer of 2017 (pers. comm. J. Broome, DFO) which did not result in the capture of Atlantic whitefish.

Based on the age of the fishes released into Anderson Lake, it is not expected that any of the original stockings would currently be alive. Fish would only be present if reproduction had occurred and the resulting juveniles survived. Monitoring indicated that the fish captured were increasing in body size over time and that sexually mature fish were observed from 2008 to 2012, but no evidence of successful reproduction has been obtained during DFOs monitoring.

2.0 Anderson Lake eDNA Study Methodology

An eDNA survey was conducted in Anderson Lake in the fall of 2017 to detect the presence of Atlantic whitefish eDNA in the water column. eDNA is a highly suitable tool for this purpose owing to the comparatively higher sensitivity to detect target species compared with conventional fish sampling methods. Because of this high sensitivity, even populations with low abundance may be expected to shed enough eDNA to be detected by an assay given a robust sampling scheme and optimal eDNA assay development.

Water sampling was conducted with assistance from DFO (Jeremy Broome, Biologist, Population Ecology Division). The eDNA processing and analysis was conducted by Precision Biomonitoring (associated with Biodiversity Institute of Ontario University of Guelph).

2.1 Assay Development

The initial step required to conduct the eDNA study was the development by Precision Biomonitoring of reference DNA material (assay) for comparison to the DNA recovered from Anderson Lake. A molecular primer for real-time quantitative polymerase chain reaction (qPCR), the basis of an eDNA assay, was

designed by utilizing online sequence data for the Atlantic whitefish and related salmonids. The assay was designed to amplify only the Atlantic whitefish's DNA. A part of the assay development, additional Atlantic whitefish tissue was provided to Precision Biomonitoring by DFO from several different individuals of captive breeding stock for DNA sequencing to increase the sequence dataset, thereby increasing the confidence that the assay works across the standing genetic diversity found in this species. The assay was used to detect whitefish eDNA in total eDNA extracts derived from sampling Anderson Lake. The qPCR assays were validated to adhere to clinical publication standards - MIQE (minimum information for the publication of quantitative PCR experiments) guidelines, including elucidation of the assay's technical limit of detection (LOD) (the lowest concentration of target that yields 95% amplification among technical replicates), efficiency, and dynamic range (the concentrations of target eDNA over which PCR yields a positive result).

2.2 Field Program and Analysis

The field sampling program was developed in consultation with DFO and Precision Biomonitoring. The timing and locations of sampling was based on previous DFO experience at Anderson Lake and on discussions with Nova Scotia Department of Fisheries and Aquaculture (NSFA, pers. comm. J. LeBlanc, Manager) regarding knowledge of distribution and habitat preferences in the Petite system.

Sampling was undertaken both pre and post fall turnover. Samples were collected by Dillon Consulting Limited (Dillon) personnel and by Precision Biomonitoring's research scientist, Steven Crookes (Post Doctorate Fellow, University of Guelph). Pre turnover sampling was conducted on October 17, 2017 and post turnover was conducted on November 30, 2017. **Figure 1** (attached) provides the sample locations and **Appendix A** provides sample depths and temperature/depth profiles based on field meter measurement at the time of sampling. Samples collected on the pre-turnover date were collected in the upper to mid water column, just above the thermocline. Sample locations targeted areas where water depth was sufficient to provide a thermocline with cooler water temperatures. Additional samples were also collected in other areas to improve the spatial coverage, and in the outlet from Little Lake to capture water from that habitat. Samples collected post-turnover were collected mid-depth. Sample locations were picked by random number generator based on a lake grid. An outlet location was also added to the post turnover dataset.

Sampling and transportation equipment including the boat and compositing containers, were sterilized and rinsed with distilled water following Precision Biomonitoring instructions. Disposable nitrile gloves were used and changed between collections. Materials in contact with samples/water were kept separate from clean materials. At each eDNA sample location, water samples were simultaneously collected in three (3), two-litre (2L) horizontal water sampling grabs and combined to a composite sample. Once collected the water was filtered on-site and processed by Precision Biomonitoring's scientist for transport and laboratory analysis. Negative control on the analysis was undertaken using distilled water. An equivalent volume of distilled water was processed on-site in the same manner as water samples.

Nova Scotia Transportation and Infrastructure Renewal Environmental Assessment Highway 107 Burnside to Bedford - Additional Information – Anderson Lake FINAL June 8, 2018 – 13-8348-6000

Samples were analysed by Precision Biomonitoring at a qPCR accredited laboratory using the customdesigned Atlantic whitefish assay. The qPCR analysis was not performed in the same building in which the Atlantic whitefish tissue processing and PCR development was previously performed. Each extraction was subject to three technical replicate qPCR reactions, and a positive signal (i.e., the presence of an above-threshold amplification curve) was determined if at least 1/3 replicates were positive.

Additional water chemistry samples were taken to confirm lake water quality at the time of sampling. On October 17, 2017 two surface water samples were collected; one from the general area of sampling near the deep area thermocline and one in the Little Lake outlet. Two water chemistry samples were also collected on November 30: from the central Anderson Lake area; and, from the Little Lake outlet. Samples were collected as whole water grabs and transported to the analytical laboratory following standard Dillon procedures. Samples were taken at depth comparable with the eDNA water sampling using the horizontal grab. Analysis was completed by Maxxam Analytics (a certified analytical laboratory) for general chemistry, metals and Total Suspended Solids parameters for the October date, with mercury and hydrocarbons also assessed in November, 2017.

3.0 2017 Water Sampling Results

3.1 eDNA Results

The eDNA testing within Anderson Lake, both pre and post turnover in the fall of 2017, tested negative for Atlantic whitefish DNA indicating it is unlikely that the fish are still present in the lake. The reports from Precision Biomonitoring are provided in **Appendix B**.

3.2 Surface Water Chemistry

Surface water chemistry results are provided in **Appendix C.** Water quality is fairly dilute reflective of rainwater inputs with conductivity in the order of 60 uS/cm, nutrients (nitrate, nitrite and total phosphorus) below detection, the highest Total Suspended Solids observed of 1.2 mg/L, and pH measured at between 5.96 and 6.4 units. Dissolved chlorides were also low at 12 mg/L. No mercury or hydrocarbons were detected. Exceedances to Canadian Council of the Ministers of the Environment (CCME) Fresh Water Aquatic Life guidelines were limited to aluminum (but still at concentrations typical of natural waters in the area) and a pH less than 6.5 units.

4.0 **Proposed Mitigation Summary**

As outlined in the EA, no infill of Anderson Lake or Little Lake is proposed and a clear span structure will be used over Wrights Brook at the outlet to Little Lake. Based on current design, a minimum 10 m no

disturbance buffer will be maintained between the Project footprint and Anderson/Little Lake. The current proposed Highway 107 Project footprint is shown on **Figure 2** (attached). With the exception of the southwest cove closest to the alignment and portions south of Little Lake, Anderson Lake is generally over 100 m to the north of the proposed Project footprint.

NSTIR has committed to ensuring NSTIR work and its contractors work for the Project use standard mitigation measures in line with NSTIRs generic Environmental Protection Plan (EPP) for the construction of 100 Series Highways (https://novascotia.ca/tran/works/enviroservices/EPP100series/ Generic%20EPP_July%202007.pdf). The EPP identifies environmental policy and responsibilities, protection measures for areas of special environmental consideration, erosion and sediment control, clearing, watercourse crossing and other structures construction, grubbing, grading, access, winter work, stabilization, dust and noise control, management of petroleum, oil, lubricants, chemicals and wastes and road salt management. This document also includes direction to meet DFO requirements for blasting in the vicinity of fish habitat if applicable. In addition, monitoring, inspection and contingency planning requirements are identified. NSTIR has successfully used appropriate environmental planning and implementation of the EPP during construction to mitigate impacts to watercourses and fish habitat on similar 100 series highway projects throughout the province.

Although it is likely that the Atlantic whitefish are not currently present in Anderson Lake, additional mitigation measures are proposed following the precautionary principle.

Site Specific EPP

A site specific EPP will be developed for the Anderson Lake watershed which will be identified as an Area of Special Environmental Consideration. Construction contractors will be required to provide a site specific erosion and sediment control plan for this area and pre-locate staging areas and fueling areas in consultation with NSTIR environmental staff in addition to incorporating Generic EPP measures into a site specific plan. No disturbance will be permitted on the north side of the alignment outside of the proposed project footprint and work areas will be identified (flagged and/or silt fenced) prior to work.

General Storm Water Conveyance and Spill Containment Design

Traffic and/or road maintenance activities present a risk to the environment related to accidental spills. As a risk mitigation measure, a spill containment system will be designed and installed along the section of the alignment adjacent to Anderson Lake (as noted in **Figure 2**). The system will be located on the north side of the right-of-way and within the existing project footprint. The spill containment design will convey stormwater/spills away from flowing directly into Anderson Lake. A low permeability clay liner, a geomembrane liner, and oil/water separators will be implemented with the intent of controlling potential accidental spills. In addition to separating oil and grit from potential hazardous material spills, the oil/water separators will also help mitigate the risks associated with stormwater pollution, including suspended sediment, free oils, and other particle pollutants.

Salt Management Planning

Consistent with NSTIRs overriding Salt Management Plan, winter maintenance of the highway and associated Active Transportation (AT) trail will follow winter maintenance protocols designed to use minimum safe levels of salt including practices such as pre-wetting. The Anderson Lake watershed will be identified as a salt vulnerable area and applicable best management practices in relation to winter maintenance will be implemented and communicated to Halifax Regional Municipality or other potential parties involved in AT trail maintenance.

Limitation on Unauthorized Access to the Anderson Lake Area

NSTIR has committed to fencing along both sides of the Right-of-Way (RoW) to serve as wildlife exclusion fencing and limit trespass on adjacent lands. At a minimum fencing will be 10 foot high chain link installed in a manner to limit wildlife access both over and under the fence.

5.0 **References**

Bradford, R.G. 2017. Supplementation Options to Aid Recovery of the Endangered Atlantic Whitefish (*Coregonus huntsmani*). Canadian Manuscript Report of Fisheries and Aquatic Sciences 3134: 29p.

Bradford, R.G., D, Themelis, P. LeBlanc, D. Campbell, S. O'Neil and J. Whitelaw. 2015. Atlantic Whitefish Stocking in Anderson Lake, Nova Scotia. Canadian Technical Report of Fisheries and Aquatic Sciences 3142. Department of Fisheries and Oceans Canada (DFO).

Committee on the Status of Endangered Wildlife in Canada (COSEWIC). 2010. COSEWIC assessment and status report on the Atlantic Whitefish *Coregonus huntsmani* in Canada. Ottawa.

Cook, A., R.G. Bradford and P. Bentzen. 2014. Hydroacoustic tracking of the endangered Atlantic whitefish (*Coregonus huntsmani*); comparative analysis from wild and hatchery reared populations. Environ. Biol. Fish 97:955-964.

Fisheries and Oceans Canada (DFO). 2009. Recovery Potential Assessment for Atlantic whitefish (*Coregonus huntsmani*). Canadian Science Advisory Secretariat Science Advisory Report 2009/051.

Hasselman, D., P. Longue and R. Bradford. 2005. First Record of age 0+ Atlantic whitefish, *Coregonus huntsmani*, from the Wild. Canadian Field-Naturalist 119(2): 294-295.

Wilson, C and E. Wright. 2013. Using Environmental DNA (eDNA) as a Tool in Risk-Based Decision-Making. Ontario Ministry of Natural Resources. Aquatic Research and Development Section, Aquatic Research Series 2013-01.

Whitelaw, J., J. Manriquez-Hernandez, J. Duston, S.F. O'Neil and R.G. Bradford. 2015. Atlantic whitefish (*Coregonus huntsmani*) Culture Handbook. Canadian Manuscript Report of Fisheries and Aquatic Sciences 3074.

Figures

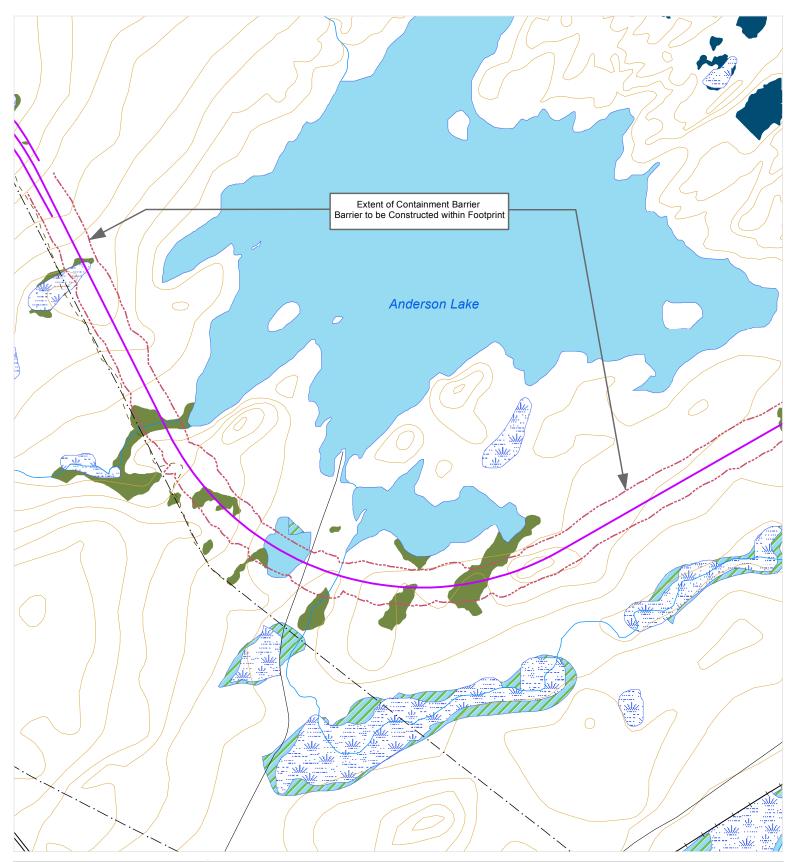
Nova Scotia Transportation and Infrastructure Renewal Environmental Assessment Highway 107 Burnside to Bedford FINAL June 8, 2018 – 13-8348-6000

Nova Scotia Transportation and Infrastructure Renewal HIGHWAY 107 BURNSIDE TO BEDFORD ENVIRONMENTAL ASSESSMENT -REQUEST FOR ADDTIONAL INFORMAITON

FIGURE 1 Environmental DNA Sample Locations

Post Turnover Sample Locations (SWG) - Nov.2017

Surface Water Chemistry Station


MAP DRAWING INFORMATION: DATA PROVIDED BY GeoNova, NSTIR, NSDNR

MAP CREATED BY: SCM MAP CHECKED BY: KLM MAP PROJECTION: NAD 1983 UTM Zone 20N

PROJECT: 13-8348

DATE: January 2018

Nova Scotia Transportation and Infrastructure Renewal HIGHWAY 107 BURNSIDE TO BEDFORD ENVIRONMENTAL ASSESSMENT - REQUEST FOR ADDTIONAL INFORMAITON	Proposed Alignment Centerline Project Footprint Watercourse	 Dillon Field Defined Wetlands (Sept 2013) Stantec Field Defined Wetlands (June 2011) Wetland (NS Topographic) 	NSDNR Wetlands Contour (5m)
FIGURE 2 Proposed Containment System Extent		MAP DRAWING INFORMATION: DATA PROVIDED BY GeoNova, NSTIR, NSDNR MAP CREATED BY: SCM 0 25 50 10 MAP CHECKED BY: KLM MAP PROJECTION: NAD 1983 UTM Zone 20N	10 150 Metres $w - \bigoplus_{s}^{N} \epsilon$

PROJECT: 13-8348

DATE: January 2018

Appendix A

2017 Temperature, Depth Profiles and Sample Depths

Anderson Lake, Halifax Regional Municipality, Nova Scotia - Draft

October 17, 2017 Temperature Profile Data

Location: Sample Point 1 ~UTM 20 T 451107 4952788; Approximate time: 0930

Depth (m)	Temperature (°C)	Dissolved Oxygen	Dissolved Oxygen (percent saturation)
1	16.0	9.2	93
2	16.0	9.1	92
3	16.0	9.0	91
4	16.0	9.0	91
5	16.0	9.1	92
6	16.0	9.1	92
7	16.0	9.0	90
8	16.0	9.1	92
9	11.7	4.5	40
10	8.9	5.1	46
11	8.4	5.2	44
12	8.0	5.5	46
13	7.4	5.8	48
14	6.8	5.9	48
15	6.6	5.7	47
16	6.5	5.6	45
17	6.5	5.6	45
18	6.4	5.0	40
19	6.4	4.7	38
20	6.3	0.4	2

Meter: YSI Professional Plus meter (DFO); field pH ranged from 5.6 (below 9 m) to 6.7 (above 9 m)

October 17, 2017 Temperature Profile Data – Draft

Location: Sample Point 8 ~UTM 20 T 450827 4953005; Approximate time: 1030

Depth (m)	Temperature (°C)	Dissolved Oxygen	Dissolved Oxygen (percent saturation)
1	15.9	9.1	91
2	15.9	8.9	90
3	16.0	9.0	91
4	16.0	9.0	92
5	15.9	9.1	92
6	15.9	9.1	92
7	15.9	9.2	93

Nova Scotia Transportation and Infrastructure Renewal Environmental Assessment Highway 107 Burnside to Bedford - Additional Information – Anderson Lake FINAL June 8, 2018 – 13-8348-6000

Depth (m)	Temperature (°C)	Dissolved Oxygen	Dissolved Oxygen (percent saturation)
8	14.9	7.6	75
9	10.5	4.5	40
10	10.0	3.7	33

Meter: YSI Professional Plus meter (DFO); field pH ranged from 5.7 (below 9 m) to 6.5 (above 9 m)

October 17, 2017 Temperature Profile Data

Location: Sample Point 7 ~UTM 20 T 450680 4952127; Approximate time: 1120

Depth (m)	Temperature (°C)	Dissolved Oxygen	Dissolved Oxygen (percent saturation)
0.5	14.3	9.3	91

Meter: YSI Professional Plus meter (DFO); field pH 6.4

November 30, 2017 Temperature Profile Data

Location: Sample Point SW1A ~UTM 20 T 450883 4952619; Approximate time: 1100

Depth (m)	Temperature (°C)	Dissolved Oxygen	Dissolved Oxygen (percent saturation)
L	6.6	11.1	91
2	6.6	11.4	93
3	6.6	11.4	93
L	6.6	11.4	93
5	6.6	11.4	92
;	6.6	11.3	92
,	6.6	11.4	93
8	6.6	11.3	92
)	6.6	11.3	92
0	6.6	11.3	92
1	6.6	11.3	92
2	6.6	11.2	91
3	6.6	11.2	91
4	6.6	11.2	91
.5	6.6	11.3	92
6	6.6	11.3	92
.7	6.6	11.3	92
8	6.6	11.2	92
9	6.5	11.2	91
0	6.5	11.3	92
21	6.5	11.2	91

Nova Scotia Transportation and Infrastructure Renewal Environmental Assessment Highway 107 Burnside to Bedford - Additional Information – Anderson Lake FINAL June 8, 2018 – 13-8348-6000

Depth (m)	Temperature (°C)	Dissolved Oxygen	Dissolved Oxygen (percent saturation)
22	6.6	<1 on bottom	<10% on bottom
	ofessional Plus meter (ample Locations in Rel	DFO); field pH ranged from 6.2 t lation to Water Depth	to 6.3
Sample No.		Sample Depth (m)	Approx. Water Depth (m)
October 17, 20	17 Samples		
1		7	22.7
2		7	18.5
3		7	24.6
4		7	21.4
5		7	17.7
6		7	15.4
7 (outlet)		0.3	0.5
8		6	9.9
9		6	11.6
10		5	7.9
Anderson 7m (water chem.)	7	~20
Outlet (water c	hem.)	0.4	0.8
November 30,	2017 Samples		1
SWG-09		2	4
SWG-11	Note	10 e: fish observed on fish finder at 10 m	20
SWG-13		9	18
SWG-19		2	4
SWG-28		4	8
SWG-29 (outlet	t)	0.3	1
SWG-33		1.5	3
SWG-34		9	17.5
SWG-35		10	20
SWG-49		5	10
SW1A (water c		~10	~20
Outlet (water c	hem.)	0.4	0.8

Appendix B

Precision Biomonitoring Pre and Post Turnover 2017 Anderson Lake eDNA Reports

Environmental DNA (eDNA) Survey for the Atlantic Whitefish *Coregonus hunstmani* in Anderson Lake, Nova Scotia.

Introduction

The Atlantic whitefish *Coregonus hunstmani* is a federally protected endangered species of coregonid fish, found only in a limited number of waterbodies in Nova Scotia. As an evolutionary basal species, it represents an ancestral connection to the entire sub-family of whitefishes in the family Salmonidae, which, if lost, would represent a significant reduction in evolutionary and biological diversity of this family, to the detriment of the freshwater fish biota of this region.

Atlantic whitefish was subject of a captive breeding program by the Department of Fisheries and Oceans (DFO), before being terminated in 2012. Anderson Lake, near Halifax, received its last inoculation of Atlantic whitefish juveniles in this same year. Conventional monitoring methods have detected the species in this location with decreasing efficiency as time has elapsed, with more recent surveys failing to detect it at all. The decline of the species is likely due to predation due to a combination of incumbent and introduced predatory fishes. This decline poses the question: is it extirpated from this locale entirely, or is it present at such low abundances that are beyond the detectability of conventional methods? eDNA methods are significantly more sensitive than conventional methods, and represent the best available method to detect the species if it is still present, even in extremely sparse numbers.

Methods

qPCR Assay design, validation and implementation

qPCR primers and Taqman hydrolysis probes were designed for the COI barcode region of the mitochondrial genome. *In silico* parameters were designed and optimised so that the assay would amplify only this species within the coregonids, and would not amplify other species found in Anderson Lake (e.g., brook trout and white sucker, amongst others). The assay was tested *in vitro* against tissue-extracted Atlantic whitefish DNA and that of co-occurring species to ensure assay specificity.

Field sampling and processing

Water samples were collected from the thermocline at ten coordinates in the system. Three 2 L samples were collected, pooled and subject to on site filtration until the 47 mm diameter, 1 μ m pore-sized, nitrocellulose filter became saturated. A field blank of distilled water was also subject to the DNA extraction procedure as an extraction control. DNA was extracted in the field using our field-ready, heavy instrument-free DNA extraction kits. 5 μ l of extracted DNA from each of the ten (plus field blank) DNA extractions was used as template for each 20 μ l qPCR reaction.

qPCR

qPCR reactions were performed on the Biomeme two3 thermocycler using custom, programable thermocycler conditions optimised for the assay. Each eDNA sample, including the blank, was subject to three qPCR replicates (technical replicates). Positive control reactions were performed on extracted Atlantic whitefish tissue. One positive control reaction was performed per nine technical replicates (one per batch of reaction masternix).

Results

All extractions generated DNA in sufficient quantity for qPCR assaying (mean concentration = 3.83 ng μ l⁻¹, standard deviation = 2.75 ng μ l⁻¹). However, all PCR reactions failed to yield a positive result, when performed in triplicate. All positive control reactions successfully amplified target DNA, indicating that PCR failure, due to denatured reagents, is not a causative factor. Field blank also tested negative for Atlantic whitefish DNA, as expected.

Discussion

Given that ten sites were sampled in a relatively small lake, a total of thirty qPCR technical replicates without a single positive hit indicates that the Atlantic whitefish is likely extirpated from this location, following the cessation of stocking in 2012. This observation is consistent with recent conventional monitoring efforts that have failed to find a single individual in recent surveys. Although, it is possible, albeit remote, that the survey has not detected the species when it *is* present in extreme low density, the likelihood of its continued existence in the wake of multiple failed detection efforts is increasingly small.

Further work

Further corroborative surveying will take place once the lake has undergone turnover, which likely plays a role in the distribution of eDNA particles and molecules in solution in the water column. During this period, eDNA particles will be subject to redistribution, allowing for a second, independent surveillance event of the lake.

Environmental DNA (eDNA) Survey for the Atlantic Whitefish *Coregonus hunstmani* in Anderson Lake, Nova Scotia – Post-Turnover

Introduction

The Atlantic whitefish *Coregonus hunstmani* is a federally protected endangered species of coregonid fish, found only in a limited number of waterbodies in Nova Scotia. As an evolutionary basal species, it represents an ancestral connection to the entire sub-family of whitefishes in the family Salmonidae, which, if lost, would represent a significant reduction in evolutionary and biological diversity of this family, to the detriment of the freshwater fish biota of this region.

This report presents the results of a follow-up eDNA survey for the Atlantic whitefish to corroborate the previous survey's results of negative detection. The previous survey assessed the presence of Atlantic whitefish prior to the thermal turnover of Anderson Lake, which may redistribute eDNA molecules and cellular material from as-yet un-sampled enclaves within the lake which may have been missed.

Methods

qPCR Assay design, validation and implementation

qPCR primers and Taqman hydrolysis probes were designed for the COI barcode region of the mitochondrial genome. *In silico* parameters were designed and optimised so that the assay would amplify only this species within the coregonids, and would not amplify other species found in Anderson Lake (e.g., brook trout and white sucker, amongst others). The assay was tested *in vitro* against tissue-extracted Atlantic whitefish DNA and that of co-occurring species to ensure assay specificity.

Field sampling and processing

Sampling followed a random-grid design, as the presence of a thermocline no longer dictated the optimal sampling strategy to focus on preferred whitefish habitat. Ten locations were sampled from the lake at mid-depth. As before, three 2 L samples were collected, pooled and subject to on site filtration until the 47 mm diameter, 1 μ m pore-sized, nitrocellulose filter became saturated. The entire volume of water was filtered across multiple filter papers, as necessary. A field blank of distilled water was also subject to the DNA extraction procedure as an extraction control. DNA was extracted in the field using our field-ready, heavy instrument-free DNA extraction kits. After quantification, DNA was pooled per sampling location. 5 μ l of extracted DNA from each of the ten (plus field blank) DNA extractions was used as template for each 20 μ l qPCR reaction.

qPCR

qPCR reactions were performed on the Biomeme two3 thermocycler using custom, programable thermocycler conditions optimised for the assay. Each eDNA sample, including the blank, was subject to three qPCR replicates (technical replicates). Positive control reactions were performed on extracted

Atlantic whitefish tissue. One positive control reaction was performed per nine technical replicates (one per batch of reaction mastermix).

Results

All extractions generated DNA in sufficient quantity for qPCR assaying (mean concentration = 8.54 ng μ l⁻¹, standard deviation = 5.72 ng μ l⁻¹). There was observed to be a significant increase in eDNA yield over that which was recorded for the pre-turnover survey (non-parametric Mann-Whitney U-test, p < 0.01). However, all PCR reactions failed to yield a positive result (numerical Cq value derived from exponential phase of the amplification curve), when performed in triplicate. All positive control reactions successfully amplified target DNA, indicating that PCR failure, due to denatured reagents, is not a causative factor. The field blank also tested negative for Atlantic whitefish DNA, as expected.

Discussion

The results presented here are consistent with those derived from the previous study, corroborating the previous recorded absence of an Atlantic whitefish eDNA signal in Anderson Lake. The most likely explanation is the extirpation of the local population, with the probability of its continued occurrence diminishing with every unsuccessful attempt to detect it. Due to the increased sensitivity of eDNA versus conventional fishing methods, confidence in the lake as a continuing outpost of Atlantic whitefish must be necessarily weakened.

Potential further work

If the species is still in the lake, it is probably at extremely low abundance and any further efforts to detect it ought to focus on spawning periods, in which significant eDNA spikes are expected in the surrounding waters.

Appendix C

2017 Water Chemistry

Your Project #: 13-8348 Site Location: HIGHWAY 107 EA Your C.O.C. #: N/A

Attention:Karen March

Dillon Consulting Limited 137 Chain Lake Dr Suite 100 Halifax , NS B3S 1B3

> Report Date: 2017/10/30 Report #: R4810896 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7N2747

Received: 2017/10/18, 12:07

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	2	N/A	2017/10/25	N/A	SM 22 4500-CO2 D
Alkalinity	2	N/A	2017/10/25	ATL SOP 00013	EPA 310.2 R1974 m
Chloride	2	N/A	2017/10/27	ATL SOP 00014	SM 22 4500-Cl- E m
Colour	2	N/A	2017/10/27	ATL SOP 00020	SM 22 2120C m
Conductance - water	2	N/A	2017/10/25	ATL SOP 00004	SM 22 2510B m
Hardness (calculated as CaCO3)	2	N/A	2017/10/26	ATL SOP 00048	SM 22 2340 B
Metals Water Total MS	2	2017/10/25	2017/10/25	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference)	2	N/A	2017/10/27	N/A	Auto Calc.
Anion and Cation Sum	2	N/A	2017/10/27	N/A	Auto Calc.
Nitrogen Ammonia - water	2	N/A	2017/10/26	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	2	N/A	2017/10/27	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrite	2	N/A	2017/10/26	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrate (as N)	2	N/A	2017/10/27	ATL SOP 00018	ASTM D3867-16
рН (1)	2	N/A	2017/10/25	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho	2	N/A	2017/10/26	ATL SOP 00021	SM 22 4500-P E m
Sat. pH and Langelier Index (@ 20C)	2	N/A	2017/10/26	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	2	N/A	2017/10/26	ATL SOP 00049	Auto Calc.
Reactive Silica	2	N/A	2017/10/25	ATL SOP 00022	EPA 366.0 m
Sulphate	2	N/A	2017/10/26	ATL SOP 00023	ASTM D516-16 m
Total Dissolved Solids (TDS calc)	2	N/A	2017/10/27	N/A	Auto Calc.
Organic carbon - Total (TOC) (2)	2	N/A	2017/10/26	ATL SOP 00037	SM 22 5310C m
Total Suspended Solids	2	2017/10/23	2017/10/25	ATL SOP 00007	SM 22 2540D m
Turbidity	1	N/A	2017/10/24	ATL SOP 00011	EPA 180.1 R2 m
Turbidity	1	N/A	2017/10/25	ATL SOP 00011	EPA 180.1 R2 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using

Your Project #: 13-8348 Site Location: HIGHWAY 107 EA Your C.O.C. #: N/A

Attention:Karen March

Dillon Consulting Limited 137 Chain Lake Dr Suite 100 Halifax , NS B3S 1B3

> Report Date: 2017/10/30 Report #: R4810896 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7N2747

Received: 2017/10/18, 12:07

accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.

(2) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Heather Macumber, Senior Project Manager Email: HMacumber@maxxam.ca Phone# (902)420-0203 Ext:226

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 11

RESULTS OF ANALYSES OF WATER

Maxxam ID		FJI329	FJI329			FJI330		
Sampling Date		2017/10/17 10:55	2017/10/17 10:55			2017/10/17 11:20		
COC Number		N/A	N/A			N/A		
	UNITS	ANDERSON 7 M	ANDERSON 7 M Lab-Dup	RDL	QC Batch	ANDERSON OUTLET	RDL	QC Batch
Calculated Parameters								
Anion Sum	me/L	0.400		N/A	5225423	0.390	N/A	5225423
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	ND		1.0	5225419	ND	1.0	5225419
Calculated TDS	mg/L	26		1.0	5225428	26	1.0	5225428
Carb. Alkalinity (calc. as CaCO3)	mg/L	ND		1.0	5225419	ND	1.0	5225419
Cation Sum	me/L	0.480		N/A	5225423	0.480	N/A	5225423
Hardness (CaCO3)	mg/L	6.8		1.0	5225421	6.5	1.0	5225421
Ion Balance (% Difference)	%	9.09		N/A	5225422	10.3	N/A	5225422
Langelier Index (@ 20C)	N/A	NC			5225426	NC		5225426
Langelier Index (@ 4C)	N/A	NC			5225427	NC		5225427
Nitrate (N)	mg/L	ND		0.050	5225424	ND	0.050	5225424
Saturation pH (@ 20C)	N/A	NC			5225426	NC		5225426
Saturation pH (@ 4C)	N/A	NC			5225427	NC		5225427
Inorganics								
Total Alkalinity (Total as CaCO3)	mg/L	ND		5.0	5230314	ND	5.0	5230314
Dissolved Chloride (Cl)	mg/L	12		1.0	5230318	12	1.0	5230318
Colour	TCU	23		5.0	5230322	22	5.0	5230322
Nitrate + Nitrite (N)	mg/L	ND		0.050	5230324	ND	0.050	5230324
Nitrite (N)	mg/L	ND		0.010	5230326	ND	0.010	5230326
Nitrogen (Ammonia Nitrogen)	mg/L	0.099	0.15	0.050	5232188	0.28	0.050	5232188
Total Organic Carbon (C)	mg/L	6.0	6.2	0.50	5232877	5.3	0.50	5232877
Orthophosphate (P)	mg/L	ND		0.010	5230323	ND	0.010	5230323
рН	рН	6.40		N/A	5229703	6.18	N/A	5229701
Reactive Silica (SiO2)	mg/L	0.87		0.50	5230321	0.89	0.50	5230321
Total Suspended Solids	mg/L	1.2		1.0	5225781	ND	2.0	5225781
Dissolved Sulphate (SO4)	mg/L	3.2		2.0	5230320	3.0	2.0	5230320
Turbidity	NTU	0.60		0.10	5227367	0.45	0.10	5229749
Conductivity	uS/cm	57		1.0	5229704	59	1.0	5229702
RDL = Reportable Detection Limit	•	-	•	•			•	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

ND = Not detected

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		FJI329	FJI330		
Sampling Date		2017/10/17	2017/10/17		
oumphing butc	_	10:55	11:20		
COC Number		N/A	N/A		
	UNITS	ANDERSON 7 M	ANDERSON OUTLET	RDL	QC Batch
Metals					
Total Aluminum (Al)	ug/L	60	57	5.0	5229692
Total Antimony (Sb)	ug/L	ND	ND	1.0	5229692
Total Arsenic (As)	ug/L	ND	ND	1.0	5229692
Total Barium (Ba)	ug/L	4.8	4.8	1.0	5229692
Total Beryllium (Be)	ug/L	ND	ND	1.0	5229692
Total Bismuth (Bi)	ug/L	ND	ND	2.0	5229692
Total Boron (B)	ug/L	ND	ND	50	5229692
Total Cadmium (Cd)	ug/L	ND	ND	0.010	5229692
Total Calcium (Ca)	ug/L	1900	1800	100	5229692
Total Chromium (Cr)	ug/L	ND	ND	1.0	5229692
Total Cobalt (Co)	ug/L	ND	ND	0.40	5229692
Total Copper (Cu)	ug/L	ND	ND	2.0	5229692
Total Iron (Fe)	ug/L	ND	69	50	5229692
Total Lead (Pb)	ug/L	ND	ND	0.50	5229692
Total Magnesium (Mg)	ug/L	470	470	100	5229692
Total Manganese (Mn)	ug/L	22	17	2.0	5229692
Total Molybdenum (Mo)	ug/L	ND	ND	2.0	5229692
Total Nickel (Ni)	ug/L	ND	ND	2.0	5229692
Total Phosphorus (P)	ug/L	ND	ND	100	5229692
Total Potassium (K)	ug/L	390	360	100	5229692
Total Selenium (Se)	ug/L	ND	ND	1.0	5229692
Total Silver (Ag)	ug/L	ND	ND	0.10	5229692
Total Sodium (Na)	ug/L	7600	7300	100	5229692
Total Strontium (Sr)	ug/L	9.3	8.4	2.0	5229692
Total Thallium (Tl)	ug/L	ND	ND	0.10	5229692
Total Tin (Sn)	ug/L	ND	ND	2.0	5229692
Total Titanium (Ti)	ug/L	ND	ND	2.0	5229692
Total Uranium (U)	ug/L	ND	ND	0.10	5229692
Total Vanadium (V)	ug/L	ND	ND	2.0	5229692
Total Zinc (Zn)	ug/L	ND	ND	5.0	5229692
RDL = Reportable Detection QC Batch = Quality Control ND = Not detected					

GENERAL COMMENTS

Each te	Each temperature is the average of up to three cooler temperatures taken at receipt									
	Package 1	2.0°C								
Sample	FJI329 [ANDERSC	ON 7 M] :RCAp l	on Balance acceptable. Anion/cation agreement within 0.2 meq/L.							
Sample 0.2 mec	=	ON OUTLET] :TSS	S:Used all of the sample provided, DL raised. RCAp Ion Balance acceptable. Anion/cation agreement within							

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5225781	LPW	QC Standard	Total Suspended Solids	2017/10/25		96	%	80 - 120
5225781	LPW	Method Blank	Total Suspended Solids	2017/10/25	ND,		mg/L	
					RDL=1.0		0.	
5225781	LPW	RPD	Total Suspended Solids	2017/10/25	20		%	25
5227367	JMV	QC Standard	Turbidity	2017/10/24		94	%	80 - 120
5227367	JMV	Spiked Blank	Turbidity	2017/10/24		92	%	80 - 120
5227367	JMV	Method Blank	Turbidity	2017/10/24	ND,		NTU	
					RDL=0.10			
5227367	JMV	RPD	Turbidity	2017/10/24	2.1		%	20
5229692	BAN	Matrix Spike	Total Aluminum (Al)	2017/10/25		NC	%	80 - 120
			Total Antimony (Sb)	2017/10/25		103	%	80 - 120
			Total Arsenic (As)	2017/10/25		101	%	80 - 120
			Total Barium (Ba)	2017/10/25		99	%	80 - 120
			Total Beryllium (Be)	2017/10/25		103	%	80 - 120
			Total Bismuth (Bi)	2017/10/25		102	%	80 - 120
			Total Boron (B)	2017/10/25		104	%	80 - 120
			Total Cadmium (Cd)	2017/10/25		101	%	80 - 120
			Total Calcium (Ca)	2017/10/25		NC	%	80 - 120
			Total Chromium (Cr)	2017/10/25		100	%	80 - 120
			Total Cobalt (Co)	2017/10/25		102	%	80 - 120
			Total Copper (Cu)	2017/10/25		100	%	80 - 120
			Total Iron (Fe)	2017/10/25		NC	%	80 - 120
			Total Lead (Pb)	2017/10/25		98	%	80 - 120
			Total Magnesium (Mg)	2017/10/25		101	%	80 - 120
			Total Manganese (Mn)	2017/10/25		NC	%	80 - 120
			Total Molybdenum (Mo)	2017/10/25		108	%	80 - 120
			Total Nickel (Ni)	2017/10/25		102	%	80 - 120
			Total Phosphorus (P)	2017/10/25		104	%	80 - 120
			Total Potassium (K)	2017/10/25		105	%	80 - 120
			Total Selenium (Se)	2017/10/25		103	%	80 - 120
			Total Silver (Ag)	2017/10/25		101	%	80 - 120
			Total Sodium (Na)	2017/10/25		103	%	80 - 120
			Total Strontium (Sr)	2017/10/25		NC	%	80 - 120
			Total Thallium (TI)	2017/10/25		103	%	80 - 120
			Total Tin (Sn)	2017/10/25		108	%	80 - 120
			Total Titanium (Ti)	2017/10/25		111	%	80 - 120
			Total Uranium (U)	2017/10/25		108	%	80 - 120
			Total Vanadium (V)	2017/10/25		102	%	80 - 120
			Total Zinc (Zn)	2017/10/25		99	%	80 - 120
5229692	BAN	Spiked Blank	Total Aluminum (Al)	2017/10/25		101	%	80 - 120
			Total Antimony (Sb)	2017/10/25		98	%	80 - 120
			Total Arsenic (As)	2017/10/25		100	%	80 - 120
			Total Barium (Ba)	2017/10/25		98	%	80 - 120
			Total Beryllium (Be)	2017/10/25		102	%	80 - 120
			Total Bismuth (Bi)	2017/10/25		102	%	80 - 120
			Total Boron (B)	2017/10/25		102	%	80 - 120
			Total Cadmium (Cd)	2017/10/25		100	%	80 - 120
			Total Calcium (Ca)	2017/10/25		100	%	80 - 120
			Total Chromium (Cr)	2017/10/25		104	%	80 - 120
			Total Cobalt (Co)	2017/10/25		100	%	80 - 120 80 - 120
			Total Copper (Cu)	2017/10/25		102	%	80 - 120 80 - 120
			iotal copper (cu)	2017/10/23		TOT	/0	00-120

Maxxam Analytics International Corporation o/a Maxxam Analytics 200 Bluewater Rd, Suite 105, Bedford, Nova Scotia Canada B4B 1G9 Tel: 902-420-0203 Toll-free: 800-565-7227 Fax: 902-420-8612 www.maxxamanalytics.com

Dillon Consulting Limited Client Project #: 13-8348 Site Location: HIGHWAY 107 EA Sampler Initials: PKA

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC			-			-		
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Lead (Pb)	2017/10/25		98 101	%	80 - 120
			Total Magnesium (Mg)	2017/10/25		101	%	80 - 120 80 - 120
			Total Manganese (Mn)	2017/10/25 2017/10/25		101 102	% %	80 - 120 80 - 120
			Total Molybdenum (Mo) Total Nickel (Ni)	2017/10/25		102		80 - 120 80 - 120
			Total Phosphorus (P)	2017/10/25		102	% %	80 - 120 80 - 120
			Total Potassium (K)	2017/10/25		104	%	80 - 120
			Total Selenium (Se)	2017/10/25		104	%	80 - 120
			Total Silver (Ag)	2017/10/25		98	%	80 - 120
			Total Sodium (Na)	2017/10/25		101	%	80 - 120
			Total Strontium (Sr)	2017/10/25		101	%	80 - 120
			Total Thallium (TI)	2017/10/25		101	%	80 - 120
			Total Tin (Sn)	2017/10/25		104	%	80 - 120
			Total Titanium (Ti)	2017/10/25		101	%	80 - 120
			Total Uranium (U)	2017/10/25		105	%	80 - 120
			Total Vanadium (V)	2017/10/25		101	%	80 - 120
			Total Zinc (Zn)	2017/10/25		99	%	80 - 120
5229692	BAN	Method Blank	Total Aluminum (Al)	2017/10/25	ND,		ug/L	
					RDL=5.0		2.	
			Total Antimony (Sb)	2017/10/25	ND,		ug/L	
					RDL=1.0			
			Total Arsenic (As)	2017/10/25	ND, RDL=1.0		ug/L	
			Total Barium (Ba)	2017/10/25	ND, RDL=1.0		ug/L	
			Total Beryllium (Be)	2017/10/25	ND, RDL=1.0		ug/L	
			Total Bismuth (Bi)	2017/10/25	ND, RDL=2.0		ug/L	
			Total Boron (B)	2017/10/25	ND, RDL=50		ug/L	
			Total Cadmium (Cd)	2017/10/25	ND, RDL=0.010		ug/L	
			Total Calcium (Ca)	2017/10/25	ND, RDL=100		ug/L	
			Total Chromium (Cr)	2017/10/25	ND, RDL=1.0		ug/L	
			Total Cobalt (Co)	2017/10/25	ND, RDL=0.40		ug/L	
			Total Copper (Cu)	2017/10/25	ND, RDL=2.0		ug/L	
			Total Iron (Fe)	2017/10/25	ND, RDL=50		ug/L	
			Total Lead (Pb)	2017/10/25	ND, RDL=0.50		ug/L	
			Total Magnesium (Mg)	2017/10/25	ND, RDL=100		ug/L	
			Total Manganese (Mn)	2017/10/25	ND, RDL=2.0		ug/L	
			Total Molybdenum (Mo)	2017/10/25	ND, RDL=2.0		ug/L	

Dillon Consulting Limited Client Project #: 13-8348 Site Location: HIGHWAY 107 EA Sampler Initials: PKA

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Nickel (Ni)	2017/10/25	ND, RDL=2.0		ug/L	
			Total Phosphorus (P)	2017/10/25	ND, RDL=100		ug/L	
			Total Potassium (K)	2017/10/25	ND, RDL=100		ug/L	
			Total Selenium (Se)	2017/10/25	ND, RDL=1.0		ug/L	
			Total Silver (Ag)	2017/10/25	ND, RDL=0.10		ug/L	
			Total Sodium (Na)	2017/10/25	ND, RDL=100		ug/L	
			Total Strontium (Sr)	2017/10/25	ND, RDL=2.0		ug/L	
			Total Thallium (Tl)	2017/10/25	ND, RDL=0.10		ug/L	
			Total Tin (Sn)	2017/10/25	ND, RDL=2.0		ug/L	
			Total Titanium (Ti)	2017/10/25	ND, RDL=2.0		ug/L	
			Total Uranium (U)	2017/10/25	ND, RDL=0.10		ug/L	
			Total Vanadium (V)	2017/10/25	ND, RDL=2.0		ug/L	
			Total Zinc (Zn)	2017/10/25	ND, RDL=5.0		ug/L	
5229692	BAN	RPD	Total Aluminum (Al)	2017/10/25	NC		%	20
			Total Antimony (Sb)	2017/10/25	NC		%	20
			Total Arsenic (As)	2017/10/25	NC		%	20
			Total Barium (Ba)	2017/10/25	0.39		%	20
			Total Beryllium (Be)	2017/10/25	NC		%	20
			Total Bismuth (Bi)	2017/10/25	NC		%	20
			Total Boron (B)	2017/10/25	NC		%	20
			Total Cadmium (Cd)	2017/10/25	14		%	20
			Total Calcium (Ca)	2017/10/25	1.2		%	20
			Total Chromium (Cr)	2017/10/25	NC		%	20
			Total Cobalt (Co)	2017/10/25	NC		%	20
			Total Copper (Cu)	2017/10/25	0.15		%	20
			Total Iron (Fe)	2017/10/25	3.8		%	20
			Total Lead (Pb)	2017/10/25	NC		%	20
			Total Magnesium (Mg)	2017/10/25	1.6		%	20
			Total Manganese (Mn)	2017/10/25	0.65		%	20
			Total Molybdenum (Mo)	2017/10/25	NC		%	20
			Total Nickel (Ni)	2017/10/25	NC		%	20
			Total Phosphorus (P)	2017/10/25	NC		%	20
			Total Potassium (K)	2017/10/25	5.1		%	20
			Total Selenium (Se)	2017/10/25	NC		%	20
			Total Silver (Ag)	2017/10/25	NC		%	20
			Total Sodium (Na)	2017/10/25	0.23		%	20
			Total Strontium (Sr)	2017/10/25	1.2		%	20
			Total Thallium (TI)	2017/10/25	NC		%	20
			Total Tin (Sn)	2017/10/25	NC		%	20

Maxxam Analytics International Corporation o/a Maxxam Analytics 200 Bluewater Rd, Suite 105, Bedford, Nova Scotia Canada B4B 1G9 Tel: 902-420-0203 Toll-free: 800-565-7227 Fax: 902-420-8612 www.maxxamanalytics.com

Dillon Consulting Limited Client Project #: 13-8348 Site Location: HIGHWAY 107 EA Sampler Initials: PKA

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Titanium (Ti)	2017/10/25	NC		%	20
			Total Uranium (U)	2017/10/25	NC		%	20
			Total Vanadium (V)	2017/10/25	NC		%	20
			Total Zinc (Zn)	2017/10/25	4.3		%	20
5229701	JMV	QC Standard	рН	2017/10/25		100	%	97 - 103
5229701	JMV	RPD	рН	2017/10/25	1.6		%	N/A
5229702	JMV	Spiked Blank	Conductivity	2017/10/25		103	%	80 - 120
5229702	JMV	Method Blank	Conductivity	2017/10/25	1.4, RDL=1.0		uS/cm	
5229702	JMV	RPD	Conductivity	2017/10/25	0.27		%	25
5229703	JMV	QC Standard	рН	2017/10/25		100	%	97 - 103
5229703	JMV	RPD	рН	2017/10/25	0.50		%	N/A
5229704	JMV	Spiked Blank	Conductivity	2017/10/25		103	%	80 - 120
5229704	JMV	Method Blank	Conductivity	2017/10/25	1.5, RDL=1.0		uS/cm	
5229704	JMV	RPD	Conductivity	2017/10/25	0.40		%	25
5229749	JMV	QC Standard	Turbidity	2017/10/25		94	%	80 - 120
5229749	JMV	Spiked Blank	Turbidity	2017/10/25		92	%	80 - 120
5229749	JMV	Method Blank	Turbidity	2017/10/25	ND, RDL=0.10		NTU	
5229749	JMV	RPD	Turbidity	2017/10/25	4.7		%	20
5230314	NRG	Matrix Spike	Total Alkalinity (Total as CaCO3)	2017/10/25		103	%	80 - 120
5230314	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2017/10/25		105	%	80 - 120
5230314	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2017/10/25	ND, RDL=5.0		mg/L	
5230314	NRG	RPD	Total Alkalinity (Total as CaCO3)	2017/10/25	6.8		%	25
5230318	NRG	Matrix Spike	Dissolved Chloride (Cl)	2017/10/27		96	%	80 - 120
5230318	NRG	QC Standard	Dissolved Chloride (Cl)	2017/10/27		107	%	80 - 120
5230318	NRG	Spiked Blank	Dissolved Chloride (Cl)	2017/10/27		99	%	80 - 120
5230318	NRG	Method Blank	Dissolved Chloride (Cl)	2017/10/27	ND, RDL=1.0		mg/L	
5230318	NRG	RPD	Dissolved Chloride (Cl)	2017/10/27	1.3		%	25
5230320	NRG	Matrix Spike	Dissolved Sulphate (SO4)	2017/10/26		119	%	80 - 120
5230320	NRG	Spiked Blank	Dissolved Sulphate (SO4)	2017/10/26		101	%	80 - 120
5230320	NRG	Method Blank	Dissolved Sulphate (SO4)	2017/10/26	ND, RDL=2.0		mg/L	
5230320	NRG	RPD	Dissolved Sulphate (SO4)	2017/10/26	NC		%	25
5230321	NRG	Matrix Spike	Reactive Silica (SiO2)	2017/10/25		96	%	80 - 120
5230321	NRG	Spiked Blank	Reactive Silica (SiO2)	2017/10/25		92	%	80 - 120
5230321	NRG	Method Blank	Reactive Silica (SiO2)	2017/10/25	ND, RDL=0.50		mg/L	
5230322	NRG	Spiked Blank	Colour	2017/10/27		97	%	80 - 120
5230322	NRG	Method Blank	Colour	2017/10/27	ND, RDL=5.0		TCU	
5230322	NRG	RPD	Colour	2017/10/27	14 (1)		%	20
5230323	NRG	Matrix Spike	Orthophosphate (P)	2017/10/26		94	%	80 - 120
5230323	NRG	Spiked Blank	Orthophosphate (P)	2017/10/26		98	%	80 - 120
5230323	NRG	Method Blank	Orthophosphate (P)	2017/10/26	ND, RDL=0.010		mg/L	
5230324	MCN	Matrix Spike	Nitrate + Nitrite (N)	2017/10/27		98	%	80 - 120
5230324		Spiked Blank	Nitrate + Nitrite (N)	2017/10/27		97	%	80 - 120

Dillon Consulting Limited Client Project #: 13-8348 Site Location: HIGHWAY 107 EA Sampler Initials: PKA

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5230324	MCN	Method Blank	Nitrate + Nitrite (N)	2017/10/27	ND,		mg/L	
					RDL=0.050			
5230326	NRG	Matrix Spike	Nitrite (N)	2017/10/26		95	%	80 - 120
5230326	NRG	Spiked Blank	Nitrite (N)	2017/10/26		99	%	80 - 120
5230326	NRG	Method Blank	Nitrite (N)	2017/10/26	ND,		mg/L	
					RDL=0.010			
5230326	NRG	RPD	Nitrite (N)	2017/10/26	NC		%	25
5232188	NRG	Matrix Spike [FJI329-03]	Nitrogen (Ammonia Nitrogen)	2017/10/26		91	%	80 - 120
5232188	NRG	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2017/10/26		109	%	80 - 120
5232188	NRG	Method Blank	Nitrogen (Ammonia Nitrogen)	2017/10/26	ND,		mg/L	
					RDL=0.050			
5232188	NRG	RPD [FJI329-03]	Nitrogen (Ammonia Nitrogen)	2017/10/26	NC		%	20
5232877	SSI	Matrix Spike [FJI329-03]	Total Organic Carbon (C)	2017/10/26		99	%	80 - 120
5232877	SSI	Spiked Blank	Total Organic Carbon (C)	2017/10/26		103	%	80 - 120
5232877	SSI	Method Blank	Total Organic Carbon (C)	2017/10/26	ND,		mg/L	
					RDL=0.50			
5232877	SSI	RPD [FJI329-03]	Total Organic Carbon (C)	2017/10/26	3.0		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Elevated reporting limit due to sample matrix.

Dillon Consulting Limited Client Project #: 13-8348 Site Location: HIGHWAY 107 EA Sampler Initials: PKA

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Eric Dearman, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 13-8348-6000 Site Location: HWY 107 EA Your C.O.C. #: N/A

Attention:Karen March

Dillon Consulting Limited 137 Chain Lake Dr Suite 100 Halifax , NS B3S 1B3

> Report Date: 2017/12/11 Report #: R4905922 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7R2025

Received: 2017/12/01, 15:15

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	2	N/A	2017/12/05	N/A	SM 22 4500-CO2 D
Alkalinity	2	N/A	2017/12/08	ATL SOP 00013	EPA 310.2 R1974 m
Chloride	2	N/A	2017/12/07	ATL SOP 00014	SM 22 4500-Cl- E m
Colour	2	N/A	2017/12/07	ATL SOP 00020	SM 22 2120C m
Conductance - water	2	N/A	2017/12/05	ATL SOP 00004	SM 22 2510B m
TEH in Water (PIRI)	2	2017/12/04	2017/12/04	ATL SOP 00113	Atl. RBCA v3.1 m
Hardness (calculated as CaCO3)	2	N/A	2017/12/06	ATL SOP 00048	SM 22 2340 B
Mercury - Total (CVAA,LL)	2	2017/12/07	2017/12/08	ATL SOP 00026	EPA 245.1 R3 m
Metals Water Total MS	1	2017/12/05	2017/12/05	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	1	2017/12/05	2017/12/06	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference)	2	N/A	2017/12/08	N/A	Auto Calc.
Anion and Cation Sum	2	N/A	2017/12/07	N/A	Auto Calc.
Nitrogen Ammonia - water	2	N/A	2017/12/06	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	2	N/A	2017/12/08	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrite	2	N/A	2017/12/07	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrate (as N)	2	N/A	2017/12/08	ATL SOP 00018	ASTM D3867-16
рН (1)	2	N/A	2017/12/05	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho	2	N/A	2017/12/07	ATL SOP 00021	SM 22 4500-P E m
VPH in Water (PIRI)	2	N/A	2017/12/05	ATL SOP 00118	Atl. RBCA v3.1 m
Sat. pH and Langelier Index (@ 20C)	2	N/A	2017/12/08	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	2	N/A	2017/12/08	ATL SOP 00049	Auto Calc.
Reactive Silica	2	N/A	2017/12/08	ATL SOP 00022	EPA 366.0 m
Sulphate	2	N/A	2017/12/07	ATL SOP 00023	ASTM D516-16 m
Total Dissolved Solids (TDS calc)	2	N/A	2017/12/11	N/A	Auto Calc.
Organic carbon - Total (TOC) (2)	2	N/A	2017/12/11	ATL SOP 00037	SM 22 5310C m
ModTPH (T1) Calc. for Water	2	N/A	2017/12/06	N/A	Atl. RBCA v3 m
Total Suspended Solids	2	2017/12/07	2017/12/08	ATL SOP 00007	SM 22 2540D m
Turbidity	2	N/A	2017/12/05	ATL SOP 00011	EPA 180.1 R2 m

Remarks:

Your Project #: 13-8348-6000 Site Location: HWY 107 EA Your C.O.C. #: N/A

Attention:Karen March

Dillon Consulting Limited 137 Chain Lake Dr Suite 100 Halifax , NS B3S 1B3

> Report Date: 2017/12/11 Report #: R4905922 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7R2025

Received: 2017/12/01, 15:15

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.

(2) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Heather Macumber, Senior Project Manager Email: HMacumber@maxxam.ca Phone# (902)420-0203 Ext:226

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 17

RESULTS OF ANALYSES OF WATER

Maxxam ID		FRD269		FRD270		
Sampling Date		2017/11/30 12:10		2017/11/30 12:44		
COC Number		N/A		N/A		
	UNITS	SW1A	QC Batch	OUTLET	RDL	QC Batch
Calculated Parameters			•			
Anion Sum	me/L	0.410	5294150	0.410	N/A	5294150
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	ND	5294146	ND	1.0	5294146
Calculated TDS	mg/L	28	5294155	28	1.0	5294155
Carb. Alkalinity (calc. as CaCO3)	mg/L	ND	5294146	ND	1.0	5294146
Cation Sum	me/L	0.480	5294150	0.480	N/A	5294150
Hardness (CaCO3)	mg/L	6.8	5294148	6.7	1.0	5294148
Ion Balance (% Difference)	%	7.87	5294149	7.87	N/A	5294149
Langelier Index (@ 20C)	N/A	NC	5294153	NC		5294153
Langelier Index (@ 4C)	N/A	NC	5294154	NC		5294154
Nitrate (N)	mg/L	ND	5294151	ND	0.050	5294151
Saturation pH (@ 20C)	N/A	NC	5294153	NC		5294153
Saturation pH (@ 4C)	N/A	NC	5294154	NC		5294154
Inorganics						
Total Alkalinity (Total as CaCO3)	mg/L	ND	5302218	ND	5.0	5302218
Dissolved Chloride (Cl)	mg/L	12	5302227	12	1.0	5302227
Colour	TCU	24	5302238	31	5.0	5302238
Nitrate + Nitrite (N)	mg/L	ND	5302244	ND	0.050	5302244
Nitrite (N)	mg/L	ND	5302247	ND	0.010	5302247
Nitrogen (Ammonia Nitrogen)	mg/L	0.070	5301619	0.19	0.050	5301619
Total Organic Carbon (C)	mg/L	4.6	5309052	5.9	0.50	5309052
Orthophosphate (P)	mg/L	ND	5302243	ND	0.010	5302243
рН	рН	5.97	5298939	5.96	N/A	5298937
Reactive Silica (SiO2)	mg/L	1.6	5302234	1.7	0.50	5302234
Total Suspended Solids	mg/L	1.2	5303681	ND	1.0	5303681
Dissolved Sulphate (SO4)	mg/L	3.3	5302231	3.1	2.0	5302231
Turbidity	NTU	1.0	5298944	0.77	0.10	5298943
Conductivity	uS/cm	57	5298940	56	1.0	5298938
RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable ND = Not detected						

MERCURY BY COLD VAPOUR AA (WATER)

Maxxam ID		FRD269	FRD270				
Sampling Date		2017/11/30 12:10	2017/11/30 12:44				
COC Number		N/A	N/A				
	UNITS	SW1A	OUTLET	RDL	QC Batch		
Metals							
Total Mercury (Hg)	ug/L	ND	ND	0.013	5303626		
RDL = Reportable Detection L	imit						
QC Batch = Quality Control Batch ND = Not detected							

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		FRD269		FRD270		
		2017/11/30		2017/11/30		
Sampling Date		12:10		12:44		
COC Number		N/A		N/A		
	UNITS	SW1A	QC Batch	OUTLET	RDL	QC Batch
Metals	-					
Total Aluminum (Al)	ug/L	110	5298959	110	5.0	5299013
Total Antimony (Sb)	ug/L	ND	5298959	ND	1.0	5299013
Total Arsenic (As)	ug/L	ND	5298959	ND	1.0	5299013
Total Barium (Ba)	ug/L	5.4	5298959	5.0	1.0	5299013
Total Beryllium (Be)	ug/L	ND	5298959	ND	1.0	5299013
Total Bismuth (Bi)	ug/L	ND	5298959	ND	2.0	5299013
Total Boron (B)	ug/L	ND	5298959	ND	50	5299013
Total Cadmium (Cd)	ug/L	ND	5298959	ND	0.010	5299013
Total Calcium (Ca)	ug/L	1900	5298959	1900	100	5299013
Total Chromium (Cr)	ug/L	ND	5298959	ND	1.0	5299013
Total Cobalt (Co)	ug/L	ND	5298959	ND	0.40	5299013
Total Copper (Cu)	ug/L	ND	5298959	ND	2.0	5299013
Total Iron (Fe)	ug/L	170	5298959	170	50	5299013
Total Lead (Pb)	ug/L	ND	5298959	ND	0.50	5299013
Total Magnesium (Mg)	ug/L	490	5298959	480	100	5299013
Total Manganese (Mn)	ug/L	78	5298959	52	2.0	5299013
Total Molybdenum (Mo)	ug/L	ND	5298959	ND	2.0	5299013
Total Nickel (Ni)	ug/L	ND	5298959	ND	2.0	5299013
Total Phosphorus (P)	ug/L	ND	5298959	ND	100	5299013
Total Potassium (K)	ug/L	420	5298959	390	100	5299013
Total Selenium (Se)	ug/L	ND	5298959	ND	1.0	5299013
Total Silver (Ag)	ug/L	ND	5298959	ND	0.10	5299013
Total Sodium (Na)	ug/L	7500	5298959	7300	100	5299013
Total Strontium (Sr)	ug/L	8.6	5298959	9.1	2.0	5299013
Total Thallium (Tl)	ug/L	ND	5298959	ND	0.10	5299013
Total Tin (Sn)	ug/L	ND	5298959	ND	2.0	5299013
Total Titanium (Ti)	ug/L	ND	5298959	ND	2.0	5299013
Total Uranium (U)	ug/L	ND	5298959	ND	0.10	5299013
Total Vanadium (V)	ug/L	ND	5298959	ND	2.0	5299013
Total Zinc (Zn)	ug/L	ND	5298959	ND	5.0	5299013
RDL = Reportable Detection L	imit					
QC Batch = Quality Control Ba	atch					
ND = Not detected						

ATLANTIC RBCA HYDROCARBONS (WATER)

Maxxam ID		FRD269	FRD270						
Someling Data		2017/11/30	2017/11/30						
Sampling Date		12:10	12:44						
COC Number		N/A	N/A						
	UNITS	SW1A	OUTLET	RDL	QC Batch				
Petroleum Hydrocarbons									
Benzene	mg/L	ND	ND	0.0010	5297200				
Toluene	mg/L	ND	ND	0.0010	5297200				
Ethylbenzene	mg/L	ND	ND	0.0010	5297200				
Total Xylenes	mg/L	ND	ND	0.0020	5297200				
C6 - C10 (less BTEX)	mg/L	ND	ND	0.010	5297200				
>C10-C16 Hydrocarbons	mg/L	ND	ND	0.050	5297111				
>C16-C21 Hydrocarbons	mg/L	ND	ND	0.050	5297111				
>C21- <c32 hydrocarbons<="" p=""></c32>	mg/L	ND	ND	0.10	5297111				
Modified TPH (Tier1)	mg/L	ND	ND	0.10	5294204				
Reached Baseline at C32	mg/L	NA	NA	N/A	5297111				
Hydrocarbon Resemblance	mg/L	NA	NA	N/A	5297111				
Surrogate Recovery (%)	•								
Isobutylbenzene - Extractable	%	90	87		5297111				
n-Dotriacontane - Extractable	%	98	97		5297111				
Isobutylbenzene - Volatile	%	103	102		5297200				
RDL = Reportable Detection Lim	it								
QC Batch = Quality Control Batc	h								
ND = Not detected									
N/A = Not Applicable									

GENERAL COMMENTS

Each te	Each temperature is the average of up to three cooler temperatures taken at receipt									
	Package 1	2.0°C								
Sample	Sample FRD269 [SW1A] : RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.									
Sample	Sample FRD270 [OUTLET] : RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L.									
Results	relate only to the it	ems tested.								

Dillon Consulting Limited Client Project #: 13-8348-6000 Site Location: HWY 107 EA Sampler Initials: PKA

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5297111	BCD	Matrix Spike	Isobutylbenzene - Extractable	2017/12/04		105	%	30 - 130
			n-Dotriacontane - Extractable	2017/12/04		129	%	30 - 130
			>C10-C16 Hydrocarbons	2017/12/04		93	%	70 - 130
			>C16-C21 Hydrocarbons	2017/12/04		91	%	70 - 130
			>C21- <c32 hydrocarbons<="" p=""></c32>	2017/12/04		100	%	70 - 130
5297111	BCD	Spiked Blank	Isobutylbenzene - Extractable	2017/12/04		103	%	30 - 130
			n-Dotriacontane - Extractable	2017/12/04		110	%	30 - 130
			>C10-C16 Hydrocarbons	2017/12/04		88	%	70 - 130
			>C16-C21 Hydrocarbons	2017/12/04		88	%	70 - 130
			>C21- <c32 hydrocarbons<="" td=""><td>2017/12/04</td><td></td><td>98</td><td>%</td><td>70 - 130</td></c32>	2017/12/04		98	%	70 - 130
5297111	BCD	Method Blank	Isobutylbenzene - Extractable	2017/12/04		101	%	30 - 130
			n-Dotriacontane - Extractable	2017/12/04		110	%	30 - 130
			>C10-C16 Hydrocarbons	2017/12/04	ND, RDL=0.050		mg/L	
			>C16-C21 Hydrocarbons	2017/12/04	ND, RDL=0.050		mg/L	
			>C21- <c32 hydrocarbons<="" td=""><td>2017/12/04</td><td>ND, RDL=0.10</td><td></td><td>mg/L</td><td></td></c32>	2017/12/04	ND, RDL=0.10		mg/L	
5297111	BCD	RPD	>C10-C16 Hydrocarbons	2017/12/04	NC		%	40
			>C16-C21 Hydrocarbons	2017/12/04	NC		%	40
			>C21- <c32 hydrocarbons<="" td=""><td>2017/12/04</td><td>NC</td><td></td><td>%</td><td>40</td></c32>	2017/12/04	NC		%	40
5297200	MS3	Matrix Spike	Isobutylbenzene - Volatile	2017/12/05		105	%	70 - 130
			Benzene	2017/12/05		102	%	70 - 130
			Toluene	2017/12/05		103	%	70 - 130
			Ethylbenzene	2017/12/05		101	%	70 - 130
			Total Xylenes	2017/12/05		101	%	70 - 130
5297200	MS3	Spiked Blank	Isobutylbenzene - Volatile	2017/12/05		105	%	70 - 130
			Benzene	2017/12/05		103	%	70 - 130
			Toluene	2017/12/05		104	%	70 - 130
			Ethylbenzene	2017/12/05		104	%	70 - 130
			Total Xylenes	2017/12/05		103	%	70 - 130
5297200	MS3	Method Blank	Isobutylbenzene - Volatile	2017/12/05		103	%	70 - 130
			Benzene	2017/12/05	ND, RDL=0.0010		mg/L	
			Toluene	2017/12/05	ND, RDL=0.0010		mg/L	
			Ethylbenzene	2017/12/05	ND, RDL=0.0010		mg/L	
			Total Xylenes	2017/12/05	ND, RDL=0.0020		mg/L	
			C6 - C10 (less BTEX)	2017/12/05	ND, RDL=0.010		mg/L	
5297200	MS3	RPD	Benzene	2017/12/05	NC		%	40
			Toluene	2017/12/05	NC		%	40
			Ethylbenzene	2017/12/05	NC		%	40
			Total Xylenes	2017/12/05	NC		%	40
			C6 - C10 (less BTEX)	2017/12/05	NC		%	40
5298937	JMV	QC Standard	рН	2017/12/05		100	%	97 - 103
5298937	JMV	RPD	рН	2017/12/05	1.6		%	N/A
5298938	JMV	Spiked Blank	Conductivity	2017/12/05		104	%	80 - 120
5298938	JMV	Method Blank	Conductivity	2017/12/05	1.5, RDL=1.0		uS/cm	

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5298938	JMV	RPD	Conductivity	2017/12/05	0.72		%	25
5298939	JMV	QC Standard	рН	2017/12/05		100	%	97 - 103
5298939	JMV	RPD	рН	2017/12/05	0.76		%	N/A
5298940	JMV	Spiked Blank	Conductivity	2017/12/05		104	%	80 - 120
5298940	JMV	Method Blank	Conductivity	2017/12/05	1.7, RDL=1.0		uS/cm	
5298940	JMV	RPD	Conductivity	2017/12/05	1.1		%	25
5298943	JMV	QC Standard	Turbidity	2017/12/05		97	%	80 - 120
5298943	JMV	Spiked Blank	Turbidity	2017/12/05		92	%	80 - 120
5298943	JMV	Method Blank	Turbidity	2017/12/05	ND, RDL=0.10		NTU	
5298943	JMV	RPD	Turbidity	2017/12/05	NC		%	20
5298944	JMV	QC Standard	Turbidity	2017/12/05	i i c	97	%	80 - 120
5298944	JMV	Spiked Blank	Turbidity	2017/12/05		92	%	80 - 120
5298944	JMV	Method Blank	Turbidity	2017/12/05	ND,	51	NTU	00 120
					RDL=0.10			
5298944	JMV	RPD	Turbidity	2017/12/05	15		%	20
5298959	BAN	Matrix Spike	Total Aluminum (Al)	2017/12/05		101	%	80 - 120
			Total Antimony (Sb)	2017/12/05		100	%	80 - 120
			Total Arsenic (As)	2017/12/05		99	%	80 - 120
			Total Barium (Ba)	2017/12/05		96	%	80 - 120
			Total Beryllium (Be)	2017/12/05		102	%	80 - 120
			Total Bismuth (Bi)	2017/12/05		100	%	80 - 120
			Total Boron (B)	2017/12/05		100	%	80 - 120
			Total Cadmium (Cd)	2017/12/05		99	%	80 - 120
			Total Calcium (Ca)	2017/12/05		101	%	80 - 120
			Total Chromium (Cr)	2017/12/05		98	%	80 - 120
			Total Cobalt (Co)	2017/12/05		98	%	80 - 120
			Total Copper (Cu)	2017/12/05		99	%	80 - 120
			Total Iron (Fe)	2017/12/05 2017/12/05		102 97	% %	80 - 120 80 - 120
			Total Lead (Pb)	2017/12/05		97 102	%	80 - 120 80 - 120
			Total Magnesium (Mg) Total Manganese (Mn)	2017/12/05		99	%	80 - 120 80 - 120
			Total Molybdenum (Mo)	2017/12/05		99 101	%	80 - 120 80 - 120
			Total Nickel (Ni)	2017/12/05		99	%	80 - 120 80 - 120
			Total Phosphorus (P)	2017/12/05		103	%	80 - 120
			Total Potassium (K)	2017/12/05		105	%	80 - 120
			Total Selenium (Se)	2017/12/05		99	%	80 - 120
			Total Silver (Ag)	2017/12/05		99	%	80 - 120
			Total Sodium (Na)	2017/12/05		101	%	80 - 120
			Total Strontium (Sr)	2017/12/05		101	%	80 - 120
			Total Thallium (TI)	2017/12/05		100	%	80 - 120
			Total Tin (Sn)	2017/12/05		101	%	80 - 120
			Total Titanium (Ti)	2017/12/05		99	%	80 - 120
			Total Uranium (U)	2017/12/05		103	%	80 - 120
			Total Vanadium (V)	2017/12/05		100	%	80 - 120
			Total Zinc (Zn)	2017/12/05		101	%	80 - 120
5298959	BAN	Spiked Blank	Total Aluminum (Al)	2017/12/05		103	%	80 - 120
			Total Antimony (Sb)	2017/12/05		101	%	80 - 120
			Total Arsenic (As)	2017/12/05		100	%	80 - 120
			Total Barium (Ba)	2017/12/05		98	%	80 - 120
			Total Beryllium (Be)	2017/12/05		103	%	80 - 120

Dillon Consulting Limited Client Project #: 13-8348-6000 Site Location: HWY 107 EA Sampler Initials: PKA

QA/QC								
Batch	Init	QC Туре	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Bismuth (Bi)	2017/12/05		100	%	80 - 120
			Total Boron (B)	2017/12/05		103	%	80 - 120
			Total Cadmium (Cd)	2017/12/05		101	%	80 - 120
			Total Calcium (Ca)	2017/12/05		103	%	80 - 120
			Total Chromium (Cr)	2017/12/05		99	%	80 - 120
			Total Cobalt (Co)	2017/12/05		100	%	80 - 120
			Total Copper (Cu)	2017/12/05		100	%	80 - 120
			Total Iron (Fe)	2017/12/05		103	%	80 - 120
			Total Lead (Pb)	2017/12/05		98	%	80 - 120
			Total Magnesium (Mg)	2017/12/05		104	%	80 - 120
			Total Manganese (Mn)	2017/12/05		100	%	80 - 120
			Total Molybdenum (Mo)	2017/12/05		104	%	80 - 120
			Total Nickel (Ni)	2017/12/05		101	%	80 - 120
			Total Phosphorus (P)	2017/12/05		105	%	80 - 120
			Total Potassium (K)	2017/12/05		103	%	80 - 120
			Total Selenium (Se)	2017/12/05		101	%	80 - 120
			Total Silver (Ag)	2017/12/05		101	%	80 - 120
			Total Sodium (Na)	2017/12/05		104	%	80 - 120
			Total Strontium (Sr)	2017/12/05		100	%	80 - 120
			Total Thallium (Tl)	2017/12/05		100	%	80 - 120
			Total Tin (Sn)	2017/12/05		103	%	80 - 120
			Total Titanium (Ti)	2017/12/05		103	%	80 - 120
			Total Uranium (U)	2017/12/05		103	%	80 - 120
			Total Vanadium (V)	2017/12/05		100	%	80 - 120
			Total Zinc (Zn)	2017/12/05		102	%	80 - 120
5298959	BAN	Method Blank	Total Aluminum (Al)	2017/12/05	ND, RDL=5.0		ug/L	
			Total Antimony (Sb)	2017/12/05	ND, RDL=1.0		ug/L	
			Total Arsenic (As)	2017/12/05	ND, RDL=1.0		ug/L	
			Total Barium (Ba)	2017/12/05	ND, RDL=1.0		ug/L	
			Total Beryllium (Be)	2017/12/05	ND, RDL=1.0		ug/L	
			Total Bismuth (Bi)	2017/12/05	ND, RDL=2.0		ug/L	
			Total Boron (B)	2017/12/05	ND, RDL=50		ug/L	
			Total Cadmium (Cd)	2017/12/05	ND, RDL=0.010		ug/L	
			Total Calcium (Ca)	2017/12/05	ND, RDL=100		ug/L	
		Total Chromium (Cr)	2017/12/05	ND, RDL=1.0		ug/L		
			Total Cobalt (Co)	2017/12/05	ND, RDL=0.40		ug/L	
			Total Copper (Cu)	2017/12/05	ND, RDL=2.0		ug/L	
			Total Iron (Fe)	2017/12/05	ND, RDL=50		ug/L	

Dillon Consulting Limited Client Project #: 13-8348-6000 Site Location: HWY 107 EA Sampler Initials: PKA

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Batton			Total Lead (Pb)	2017/12/05	ND, RDL=0.50		ug/L	Q0 1
			Total Magnesium (Mg)	2017/12/05	ND, RDL=100		ug/L	
			Total Manganese (Mn)	2017/12/05	ND, RDL=2.0		ug/L	
			Total Molybdenum (Mo)	2017/12/05	ND, RDL=2.0		ug/L	
			Total Nickel (Ni)	2017/12/05	ND, RDL=2.0		ug/L	
			Total Phosphorus (P)	2017/12/05	ND, RDL=100		ug/L	
			Total Potassium (K)	2017/12/05	ND, RDL=100		ug/L	
			Total Selenium (Se)	2017/12/05	ND, RDL=1.0		ug/L	
			Total Silver (Ag)	2017/12/05	ND, RDL=0.10		ug/L	
			Total Sodium (Na)	2017/12/05	ND, RDL=100		ug/L	
			Total Strontium (Sr)	2017/12/05	ND, RDL=2.0		ug/L	
			Total Thallium (Tl)	2017/12/05	ND, RDL=0.10		ug/L	
			Total Tin (Sn)	2017/12/05	ND, RDL=2.0		ug/L	
			Total Titanium (Ti)	2017/12/05	ND, RDL=2.0		ug/L	
			Total Uranium (U)	2017/12/05	ND, RDL=0.10		ug/L	
			Total Vanadium (V)	2017/12/05	ND, RDL=2.0		ug/L	
			Total Zinc (Zn)	2017/12/05	ND, RDL=5.0		ug/L	
5298959	BAN	RPD	Total Aluminum (Al)	2017/12/05	3.1		%	20
			Total Antimony (Sb)	2017/12/05	NC		%	20
			Total Arsenic (As)	2017/12/05	NC		%	20
			Total Barium (Ba)	2017/12/05	2.4		%	20
			Total Beryllium (Be)	2017/12/05	NC		%	20
			Total Bismuth (Bi)	2017/12/05	NC		%	20
			Total Boron (B)	2017/12/05	NC		%	20
			Total Cadmium (Cd)	2017/12/05	NC		%	20
			Total Calcium (Ca)	2017/12/05	0.98		%	20
			Total Chromium (Cr)	2017/12/05	NC		%	20
			Total Cobalt (Co)	2017/12/05	NC		%	20
			Total Copper (Cu)	2017/12/05	8.1		%	20
			Total Iron (Fe)	2017/12/05	2.0		%	20
			Total Lead (Pb)	2017/12/05	2.5		%	20
			Total Magnesium (Mg)	2017/12/05	2.9		%	20
			Total Manganese (Mn)	2017/12/05	2.7		%	20
			Total Molybdenum (Mo)	2017/12/05	NC		%	20
			Total Nickel (Ni)	2017/12/05	NC		%	20

Dillon Consulting Limited Client Project #: 13-8348-6000 Site Location: HWY 107 EA Sampler Initials: PKA

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Phosphorus (P)	2017/12/05	NC		%	20
			Total Potassium (K)	2017/12/05	3.3		%	20
			Total Selenium (Se)	2017/12/05	NC		%	20
			Total Silver (Ag)	2017/12/05	NC		%	20
			Total Sodium (Na)	2017/12/05	3.3		%	20
			Total Strontium (Sr)	2017/12/05	2.3		%	20
			Total Thallium (Tl)	2017/12/05	NC		%	20
			Total Tin (Sn)	2017/12/05	NC		%	20
			Total Titanium (Ti)	2017/12/05	NC		%	20
			Total Uranium (U)	2017/12/05	NC		%	20
			Total Vanadium (V)	2017/12/05	NC		%	20
			Total Zinc (Zn)	2017/12/05	8.6		%	20
5299013	BAN	Matrix Spike	Total Aluminum (Al)	2017/12/06		NC	%	80 - 120
			Total Antimony (Sb)	2017/12/06		99	%	80 - 120
			Total Arsenic (As)	2017/12/06		97	%	80 - 120
			Total Barium (Ba)	2017/12/06		92	%	80 - 120
			Total Beryllium (Be)	2017/12/06		100	%	80 - 120
			Total Bismuth (Bi)	2017/12/06		100	%	80 - 120
			Total Boron (B)	2017/12/06		100	%	80 - 120
			Total Cadmium (Cd)	2017/12/06		99	%	80 - 120
			Total Calcium (Ca)	2017/12/06		100	%	80 - 120
			Total Chromium (Cr)	2017/12/06		95	%	80 - 120
			Total Cobalt (Co)	2017/12/06		96	%	80 - 120
			Total Copper (Cu)	2017/12/06		93	%	80 - 120
			Total Iron (Fe)	2017/12/06		95	%	80 - 120
			Total Lead (Pb)	2017/12/06		95	%	80 - 120
			Total Magnesium (Mg)	2017/12/06		98	%	80 - 120
			Total Manganese (Mn)	2017/12/06		93	%	80 - 120
			Total Molybdenum (Mo)	2017/12/06		102	%	80 - 120
			Total Nickel (Ni)	2017/12/06		96	%	80 - 120
			Total Phosphorus (P)	2017/12/06		102	%	80 - 120
			Total Potassium (K)	2017/12/06		102	%	80 - 120
			Total Selenium (Se)	2017/12/06		99	%	80 - 120
			Total Silver (Ag)	2017/12/06		97	%	80 - 120
			Total Sodium (Na)	2017/12/06		98	%	80 - 120
			Total Strontium (Sr)	2017/12/06		NC	%	80 - 120
			Total Thallium (TI)	2017/12/06		99	%	80 - 120
			Total Tin (Sn)	2017/12/06		99 103	%	80 - 120
			Total Titanium (Ti)	2017/12/06		96	%	80 - 120
			Total Uranium (U)	2017/12/06		102	%	80 - 120
			Total Vanadium (V)	2017/12/06		97	%	80 - 120
5200042		Continue de Disconte	Total Zinc (Zn)	2017/12/06		94	%	80 - 120
5299013	BAN	Spiked Blank	Total Aluminum (Al)	2017/12/06		103	%	80 - 120
			Total Antimony (Sb)	2017/12/06		103	%	80 - 120
			Total Arsenic (As)	2017/12/06		101	%	80 - 120
			Total Barium (Ba)	2017/12/06		98	%	80 - 120
			Total Beryllium (Be)	2017/12/06		102	%	80 - 120
			Total Bismuth (Bi)	2017/12/06		105	%	80 - 120
			Total Boron (B)	2017/12/06		102	%	80 - 120
			Total Cadmium (Cd)	2017/12/06		100	%	80 - 120
			Total Calcium (Ca)	2017/12/06		103	%	80 - 120
			Total Chromium (Cr)	2017/12/06		100	%	80 - 120

Dillon Consulting Limited Client Project #: 13-8348-6000 Site Location: HWY 107 EA Sampler Initials: PKA

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Cobalt (Co)	2017/12/06		101	%	80 - 120
			Total Copper (Cu)	2017/12/06		101	%	80 - 120
			Total Iron (Fe)	2017/12/06		104	%	80 - 120
			Total Lead (Pb)	2017/12/06		100	%	80 - 120
			Total Magnesium (Mg)	2017/12/06		104	%	80 - 120
			Total Manganese (Mn)	2017/12/06		102	%	80 - 120
			Total Molybdenum (Mo)	2017/12/06		106	%	80 - 120
			Total Nickel (Ni)	2017/12/06		102	%	80 - 120
			Total Phosphorus (P)	2017/12/06		105 104	%	80 - 120 80 - 120
			Total Potassium (K) Total Selenium (Se)	2017/12/06 2017/12/06		104	% %	80 - 120 80 - 120
			Total Silver (Ag)	2017/12/06		101	%	80 - 120 80 - 120
			Total Sodium (Na)	2017/12/06		101	%	80 - 120 80 - 120
			Total Strontium (Sr)	2017/12/06		102	%	80 - 120 80 - 120
			Total Thallium (TI)	2017/12/06		104	%	80 - 120
			Total Tin (Sn)	2017/12/06		105	%	80 - 120
			Total Titanium (Ti)	2017/12/06		105	%	80 - 120 80 - 120
			Total Uranium (U)	2017/12/06		105	%	80 - 120
			Total Vanadium (V)	2017/12/06		103	%	80 - 120
			Total Zinc (Zn)	2017/12/06		104	%	80 - 120
5299013	BAN	Method Blank	Total Aluminum (Al)	2017/12/06	ND,		ug/L	
					RDL=5.0			
			Total Antimony (Sb)	2017/12/06	ND, RDL=1.0		ug/L	
			Total Arsenic (As)	2017/12/06	ND, RDL=1.0		ug/L	
			Total Barium (Ba)	2017/12/06	ND, RDL=1.0		ug/L	
			Total Beryllium (Be)	2017/12/06	ND, RDL=1.0		ug/L	
			Total Bismuth (Bi)	2017/12/06	ND, RDL=2.0		ug/L	
			Total Boron (B)	2017/12/06	ND, RDL=50		ug/L	
			Total Cadmium (Cd)	2017/12/06	ND, RDL=0.010		ug/L	
			Total Calcium (Ca)	2017/12/06	100, RDL=100 (1)		ug/L	
			Total Chromium (Cr)	2017/12/06	ND, RDL=1.0		ug/L	
			Total Cobalt (Co)	2017/12/06	ND, RDL=0.40		ug/L	
			Total Copper (Cu)	2017/12/06	ND, RDL=2.0		ug/L	
			Total Iron (Fe)	2017/12/06	ND, RDL=50		ug/L	
			Total Lead (Pb)	2017/12/06	ND, RDL=0.50		ug/L	
			Total Magnesium (Mg)	2017/12/06	ND, RDL=100		ug/L	
			Total Manganese (Mn)	2017/12/06	ND, RDL=2.0		ug/L	

Dillon Consulting Limited Client Project #: 13-8348-6000 Site Location: HWY 107 EA Sampler Initials: PKA

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC						_		
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Molybdenum (Mo)	2017/12/06	ND, RDL=2.0		ug/L	
			Total Nickel (Ni)	2017/12/06	ND, RDL=2.0		ug/L	
			Total Phosphorus (P)	2017/12/06	ND, RDL=100		ug/L	
			Total Potassium (K)	2017/12/06	ND, RDL=100		ug/L	
			Total Selenium (Se)	2017/12/06	ND, RDL=1.0		ug/L	
			Total Silver (Ag)	2017/12/06	ND, RDL=0.10		ug/L	
			Total Sodium (Na)	2017/12/06	ND, RDL=100		ug/L	
			Total Strontium (Sr)	2017/12/06	ND, RDL=2.0		ug/L	
			Total Thallium (Tl)	2017/12/06	ND, RDL=0.10		ug/L	
			Total Tin (Sn)	2017/12/06	ND, RDL=2.0		ug/L	
			Total Titanium (Ti)	2017/12/06	ND, RDL=2.0		ug/L	
			Total Uranium (U)	2017/12/06	ND, RDL=0.10		ug/L	
			Total Vanadium (V)	2017/12/06	ND, RDL=2.0		ug/L	
			Total Zinc (Zn)	2017/12/06	ND, RDL=5.0		ug/L	
5299013	BAN	RPD	Total Aluminum (Al)	2017/12/06	2.1		%	20
5301619	MCN	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2017/12/06		98	%	80 - 120
5301619	MCN	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2017/12/06		102	%	80 - 120
5301619	MCN	Method Blank	Nitrogen (Ammonia Nitrogen)	2017/12/06	ND, RDL=0.050		mg/L	
5301619	MCN	RPD	Nitrogen (Ammonia Nitrogen)	2017/12/06	2.0		%	20
5302218	NRG	Matrix Spike	Total Alkalinity (Total as CaCO3)	2017/12/07		NC	%	80 - 120
5302218	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2017/12/07		103	%	80 - 120
5302218	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2017/12/07	ND, RDL=5.0		mg/L	
5302218	NRG	RPD	Total Alkalinity (Total as CaCO3)	2017/12/07	0.75		%	25
5302227	NRG	Matrix Spike	Dissolved Chloride (Cl)	2017/12/07		100	%	80 - 120
5302227	NRG	QC Standard	Dissolved Chloride (Cl)	2017/12/07		107	%	80 - 120
5302227	NRG	Spiked Blank	Dissolved Chloride (Cl)	2017/12/07		104	%	80 - 120
5302227	NRG	Method Blank	Dissolved Chloride (Cl)	2017/12/07	ND, RDL=1.0		mg/L	
5302227	NRG	RPD	Dissolved Chloride (Cl)	2017/12/07	1.7		%	25
5302231	NRG	Matrix Spike	Dissolved Sulphate (SO4)	2017/12/07		NC	%	80 - 120
5302231	NRG	Spiked Blank	Dissolved Sulphate (SO4)	2017/12/07		98	%	80 - 120
5302231	NRG	Method Blank	Dissolved Sulphate (SO4)	2017/12/07	ND, RDL=2.0		mg/L	
5302231	NRG	RPD	Dissolved Sulphate (SO4)	2017/12/07	4.9 (2)		%	25
5302234	NRG	Matrix Spike	Reactive Silica (SiO2)	2017/12/08		98	%	80 - 120
5302234	NRG	Spiked Blank	Reactive Silica (SiO2)	2017/12/08		98	%	80 - 120

QA/QC				.		_		
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5302234	NRG	Method Blank	Reactive Silica (SiO2)	2017/12/08	ND, RDL=0.50		mg/L	
5302234	NRG	RPD	Reactive Silica (SiO2)	2017/12/08	5.0		%	25
5302238	NRG	Spiked Blank	Colour	2017/12/07		100	%	80 - 120
5302238	NRG	Method Blank	Colour	2017/12/07	ND, RDL=5.0		TCU	
5302238	NRG	RPD	Colour	2017/12/07	NC		%	20
5302243	NRG	Matrix Spike	Orthophosphate (P)	2017/12/08		107	%	80 - 120
5302243	NRG	Spiked Blank	Orthophosphate (P)	2017/12/08		100	%	80 - 120
5302243	NRG	Method Blank	Orthophosphate (P)	2017/12/08	0.051, RDL=0.010		mg/L	
5302243	NRG	RPD	Orthophosphate (P)	2017/12/08	14		%	25
5302244	NRG	Matrix Spike	Nitrate + Nitrite (N)	2017/12/08		96	%	80 - 120
5302244	NRG	Spiked Blank	Nitrate + Nitrite (N)	2017/12/08		94	%	80 - 120
5302244	NRG	Method Blank	Nitrate + Nitrite (N)	2017/12/08	ND, RDL=0.050		mg/L	
5302244	NRG	RPD	Nitrate + Nitrite (N)	2017/12/08	0.40		%	25
5302247	NRG	Matrix Spike	Nitrite (N)	2017/12/07		100	%	80 - 120
5302247	NRG	Spiked Blank	Nitrite (N)	2017/12/07		103	%	80 - 120
5302247	NRG	Method Blank	Nitrite (N)	2017/12/07	ND, RDL=0.010		mg/L	
5302247	NRG	RPD	Nitrite (N)	2017/12/07	0.83		%	25
5303626	ARS	Matrix Spike [FRD269-05]	Total Mercury (Hg)	2017/12/08		102	%	80 - 120
5303626	ARS	Spiked Blank	Total Mercury (Hg)	2017/12/08		101	%	80 - 120
5303626	ARS	Method Blank	Total Mercury (Hg)	2017/12/08	ND, RDL=0.013		ug/L	
5303626	ARS	RPD	Total Mercury (Hg)	2017/12/08	NC		%	20
5303681	AM6	QC Standard	Total Suspended Solids	2017/12/08		95	%	80 - 120
5303681	AM6	Method Blank	Total Suspended Solids	2017/12/08	ND, RDL=1.0		mg/L	
5303681	AM6	RPD	Total Suspended Solids	2017/12/08	17		%	25
5309052	LMP	Matrix Spike	Total Organic Carbon (C)	2017/12/11		97	%	80 - 120
5309052	LMP	Spiked Blank	Total Organic Carbon (C)	2017/12/11		101	%	80 - 120
5309052	LMP	Method Blank	Total Organic Carbon (C)	2017/12/11	ND, RDL=0.50		mg/L	

Dillon Consulting Limited Client Project #: 13-8348-6000 Site Location: HWY 107 EA Sampler Initials: PKA

QA/QC									
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits	
5309052	LMP	RPD	Total Organic Carbon (C)	2017/12/11	5.8		%	20	
N/A = No	t Applic	able							
Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.									
Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.									
QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.									
Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.									
Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.									
Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.									
NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)									
NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).									
(1) Low I	evel lat	o contamination.	Minimal impact on sample data quality.						
(2) Eleva	ited rep	orting limit due	to sample matrix.						

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Herri D. Mac Donald

Kevin MacDonald, Inorganics Supervisor

- Mike The Gillie

Mike MacGillivray, Scientific Specialist (Inorganics)

Kosimarie MacDonald

Rosemarie MacDonald, Scientific Specialist (Organics)

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.