APPENDIX K Sound Monitoring

May 3, 2013

Mr. Judd Rogers juwi Wind, LLC 4845 Pearl East Circle, Suite 200 Boulder, CO 80301 USA

Dear Mr. Rogers,

Re: Existing Sound Levels, Chebucto Pockwock Community Wind Project, Pockwock, NS

INTRODUCTION

Strum Consulting was retained by juwi Wind to complete pre-construction sound monitoring at the proposed Chebucto Pockwock Community Wind Project (the Project) near Hammonds Plains, NS.

Results indicate that the average sound levels over the sampling period were 38.7 and 43.3 dBA at the monitoring locations.

This report provides a brief understanding of the scope, methodology and findings of the assessment.

BACKGROUND

The Project consists of a 10 MW wind power development in Pockwock, approximately 10.5 km northwest of Bedford, Nova Scotia. This sound assessment was completed to establish preconstruction sound levels at two locations near the Project site (the monitoring locations), in advance of post-construction monitoring.

MONITORING LOCATIONS

Monitoring locations were selected near the Project site boundaries, in areas that were close to actual receptors (Drawing 1, attached). Efforts were also made to locate the monitoring equipment in open locations where sound attenuation from vegetation and topography would be minimal. Table 1 provides basic information for each monitoring location.

Engineering • Surveying • Environmental

<u>Head Office</u> Railside, 1355 Bedford Hwy. Bedford, NS B4A 1C5 t. 902.835.5560 (24/7) f. 902.835.5574 Antigonish Office 3-A Vincent's Way Antigonish, NS B2G 2X3 t. 902.863.1465 f. 902.863.1389 Deer Lake Office 101 Nicholsville Road Deer Lake, NL A8A 1V5 t. 855.770.5560 f. 902.835.5574

www.strum.com info@strum.com

Table 1. Monitoring Locations

Monitoring	Location Relative to	Location Relative to	GPS Location	
Location ID	Project Site	Nearest Receptor	UTM Easting	UTM Northing
Pockwock	In the northwestern	0.42 km northeast of the	432510 m	4958128 m
Northwest	corner of the Project	nearest receptor		
	site			
Pockwock	In the southeastern	0.45 km east of the	435550 m	4956309 m
Southeast	corner of the Project	nearest receptor		
	site			

METHODOLOGY

The assessment was completed using Casella CEL-490 real time noise monitor with data logging capability. At each location, the monitor was kept in a locked weatherproof case, with the microphone supported by tripods at a height of 1.5 m above the ground. The microphone was mounted inside an acoustically transparent weather resistant cage, designed to minimize the effects of environmental noise interferences such as wind and rain.

Each noise monitor was deployed from November 1 to November 5, 2012. Care was taken to locate the equipment in areas where sources of noise contamination (i.e. a stream) would be minimized.

Each data logger was configured to collect:

- A Weighting Frequencies (frequency range);
- Slow (S) Time Weighting (response); and
- A sample frequency of 1 minute (sample frequency).

The frequency range for the data runs was 0-140 dB and the loggers were calibrated at 114.0 dB at 1 kHz. Each measurement represents the attenuated sound pressure levels collected over 1 minute. These readings were logged every minute over the sampling period at each monitoring location. The data was analyzed to determine a number of parameters, including daytime, evening, and night sound levels. Descriptions of all parameters are attached.

The data are representative of the acoustical environment at the receptor locations during the monitoring periods including all natural and anthropogenic sources of sound, such as wind, wildlife, and traffic.

RESULTS AND DISCUSSION

Results of the assessment are summarized in Table 2.

Table 2. Sound Level Assessment Results

Monitoring Location ID / Parameter (Measured in dBA)	Pockwock Northwest	Pockwock Southeast
LAS _{eq}	38.7	43.3
LAS _D	41.3	38.6
LAS _E	31.0	36.7
LAS _N	28.3	37.6
LAS _{mx}	78.7	80.3
LAS _{mn}	24.2	27.9
LAS ₉₅	25.0	32.0

Average Sound Levels (LASeq)

In both locations, the average sound levels (LAS_{eq}) observed were typical of rural / sub-urban environments. The higher level (43.3 dBA) observed at the Pockwock southeast location can likely be attributed to this location's position relative to a number of noise sources, including residential dwellings and power lines.

Daytime vs. Evening vs. Nighttime Sound Levels (LAS_D, LAS_E, LAS_N)

The average daytime sound levels (LAS_D) were higher than the average sound levels during the evening (LAS_E) and night (LAS_N) at both monitoring locations, which is typical for sub-urban environments.

Minimum and Maximum Sound Levels (LAS_{mn} and LAS_{mx})

The minimum sound level (LAS_{mn}) observed at each monitoring location occurred several days apart. At the Pockwock northeast location, the minimum sound level was observed at 5:19 am on November 5th, 2012; the minimum sound levels observed at the Pockwock southeast location occurred at 10:17 pm on November 2nd, 2012. It is most likely that these minimums occurred at times when sound levels from sources such as wind and traffic noise were low.

The maximum sound level (LAS_{mx}) observed at both monitoring locations occurred at approximately the same time on the afternoon of November 2, 2012. The most likely phenomenon that would explain the almost simultaneous sound level peaks observed at both these monitoring locations is a wind storm passing through the Project site area.

Background Sound Levels (LAS₉₅)

The LAS₉₅ represents the sound level threshold that is exceeded 95% of the time. This measurement is an indicator of background sound levels that are always present. There is a fairly substantial difference between the LAS₉₅ values calculated at each monitoring location (25.0 dBA for Pockwock northwest vs. 32.0 dBA for Pockwock southeast). This difference is likely the result of the Pockwock southeast monitoring location's proximity to anthropogenic sources of noise. This location was near power lines (observed to be omitting a constant hum) and it was close to a large residential sub-division.

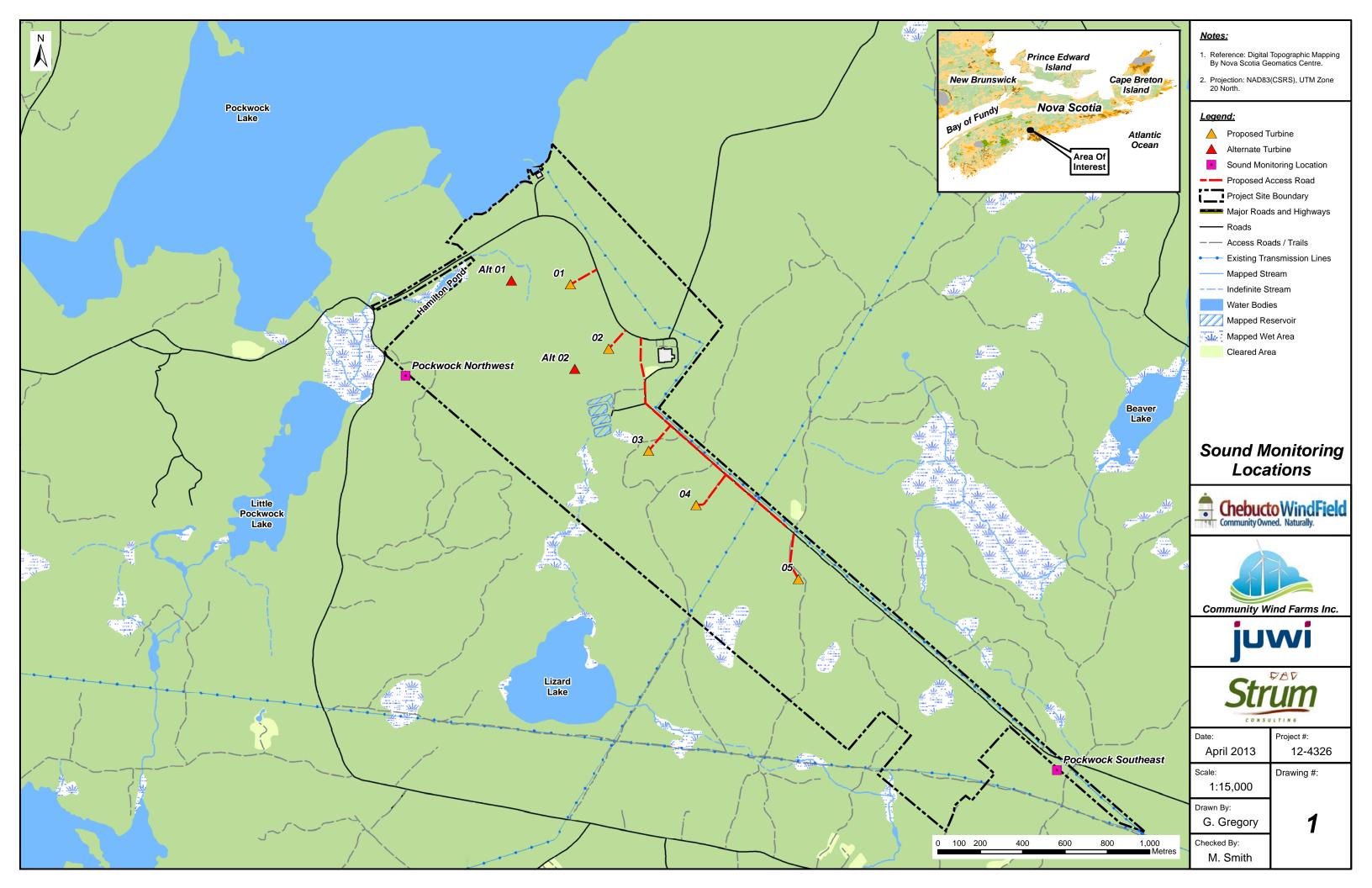
Predicted Sound Level Exposure vs. Observed Baseline Sound Levels

Predictive sound modeling was completed for the Project as part of the Environmental Assessment (EA). Average existing sound levels recorded at the two monitoring locations exceed the predicted

Project sound levels for all residential receptors within 2 km of a proposed turbine. These results indicate that the sound of the turbines will be largely masked by the existing sound levels in the area.

SUMMARY

Sound monitoring was completed at two locations to establish pre-construction sound levels near the perimeter of the Project site. Average sound levels were recorded at 38.7 and 43.3 dBA, which are typical for a rural / sub-urban area. Results indicate that noise from anthropogenic sources have a fairly significant influence on the acoustic environment of the area. Furthermore, the average existing sound levels recorded exceed all predicted sound levels at nearby residential receptors, indicating that the sound of the turbines will be largely masked by the existing sound levels present in the area.


If you have any questions, please contact us.

Thank you,

Scott Dickey, MREM Environmental Specialist sdickey@strum.com

Shawn Duncan, BSc Vice President <u>sduncan@strum.com</u>

- **The LAS**_{eq} This is the average noise level that contains the same amount of sound energy as the actual fluctuating sound level during the sample period. This represents the average sound level over the duration of the sampling period.
- The LAS_D This is the LA_{eq} of the daytime sound levels between the hours of 07:00 and 19:00. This represents the average sound level during the day over the sampling period.
- **The LAS**_E This is the LA_{eq} of the evening sound levels between the hours of 19:00 and 23:00. This represents the average sound level during the evening over the sampling period.
- **The LAS**_N This is the LA_{eq} of the nighttime sound levels between the hours of 23:00 and 07:00. This represents the average sound level during the night over the sampling period.
- **The LAS**_{mx} This represents the highest 'slow' time weighted sound pressure level expressed in decibels. This represents the highest sound level attenuated over 1 second recorded during the sampling period.
- **The LAS**_{mn} This represents the lowest 'slow' time weighted sound pressure level expressed in decibels. This represents the lowest sound level attenuated over 1 second recorded during the sampling period.
- **The LTM**₅ This is a time average value calculated every 5 seconds that takes the highest level occurring during the preceding five seconds and assumes that it was present for the whole of the 5 second interval. Comparing the LTM₅ with the LA_{eq} gives an objective measure of how erratic the sound level was throughout the sampling period.
- **The LAS**₉₅ This is the sound level in decibels that is exceeded 95% of the time. This parameter is an objective measurement of the average background sound level measured throughout the sampling period.

Project # 12-4326

			Predicted Sour
Receptor ID	Easting (m)	<u>Northing (m)</u>	Levels (dBA)
R1	433009	4956069	31.9
R2	434476	4955840	31.8
R3	433738	4955983	32.9
R4	433699	4955933	32.5
R5	433852	4956082	33.7
R6	434206	4956264	35.3
R7	433840	4955959	32.8
R8	433518	4955975	32.5
R9	434464	4955843	31.8
R10	434018	4955750	31.5
R11	433681	4955998	32.9
R12	433617	4956022	32.9
R13	432902	4956089	31.8
R14	432881	4956151	32
R15	433004	4956115	32.2
R16	433563	4955964	32.5
R17	435047	4955538	28.9
R18	434429	4955474	29.6
R19	433663	4955780	31.5
R20	432289	4957759	36.9
R21	434490	4955861	31.9
R22	433944	4955839	32.1
R23	433754	4955760	31.4
R24	433542	4956068	33.1
R25	435030	4955516	28.8
R26	432462	4956232	31.1
R27	432696	4956237	31.9
R28	433833	4955836	32
R29	432203	4957735	36.2
R30	434117	4955934	32.7
R31	434760	4955739	30.6
R32	435068	4955658	29.4
R33	434561	4955831	31.6
R34	432462	4956167	30.8
R35	432852	4956090	31.6
R36	433830	4955982	32.9
R37	433769	4955971	32.8
R38	432754	4956156	31.7
R39	433477	4956052	32.9
R40	433860	4955888	32.3
R41	434459	4955466	29.6
R41	435367	4955466	29.0
		4955640	30.8
R43	434212		
R44	432561	4956275	31.6
R45	434341	4955845	32
R46	434465	4955827	31.7
R47	434014	4955939	32.8
R48	433866	4956009	33.2
R49	432973	4956074	31.9
R50	432677	4956383	32.6

			Predicted Soun
<u>Receptor ID</u>	Easting (m)	<u>Northing (m)</u>	Levels (dBA)
R51	432899	4956144	32
R52	435233	4955461	28.1
R53	432888	4956173	32.2
R54	434425	4955774	31.4
R55	433692	4955810	31.7
R56	434354	4955863	32.1
R57	434246	4955817	31.9
R58	432825	4956078	31.5
R59	433117	4955763	30.6
R60	434163	4955836	32.1
R61	433625	4955938	32.4
R62	434497	4955821	31.6
R63	433326	4955926	31.8
R64	435211	4955636	28.9
R65	435323	4955484	27.9
R66	432902	4956127	31.9
R67	432415	4956231	31
R68	435152	4955638	29.1
R69	434565	4955787	31.3
R70	434831	4955716	30.3
R71	434238	4955357	29.2
R72	435221	4955536	28.4
R72	433871	4955867	32.2
R74	435386	4955507	27.9
R75	434394	4955841	31.9
R76	433529	4956092	33.2
R77	434153	4955284	28.8
R78	432739	4955264	31.7
	434696		
R79		4955751	<u> </u>
R80	432581	4956192	
R81	433726	4955992	32.9
R82	433962	4955966	32.9
R83	435141	4956097	31.4
R84	433874	4955907	32.5
R85	434718	4955792	31
R86	434000	4955877	32.3
R87	432646	4956192	31.5
R88	433695	4955982	32.8
R89	434287	4955912	32.5
R90	434421	4955829	31.8
R91	432889	4956038	31.5
R92	432123	4957029	33.1
R93	432447	4956174	30.8
R94	433834	4955880	32.3
R95	432667	4956090	31.1
R96	434615	4955660	30.4
R97	434826	4955701	30.2
R98	433810	4955908	32.4
R99	435220	4955440	28
R100	432994	4956054	31.8

			Predicted Sound
Receptor ID	Easting (m)	<u>Northing (m)</u>	<u>Levels (dBA)</u>
R101	435086	4955623	29.2
R102	435220	4955553	28.5
R103	432117	4956784	32.1
R104	433850	4955906	32.5
R105	435079	4955655	29.4
R106	433969	4955880	32.3
R107	432648	4956229	31.7
R108	432098	4956786	32
R109	434407	4955852	32
R110	432678	4956401	32.7
R111	433777	4955988	32.9
R112	433977	4955860	32.2
R113	433055	4955703	30.1
R114	434099	4955860	32.2
R115	434154	4955256	28.7
R116	435413	4955500	27.7
R117	433739	4955754	31.4
R118	433623	4956003	32.8
R119	433825	4955851	32.1
R120	435127	4955615	29
R121	432365	4958309	39.3
R122	432832	4956046	31.3
R123	432531	4956160	31
R124	432842	4956156	31.9
R125	432532	4956243	31.4
R126	433320	4955913	31.8
R127	433781	4955927	32.5
R128	433340	4955920	31.8
R129	432529	4956229	31.3
R130	433841	4955831	32
R131	435087	4955604	29.1
R132	432204	4957781	36.3
R133	434258	4955931	32.7
R134	434700	4955771	30.9
R135	432548	4956251	31.5
R136	432878	4956169	32.1
R137	433837	4955996	33
R138	432609	4956386	32.3
R139	434959	4955494	28.9
R140	434970	4955470	28.7
R141	434992	4955481	28.7
R142	435036	4955504	28.7
R142	434930	4955657	29.8
R144	433902	4955983	33
R145	434339	4955710	31.1
R146	434625	4955769	31.1
R147	434555	4955716	30.9
R147	434309	4955508	29.9
R149	433550	4955940	32.3
R150	432333	4956280	30.9

<u>Receptor ID</u>	<u>Easting (m)</u>	<u>Northing (m)</u>	Predicted Sound Levels (dBA)
R151	432463	4957578	37.4
R152	432229	4957452	35.3
R153	432139	4957701	35.6
R154	435407	4955492	27.7
R155	435426	4955514	27.8
R156	435231	4955673	29

APPENDIX L COMMUNITY ENGAGEMENT Extensive consultation for the Project has been ongoing with HRM, the Upper Hammonds Plains Community Development Association (UHPCDA), local residents and local Mi'kmaq communities. A summary of the consultation process and a description of the forums used for public consultation for the Project are provided in Sections 11.0 and 13.0 of the EA Registration Document.

Issues and concerns raised by the public and other stakeholders throughout the consultation process can be grouped into five broad categories which have been assessed throughout the EA. Concerns include:

- Potential effects from sound generated by wind turbines;
- Potential effects on property values on lands near the Project site;
- Potential effects to the visual landscape around the Project site;
- Potential effects to birds and other wildlife from the construction and operation of wind turbines; and
- Concerns regarding public health and safety.

<u>Sound</u>

Residents living near the Project site expressed concerns over the potential for noise during construction and decommissioning phases of the Project, as well as annoyance from noise generated by turbine blades during operation.

Ambient sound monitoring was carried out to determine existing ambient sound levels near the Project site. Sound modeling was also completed to ensure that sound levels generated by operating turbines at all non-participating residential receptors will comply with the NSE standard of 40 dBA (exterior of the residence).

Additional details regarding sound assessment methodology and results are provided in Section 12.4 of the Environmental Registration Document. Infrasound is considered in the Human Health Literature Review provided in Appendix C.

Property Values

Potential effects on property values has been identified as a potential concern of neighboring residents. A review was completed on available literature related to the effect of wind farms on surrounding property values and a discussion is provided in Section 9.2 of the Environmental Registration Document.

Visual Landscape

Potential effects to the visual landscape (i.e. visibility of turbines) surrounding the Project site was modeled using the WindPRO version 2.8 software package to provide the public with an indication of turbine visibility. In addition, photos taken from locations near the Project site were used to create simulated images of the view plane for public viewing. Additional details and results of the visual assessment for the Project are provided in Section 12.3 of the EA Registration Document.

Birds and Wildlife

The public has raised concerns about mortality of birds and bats resulting from collisions with wind turbines. Sensory disturbance, as well as habitat loss for birds, bats and other forms of wildlife are also common concerns.

Extensive desktop and field studies have been completed to assess birds, bats and other wildlife and associated habitats at or near the Project site. Extensive consultation has been ongoing with NSDNR and CWS to ensure due diligence is practiced with regards to wildlife. The Proponent has committed to ongoing monitoring as requested by these agencies.

Details on wildlife methodology and results for fish, terrestrial fauna, birds, and bats are provided in Sections 8.3, 8.6, 8.8 and 8.8 of the EA Registration Document, respectively.

Public Health and Safety

The public is often concerned about the potential for effects to health and safety from wind turbines. In addition to sound levels, common concerns include infrasound, shadow flicker and the risk of ice throw.

A shadow flicker assessment was completed for the proposed Project to assess the potential impact on surrounding shadow receptors and to ensure compliance with industry-standard guidelines. Additional details and results from the shadow flicker assessment are provided in Section 12.2 of the EA Registration Document.

A literature review regarding additional potential for effects to health and from wind turbines was also completed. The main findings of this review are provided in Appendix C.

Project Benefits

- **Provincial Energy Independence** This project will be one of many steps to fulfill Nova Scotia's goal of 40% renewable sources by 2020.
- Local Electricity Generation Nearly all the electricity generated by the project will be consumed locally with minimal upgrades to the existing electrical grid infrastructure.
- Making the Local Price of Electricity More Stable – All the electricity will be produced at a fixed price for the next 20 years and when combined with other wind projects, will reduce future increases in the price of electricity.

NVESTING

- Local Community Education Once constructed, the project will fund The Pockwock Community Renewable Education Program. This program will be managed by a local committee and provide an annual scholarship for members of the local community who want to expand their education in an undergraduate or postgraduate field related to renewable energy or sustainability.
- Local Community Investment and Economic **Development** – Nova Scotia based companies will provide project development services such as environmental consulting, longterm management, construction, and website development.

Chebucto Pockwock Community Wind is a proposed wind energy generation facility located on Halifax Regional Water Authority land, approximately 25 km northwest of Halifax, Nova Scotia. The project is proposed under Nova Scotia Department of Energy's Community Feed-In-Tariff program. Project development will occur over the next few years, and will require a full Environmental Assessment to ensure that the project is developed in a manner fitting of the biological and cultural surroundings. Once constructed, the project will likely consist of three to four wind turbines capable of generating approximately 8 megawatts of energy. This is enough energy to power more than 2,400 Nova Scotia homes with stable, local, renewable energy.

Chebucto Wind Field Inc. (Chebucto) is the proponent of this project under the Community Feed-In Tariff (COMFIT) program that was introduced by the Nova Scotia Department of Energy. Chebucto's mandate is to raise capital through the sale of shares to Nova Scotians and to invest that money in renewable energy projects in the province. Chebucto currently has more than 150 shareholders who reside in HRM. Chebucto will ensure that you will have an opportunity to invest in this project.

Community Wind Farms is the local project developer and will be responsible for all day to day development, community relations, and permitting work associated with the project. Community Wind Farms is working with municipalities, First Nations, community groups and landowners across Nova Scotia to develop a portfolio of wind farms under the Community Feed-In Tariff (COMFIT) program introduced by the Nova Scotia Department

juwi Wind Canada's role will be to lead technical aspects of wind project development, to fund early development activities, and to be the lead arranger in project financing and construction. The juwi Group has an extensive track record of completing community based projects with local investment opportunities, as well as turnkey projects for local municipalities and co-operatives.

Your Input is Important to Us

Your comments and feedback on the proposed wind project are important to us. For additional information please visit the project website www.chebuctopockwockwindfarm.ca or email us at info@pockwockwindfarm.ca

- Baseline studies are ongoing to determine and mitigate any effects of the project on the environment and local interests.
- Public consultation is an integral part of this process.
- Provincial and federal government stakeholders will also have an opportunity to review the Environmental Assessment and provide comments.

Baseline studies will include:

- Birds, Bats and General Wildlife
- Plants and Wetlands
- Watercourses and Fish Habitat
- Groundwater and Geology
- Sound and Shadow Flicker
- Visual Aesthetics
- Cultural and Heritage Resources
- Socio-economic Conditions
- Mi'kmaq Ecological Knowledge Study

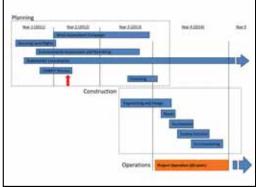


Fig. 2 - Project Timeline

Wind Farm Viewscape

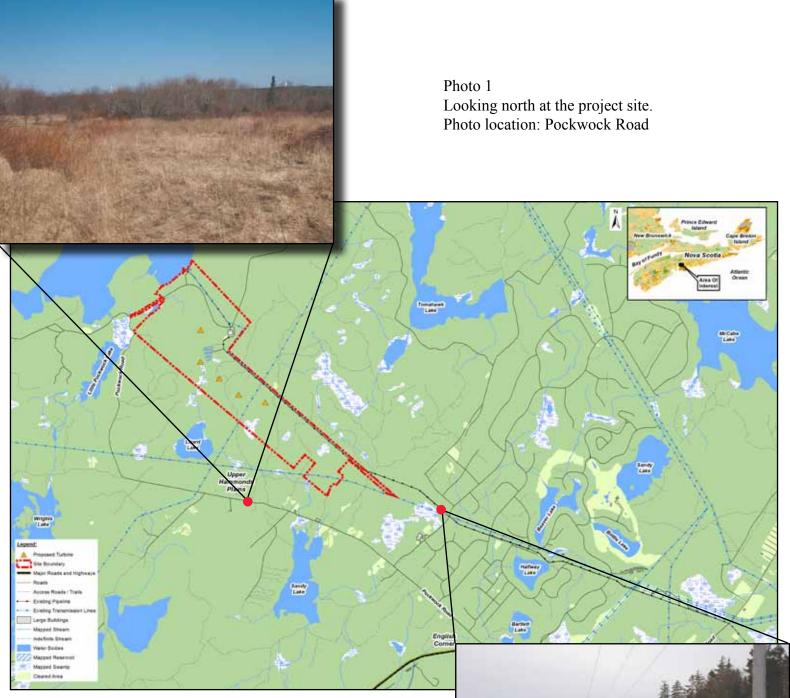


Photo 2 Looking northwest at the project site. Photo location: Northwest of where White Hills Run meets the power line right of way.

- You can stand below a wind turbine and carry on a normal conversation.
- Wind turbines have an aerodynamic blade design and sound-proofed generator enclosures.
- A sound analysis is currently in progress for the project using guidelines developed by the Ontario Ministry of the Environment. Results will be presented in the Environmental Assessment Registration Document.
- All turbines for the project will be located a minimum of **1200 m** from any residence or unidentified building.

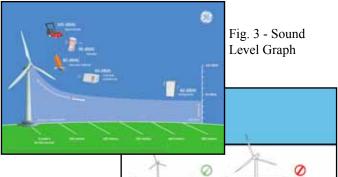
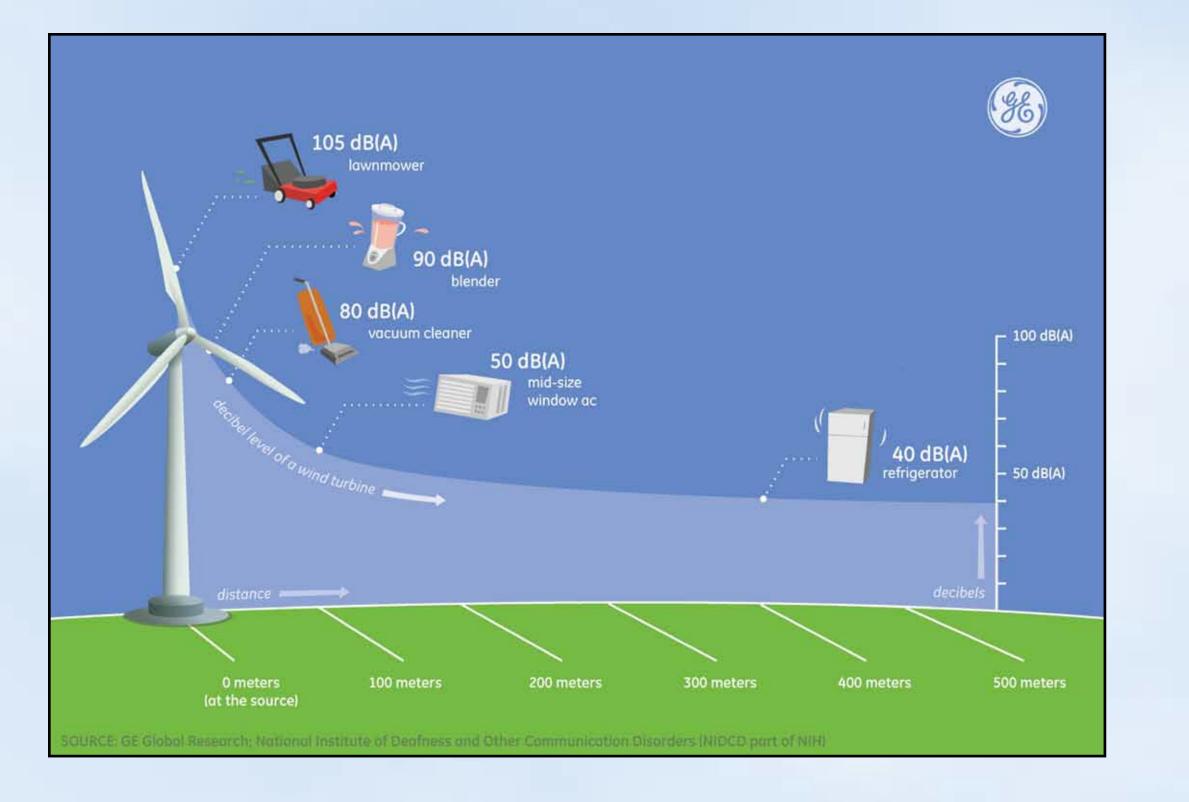
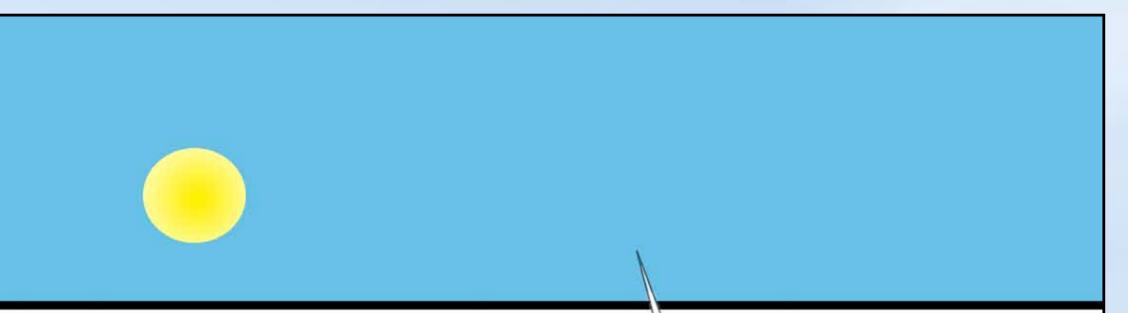



Fig. 4 - Shadow Flicker Schematic

- ow tic
- Shadow flicker occurs when rotating wind turbine blades cast shadows upon stationary objects.
- Shadow flicker only appears during very specific conditions:
 - The sun is shining and there is no cloud cover, fog, etc.
 - Windows of the residence have to directly face the wind turbine.
 - No obstructions (trees, hills, other structures) are in sight.
 - Turbine blades directly face toward or away from the sun.
- A shadow flicker analysis is currently in progress for the project. Results will be presented in the Environmental Assessment Registration Document.


Pockwock Community Wind Local Economic Development, Part of a Global Solution. Facts About Sound and Shadow Flicker Wind Turbine Sound Levels are Low ... Shadows are Not Taken Lightly ...

- Shadow flicker occurs when rotating wind turbine blades cast shadows upon stationary objects.
- Shadow flicker only appears during very specific conditions:

- You can stand below a wind turbine and carry on a normal conversation.
- Wind turbines have an aerodynamic blade design and sound-proofed generator enclosures.
- A sound analysis is currently in progress for the project using guidelines developed by the Ontario Ministry of the Environment. Results will be presented in the Environmental Assessment Registration Document.

- The sun is shining and there is no cloud cover, fog, etc.
- Windows of the residence have to directly face the wind turbine.
- No obstructions (trees, hills, other structures) are in sight.
- Turbine blades directly face toward or away from the sun.

• All turbines for the project will be located a minimum of **1200 m** from any residence or unidentified building.

Typical Sound Pressure Levels

Sourco	Distance fr	Sound Pressure		
Source	feet	meters	Levels in dB (A)	
Freight Train	100	30	70	
Freeway	100	30	70	
Wind in Trees	40	12	55	
Light Traffic	100	30	70	
Average Home			50	
Soft Whisper	5	2	30	
Quiet Bedroom			20	

• A shadow flicker analysis is currently in progress for the project. Results will be presented in the Environmental Assessment Registration Document.

Source: AWEA 2011

POCKWOCK COMMUNITY WIND Local Economic Development, Part of a Global Solution.

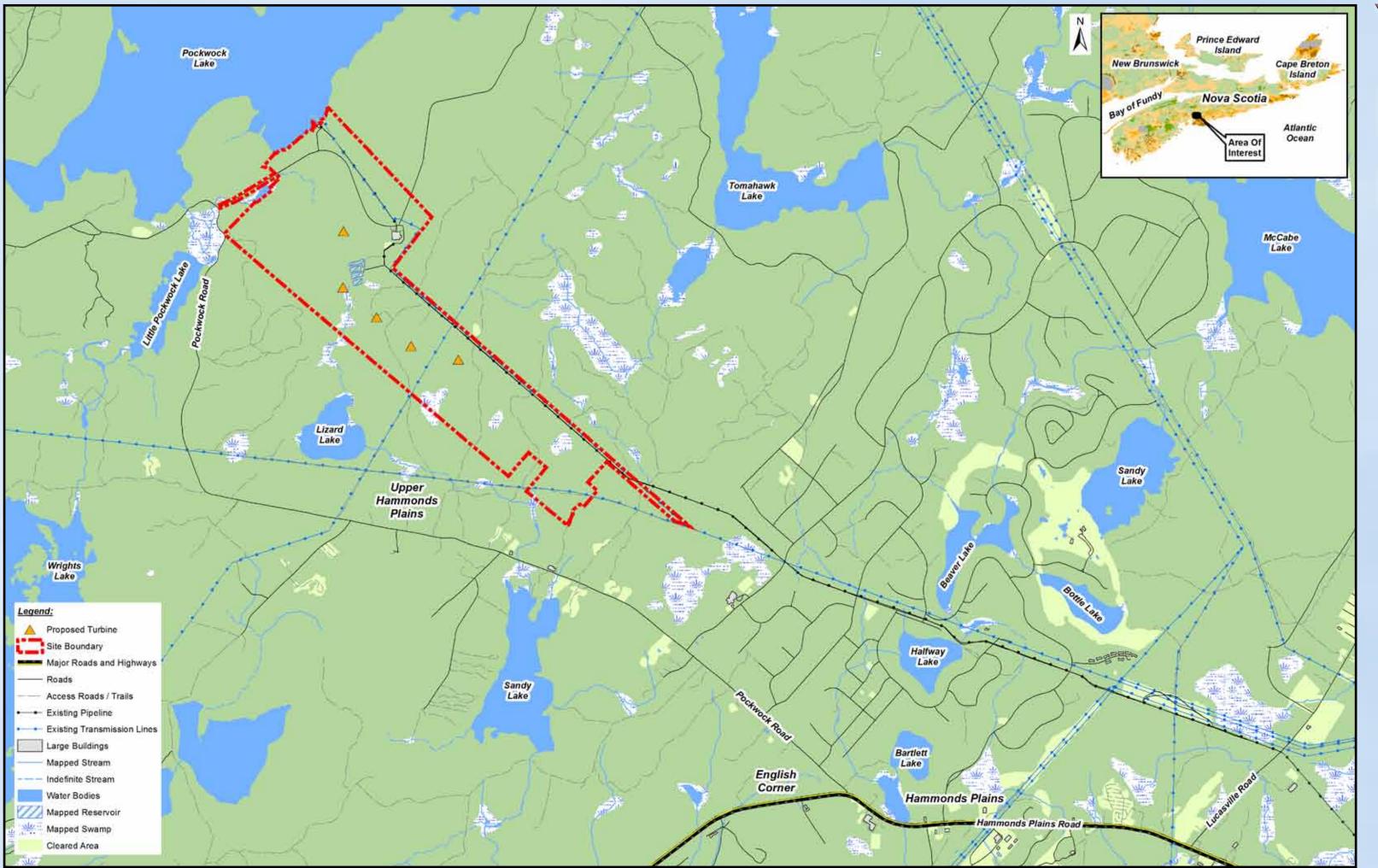
PROJECT BENEFITS

Investing in Local Communities

•Local Community Education – Once constructed, the project will fund The Pockwock Community Renewable Education Program. This program will be managed by a local committee and provide an annual scholarship for members of the local community who want to expand their education in an undergraduate or postgraduate field related to renewable energy or sustainability.

THE FUTURE IS Green

- Provincial Energy Independence This project will be one of many steps to fulfill Nova Scotia's goal of 40% renewable sources by 2020.
- •Local Electricity Generation Nearly all the electricity generated by the project will be consumed locally with minimal upgrades to the existing electrical grid infrastructure.
- Making the Local Price of Electricity More Stable – All the electricity will be produced at a fixed price for the next 20 years and when



combined with other wind projects, will reduce future increases in the price of electricity.

•LocalCommunityInvestment and Economic Development – Nova Scotia based companies will provide project development services such as environmental consulting, longterm management, construction, and website development.

Your Input is **IMPORTANT TO** Us

Your comments and feedback on the proposed wind project are important to us. Please ask questions

and be sure to pick up a handout before you leave.

MEET YOUR TEAM

Chebucto Wind Field Inc. (Chebucto) is the proponent of this project under the Community Feed-In Tariff (COMFIT) program that was introduced by the Nova Scotia Department

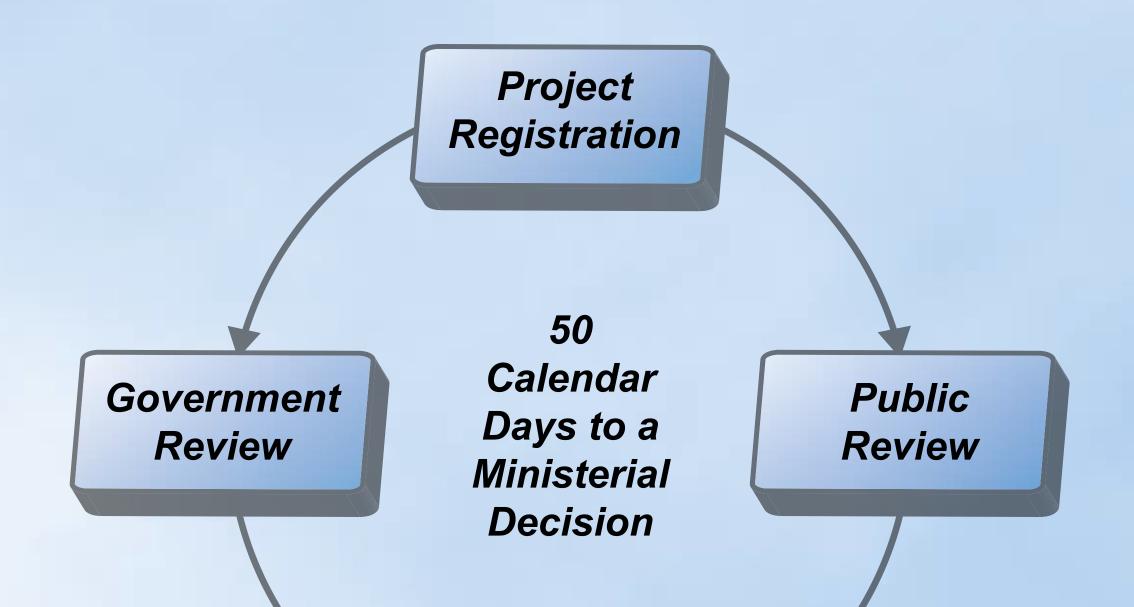
of Energy. Chebucto's mandate is to raise capital through the sale of shares to Nova Scotians and to invest that money in renewable energy projects in the province. Chebucto currently has more than 150 shareholders who reside in HRM. Chebucto will ensure that you will have an opportunity to invest in this project.

Community Wind Farms Inc.

Community Wind Farms is the local project development contractor and will be responsible for all day to day development, community relations, and permitting work associated with the project. Community Wind Farms is working with municipalities, First Nations and landowners across Nova Scotia to develop a portfolio of wind farms under the COMFIT program.

juwi Wind Canada's role will be to lead technical aspects of wind project development, to fund early development activities, and to be the lead arranger in project financing and construction. The juwi Group has an extensive track record of completing community based projects with local investment opportunities, as well as turnkey projects for local municipalities and co-operatives.

Questions? Please contact: info@pockwockwindfarm.ca


... THANK YOU FOR COMING!

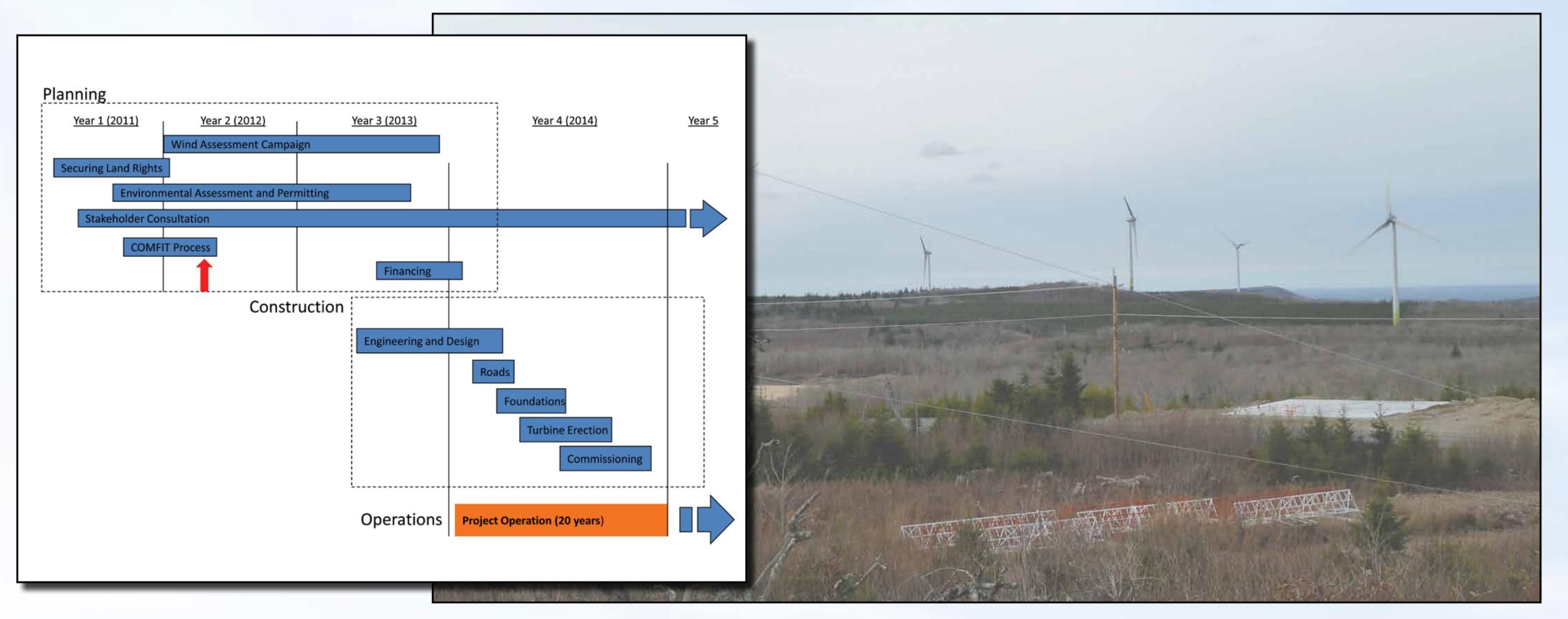
POCKWOCK COMMUNITY WIND -Local Economic Development, Part of a Global Solution.

Assessment and Development

Environmental Assessment

- •Baseline studies are ongoing to determine and mitigate any effects of the project on the environment and local interests.
- •Public consultation is an integral part of this process.

•Provincial and federal government stakeholders will also have an opportunity to review the Environmental Assessment and provide comments.



BASELINE STUDIES:

- •Birds, Bats and General Wildlife
- •Plants and Wetlands
- •Watercourses and Fish Habitat
- Groundwater and Geology
- •Sound and Shadow Flicker
- •Visual Aesthetics
- •Cultural and Heritage Resources
- Socio-economic Conditions

•Mi'kmaq Ecological Knowledge Study

DEVELOPMENT PROCESS:

POCKWOCK COMMUNITY WIND -Local Economic Development, Part of a Global Solution. WIND FARM VIEWSCAPE

Presents Guest Speaker Dr. Lukas Swan, PEng VVInd Energy 101 Open to the public

April 4th – 7:00pm Upper Hammonds Plains Community Center 711 Pockwock Rd - Hammonds Plains – Nova Scotia B4B 1N8

Topics to include:

- energy and how we use it
- Nova Scotia's renewable energy policy
- wind energy technology
- wind energy benefits and impacts
- placement & permitting

ChebuctoPockwock COMMUNITY WIND

May 15th, 6:00 to 9:00 pm at Upper Hammonds Plains Community Centre, 711 Pockwock Road, Hammonds Plains

Simulated view of wind farm from Pockwock Road

