Appendices GHD | Beaver Dam Mine Project Environmental Impact Statement Marinette Nova Scotia | 088664 (4)

Appendix E Hydrogeological Reports

LIBRARY COPY

SEABRIGHT RESOURCES INC.

HYDROGEOLOGICAL INVESTIGATION BEAVER DAM MINE

PROJECT NO. M1289

Jacques, Whitford and Associates Limited

1046 Rarrington Street Halifax Nova Scotta 83H 281

Tel: (902) 423 6325 Telex: 019-21746 Site Investigations. Blasting Control. Maleriats, Mining. Hydrugeningy. Earthworks, Coundations. Earthonneptal Syoney, N.S. Charlottetown, P.E.L. Saint John, N.B. Fredericton, N.B. Bathural, N.B. Moncton, N.B. St. John's, Nfin.

> July 30, 1986 Project No. M1289

Seabright Resources Inc. Suite 301, 6100 Young Street Halifax, Nova Scotia

Attention: Mr. P. Keohane, P. Eng.

Dear Sir:

Re: Hydrogeological Study Report - Beaver Dam Mine

Please find enclosed four copies of the above report. This report outlines the results of three separate hydrogeologic studies at the Beaver Dam site:

- * Packer Injection Study
- * Austin Shaft Dewatering Program
- ° Groundwater Exploration Program

Please contact either myself or Suther A. Yuill, P.Eng. at this office should you have any questions regarding the enclosed.

Sincerely yours,

JACQUES, WHITFORD/& ASSOCIATES LTD.

David S. MacFarlane, M.Sc.

DSM/sd

PROJECT NO. M1289

HYDROGEOLOGICAL INVESTIGATION

PREPARED FOR

SEABRIGHT RESOURCES INC.
BEAVER DAM MINE
HALIFAX COUNTY, N.S.

 $\mathbf{B}\mathbf{Y}$

JACQUES, WHITFORD & ASSOCIATES LTD.

Halifax, Nova Scotia

July 22, 1986

TABLE OF CONTENTS

	•	Page No
1.0	INTRODUCTION	1-1
	1.1 Purpose	1-1
	1.2 Location	1-1
	1.3 Report Organization	1-1
ı	1.4 Previous Studies	1-2
2.0	PACKER TESTING PROGRAM	2-1
	2.1 Purpose	2-1
	2.2 Method	2-2
	2.3 Discussion of Results	2-3
	2.4 Calculation of Mine Inflow	2-5
	2.5 Summary	2-5
3,.0	AUSTIN SHAFT DEWATERING PROGRAM	3-1
	3.1 Purpose	3-1
	3.2 Method	3-2
	3.3 Discussion of Results	3-3
	3.4 Summary	3-8
4.0	GROUNDWATER SUPPLY EXPLORATION PROGRAM	4-1
	4.1 Purpose	4-1
	4.2 Method	4-1
	4.3 Pump Test Evaluation	4-3
	4.4 Summary	4-4
5.0	CONCLUSIONS	5-1
6.0	RECOMMENDATIONS	6-1
APPE	NDIX 1: Regional Hydrogeology NDIX 2: Pumping Test Data, Austin Shaft NDIX 3: Sieve Analysis Results	

Test Pit Records

LIST OF FIGURES

- Figure 1.1 General Site Location
- Figure 1.2 Site Plan
- Figure 2.1 Typical Geological Cross-Section (0 + 75W)
 Illustrating the Location of Packer Injection
 Zones
- Figure 3.1 Distribution of Major Ions Water Quality Samples
- Figure 4.1 Seismic Profile Line 2 + 00 W

LIST OF TABLES

- Table 2.1 Packer Testing Intervals
- Table 2.2 Hydraulic Conductivities
- Table 2.3 Inflow Rates
- Table 3.1 Austin Shaft Pumping Test # 1 Water Quality Data, June 18-19, 1986
- Table 3.2 Austin Shaft Pumping Test # 2 Water Quality Data, July 8-12, 1986
- Table 3.3 Field Chemistry Data, Austin Shaft Dewatering Test
- Table 3.4 Water Quality Analysis for Groundwater Samples, Beaver Dam Mine, 1986
- Table 3.5 Hydraulic Head Monitored at Selected Diamond
 Drill Holes During the Austin Shaft Dewatering
 Program
- Table 3.6 Caribou Gold Mine, August 26, 1983 Water Quality Analysis

1.0 INTRODUCTION

1.1 Purpose

At the request of Seabright Resource Inc., Jacques, Whitford and Associates Limited has undertaken a series of field studies at the site of the proposed Beaver Dam Gold Mine. The primary purpose of the work was to obtain site-specific hydrogeologic information sufficient to provide a preliminary prediction of groundwater inflows and mine water quality prior to the construction of the new mine portal. Secondary objectives were to evaluate the feasibility of developing groundwater resources for both mine process and potable uses.

1.2 Location

The Beaver Dam gold mine is located approximately 80 km northeast of the City of Halifax, 55 km southeast of Truro, and 70 km from the Gays River milling facility (Figure 1.1). Access to the site is via a 6 km Nova Scotia Department of Transportation haulage road (Beaver Dam Road), off of Route 224 which connects the Villages of Sheet Harbour and Upper Musquodoboit (Figure 1.1). Upgrading of the mine access road is currently underway. The mine site is located adjacent to the Killag River which lies within the watershed of the West Branch Sheet Harbour River which has a total drainage area of about 300 km².

1.3 Report Organization

The field investigations were carried out in three phases between May 6, 1986 and July 12, 1986. Section 2.0 outlines the results of a packer injection program conducted on selected exploration boreholes for the Beaver Dam site. The packer testing program was designed to determine the range of hydraulic conductivity values associated with the various rock types and structures comprising the Beaver Dam ore zones. An estimation of mine inflow rates for sizing of pumps is made based on the range of hydraulic conductivity observed.

Section 3.0 outlines the results of a comprehensive pump test and water quality monitoring program conducted on the existing Austin Mine workings. Analysis of time-drawdown data provide an assessment of the bulk hydraulic properties of the shallow (0-22 m) bedrock zones. The continuous, on-site monitoring of water quality provides on assessment of the expected mine effluent quality from the new mine. Monitoring of water level elevations in diamond drill holes distributed across the proposed mine site was carried out during the shaft dewatering to determine the extent of hydraulic response across the Beaver Dam Mine Site.

outlines a groundwater exploration 4.0conducted on behalf of Seabright Resources Inc. Test pitting was carried out to determine the feasibility of infiltration gallery construction at Crusher Lake, and pipeline construction from Crusher Lake to the mine. One test well was the hydraulic constructed and pump tested to determine till and properties of the glacial overburden. feasibility of dug well water supplies.

Section 5.0 is a summary of the findings of the various studies, and their implications on the proposed new mine.

Section 6.0 includes recommendations for monitoring of groundwater quantity and quality during mine construction.

1.4 Previous Studies

Very little previous information regarding groundwater flows in the Beaver Dam area is available. A discussion of the regional hydrogeology of the area is presented in Jacques, Whitford and Associates Limited (1986) Environmental Assessment of the Beaver Dam Mine Site, and is included in Appendix 1 for reference purposes.

2.0 PACKER TESTING PROGRAM

2.1 Purpose

Due to the remote location of the Beaver Dam mine site, and the lack of any previous hydrogeological evaluation in the mine area, there were some concerns regarding the volumes of groundwater which may be generated by a mine in the area. Of particular concern was the possibility of groundwater inflows to the mine excavation from the major fault zones in the area such as Mud Lake Fault, from thick deposits of saturated sand and gravel overlying portions of the area, and from existing mine workings such as the Austin Shaft.

The flow of water into the proposed Beaver Dam Mine workings will be dependant on the degree of secondary permeability of the quartzite bedrock. Groundwater transmission in crystalline bedrock in Nova Scotia is governed by the frequency, orientation and aperture of the fracture joints and faults developed in the bedrock. Two methods of evaluating the hydraulic characteristics of fractured rock are commonly large scale pumping tests, and packer injection Pumping tests provide the best assessment of the bulk hydraulic characteristics of the overall rock mass surrounding a mine site, however, such investigations are generally extremely expensive and time consuming, requiring several deep vertical drilled wells and observation wells to render reliable results. Packer testing can provide a good statistical determination of the range and variation of hydraulic conductivity provided sufficient measurements are made.

At the Beaver Dam Mine site, the presence of more than 90 exploration diamond drill holes at various attitudes, and the resultant good understanding of the structural geology of the area provided by the geologic logs, allowed the design of a packer injection testing program sufficient in scope to evaluate the hydraulic properties of the various structures and rock types associated with the new mine.

Preliminary discussions with Seabright Resources geologic personnel, and examination of diamond drill geologic logs and vertical cross-sections, led to the selection of 16 diamond drill holes that should yield good, representative packer test results. The criteria used to choose the holes include:

- (i) the holes should be as vertical as possible to minimize possible equipment problems, and to allow closer correlation between measured groundwater levels and acting hydraulic head at each packer test location.
- (ii) the holes should intersect the primary zones of interest, i.e. the Mud Lake Fault Zone; the ore zone, both deep and shallow; the axis of the Beaverdam anticline; and representative zones of the three main rock types, grey-wacke, argillite and quartzite.

2.2 Method

Field work was carried out during the period of June 5 to June 15, 1986. Of the sixteen holes chosen, packer tests were carried out in nine holes. Five holes were found to be blocked at various depths and no tests were done. In total, 56 packer tests were performed over a period of 8 days.

The packer test equipment consisted of two, one metre-long inflatable packers, connected by a 4.5 m perforated pipe. A small diameter line connected the packers to a source of nitrogen gas at the surface, which was used to inflate the packers and seal the zone between them. The perforated pipe was connected to a high pressure hose line which also ran to the surface. The hose line was connected, through a flow meter and pressure gauge, to a pump. The entire packer apparatus was raised and lowered by a wireline winch system.

The wireline cable was marked in order to determine testing depths. The hose line underwent a certain amount of stretching and thus, would not have been reliable for depth measurements. All hose line connections were pressure tested to ensure that leakage was not taking place. The use of the high pressure hose resulted in superior packer testing results; than would have been the case with the usual E-Rod methods.

The following testing procedure was employed: The packer apparatus was lowered to the required testing depth, and a nitrogen pressure of 300 psi was applied to the packer. After a short wait of approximately 2 minutes, to ensure that the packers had inflated and there were no leaks in the nitrogen line, the pump was started, and water was allowed to flow into the packered zone, at an initial pressure of 25 psi above hydraulic head at that point. This pressure was maintained and the amount of flow recorded every minute until a steady state condition was reached. The water pressure was then sequentially increased to 50 psi and 90 psi, and similar measurements were taken at those pressures. On completion of the testing, the nitrogen pressure was released. packers had deflated, the apparatus could be located at the next testing depth. The wireline-winch packer apparatus devised for this study provided an efficient cost-effective method of testing inclined boreholes.

The tested intervals for each hole are listed on Table 2.1. Hydraulic conductivities (K) were calculated at each pressure level, and the geometric means of the results at each testing interval are given in Table 2.2. Geometric means are considered most appropriate for log-normally distributed hydraulic conductivity data. Figure 2.1 illustrates a typical cross-section through the Beaver Dam Anticline in the vicinity of the portal area and also shows the distribution of packered zones.

2.3 Discussion of Results

Hydraulic conductivities ranged from 1.0 x 10^{-6} m/sec to 3.7 x 10^{-10} m/sec, with an overall geometric mean of 2.7 x 10^{-8} m/sec. The three different rock types had the following geometric mean hydraulic conductivities: argillite, 8.2 x 10^{-9} m/sec; greywacke, 4.8 x 10^{-8} m/sec.; quartzite, 2.0 x 10^{-7} m/sec. Tests conducted in the Mud Lake Fault Zone indicated a mean K of 2.3 x 10^{-8} m/sec. The mean hydraulic conductivity along the Beaver Dam Anticlinal axis was 9.1 x 10^{-7} m/sec.

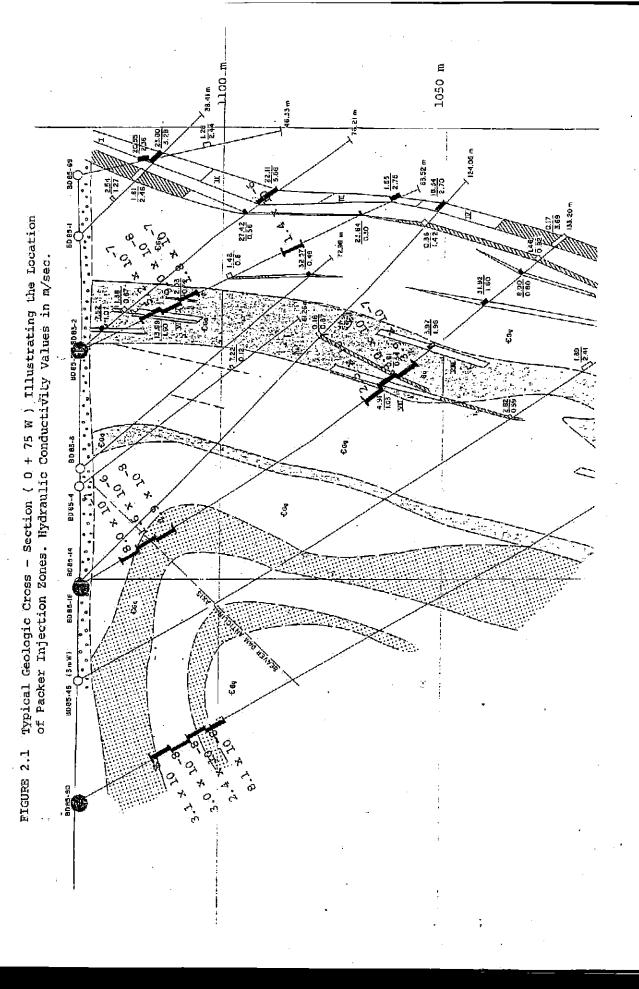


TABLE 2.1: PACKER TESTING INTERVALS

HO 10	Tested Interval	Diamond Drill Hole	Tested inverval	Diamond Drill	Tested interval
85-5	15.2 - 19.8	85-29	7.7 = 18 =		;
	19,8 - 24,4	}	24. 1 . 20. 7	1 () () () () () () () () () (ا 0 م
Shallow Ore	24,4 - 29.0	Shallow Anticilne	33.5 -	p = = = = = = = = = = = = = = = = = = =	40° 0 - 73° 5
	54.9 hc	Deap Ore	39.6		5 - 76
	blocked below 55m	J	102,1 -106,7 . 106,7 -111,3	Mineralized	8 5.
85-7	15,2 ~ 19,8			60.15	ç
	19.8 - 24.4	85 -43	19.8 - 24.4	3 3	***** 0 % C
	24.4 - 29.0		1	Shallov Brokes	0.62 4.42
Faulted Zone	56.4 - 61.0	Anticline	1		יי של היי היי היי היי היי היי היי היי היי הי
	65.5 - 70.1		51.8 - 55.4		
	88_4 - 93_0		ı		
			67.1 - 71,6		
85-13	1		117.3 -121.9		
	1	,	121,9 -126,5		
	81,7 - 86,3		126,5 -131,1		
Deep Ore Zone	t		ī		
	90.2 - 94.8		135,6 -140,2		
	94,5 - 99,1		140.2 -144.B		-
	98,8 -103,4				
		85-82	15,2 - 19,8		,
85-16	10,6 - 15,2		· · · · · · · · · · · · · · · · · · ·		
	2	Shallow Fault	24.4 - 29.0		
Portal Area	1 80	•	30,5 - 35,1		
	76,2 - 80,8		41.1 - 45.7		
	1 89	,	7 - 50_3* ho!	Ф	-
	85,3 - 89,9		52	Ē	

TABLE 2.2: HYDRAULIC CONDUCTIVITIES

Diamond Drill Hole	Depth (m)	K (π/sec)	H. O. O	Depth (m)	κ (m/sec)	D.O.H.	Depth (mm)	K (m/sec)
8.5	15.2 - 19.8	5.2×10^{-7}	85-29	13,7 - 18,3	4.7 × 10 ⁻⁷	85-83	39.6 - 44.2	1.5 × 10 ⁻⁸
	19.8 - 24.4	9.0×10^{-8}		24.1 - 28.7	9.9 × 10 ⁻⁸		48.3 - 53.3	1_0 × 10_8
	ı	1.8×10^{-7}		33,5 - 38,1	9.4×10^{-7}		57.9 - 62.5	1.2 × 10 ⁻⁹
	50,3 - 54,9	1.4×10^{-5}		39,6 - 44,2	9.0 × 10-8		71,6 - 76,2	7.1×10^{-9}
				102,1 -106,7	4.9 × 10 ⁻⁸		80.8 - 85.3	2.7×10^{-8}
85-7	15,2 - 19,8	4.7 × 10 ⁻⁸		106.7 -111.3	1.6 × 10 ⁻⁸			
	19.8 - 24.4	1,1 × 10-8				85-90	19.8 - 24.4	3.1×10^{-8}
	24,4 - 29,0	8,4 × 10 ⁻⁷	85-43	19.8 - 24.4	8,3 × 10 ⁹	٠	24.4 - 29.0	3.0 × 10-8
	56,4 - 61,0	2.0×10^{-9}		24,4 - 29,0	2.6×10^{-8}		29,0 - 33,5	2.4×10^{-8}
	65,5 - 70,1	5.4×10^{-7}		47,2 - 51,8	1.0×10^{-6}		33,5 - 38.1	8.1 × 10-8
	88,4 - 93,0	3.0 × 10-8		51,8 - 56,4	2.3×10^{-7}			
				62,5 - 67,1	2.7×10^{-9}			
	21.6 - 26.2	2.0×10^{-8}		67,1 - 71,6	3.4×10^{-9}			٠
	25,9 - 30,5	2.4×10^{-8}		117,3 -121,9	6-01 × 0°1			
	81,7 - 86,3	5.8 × 10-8		121,9 -126,5	7,6 × 10 ⁻¹⁰			
	86.0 - 90.6	4, 1 × 10-8		126.5 -131.1	2.6×10^{-9}			-
	90,2 - 94,8	2.8×10^{-8}		131, 1 -135, 6	1.6 × 10-9			
	94,5 - 99,1	2.5×10^{-8}		135,6 -140,2	$5,5 \times 10^{-10}$			
		4.3×10^{-8}		140.2 -144.8	3.7×10^{-10}		•	
		i e			·			
85-16	10.6 - 15.2	8.0 × 10-7	85-82	15,2 - 19,8	3.6 × 10 ⁻⁸			
	15,2 - 19,8	1.6 × 10 ⁻⁶		19,8 - 24,4	1,1 × 10 ⁻⁶			
	19, 8 - 24, 4	4.9×10^{-8}		24.4 - 29.6	1.9 × 10 ⁻⁶			
	76, 2 - 80, 8	2.5×10^{-7}		30,5 - 35,1	8.0×10^{-7}			
	80,8 - 85,3	3.0×10^{-7}		41,1 - 45,7	6.1×10^{-7}			
	85, 3 - 89, 9	3,9 × 10 ⁻⁷		45.7 - 50.3	4.6 × 10 ⁻⁷			

TABLE 2.3: INFLOW RATES

		Hydraulic	
	Tunnel Length	Conductivity	inflow Rate
eve	(m)	(m/sec)	(l/s (igpml)
\$			
1125	615	5.0 × 10 ⁻⁷	4.9 (65.0)
1100	590	1.0×10^{-7}	0.9 [12,5]
1075	595	1.0×10^{-8}	0.1 [1.5]
1050	555	5.0 × 10-8	0.4 [6.0]
		TOTAL	6,3 [85,0]

The testing program has demonstrated that, with the exception of shallow bedrock zones and the anticline axis, the bedrock at Beaver Dam Mine is considered to be relatively tight. This likely accounts for the poor water well yields reported for the Guysborough county area southeast of the site. Hydraulic conductivity generally decrease with depth, as would be expected, and tends to be lower in the mineralized argillite and quartzite zones then in the quartzite host The higher bedrock permeabilities associated with the axis (range 1.1 $x 10^{-6}$ m/s to 4.7 the increased fracturing associated with deformation in the core of the overturned anticline fold. Hydraulic conductivity can be expected to be higher on the southern limb where bedding is more or less vertical.

Testing has shown that the hydraulic conductivity of the Mud Lake Fault zone is relatively low (mean 2 x 10^{-8} m/s) ranging from 1.1 x 10^{-6} m/s near ground surface at borehole 85-82 to 1.2 x 10^{-9} m/s) at 60 m depth at borehole 85-83. This is likely due to the presence of clay-like gouge materials which would tend to fill fractures and block groundwater flow. The Seabright Resources Geologist's log's describe the material as highly brecciated, very broken quartzite containing black graphite gouge material with poor core recoveries. The boreholes, as a result, were often unstable and tended to deform or cave in the fault areas. Several of the holes originally selected for packer testing (62, 5, 82) were found to be blocked at various depths.

It is concluded from the above, that the Mud Lake Fault zone will not likely be a major source of groundwater inflow to the mine. It should be noted, however, that the fault zones are saturated, and could be very unstable and would require special consideration should mining penetrate such rock materials.

The ore zones tend to exhibit the lowest values of hydraulic conductivity (geometric mean 1.5 x 10^{-8} m/s, range 5 x 10^{-7} m/s to 3.7 x 10^{-10} m/s). This is likely due to the presence of abundant quartzite veins and mineralized fill material in the rock fractures. Permeability appears to

decrease with depth (K 10^{-10} m/s, borehole 85-43, 85-16). This suggests that the mine zones should be relatively "dry", with the majority of groundwater inflows occurring at shallower levels and via major joints in the bedrock.

Borehole 85-16 is located on the baseline at 0 + 75 m west, and penetrates the shallow bedrock zone where the mine portal will be constructed. Bedrock permeability inferred from the packer testing (Table 2) ranges from 1.6 x 10^{-6} m for a fractured quarzite zone about 13 to 14 meters in depth, to 5.0 x 10^{-10} m/s, averaging 3.5 x 10^{-7} m/s upper 78 m of bedrock at the portal location. This suggests that no large groundwater flow would be expected from bedrock in the immediate area of the portal. The most likely source inflow-would-be from the overlying glacial tills (estimated K = 2×10^{-5} m/s from pump test of test hole # 1) and possibly from an old mine shaft found during portal preparation work approximately 50 meters to the north. shaft was pumped out by Seabright personnel to a depth of 4.6 m (5.5 m to bottom) and exhibited a very slow recovery, confirming the above predictions. The dewatering of Austin Shaft 100 m to the east, (Section 3.0) with an estimated k of $9 imes 10^{-7}$ m/s exhurted a low flow rate in the order of 3L/S (40 igpm).

2.4 Calculation of Mine Inflow

In order to calculate the quantity of water inflow that might be expected into the mine workings, several assumptions were made. It was assumed that the hydraulic gradient at every point was equal to one. This is the worst case, and in practice the gradient will likely be somewhat less than one, especially after long time period when dewatering of the overlying rock mass has been achieved.

Actual gradients, however, could not be determined with the existing inclined borehole setups. It was also assumed that seepage would be occurring through all faces of the tunnels, (i.e. roof, floor and walls). Although it is acknowledged that most flow will be via individual fractures, the scale of

the mine is large enough that sufficient fracture interconnectivity should occur to result in a hydraulic continuity around the mined area.

Plans of initial workings at four levels, 1125, 1100, 1075 and 1050 were measured to estimate exposed tunnel surface areas, assuming 4 m square tunnels. The average hydraulic conductivities at each level were used. Table 3 gives the measured tunnel lengths, hydraulic conductivities used, and calculated inflow rates.

The total calculated inflow into the tunnels at four levels, 6.3 1/s (85 igpm), may be affected by ore seam workings, fractures not encountered in the packer testing program and fluctuations in groundwater levels, but the calculated value should be representative of average conditions.

A projected mine inflow rate in the order of 100 igpm is considered reasonable for this area. Pump testing of the existing Austin Shaft supports this conclusion with an average inflow of 40 igpm at the 22 m level. Mine discharge rates of 50 igpm and 230 igpm were estimated for the Lake and Holman shafts respectively at nearby Caribou mine (NSDOE Files). During initial portal construction, flow rates may reach or exceed this projection due to inflow from the shallow overburden aquifer or surface water, but rates should decline once the incline portal has been stabilized. During mining, it is possible to encounter sudden groundwater flows from individual fractures, however, such flows should be short term as the fracture is dewatered.

2.5 Summary

A total of 56 determinations of bedrock permeability from 9 inclined exploration boreholes represent the range of hydraulic conductivity variation expected for the various rock types and structures associated with the Beaver Dam Mine. Bedrock hydraulic conductivity averaged 3 x 10^{-8} m/s for the site, ranging from 1 x 10^{-6} m/s to 4 x 10^{-10} m/s. The highest values were found to be associated with the anticline axis and the lowest values were

associated with the deep ore zones. The Mud Lake Fault zone was found to have a low K, and the portal area was also found to be relatively tight.

In conclusion, no anomalous water-bearing fracture zones were detected by this packer program. For the exploration portal, an estimated mine inflow rate in the order of 6.3~L/S (85 igpm) is calculated. Full scale mining should be less than 15 L/S (200 ipgm). Dewatering testing conducted on the nearby Austin Shaft suport these predictions.

Pump sizing should therefore be capable of handling both the inflow water and process water used for drilling (est. 3-8 L/S (50 igpm). Some recycling of process water may be feasible within the mine.

3.0 AUSTIN SHAFT PUMP TEST AND GEOCHEMICAL EVALUATION

3.1 Purpose

A comprehensive geochemical monitoring program was conducted concurrent with a dewatering test of the existing Austin Mine workings located approximately 150 meters east of the proposed new mine portal. The primary purpose of the dewatering program was to provide additional site-specific hydrogeologic and groundwater quality information for the prediction and assessment of mine pumping requirements and effluent chemical quality for the new gold mine. The specific objectives of the study were to:

- ° Assess the bulk hydraulic properties of the shallow bedrock zone (0 22 m depth) as an aid in predicting mine inflow for the new mine.
- Evaluate water quality characteristics during pumping of the workings, with particular attention to geochemical variations during drawdown.
- o To determine the degree of fracture continuity across the Beaver Dam mine site by monitoring drawdown response in available diamond drill holes during pumping of Austin Shaft.

A secondary purpose, was to allow Seabright geologists an opportunity to examine the old workings.

3.2 Method

A high capacity, 40 hp submersible turbine pump was installed to a depth of 22 m in the Austin Mine shaft by R. Hopper Well Drilling Limited. Discharge was controlled by an orifice plate and discharge water was directed to a waste rock pile adjacent to a large swamp area. Drawdown was monitored with an electric tape in a drop tube strapped to the pump riser pipe. A valve and flow-through cell were connected to the discharge pipe to facilitate water quality monitoring and sample collection.

Pumping began on June 18, 1986 at 1330 hours at a discharge \mathbf{of} 500 igpm. Drawdown, рh, dissolved temperature and electrical conductance were monitored for a total of 16 hours until drawdown reached the top of the pump bowls (20.5 m). Pumping was terminated at 0535 hours June 19, 1986 and recovery was monitored for 7 hours. was again turned on, for approximately 1.5 hours until water level again reached the top of the pump. The mine was then allowed to recover for a period of two weeks.

Because the initial pump could only dewater the mine to within 1.5 meters of the bottom, a second 30 hp centrifugal pump was acquired and installed in the well on July 8, 1986. The larger submersible pump was started on July 8, 1986 at 1350 hours at a pumping rate of 480 ipgm. The pump was shut down for 6 hours to observe recovery trends, and then Drawdown and water quality were monitored in a restarted. similar manner to test #1. When the large pump broke suction on July 9, 1986 at 1440 hours at 20.8 m after a total of 14 hours of pumping, the smaller centrifugal pump was started at a rate of 166 igpm until it broke suction at 1130 hours, July 10, 1986 at about 21.6 m depth. The initial 10 minutes of pumping after start-up of the second pump produced slightly turbid water due to pump turbulance, however, this quickly shifted to a colorless, orderless discharge throughout the remainder of the test.

Pumping rate dropped to approximately 38 igpm and remained stable for the final 7 hours of the test. A steady-state flow rate of 38 igpm was measured for the Austin shaft at 21.6 m of depth. Time drawdown data and plots are presented in Appendix 2.

During the mine dewatering, continuous monitoring of water quality was maintained, and selected samples were sent to the Environmental chemistry laboratory for analysis of metals and major ions. Field monitoring of ph, temperature, dissolved oxygen and electrical conductance were performed in a flow-through cell specially devised for this project. This device prevented the rapid degassing of the mine water and prevented contact with the atmosphere, resulting in more

reliable measurement of these sensitive parameters. Samples subjected to metal analysis were field preserved with nitric acid in test # 1, and unpreserved in test #2.

Appendix 2 contains drawdown and recovery data time-drawdown plots for the two pump tests. The results of laboratory analysis and field analysis of water quality for the two pumping tests are presented on Tables 3.1 to 3.3. summary of available groundwater quality data for the Beaver Dam site is presented on Table 3.4. The orientation of Austin Shaft and diamond drill holes monitored during the test are shown on Figure 1.2.

3.3 Discussion of Results

Time drawdown data for the two dewatering tests were very similar (Appendix 1). At a pumping rate of 480 to 500 igpm, average drawdown of 192 cm/hr (1.5 inches/min) was observed until water level reached the top of the drift where drawdown decreased to approximately 13 cm/hr as the workings were dewatered. In test #2, when the centrigugal pump was in operation at a rate of 167 iggm, drawdown continued from 20.8 m to suction break at approximately 21.8 m at a rate of about 5 cm/hr, accelerating over the last 0.3 m due to depressiondewatering around the pump. In both tests, the Austin shaft exhibited a consistant recovery rate of 2.5 cm/hr (1"/hr) within the workings, accelerating to about 5 cm/hr within the It took approximately 2 weeks for full recovery to occur after test #1. The faster drawdown rate exhibited during pump test #2 may be due to a combination of distancedewatering effects (incomplete recovery), low permeability of the bedrock, lack of rainfall, and lower mean static water level (1.2 cm lower than the June 18 test).

When drawdown reached the bottom of the pump at 21.8 m below shaft collar, the discharge decreased to a steady-state pumping rate of 3 L/S (38 igpm) throughout the final 7 hours of testing. The discharge remained clear, and no evidence of excessive turbidity was observed. Minutes prior to the drop in discharge rate, increasing amounts of clean bark chips and

wood debris were observed in the flow-through cell, which signalled that drawdown was approaching the intake screen. The water remained clear and odor-free over the last few hours of pumping.

An empirical estimate of mine water volume 2273 m³ (0.5 MIG) was made based on the assumption of 2300 m³ (625,000 imp gal) water pumped and 3 L/S (40 igpm) mine inflow rate. Assuming a 40 igpm steady state flow rate, a bulk apparent transmissivity of 18.7 m³/d/m (1253 igpd/ft) is estimated assuming a tunnel length of 425 m (from mapping supplied by Seabright Inc.) and an average drift size of 2 m square. This suggests a hydraulic conductivity in the order of 9 x 10^{-5} cm/s, for the upper 22 m of bedrock in this area.

The Austin Shaft, containing approximately 2300 m³ of water, exhibits a steady shaft pumping rate of 3 L/S (38 igpm). This value is lower than estimates of steady state discharge rates reported from the nearby Caribou Gold Mine (NSDOE, 1983). The Holman Shaft containing 45,500 m³ of water was pumped at a rate of 17.4 LS (230 igpm) and the Lake Shaft containing 25,000 m³ of water was pumped at 3.8 L/S (50 igpm).

To assess the impact of the Austin Shaft on the proposed portal, and to determine the area affected by the mine dewatering, several of the existing diamond drill holes were monitored periodically during the dewatering operation. Drawdown distribution in various boreholes (Table 3.5). during both tests showed that there is hydraulic continuity over a large area of the mine site. The greatest drawdowns were observed in the area bounded by lines 0 + 25 E and 0 + 75 E, which is underlain by the Austin workings. of greater than 12.2 m (40 ft) were observed at boreholes 52 and 59, which are believed to penetrate the extensions of the Austin workings. Running water could be heard at borehole 52. Several of the boreholes immediately adjacent to the Austin workings (83-71, 85-2, 85-3) were dry to depths greater than 7.6 m. Drawdowns of up to 1 m were observed as far west as BD-85-18, and 85-1 in the vicinity of the proposed portal (0 + 75E). It is possible that some of these inclined boreholes may encounter un-mapped workings

along the Austin Seam (Figure 1.2). The majority of the boreholes west of line 0 + 50E exhibited minor or no water level response during testing. Because all of the observation holes are inclined at attitudes of 45° to 70°, further assessment of bedrock hydraulic properties is not practical.

It is concluded from the above, that there is a fair to moderate degree of fracture continuity along the Austin Seam, and in shallow bedrock surrounding the Austin Shaft. It is likely that due to the existing natural fracture distribution, and due to blasting of new mine workings, that long term dewatering of mined workings will influence other boreholes at distances exceeding 100 m, and the new mine, in time, would likely dewater the Austin Shaft.

Water Quality

Water quality during the pumping tests remained relatively steady (pH 6.8; D.O. 2.2 ppm; conductance 82 mS; temperature 5.3 °C) until drawdown entered the mine workings. When drawdown reached 1.5 meters from the bottom, the dissolved oxygen content began to rise to about 3.0 ppm (test #1) and 5.0 ppm (test #2) due to uptake of When drawdown broke suction at oxygen in the mine shaft. 21.8 m depth, the dissolved oxygen increased dramatically due This was accompanied by a to aeration at the pump intake. rise in pH as degassing of dissovled CO2 gas occurred. laboratory experiment conducted on a preseved water sample exhibited a similar rise in pH from 6.51 to 7.3 after 2 days This suggests that mine effluent of exposure to the air. waters should be of neutral pH and that mine waters are likely saturated with respect to calcite derived from the bedrock.

Throughout the pumping there was continual increase in major ions, TDS (43 to 83 ppm), hardness (28-45 mg/L), pH (6.4-7.4) alkalinity (24-56 mg/L, silica (5.2-9.5 mg/L), suspended solids (0.3 - 7.3 mg/l) and metals such as arsenic (0.04 - 0.17 mg/L); iron (0.32 - 2.6 mg/L), manganese (0.3 - 0.38 mg/L), and a drop in concentration of nitrate (0.13 to (0.05 ppm).

Water Samples

- X Austin Shaft May 6/86, t=0
- 1 Austin Shaft June 18/86, t = 1 hr
- 2 Austin Shaft June 18/86, t =16 hr
- 3 Austin Shaft June 19/86, t = 23 hr
- 4 Austin Shaft July 10/86, t =52 hr
- L Crusher Lake June 13/86
- B Borehole 86-47 June 13/86
- Dug Well June 26/86

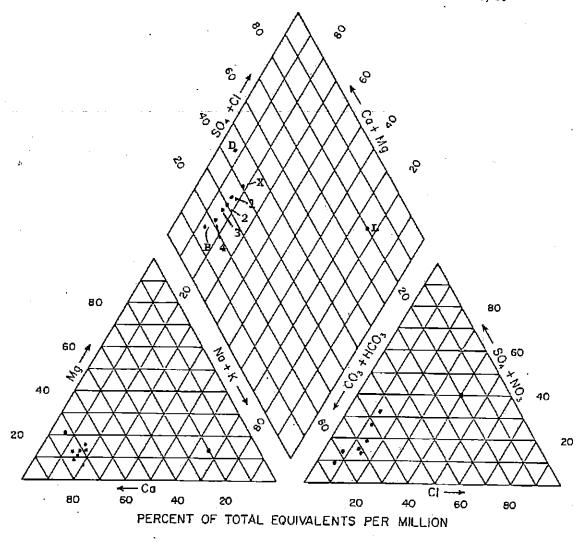


FIGURE 3.1 Distribution of Major Ions, Water Quality Samples Seabright Resources Inc. Beaver Dam Mine, 1986.

It is apparent that, from the unpumped sample bailed from the shaft May 6, 1982, through the two pump tests, the chemistry of the Austin Shaft water is approaching that of natural deep groundwater as exhibited at diamond drill hole 86-47 (Table 3.4). This is illustrated graphically in Figure 3.1 which shows the linear trend in groundwater chemistry towards that of deep groundwater (B). Borehole 86-47 is a flowing artesian well which was pumped several times for drilling water, and is therefore, considered resprentative of the deep bedrock groundwater quality.

Analysis was carried out of heavy metals regulated under the Metal Mining Liquid Effluent Guidelines (EPS, 1978), (Tables 3.1, 3.2). Arsenic concentrations increased steadily with time of pumping, from a background concentration of 0.04 mg/L stabilizing at approximately 0.17 mg/L after 16 hours of continuous pumping. Iron also increased from a background value of 0.32 mg/L (bailed) to 2.6 mg/L near the end of pump Test #2. Concentration of iron and arsenic show a reasonably good degree of correlation in Test #1 (preserved samples), but decrease markedly in Test #2, (unpreserved), likely due to increasing turbidity and aeration during the later stages of the test.

Manganese concentration was observed to increase from a background of 0.03 mg/L (bailed) to 0.13 mg/L at the end of Test #1, and increased throughout Test #2 from 0.23 mg/L to It is possible that the source of the manganese may be from recharge from the overlying Mud Lake Fault bog or Although no obvious leakage was from mineralized zones. observed within the Austin Shaft, the sound of cascading water could be heard at borehole 85-56, which reportedly penetrates the workings. Other boreholes such as 85-52 and 85-50 may transmit surface water to the mine, which lies just Humic acids concentration 15 m (50 ft) below the bog. remained unchanged at 1.8 ppm. Concentrations of the other major metals, lead (<.002 mg/L); copper (<0.01 mg/L), zinc nickel (<.02 mg/L) remained unchanged (0.01 mg/L) and throughout both tests.

Continuous monitoring of pH was carried out in-situ using a flow-through cell which prevented contact between the sample and the atmosphere. During the May 6, 1986 sampling prior to pumping, pH levels wre measured at 6.8 (Table 3.4). During the first pump tests, ph remained essentially stable at 6.7, but rose to about 7.7 at the beginning of pump Test #2. This increase may be due to oxidation and degassing of groundwater in the mine during the recovery of Test #1. Dissolved oxygen levels increased to 3.0 ppm (Test #1) and 5 ppm (Test #2) after periods of recovery. A similar increase in pH from 6.8 to 7.35 was seen near the end of Test #2 under aeration conditions.

It was noted that after a period of recovery within the workings, there was a large drop in pH from 6.8 to 5.1 (Test #1 after 7 hours of recovery) and from 7.7 to 6.8 after a series of pump stoppages in Test #2. This suggests that there may be some oxidation of sulfide mineralization on the walls and floor of the workings as groundwater recharge occurs. The subsequent rise in pH after 2 1/2 weeks of recovery had occurred and dissolved oxygen had depleted, suggests buffering of the mine water by processes as calcite dissolution or sulfate reduction. generation testing conducted on the wasterock from Austin Shaft indicates a mild acid generation capacity (1.2 to 1 ratio). Testing of the non-mineralized quartzite bedrock indicates a significant acid consuming potential (33 to 1 This could account for the observed variation in pH. It is noted that the drop in pH to 5.1 after 23 hours of pumping in Test #1 resulted in a slight decrease in arsenic concentration to 0.14 mg/L. Arsenic solubility is known to increase with increasing pH.

The chemical analysis and monitoring conducted during the Austin Shaft dewatering indicates that the effluent quality from this mine and the proposed portal should fall within the MMLEG (1978) guidelines. The Beaver Dam metal concentrations are well below those monitored during the Caribou Mine dewatering, carried out in 1983 (Table 3.6). It is interesting to note that the concentrations of arsenic, iron, aluminum and manganese exhibited a significant decrease after

passage through a bog area. It is reasonable to conclude that the large bog separating the mine site and Cameron Flowage will afford adequate attenuation of the low levels of metals released from the new mine.

3.4 Summary

A dewatering program conducted on the existing Austin Mine Shaft at Beaver Dam mine has demonstrated that bedrock permeability in the upper 22 m is relatively low in the order of 9.0 x 10^{-7} m/s, resulting in a steady state discharge rate of only 3 litres/sec (40 ipgm) for the Austin workings. An empirically-derived mine volume of $2273 \, \mathrm{m}^3$ (0.5 MIGD) is The shallow bedrock exhibits a fair to moderate fracture interconnectivity, exhibited by measureable borehole hydraulic head response at distances of up to 100 m from the Approximately one meter of drawdown was observed in boreholes adjacent to the proposed new mine portal, which suggests that there will be some minor hydraulic interaction between the two mines at that point. The majority of the new workings would be located further to the west. of the water pumped from Austin Shaft appears to be derived from deep groundwater, rather than surface sources.

Monitoring of discharge water quality suggests that the effluent from the new mine should meet the requirements of the Metal Mining Liquid Effluent Guidelines. The water is described as a soft slightly oxidized (2 ppm D.O.), calcium bicarbonate water, typical of Meguma-Group groundwater in Nova Scotia. Although there is potential for minor acidic drainage in the mine workings, chemical analysis suggests that there is a reasonable degree of buffering capacity in the groundwater (pH 7.3) and the un-mineralized bedrock. Mine effluent pH should be in the range of 6.0 to 7.5, depending on the pumping rate from the mine, and the relative percentage of sulfide mineralized to non-mineralized wall rock.

Suspended solid loads from undisturbed mine sumpage water should also be within the guideline. Should levels exceed the guideline due to drilling and blasting operations, then measures can be implemented to treat the small flow volumes expected at the discharge point.

TABLE 3, 1: AUSTIN SHAFT PUMPING TEST # 1 WATER QUALITY DATA, JUNE 18, 1986

Metals** Arsenic	0, 10 1, 1	0. 10						
Arsenic		0, 10						
			0_14	0, 16	0, 17	0, 17	0, 14	0.15
)ran		0,96	1.5	1.8	1.8	1_4	1,4	0, 15
Manganese	0,06	0,05	0, 07	0.05	0, 09	0,11	0, 12	1, 3 0, 13
Lead	<0.002	< .002	<.002	<.002	<.002	<0.002	<.002	
Copper	<0.01	<.01	<.01	<.01	<.01	<0.002	<.01	<.002 <.01
Zinc	0.01	0.01	0.01	0.01	0.01	0,01	0.01	0.01
Ní cke l	<0.02	<0.02	<.02	<.02	<.02	40.02	<.02	
Sod fum	•	2,8	· •	- 6 072	1,02	3.3	2,3	<.02
Potassium		1.1	·			ا ۱۰	1.0	
Calcium	1	13,0				16.0	10, 0	
Magnesium		1, 3				1,2	10,0	
Hardness		- 37.8				45.0	30.0	
Al kal laity		31_7				50,5	25,4	
Sul fate		7,2				7.0	7.2	
Chloride		3.8				4.6	3.8	
Flouride		-•-				<0.1	20	
Sillcate	r					5.1		
Phosphate						0.01		
Nitrate						0.07		
Ammon la						<0.05		
TDS						57.0		
Susp. Şolidş						6.8		
Colour (TCU)						25.0		'
Turbidity (JTU)						8,9		
Conductance (uS)						85.0		
p∺	ı			•		6,6		
Fleid Parameters								
Dissolved 0 ₂ (ppm)	1.6	1.8	2, 15	2, 20	2, 35	2, 50	3,0	3. 2
pH ~	6,73	6,67	6.74	6.72	6.31	6.81	5.46	6,92
Temp (°C)	5,9	5, 5	5.5	5, 5	5, 2	5.5	5 . B	5.8
Cond (uS)	56.0	55.0	55.0	54.0	59,0	60.0	63,0	62.0
Drawdown (m)	.25	3, 83	10.41	12.74	15. 29	16,74	16,58	16.81

^{* 7} hours of recovery between t = 16 hr. and t = 23 hr.

^{**} metals were field preserved with nitric acid

All parameters in mg/L unless otherwise noted.

TABLE 3.2: AUSTIN SHAFT FUMPING TEST # 2 WATER QUALITY DATA, JULY 8-12, 1986.

Sample No. Time	1 2 hr.	2 22 hr.	3* 25 <u>hr</u> ,	4 44 hr.	5 . 46 հր.	6 49,5 hr.	7 52.5 hr.
11110				7,7 1,1		, , , , , , , , , , , , , , , , , , ,	<u></u>
Metals			-				
Arsenic	,06	.08	, 26	, 11	. [4	. 14	.11
lron	1.1	1.3	8,9	1, 9	2, 6	1.3	2,6
Manganese	.23	_27	.40	. 32	. 35	. 33.	. 38
Lead	<.002	<.002	009	<.002	<_002	<.002	<,002
Copper	<.01	<_01	.02	<,01	<,01	<.01	<.01
Zinc	.01	.01	.02	<,01	<.01	<.01	<.01
Nickel	<.02	<_02	<.02	<,02	< 02	< .02	<.02
Ścd i um							4.4
Potassi um							1.4
Calcium							21.0
Magnesium	•						2.0
Hard ness							60.5
Alkalinity							56.5
Sui fate							9,4
Chloride					•	-	4.4
Flouride							K 11
SII icate							9.5
Phosphate							≺,01
Nitrate	-			-			<.05
Ammon la							<.05
TDS					+		83.0
Sup. Solids							7.3
Colour (TCU)		•					7,5 19.0
Turbidity (JTU)	-						153.1
Conductance (u5)							7.4
pH							1.8
Humic Acid Aluminum					•	•	0.06
Boron							0,02
Barlum							0,007
Beryillum			ı				<0.005
Chromium							<0.01
Cad Lum							<0,01
Cobal†							0,01
Antimony							<0.02
Selenium						. *	<0.10
Tin							<0.03
Van ad Ium							<0.01
<u>Field Parameter</u>						•	
Dissolved 0 ₂	1,59	1.0	_	4,8	15.4**	13.2	13.4
pΗ	7.78	-	6,98	6,78	7,29	7.29	7,20
Temp (°C)	6.7	-	-	6.3	6.3	6.3	6, 3
Cond (us)	81_0	-	-	85.0	0,88	89.0	75,0
Drawd own (m)	9,4	16,9	16,9	17, 82	17,7	17.7	17.7

^{*} Start-up of centrifugal pump caused a short period of turbidity

^{**} Pump breaking suction, t = 45 hr. All parameters in mg/L unless otherwise noted.

TABLE 3.3: FIELD CHEMISTRY DATA, AUSTIN SHAFT DEWATERING TEST

TEST NO. 1, JUNE 18 - 19, 1986

Time	Drawdown	1631	110 ; 1 ;	VOILE 10 - 13	1 1 2 0 0	
(min)	(·m)	Temp_(*C) pH	Cond.(uS)	D.O.(mg/L)	Sample
June 18/86			·			
13:30	0		6.73	54	2.3	
13:35			•			
13:39						
13:45	0.25	5.9 4.6	6.7	. 56	1.60	#1
13:55	0.80	5.5 4.6	6.71	56	1,65	•
14:05	1.52	5.5 4.5	6.72	56	1.75	
14:15	2.69	5.8 4.7	6.72	56	1 - 65	faint H ₂ S odor
14:25	3.29	3,5 4,5	6,70	55	1.75	from other shaft
14:35	. 3,83	5.5 4.5	6.67	55	1 8 0	#2
15:05	5.64	5.9 4.8	6,61	52	2.05	Tu rbid ity increase
15:35	7.72	5.7 4.7	6,59	5 0	2.00	
16:35	9,14	5_5 4.7	6,72	52	2.00	
17:35	1 0. 41	5.5 4.6	6.74	55	2.15	#3
18:35	11.43	5.5 4.4	6.65	50	2.20	
19:35	12.74	5.5 4.2.	6.72	54	2.20	#4
21:35	14,63	5.50 3.8	6.78	59	2.30	
22:35	15.29	5.2 3.6	6.31	59	2.35	<i>#</i> 5
23:35	15.87.	5.1 3.5	5.48	60	2.32	
June 19/86	5					•
00:35	15.97	5.3 3.5		60	1.70	
02:45	16.22	5,5 3,5		6 0	7.40	MS
04:35	16,58	5.3 3.5	6.4-6.	8 * 60	2.40	*Shifting
05:35	16.74	5,5 3.5	6.5-6.		2.50	MS #6
PUMP OFF (SHORT RECOV					
12:52	16.58	5.8 4.0		64	3.35	#7
13:01	16.62	5.8 4.2	5.46	63	3.0	•
13:11	16,65	5.8 4.4	5.95		3.0	
13:21	16.70	5.8 4,4		63	3.0	
13:31	16.72	5.8 4.6		62	3.0	
13:41	16.76	5.8 4.6	6,90	62	3.05	
14:01	16.81	5.8 4.6		62	3.2	#8
14:17	16.86	5.8 4.6	6,92	62	3.0	
		TECT NO	2 · HILV :	<u> </u>	luly 8/86	
July 8/86		IEST NO.	., 3061	- 11, 1200	0017 0700	
14:07		6.9 7.0	7.96	33	1.31	
15:00	7.28	6.9 6.6	7,80	84	1.40	
16:00		6.9 6.7			1.59	#1
17:00	11.08	6.9 6.5		78	1.98	_
18:00	12,45	6.8 6.5		76	2.25	
July 9/86				5 hr, recove		
12:00	16.89			•	•	∦ 2
14:53	16.88	9.2	6,98			#3
July 10/86			•			
09:00	17.66	6.8 6.5	6.78	87	5,5	
1 0: 00	17.62	5.3 6.3		85	4.8	#4
11:00	17.96	5.3 6.3	7.10	88	4.8	
12:00	18.00	5.3 6.3	7.29	88.	15.4	# 5
13:00	18.00	5.3 6.3	7.33	89	1 0, 6	
13:30	18.00	5 6 6 3	7.35	89	12.4	•
15:30	18.00	5.6 6.3		89	13.2	#6
18:30	18.00	5.3 6.3	7.20	75	13.4	#7

TABLE 3.4: Water Quality Analysis for Groundwater Samples, Beaver Dam Mine (1986)

•		-	•				•
			<u>AUSTIN M</u>	INE SHAFT	•		
•	Depth	Мау б∕86	May 5∕86	June 19/86	July 10/86	June 13/86	June/86
	Below	7 metres	17 metres	16 hr.	52 hr	Flowing DDH	Dug Well
	Water	(Balled)	(Bailed)	pümoing#1	pumping#2	86-47	pumped
6.23				7.7			٥.,
Secilum Potentialum	mg∕L ′'	2,1	2.3	3.3	4,4	4.4	2.0
Potassium	mg∕L	0.9	0.8	1.1	1.4	1.3	0,3
Calcium	mg/L	8.3	9.5	16.0	21,0	24.3	21.0
Magnesi un	mg/L	1.0	1.1	1, 2	2,0	2.0	3.5
Hardness (CaCO ₃)	mg/L	25.0	28, 34	45,0	65.0	69,0	67.0
Alkalinity (CaCO ₃)	mg∕L	20.3	23.5	- 30, 5	56.5	69.0	40,7
Sul fate	mg/L	8.0	8.0	7.0	9.4	7.5	22,0
Chloride	mg/L	3, 3	3, 1	4.6	4.4	4.6	6, 4
Fi vor ide	mg/L	<0.1	<0.1	<0,1	<.1	0,2	< <u>-</u> 1
Silica	mg/L	4,8	5, 2	6, 1	9.5	12.0	3.9
Or tho phosphate	mg/L	0,02	<0,01	.01	<.01	.01	<,01
Nitrate + Nitrite	mg/L	0, 18	0, 13	.07	<.05	<.05	0, 12
Ammon i a	mg/L	<0.05	<0.05	<.05	<.05	<.05	<.05
Ansen Ic	mg/L	0.04	0_04	0.12	0, 11	.04	.04
Iran	mg/L	0,3	0,32	1,2	2.6	.50	2,3
Manganese "	mg/L	40,01	0,03	0. 15	0.38	.31	, 25
Lead (HGA)	mg/L	<0.002	<0.002	,003	<,002	<.002	.009
Copper	mg/L	40.01	<0.01	.01	<_01	<.01	.01
Zinc	mg/L	<0.01	<0.01	.02	<.01	<.01	,03
Total Dissolved Sollds	mg∕i.	35,0	43.0	57,0	83 , 0	94,0	84.0
Suspended Solld's	mg/L	<0.3	<0.3	6,8	7.3	0,8	382,0
Color	T.C.U.	5, 0	5,0	25.0	7.5	20,0	12,5
Turb id i ty	J. T. U.	1.5	2,3	8,9	19.0	0.4	87.0
Conductivity (umho/om)	un Ho∕cm	69.0	76.0	85.0	153.0	161.0	149.0
рН	units	6,30	6,40	6,6	7.3	7,4	6,8
Humic Acid	mg/L	2,0	2.0		1.8		
Alum inum	mg/L	<0.05	<0.05		0,06		
Baron	mg/L	√0.0 2	<0.02		0.02		
Barlum	mg/L	<0.005	<0.005		0.007		
Berylllum	mg/L	<0.005	. <0.005		<o,005< td=""><td></td><td></td></o,005<>		
Çhranı ra	mg/L	<0.01	<0,01		<0.01		•
Copal t	mg/L	40.01	<0.01		0, 10		
Nickel	mg/L	<0.02	<0.02	<.02	<.02		
Antimony	ng/L	< 0. 05	<0.05		<0,02		
Selenium	mg/L	<0.1	<0,1		<0.10		
Tin	mg/L	40.03	40.03		<0,03		
Vanadilum	mg/L	<0.01	<0,01		<0.01		
Mercury	ug/L	40.0 5	<0.05		-		
Cadmium-ICP	mg/L	<0.01	<0_01		<0.01		
Field Measurements					. •		
pH	un its	6,77	6.80	6, 81	7,20		
;)			downward drif				
Conductivity	una ho∕enn	47.0	50.0	60.0	75_0		
Temperature	(°C)	5.0	4.2	5,5	6.3		·, ·
Dissolved Oxygen	ppm	2.0	2,0	2.5	13.4		•
€		-	(June 18, 198			•	
Odor	τœ	NONE	NONE	NONE	NONE		

TABLE 3.5: HYDRAULIC HEAD MONITORED AT SELECTED DIAMOND DRILL HOLES DURING THE AUSTIN SHAFT DEWATERING PROGRAM

Beaver Dam Mine Depth in Meters Below Ground Surface

Borehole No.	Test #1	Tes† #2
85~8	0,889	2, 20
85-18	0,31	1, 10
A 85-4	0.52	
85-5	0.749	1.51
85-1	0,711	2, 18
85-64	0.673	1.91
85-67	0,616	1, 32
85-6	0.502	4.81
85-10 .	0.0	
85-13	0,013	·
85-31	1.42	4.25
85-34	2, 55	3,61
85-82	2,74	2.79
85-52	7.67	12.38
85-50	0,940	
85-56	6,22	12.35
85-9	0_254	

TABLE 3.6: CARIBOU GOLD MINE, AUGUST 26, 1983 WATER QUALITY ANALYSIS

·	Discharge	Surface	Bog
Parameter (mg/L)	Pipe	@ Culvert	Агеа
			-
Arsenic	1.3	1.3	_ 25
lron-	3.4	3, 0	. 22
Manganese	1.5	1.5	. 22
Lead	<,002	.002	<.002
Copper	<.01	<.01	<.01
Zinc	0.02	¿01	<.01
TDS	204.0	203.0	179.0
Conductivity(umho/cm)	340.0	340.0	300.0
рН	7,1	7.2	7.5
Aluminum	. 17	. 17	<.05
Boron	<.02	<.02	< .02
[#] Barium	.04	_04	.02
Beryllium	<.005	<.005	<.005
Cadmium	<.002	<.002	<.002
Chromlum	<.01	<.01	<.01
Cobalt	< .01	<.01	<,01
Nickel	<,02	< .02	<.02
An tim on y	<.05	<.05	<.05
Selenium	<. 10	<.10	<.10
Tin	< .03	<.03	<.03
Vanadium	<.01	<.01	<.01

Source: NSDOE Environmental Assessment Records

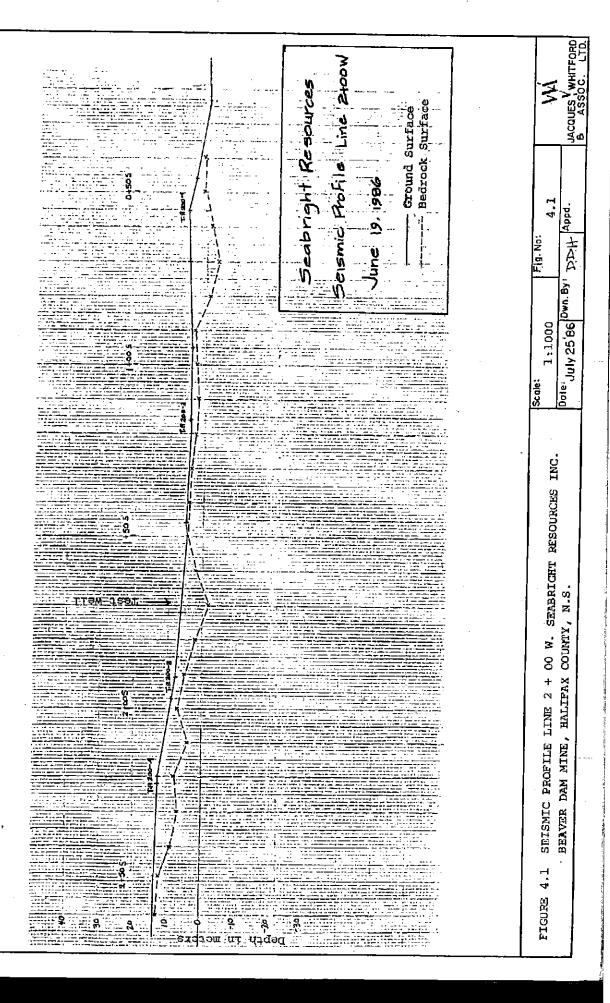
4.0 WATER SUPPLY EXPLORATION PROGRAM

4.1 Purpose

A program of groundwater exploration was carried out by Jacques, Whitford & Associates Ltd. on behalf of Seabright Resources Inc. to evaluate the feasibility of developing a groundwater supply for potable and mine uses. A groundwater source was preferred over a surface water source for a number of reasons, including possible closer proximity to the mine site, thus reducing capital expenditures for piped service; better overall water quality, which would reduce or eliminate water quality treatment requirements; and long term security of supply, since little is known about the hydrology of the available surface water sources. Projected water demand for both potable and mine supply uses was in the order of 3 liters/second, which, with the appropriate storage capacity, would require a well or wells capable of at least 3 L/S (40 igpm) sustained yield.,

4.2 Method

Previous drilling attempts in the area of the temporary construction camp failed to develop a viable bedrock well. A 91 meter test well at the construction camp yielded no water after stimulation by blasting. The low hydraulic conductivity values determined by packer injection testing on selected diamond drill holes (Section 2.0) further suggest a low probability of developing bedrock wells in excess of 0.07 to 0.4 L/S (1 to 5 igpm). An average hydraulic conductivity of 2.7 x 10^{-8} m/s suggests a bulk transmissivity of 0.21 m^2/d (14.3 igpd/ft) for a 91 m (300 ft) drilled well, which would be expected to yield about 0.1 L/S (1.5 igpm). within the range and somewhat lower than values determined for pump testing of wells completed in quartzite bedrock in Halifax County (mean yield 0.2 L/S) and Guysborough County (mean yield 0.23 L/S) (Appendix 1). A further indication of low bedrock transmissivity is the very slow recovery of Austin Shaft after dewatering of 0.6 m/day (see Section 3.0).


Because of the low probability of developing the required 3 L/S from bedrock wells, exploration then focused on the silty sand and gravel glacial till overburden which mantles the Diamond drilling north of the centre line mine site. indicates overburden thickness varying between 1.5 metres to over 22 metres in a bedrock depression developed over Mud Lake Fault, and averaging 3.5 to 4.5 metres in the vicinity of the mine site and portal. Significant volumes of groundwater may be associated with the sand and gravel deposits reported in the Mud Lake Fault Trench, however, this area is designated for future exploration. The flat lying area of site may have some potential for d ug the mine development, but potential for contamination or dewatering due to mine activities is present.

With consideration of the topography, drainage, bedrock structure and available information on overburden thickness, it was reasoned that the best location for dug well exploration may be the base of the slope between the mine site and Crusher Lake. A seismic refraction profile (Figure 4.1) was run normal to the slope at 2 + 00 W adjacent to the waste rock storage area. This profile inferred an undulating bedrock topography and an apparent depth of 5 to 8 m (25 ft). A second possible exploration area was identified near Crusher Lake.

A test pit program was conducted on June 26, 1986 to locate sites for dug wells or lateral screen collectors. Based on the seismic data, Test Pit # 1 was excavated across the apparent bedrock depression from Station 1 + 75 S to 1 + 65 S on line 2 + 00 W. Bedrock was encountered at a depth of 4.9 m, and not the 7.0 m inferred from the seismic profile. Four additional test pits constructed within a 50 m radius of Test Pit # 1 varied in depth from 3.3 m to 4.0 m, with similar stratigraphy.

Four soil samples were collected from Test Pit # 1 for grain size analysis at Jacques, Whitford & Associates Ltd. laboratory (Appendix 3). Overburden is described as a 0.6 m layer of orange-brown silty sand and gravel overlying olive brown sandy gravel with some silt containing angular

quartzite and slate cobbles and boulders up to 1 m in diameter. Boulder content generally increases with proximity to bedrock surface. Soil texture becomes finer with depth in Test Pit # 1 with increasing silt and boulder content. Grain size distribution lies within a fairly uniform range, averaging 61% gravel, 24% sand, 15% silt and less than 1% clay. Test Pit # 1 was subsequently pump tested to evaluate the hydraulic characteristics of the glacial till overburden (Section 4.3).

On July 11, 1986 five additional test pits were constructed in the vicintity of Crusher Lake to evaluate the feasibility of induced infiltration from the lake. Preliminary field reconnaissance identified a series of east-west striking bedrock ridges with intervening depressions containing glacial till and bog-organic deposits. Test Pit # 6 was constructed near Crusher Lake on the access road approximately 15 m from a bedrock ridge. Bedrock was encountered at 1.83 m depth, and a good flow of water was observed at 0.6 m depth, however, this was likely derived from a bog area adjacent to the well (pH = 4.6). Overburden was a dense yellow brown silty till, with numerous quartzite fragments.

Test Pits #7 and #9 were constructed to assess the feasibility of burying a pipeline from Crusher Lake. The weathered bedrock surface can be excavated to about 1 m depth, therefore blasting should be minimal.

Test Pit # 8 was constructed adjacent to Crusher Lake to assess the feasibility of installing lateral screens for induced infiltration. Bedrock was encountered at 0.75 m beneath black organic peat deposits. Profiling of the bog area around the southern end of Crusher Lake indicated from 4.3 m near the edge of the lake to 0.6 m of peat bog overlying bedrock. Test pit logs for the 9 test holes are presented in Appendix 3.

4.3 Pump Test Evaluation

A 5.77 m corrugated plastic culvert, 46 cm in diameter was perforated over the bottom 1.8 meters and installed in Test Pit # 1. The hole was backfilled with 1.2 m of coarse gravel

followed by 2.4 m of waste rock to above the water table. Glacial till was used to cap the test pit to ground surface. A 3-hp electric submersible pump was installed for pump testing the well.

A series of step drawdown test (1.5 igpm, 12 ipgm, 20 igpm) were carried out and recovery measurements were then made. Analysis of the time-drawdown data infer an apparent transmissivity of 4.85 m 2 /d (325 igpd/ft) and a long term continuous safe yield of 1.5 igpm. The hydraulic conductivity of the overburden is estimated at 2 x 10 $^{-5}$ cm/s from the pump test data. This is typical of sandy silt glacial tills in Nova Scotia.

A water quality sample was collected at the end of the pumping test and submitted to the Environmental Chemistry Laboratory at the Victoria General Hospital for analysis (Table 3.4). The water chemistry is typical of shallow glacial till aquifer in Nova Scotia, exhibiting higher pH (6.8), alkalinity (51 ppm) and less corrosiveness than the lake water. Elevated iron, manganese and turbidity are a consequence of the well construction method, and turbulence caused by overpumping. The detectable arsenic may be derived from the mine waste rock used in the construction of this Final groundwater quality from a properly constructed dug well would be expected to be lower in these Iron and manganese would be the most likely water quality problems, and these aesthetic concerns can be effectively treated.

4.4 Summary

It is apparent from the testing carried out to date that a large yield of groundwater will not be available from a single well in the immediate vicinity of the mine site. The test well, when properly constructed and developed, may be capable of about 0.2 L/S (2 igrm) continuous yield, and up to 5 igrm short term yield. Although this well could be developed to supply the majority of potable needs, it may be more cost effective to derive water from the surface water supply line which will be required to supply the mining needs.

Testing in the vicinity of Crusher Lake indicates a poor chance of locating an infiltration gallery along the lake shores which are bedrock controlled. The end closest to the mine site is overlain by thick peat bog deposits, which could result in very poor water quality to underlying screened collectors.

The most feasible water supply alternative for the Beaver Dam Mine is therefore surface water from either Cameron Flowage, or Crusher Lake. Work is currently underway to develop a water supply from Cameron Flowage upstream of the bog outfall. (Jacques, Whitford and Associates Limited, 1986, Job No. M1292).

5.0 CONCLUSIONS

The results of packer injection testing and mine dewatering operations conducted at the Beaver Dam Mine site indicate that the proposed new gold mine workings should encounter relatively low groundwater inflows. An estimated mine water discharge rate of 6.4 L/S (85 igpm) is predicted for the exploration portal, based on packer testing results and the location of the mine tunnels. All hydrogeologic evidence currently available for the site (test drilling, packer testing, shaft dewatering) suggests a steady-state effluent discharge rate in the order of 7.5 to 15 L/S (100 to 200 igpm) for a full scale mine. The majority of the flow will be expected from the shallowest mine horizon. Once this zone has been dewatered and appropriately grouted, long term discharge rates from the remaining deeper horizons should be less than 7 to 10 L/S $(90 \sim 130 \text{ igpm})$.

It 'is anticipated that there should be no problem in the handling of natural groundwater inflow and process waters used for drilling purposes in this mine. There may be some opportunity to employ recirculation of waters within the mine, thereby reducing the total pumping requirements.

Packer injection testing of existing inclined diamond drill holes penetrating the proposed mine workings indicate an overall geometric mean hydraulic conductivity of m/s, 10^{-6} ranging from 1 Х m/s to 3.7 10^{-10} m/s. Bedrock permeability was found to decrease with depth and with bedrock type from quartzite to greywacke to argillite, and was lowest for the deep mineralized ore zones. The Mud Lake Fault zone was found to be of low hydraulic conductivity $(2.3 \times 10^{-8} \text{ m/s})$ although somewhat The highest bedrock K values were associated with the crest and axis of the overturned anticline and shallow bedrock (0-20 m).

The shallow bedrock adjacent to the proposed portal has an apparent hydraulic conductivity of 3.5 x 10^{-7} m/s, which correlates with the estimated K of 9 x 10^{-7} m/s for

shallow bedrock around Austin Shaft. A pumping test conducted in 4.9 m of silty sand glacial till overburden 150 m from the portal area indicated a K of 2 x 10^{-7} m/s. This suggests that inflows to the portal area during construction should be controllable. Pumping of an old mine shaft discovered adjacent to the portal should aid in the control of shallow groundwater flows.

A dewatering test performed on the Austin Mine workings indicated a steady-state mine discharge rate of 3 L/S (40 igpm). Analysis of the time drawdown data suggests that the majority of this inflow was derived from the shallow zones, and that the deeper portion of the abandoned mine workings below 22 m depth was contributing only small amounts of water. Increasing manganese concentration and a shift in water chemistry towards deeper groundwater characteristics suggest that flow is derived from both surface bog sources overlying the working, but primarily from deeper groundwater. This dewatering test indicates that flow rates from the new mine which will be situated in simular geology and structures should also be low, and results confirm the predictions generated by the packer test data.

Continuous, in-situ monitoring of effluent water quality during the dewatering test has demonstrated that the quality of effluent from the new mine should meet the Metal Mining Liquid Effluent Guidlines with minimal or no treatment With the exception of arsenic (0.4 -0.17 mg/L), iron (0.3 - 2.6 mg/L) and manganese (0.3 - 0.38 mg/L), all fall within the Canadian Drinking Water parameters Guidelines. Monitoring has shown that there is a small tendency for acidic drainage within the mine after periods of due to contact with mineralized wall rock non-pumping, however, the buffering capacity of the natural groundwater and the quartzite bedrock tend to neutralize this tendency. Under continuous pumping, the effluent would be expected to be a neutral pH (7.4), moderately alkaline groundwater with up to 3 ppm iron and minor arsenic concentration (0.10 - 0.20 mg/L).

Although suspended solids loads under undisturbed conditions are expected to be low, drilling and blasting would be expected to contribute to suspended solids loading. Given the volumes of water expected, it should be feasible to treat the effluent (if necessary) both in the mine sump and at the surface, prior to its release to the bog area. Monitoring of mine effluent quality will determine treatment requirements. The large bog area will afford significant natural attenuation of suspended material and dissolved metals.

Monitoring of the existing diamond drill holes during dewatering of Austin shaft indicates that some hydraulic interconnection likely occurs between the existing workings and the proposed mine. A total drawdown of 1 m was observed near the portal area during the testing. This interconnection may be due in some part to past mining activity along the Austin lead. It is likely that the Austin workings would eventually be dewatered by the new mine, although flow rates would be expected to be small.

Exploration for groundwater resources in the Beaverdam Mine area indicates a poor probability of development of groundwater resources for mine use. Bedrock aquifers exhibit low transmissivity in the order of 0.5 to 1.0 $\rm m^2/d$, and drilled wells would be capable of less than 3 igpm. Overburden within 200 m of the mine building is generally too thin to develop reliable dug or screened wells. One test well located on line 2 + 00 west may be capable of 2 igpm. The most promising groundwater development possibility lies in the deep bedrock trench (22 m) developed over Mud Lake Fault, west of the site, however, the area is designated for future exploration activities.

As a result of the above, it was decided to develop surface water supplies from Crusher Lake or Cameron Flowage. It is concluded, based on work done to date, that the proposed Beaver Dam Mine will be relatively "dry" after the shallow drifts have been stabilized, and steady state drawdown has been achieved. Mine discharge waters are not expected to pose a serious threat to the environment and should remain within the Metal Mining Liquid Effluent Guidlines with

minimal or no treatment required. The naturally occurring iron, manganese, arsenic and aluminum discharged with the effluent should be effectively removed through passage through the swamp prior to release to Cameron Flowage.

- Mine water discharge rates and water chemistry should be monitored on a regular basis to ensure that parameters remain within the MMLEG requirements.
- 2. Although low steady state flow rates in the order of 7.6 L/S (100 igpm) are anticipated for this mine, water pressures ahead of the stope workings should be measured to ensure that all instantaneous flows of groundwater from undetected fractures are anticipated. should rapidly decrease to steady state rates after fracture dewatering has occurred.
- A long term groundwater monitoring program should be established to monitor groundwater levels in the Austin Shaft, and bedrock zones above and around the workings during mine development. Such monitoring would provide an assessment of the source of flow into the the degree of fracture dewatering. accomplish this, it would be necessary to construct a series of observation wells around the site, or to develop some of the existing diamond drill holes.
- The existing overburden test well should be retained to monitor overburden hydraulic head variation over the summer season. If head does not drop significantly, it may be feasible to develop this as a dug well for auxiliary uses.
- The geologic and hydrogeologic nature of the Mud Lake Fault Zone suggests that caution should be exercised during mine excavation in these areas. Although the highly brecciated material exhibits a low hydraulic conductivity, the material is saturated and collapse into the workings. Standard procedures for mine wall stabilization should be implemented in this area.
- 6. Consideration should be given to recycling of water within the mine for drilling activities and dust control. This would reduce the volume of sump water requiring disposal, and reduce make-up water requirements.

7. Although initial work suggests that discharge water would not be hazardous, over the life of a mine the discharge quality could vary depending on mining activity and zones encountered. Contingency plans should be prepared for treatment of acidic waters with lime addition or to reduce suspended sediment loads by floccuation should such be found to be needed.

APPENDIX 1

TAKEN FROM REPORT NO. M1285

Hydrogeology

Because of the remoteness of the Beaver Dam site, very few site-specific data regarding groundwater quality or flow are currently available. The nearest residential areas are located along route 224 from Upper Musquodoboit 19 km to the northeast and the Village of Marinette 10 km to the south. No impacts on existing groundwater supplies are anticipated in relation to the proposed mining operation.

The following discussion of regional hydrogeology is based on general knowledge of the hydrogeology of the Meguma Bedrock in the eastern portions of Nova Scotia, for example, Halifax and Guysborough counties. The Beaver Dam mine site is

underlain by highly resistate crystalline bedrock comprised of Goldenville Quartzite intruded by Devonian-aged granites.

In Nova Scotia, the predominance of steeply-dipping subvertical fracturing, and bedrock strike perpendicular to regional topographic gradient favors the development of short groundwater flow regimes and vertical permeability greater than horizontal permeability. This results in relatively short distances of flow from areas of recharge to areas of discharge, in the order of 1 to 5 km (Lin, 1975). This suggests that groundwater recharging in the highland region to the south of the area (elevation 170 m) flows across the mine site to discharge into Cameron Flowage on the Killag River at an average gradient of about 2.5 percent.

Groundwater Flow

Groundwater flow in fractured crystalline rock is controlled by secondary permeability and fracturing. Locally, bedrock groundwater flows can be expected to be predominantly southeastward along the dominant fault trends, with smaller flows in the northeast and east directions (Figure 3.3.) Groundwater flow in the sandy silt glacial till overburden is expected to mirror the topographic surface, with recharge occurring on the basin boundaries and uplands, and discharge to the Killag River watershed.

Drilled wells (45-61 m deep) in quartzite bedrock generally yield from 0.04 to 0.4 L/S (0.5-5 IGPM) (N.S. Strait of Canso Environment Comm. 1975). Yields vary greatly depending on the degree of fracturing of the bedrock. Table 3.5 illustrates the range of transmissivity (T) and safe yield (Q_{20}) for 37 wells drilled in quartzite bedrock in Halifax and Guysborough counties (NSDOE pump test inventory): Geometric mean T is low $(0.8 \text{ m}^2/\text{d})$ compared to an average of $4.1 \text{ m}^2/\text{d}$ Well yields Nova Scotia. Bedrock in for Meguma Guysborough County range from 0.05 to 2.4 L/s (0.7-32 IGPM), averaging 0.22 L/s. Specific capacity averages 0.1 L/s per meter of drawdown, compared to 0.04 L/S/m for Halifax County. Pump test data for Nova Scotia indicate that T generally decreases from Yarmouth to Canso, likely because of decreasing degree of metamophorism and less overall fracturing.

ABLE 3.5: Summary of Pump Test Data for Wells Completed in Goldenville Quartzite, Halifax and Guysborough Counties, Nova Scotia

· ·	i	•				
		Range	Mean		SD	N
	I .		Х (G)	(X)	
	•					
Ł			-			
HALIFAX COUNTY	-		-			
Well Depth (m)		15.2 - 137.2	67.1	(68.6)	33.2	31
Transmissivity (m ² /c	1)	.02 - 14.0	2.1	(0.86)	-	31
30-yr-safe yield (L/	=	.015 - 4.2	.53	(0.20)		31
Specific Capacity (I		.00116	.04	(0.035)	0.05	31
	-					
GUYSBOROUGH COUNTY			•			
•						
Well Depth (m)		44.8 - 155.4	99.1	(89.0)	46.6	6
Transmissivity (m ² /c	i)	0.08 - 11.2	2.5	(0.75)	4.3	6
20 yr-safe yield (L,	/S) [*]	0.05 - 0.46	0.27	(0.23)	0.89	6
Specific Capacity (I	J/S/m)	0.001 - 0.06.	0.11	(0.01)	0.25	. 6

x = Arithmetic Mean

G = Geometric Mean

SOURCE: N.S. Department of the Environment, Pump Test Inventory

The presence of a dry (91 meter) well near the mine site, and low well yields for Guysborough County wells tend to support this conclusion.

Preliminary results of a packer testing program conducted on the site also support the low transmissivity of the non-Whitford and guartzite bedrock (Jacques, mineralized Associates Ltd., 1986 in preparation). Packer permeability measurements were carried out in June of 1986 for 56 zones 4.6 m in length, which is representative of the various structural rock features identified in the geologists logs (for example fault zones, fractures, Anticline axis, ore zones, etc.). Hydraulic conductivity averages $2.7 \times 10^{-8} \text{ m/s}$ (geometric mean) and ranges from a high of 1 \times 10⁻⁶ m/s in the snallow zones of Mud Lake Fault and the anticline axis, to less then 4 \times 10⁻¹¹ m/s in the deep ore zone and unfractured rock. Hydraulic conductivity generally decreases with depth, and is low in the ore zone, likely because of fracture filling by quartz veins. Results of bedrock permeability testing will be reported at a later date.

Notwithstanding the above, experience in other mineralized areas of the province has shown that bedrock T and permeability can be greater for Meguma bedrock intruded by Devonian granites and near fault zones. In the Beaver Damarea, the highest bedrock permeabilities would therefore be expected to occur near the granite contact southwest of the site, and adjacent to the major fault zones.

Measurements of hydraulic head in the various mine shafts around the property indicate bedrock water levels varying from 3 to 4 m below ground surface, and dominant groundwater flow direction to the west and northwest, along the strike of bedrock and topographic gradient. Mine shafts, where groundwater levels approach ground surface, appear to be influenced by surface water drainage into the workings. The 3 m depth to water in the Austin and Whip leads may be indicative of actual piezometric surface for shafts penetrating to about 22 m. The majority of the diamond drill holes exhibited static water levels averaging 0.3 meters below ground surface in the vicinity of the cleared area. In the swamp area, most boreholes penetrating Mud Lake Fault were flowing at ground

surface, usually at rates of less than 0.1 L/S. Borehole BD-86-47 was measured at a flow rate of 0.1 L/S (1.3 IGPM). The presence of water in most trenches indicates high water table conditions over most of the site which appears to be a net regional groundwater discharge area.

Conversations With the geologists regarding drilling conditions on site indicated that most of the deep boreholes were making enough water to sustain drilling. Some boreholes exhibited loss of drilling fluid to adjacent holes (BD-85-24, 31, 27) which indicates some cross connection, at least in the shallow zones. Boreholes in the Mud Lake Fault Zone were full of gouge material and highly unstable, and generally exhibited low flows due to clogging, and also resulted in low packer permeability values. The degree of bedrock fracturing appears to increase towards the Austin Shaft end of the baseline; likely a result of tectonic movements associated with the fault zones. The drillers stated that negligible movement of water levels was observed in Austin Shaft during pumpage (0.4 - 4.0 L/s) for drilling purposes. A water well 91 m deep constructed for the temporary mining camp on the hill south of the mine was dry, even after stimulation by blasting.

The above discussions suggest that the bulk bedrock hydraulic conductivity in the vicinity of the mine site is relatively low and that the greatest flows will be expected in the southeast end of the site towards Mud Lake Fault. The variability of fracture permeability and hydraulic characteristics of the shallow zone around the Austin Shaft will be assessed in greater detail upon completion of current field work.

In this region of Nova Scotia, most domestic water supplies are obtained from dug or drilled wells. Dug wells developed in the glacial till overburden appear to be the most common domestic supply, yielding large volumes of good quality water from stratified sands and gravels such as are found at the west side of Sheet Harbour, and 0.08 to 0.8 L/S from quart-zite tills such as underlie the area. Higher yields may be encountered if sufficient thicknesses of saturated sand and gravel are encountered on the site. A program of overburden

exploration is currently being conducted to evaluate the water-bearing characteristics of thick overburden deposits identified by seismic profiling.

Groundwater Quality

Quality of groundwater from Goldenville quartzite acuifers is generally good (NSDOE Well Water Quality Inventory). The most common domestic water quality complaint is that iron and manganese levels are in excess of the respective drinking water limits of 0.30 mg/L and 0.05 mg/L set for aesthetic reasons (Health, and Welfare Canada, 1978). In gold mining districts, arsenic concentrations in excess of the 0.05 mg/L health standard commonly occurs, and is generally believed to be derived from arsenopyrite mineralization associated with vein deposits in the bedrock (Grantham & Jones, 1976; McCurdy 1980, Bottomley 1984). Shallow overburden wells generally exhibit similar trends, without arsenic problems.

To date, groundwater samples from the Beaver Dam area are limited to samples from Austin Shaft collected at depths of 10 m and 21 m below the water surface (Table 3.6). Water is a typical calcium carbonate groundwater of good chemical All parameters are within tolerable limits. Arsenic levels at 0.04 mg/L and iron at 0.3 mg/L are typical of groundwaters in mine areas. The downward drift of pH and upward drift in conductivity suggest a slightly reducing condition, confirmed by later dissolved oxygen measurements of 2.0 ppm. A flowing deep borehole (86-41) and several other deep boreholes also exhibited reducing trends (H2S Detectable nitrate concentrations are likely to odors). caused by vegetation and timbers in the shaft. Profiles of temperature, electrical conductance and dissolved oxygen were also made for the Austin Shaft (Table 3.7) and shows a slight increase in conductivity (TDS) and decrease in temperature with depth, as would be expected. Groundwater from these mine shafts are remarkably clear and are not expected to be an environmental problem.

TABLE 3.6: Water Quality Analysis for Austin Shaft, Beaver Dam Mine (May 6,1986)

-		7 metres	17 metres
Depth Below Water Surface		AU-1	AU-2
Sedium	mg/L	2.1	2.3
Potassium	mg/L	0.9	0.8
Calcium	ng/L	8.3	9.5
Magnesium	mg/L	1.0	1.1
Hardness (CaCOa)	ng/L	25.0	28.3
Alkalinity (CaCO3)	ng/L	20.3	23.5
Sulfate	mg/L	8.0	8.0
Chloride	ng/L	3.3	3.1
Fluoride	mg/L	<0.1	<0.1
Silica	mg/L	4.8	5.2
Orthophosphate '	mg/L	0.02	<0.01
Nitrate + Nitrite	rg/L	0.18	0.13
Ammonia	mg/L	<0.05	<0.05
Arsenic	mg/L		0.04
Iron	ng/L	0.3	0.32
Manganese	ng/L	<0.01	0.03
Lead (HGA)	лg/L	<0.002	<0.002 .
Copper	mg/L	<0.01	<0.01
Zinc	mg/L	<0.01	<0.01
Total Dissolved Solids	mg/L	35.0	43.0
Suspended Solids	mg/L	<0.3	<0.3
Color	T.C.U.	5.0	5.0
Turbidity	J.T.U.	1.5	2.3
Conductivity (umbo/cm)	umHo/cm	69.0	76.0
рH	wits	6.30	6.40
Humic Acid	mg/L	2.0	2.0
Aluminum	mg/L	<0.05	<0.05
Boron	mg/L	<0.02	<0.02
Barium	mg/L	<0.005	<0.005
Beryllium	mg/L	<0.005	<0.005
Chronium	mg/L	<0.01	<0.01
Cobalt	mg/L	<0.01	<0.01
Nickel	mg/L	<0.02	<0.02
Antimony	mg/L	<0.05	<0.05
Selenium	mg/L	<0.1	<0.1
Tin	mg/L	<0.03	<0.03
Vanadium	ng/L	<0.01	<0.01
Mercury _	ug/L	<0.05	<0.05
Cadmium—ICP	mg/L	<0.01	<0.01
Field Measurements		-	
Hq	units	6.77	6.80
Conductivity	umbo/cm	47.0	(downward drift)
Temperature	(°C)	5.0	50.0 4.2
Dissolved Oxygen		2.0	
Parada on Sen	b car	4,0	2.0 (Tune 18 1986)
Odor	TCC	NONE	(June 18, 1986) NONE
V		TION IN	TICKIT

TABLE 3.7: Electrical Conductance and Temperature Profile for Austin Shaft, Beaver Dam (May 6, 1986)

Deuth Below Reference(m)	Depth Below Water Level(m)	Temperature (°C)	Conductivity uS/cm	Salinity 0/00
.3	Ö .	5.9	45	0.0
.5	2	5.5	45	0.0
7	4	5.5	47	0.0
9	. 6	5.4	47	0.0
11	8	5.4	49	0.0
13	10	5,4	49	0.0
15	12	5.4	50	0.0
22	19	4.7	50	0.0

Measurements by YSI Model 33 STC Meter.

THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.

onendix 3

DATE JUNE HYDRO. DDH
LOCATION BEAVERDAM MINE WEATHER CLEAR
WELL AUSTIN SHAFT

- -	DRAWDOWN TEST			RECOVERY TEST			
TIME/DATE	TIME (min.)	FEET BTOC	DRAWDOWN	YIELD (gpm)	RESIDUAL BRAWBOWN	t/t'	SAMPLE
JUNE 18/86 133 5	Ö	12.67	0	500 19pm			
1334	4	13.50	0.83	- J			
13.45	10	15.42	2.75				# j
1355	20	17.67	5,00				
1405	30	19.58	6,91				
1415	40	21.50	8.83				
1425	50	23 42	10.75				#2
1435	60	25.25	12.56				
1505	90	31.17	18.50				
1535		38.00	25.33				_
/635	, 180	42.67	30.00			1	-
/735	240	46.83	34.76		•		# 3
1835	300	50.17	37.50				
1935	360	54.42	41.75			:	#4
2/35	480	60.67	48.00			1	
2235	540	62.83	50.16				#5 -
2335	600	64.75	52.08				
JUNE 19/36	660	65.08	52.4/				·
0245	780	65.92	53.25				# 6
0435	900	67.08	54.41				
0535	960	67.58	54.91		<u> </u>		#7
	TURN OF	PUMP	7 hour Re	covery (#1)			
0.540	965	67.61			54.94	193	
0542	967	67.61			ų	138	
0545	970	67.61			1/	97	
0549	974	67.61			1/	69.5	
0554	979	67.60	<u> </u>		54.93	51.5	<u>.</u>
0 600	985	67.59	:		54.92	37.4	
0610	995	67.58			54.91	28.4	
0620	1005	67.55			54.88	22.3	
0630	1015	67.53			54.86	18.5]

DATE	
LOCATION	

HYDRO. WEATHER

·		DRAW	DOWN TEST	•	RECOVERY	TEST]
TIME/DATE	TIME (min.)	FEET BTOC	DRAWDOWN	YIELD (gpm)	BESTBUAL	t/t'	SAMPLE
JUNE 14/86	1025	67.52			54,85	15.8	
0700	1045	67.47			54.80	12.3	
0720	1065	67.45			54.78	10.1	
07 <i>4</i> 0	1085	67.43			54,76	8.7	
0000	1105	67.39			54.72	7,6	-
0830	//35	67.34			54.67	6.5	
0900	1165	67.30			54.63	5,7	
0930	1145	67.26		1	54.59	5.1	
1000	/225	67.22			54,55	4.6	`
1030	/2.55	67.18			54,51	4.3	
1100	/285	67-14			54.47	4.0	
. //30	/315	67.11			54.44	3.7	
1200	1345	67.09			54,42	3.5	
/235	/380	67.07			54.40	3.3	_
		START P	IMPING	500 16PM			
1247	1392	67.07	54.40			,	
1249	1594	67.07	<u>54.40</u>	<u> </u>			
1252	/397				•		
1254	/379	67-13	54.46				
/25/7	1402	67.15	54.48	<u> </u>			
1361	1406	67.09	54 52				#8
/3/1	14/6	6.7.32	54.65				
1321	<u> 1418 .</u>	67.44	54:77				
/331	1428	67.52	54.85		<u>. 3</u>		
1341	1438.	67.65	54.98				
1401	1498	67.83	55.16				#9
1417	1913	68.00	55.33				
1487		TURN OF	F PUMP P	ECOVERY	<i>#2</i>		
14 119	O 1513	68.0 5			55.38	1	
1418	1 : 1514	68.05			55.38	1485]
1488	2 15/ S	68.0 9		<u> </u>	μ	743	

Appendix 3

App
Ü
Ū
Φ.
ನ
9
×
w

•
ER
)

y.		_	DRAW	DOWN TEST	1	RECOVERY T	EST	
TIME/DATE	TIME	(min.)	FEET BTOC	DRAWDOWN	YIELD (gem)	BRAWBOWN	t/t'	SAMPLE
	3	1516	68.05		·	<i>5</i> 5.38	495	
	4	1517	1/			4	372	
% % *	5	1518	y			<i>n</i>	248	
	6	1519	h			<u>u</u>	248	
7433	16	1529	68.02		<u> </u>	55.35	94	
7443	26	1539	68.02			55.35	5%	
1453	<i>3</i> ī.	1549	67.99		<u> </u>	55,32	42	·
/ 5 03	46	1539	67.99	,	1	\$5.32	.31	
/523	66	1579	67.93	<u>.</u>		55.26	23	
1553	94	1609	67.91	<u> </u>		55.24	17	
1615	116	1631	67.85			55.18	14	4_
1645 TUNE 20/86	146	1661	67.81			55.14	//	
1010	1190	2705	66.76		<u> </u>	54.09	2.3	
14:23	1443	2958	66.55		<u> </u>	53.88	2.0	
TOUE 16/66	9543	11,058 <u> </u>	52.14			39:47	1.16	
	9843	11,358	51.16			38.49	1.15	
JUNE 27/86	101919	12/3/4	47.65	,	<u> </u>	34.98	1.14	
JUNE 20/86	12,243	13,758	43.09			30.42	1.12	
	12,596	14/11	41.84		ļ	29.17	[-]]	
					j			
<u> </u>								
			· .					
								
,		·					}	
	 -							
;							}	
v. ? g	,		<u> </u>					
		}						

DATE JULY 8-10,1986 HYDRO. DSM. DAC
LOCATION BEAUER DAM MINE WEATHER CLEAR WASHING
WELL AUSTIN SHAFT YIELD 200 USERN

MEITT -	AUSTIN SHAFT			YIELD 200 Useph			
	DRAWDOWN TEST			RECOVE	RY TEST		7
TIME/DATE	TIME (min.)	FEET BTOC	DRAWDOWN (.d)	FEET BTOC	RESIDUAL (m)	t/t'	SAMPLE
JULY 8/86	0	12'.91"			1		
19107	17	19.46	6,55				
1430	40	25.71	12,5				<u> </u>
1500	70	36.79	25.88			_	
1530	100	40.76	28.0€	-			
1600	/30	43.71	30.8				#1
1630	/60	46.50	33.57				
1700	190	49.25	36.34				
1730	-210	51.83	3€. <i>9</i> ⊌				
1800	3.40	53.73	40.54				
1900	300	57.38	44.47				
2000	360	61.29	48,38				
2100	4 20	63-58	50.67		1		
2200	480	65.17	52.24		ļ		
2,300	5 4 0	65.58	52.67				
2400 JULY 9,1786-	600	65.79	52.32 PUMP	SHUT OFF	TILL OGOC		
. 0500	960	65.21	52,30 STAR	l	ecovery 0.50	t in	1 hr (1"/
0 000	1020	66.19	53.28				
0300	1080	67.12	54.21				
0930	1110	67.50	54.59	·			
0900	1146	67.79	54.88	PUMP OFF			
1000	1200	67-69	54.78		1		
1100	1260	67.56	64.65	START PUM	Recovery .	19 FC/2	hror 19/hr
1200	/320	68-33	55.42		change pum	i	#2
1443	1440	68.27	55.36	START CO	NTRIFUGAL	PUMP	}
1500	1500	68.29	55.38	(INTIAL RISE)	e h schoo pome sta	irtes)	#3
1600	1560	н	(1				
/200	/620	11					
1800	/680	68,29	l1				
1900	1740	68.S4	65.63				
2000	1800	68.67	55.76		}		

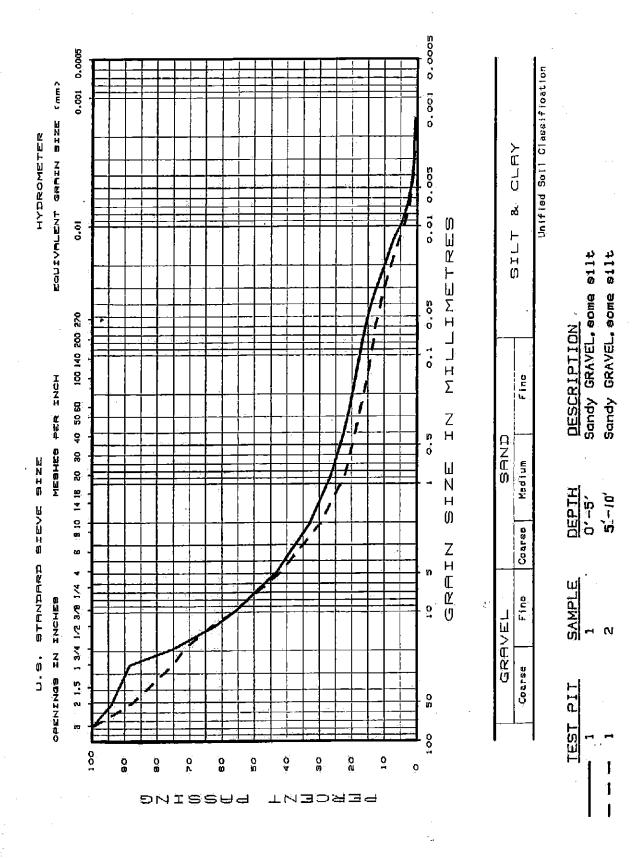
DRILLER/YEAR _	HOPPER
WELL DEPTH	72.'
CASING LENGTH	MINE SHOFT

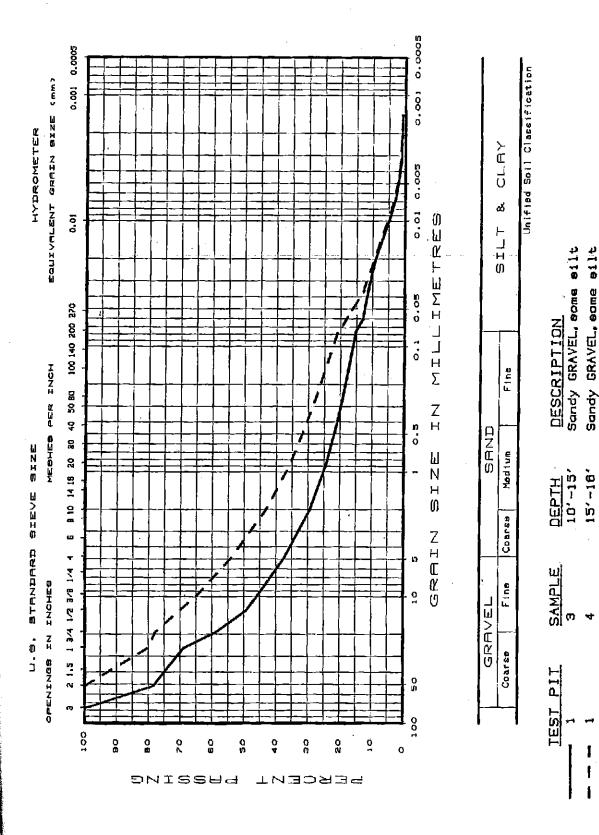
PUMP SETTING	71' /9"
PUMP TYPE	Centrifugal
SPECIFIC CAPACITY	(O/S)

Appendix 3

DATE		HYDRO. WEATHER	<u> </u>
LOCATION_ WELL		WEATHER	
. •	DRAWDOWN TE	RECOVER	Y TEST

		DRAW	DOWN TEST		RECOVERY '	est	
TIME/DATE	TIME (min.)	FEET BTOC	DRAWDOWN	YIELD (gpm)	BRAWBOWN	t/t'	SAMPLE
JULY 9186 ps	1860	63.88	55.97		,		
2.160) 22.00	1920	67.08	56.17				
2500	1980	69.29	56.38			<u> </u>	
æ <i>ÿç</i> ο	2040	69.58	56.67		<u> </u>	<u> </u>	
Joly 10/96	2100	69.67	56.76				
O2.00	2160	69.75	56.84	ļ		-	
0300	22,20	69.92	57.01		<u> </u>		
0 40D	2280	70.08	57.17			<u> </u>	
20.56	2340	20.25	57.34				
0600	2400	70.42	57.51			<u> </u>	
0000	2460	20.58	57.67			<u> </u>	
0800	2520	20-29	57.88			ļ	
0900	2580	20.85	57.44	Reached but	tom of da	يمورو ور	
/000	2640	· µ	ļ	<u> </u>	1		#4_
1200	2700	"		Pump class	ing with de	<u> </u>	ļ ———
/200	2760			Broke Such	w@ € = //30	ines.	#5-
/360	2820	. "		38 12 pm		<u> </u>	
1330	2850	ţ.			<u> </u>	<u>. </u>	
/530	2970	4		<u> </u>	<u> </u>	<u> </u>	#6
16 30	3030	4			<u> </u>	<u> </u>	<u>. </u>
1830	3150	11	· ·	138 rapm Fump a	F; Startreso	Jery_	#7
_	<u></u>					1	
-		1			<u> </u>	<u> </u>	
	<u> </u>			<u> </u>		1	<u> </u>
				<u> </u>	<u> </u>	<u> </u>	<u> </u>
						<u> </u>	<u> </u>
						-	
	<u> </u>			<u> </u>	<u> </u>	-	
		ļ <u>-</u>			<u> </u>	-	<u> </u>
	<u> </u>		<u> </u>	<u> </u>			· · · · · · · · · · · · · · · · · · ·
		<u> </u>				1	<u> </u>


DATE _	JULY 10, 11, 1986	HYDRO.	
LOCATION_	BEAVERUAM MINE	WEATHER	
WELL	AUSTIN SHAFT	- -	


_		DRAW	DOWN TEST	·	RECOVERY 1	EST	1
TIME/DATE	TIME (min.)	FEET BTOC	DRAWDOWN +1	YIELD (gpm)	RESIDUAL	t/t'	SAMPLE
JULI 10,1786 1930	0	67.83	56.92	_	58.92		
∯ ạo, o o	30	69.54	56.63		S8 163		
2h 00	90	69.31	56,40	251. (40)	59,40		
22:00	150	69.03	56,7		58,17		
24:00	270	68.88	55.97		57,97		
Tues 11, 1996 0200	340	68.71	55.80		57,80		
5400	510	68.54	55.63		57.63		
0600	630	68.38	55.47		57.47		
0100	690	68.29	55.38		57.38		
0500	750	68.21	55,30		57,30		
0900	910	68.12	55.21	_	57.21	,	
1020	890	68.04	55.13		57.13		
1400	110	67.75	54.84	(14/hour)	\$6.84	<u> </u>	
1700	1290	67.54	54.63		56.63	<u> </u>	
JULY 1=/55				_		<u> </u>	<u> </u>
[J :]						<u> </u>	
		_		·			
4						<u> </u>	
July 1600	8360	59.58	46.67				
1510	8440	59.25	46.34			1.4 ~	טו <i>ו</i> ו
<u> </u>						<u> </u>	
1						<u> </u>	
1			<u>-</u> .			}	
]]						<u> </u>	
						<u> </u>	
						<u> </u>	
		-		·		<u> </u>	
				·		<u> </u>	
1							
	,					ļ	
<u> </u>					1	1	

^{*} WATER LEVEL MEASURED FROM NOTCH IN FLOOR

^{*} MEASURING POINT N 2.0 st lower than top if drop tube

^{*} NOTE: RECOVERY MEAS. DATUM 1.5 Ft lower than for drawdown.

APPENDIX 3

Test Pit Logs, Beaverdam Mine, June 25, 1986 (TP1-TP5); July 12 (TP6-TP9)

Test Pit # 1 (2 + 00%; 1 + 75S)

0 - 0.61 m orange brown, silty sand and gravel

0.61 - 3.33 m olive brown, sandy gravel, with some silt. Numerous

boulders of quartz and slate.

3.33 - 4.57 m olive brown, sandy gravel with some silt. Slatey clasts more numerous than quartite clasts. Large boulders 0.15

- 0.46 m in diameter.

4.57 - 4.88 m silty sand and gravel.

4.88 - 5.0 m quartzite bedrock. Water table 1.8 m. 0.46 m diameter

culvert installed in hole for pump testing.

Test Pit # 2 (2 + 00W; 1 + 65S)

0 - 0.61 m orange brown silty sand and gravel.

0.61 - 3.3 m olive brown sandy gravel with silt, numerous boulders.

3.3 - 3.5 m quartzite bedrock.

Test Pit # 3 (2 + 25W; 1 + 75S)

0 - 0.9 m orange brown, sandy silt and gravel.

0.9 - 3.35 m olive brown silty sand and gravel, quartzite boulders.

3.35 - 3.4 m quartzite bedrock.

Test Pit # 4 (2 + 25%; 1 + 658)

0 - 0.6 m black and orange brown, sandy silt, gravel and boulders.

0.6 - 2.1 m yellow-gray sandy silt and gravel.

2.1 - 4.0 m olive brown, silty sand and gravel, numerous boulders.

Test Pit # 5 (1 + 80W; 1 + 758)

0 - 0.6 m rootmat, black and orange sandy silt with gravel.

0.6 - 1.8 m yellow brown, silty sand and gravel.

1.8 - 3.35 m olive brown sandy silt and grvel, slatey gravel and boulders. Water table at 1.5 m. Sample collected for

sieve analysis.

Note: Test pits 1 to 5 constructed in the vicinity of TP # 1 which was pump tested to evaluate well feasibility.

Test Pit # 6 (5 + 00W; 2 + 50S)

 $\overline{0-0.15}$ m moss, rootmat

0.15 - 0.61 m weathered red to black organic soil, water entering @ 0.61

m from bog area.

0.61 - 1.83 m yellow brown, silty sand till with quartz boulders to 0.3

m diameter, dense.

broken quartzite bedrock.

APPENDIX 3 (continued)

Test Pit # 7 (5 + 20W; 2 + 50S)

0 - .15 m moss, rootmat

.15 - .61 m reddish brown, silty sand loam, minor quartzite clasts.

.61 - 1.0 m broken quartzite bedrock, no water.

Test Pit # 8 (5 + 00W; 2 + 75S)

0 - 0.76 m black, organic peat and muck, strong HoS odor

0.76 - 1.0 m black organic silt

1.0 - 1.22 m broken quartzite bedrock, some water.

Test Pit # 9 (5 + 15 W; 2 + 008)

0 - 0.15 m moss, rootmat

0.15 - 1.5 m yellow brown silty sand loam, becoming more gravelly with

depth. Numerous large quartzite boulders indicate

proximity to bedrock.

1.5 - 2.0 m hard quartzite bedrock. No water. Test pit indicates

that bedrock ridge can be ripped to about 1.2 m depth by

excavator.

Peter Clifton & Associates

Consulting Hydrogeologists A division of Saguaro Holdings Pty Ltd ACN 073 231 295, ABN 33 216 640 980

Office: 11 Southport Street, LEEDERVILLE, WA 6007 Postal Address: PO Box 186, FLOREAT, WA 6014

> Telephone: (08) 9388 9191 Facsimile: (08) 9388 7171

ASSESSMENT OF POTENTIAL OPEN PIT GROUNDWATER INFLOWS BEAVER DAM GOLDPROJECT NOVA SCOTIA

Report prepared for:

Atlantic Gold Corporation
Suite 506 / 815 Pacific Highway
Chatswood Nest NSW 2067

Report No: 1501_R01

April 2015

In association with: Peter O'Bryan & Associates

George, Orr and Associates (Australia)

TABLE OF CONTENTS

1	INT	RODUCTION	1		
2	PR	OJECT SETTING	1		
	2.1	Location and Topography	1		
	2.2	Prior Mining History and Dewatering	2		
	2.3	Rainfall, Evaporation, and Temperature	2		
	2.4	Geology and Hydrogeology	3		
3	PRI	EVIOUS HYDROGEOLOGICAL INVESTIGATIONS	4		
	3.1	Austen Shaft Dewatering 1986			
	3.2	Packer Testing 1986	5		
	3.3	Packer Testing 2014	6		
4	ES	TIMATES OF OPEN PIT GROUNDWATER INFLOW RATES	7		
	4.1	Seepage from Till	7		
	4.2	Seepage from Bedrock	<u>7</u> 8		
5	RE	COMMENDATIONS FOR MANAGING GROUNDWATER SEEPAGE	9		
	5.1	Seepage from Till	9		
	5.2	Seepage from Bedrock	10		
6	REI	MAINING HYDROGEOLOGICAL ISSUES	12		
RE	REFERENCES				
			_		

LIST OF TABLES

Table 1 Beaver Dam Project Packer Testing Results

LIST OF FIGURES

Figure 1	Beaver Dam Project Regional Location Plan
Figure 2	Beaver Dam Project Proposed Open Pit Location Plan
Figure 3	Beaver Dam Project, Regional Geology
Figure 4	Austen Shaft Pumping Test, June 1986
Figure 5	Beaver Dam Project, Locations of Packer Tested Boreholes
Figure 6	Hydraulic Conductivity versus Depth
Figure 7	Conceptual Design of Pit Wall and Till Drainage Systems at Beaver Dam

1 INTRODUCTION

Atlantic Gold Corporation is assessing the feasibility of developing an open pit gold mine at their Beaver Dam Project in Nova Scotia, Canada, and are currently preparing documentation for a Bankable Feasibility Study. The proposed open put has dimensions 690 m by 360 m at the crest, and has a maximum depth of 200 m.

This report provides an assessment of potential groundwater inflows to the proposed open pit at the Beaver Dam Project. The assessment is based on previous hydrogeological investigations by Jacques, Whitford and Associates Limited, and the results of recent hydraulic conductivity testing by Stantec Consulting Ltd.

Recommendations for monitoring of groundwater during mining and the periodic assessment of these data are included.

2 PROJECT SETTING

2.1 Location and Topography

The Beaver Dam Project is located in central Nova Scotia about 85 km NE of Halifax and about 25 km from the North Atlantic Ocean. Beaver Dam is about 20 km NE of Atlantic Gold's Touquoy Gold Project (Figure 1)

The project site lies in an area of relatively low local topographic relief at an elevation of around 140 m, with scattered drumlins to 160 m elevation. Regional surface water drainage is predominantly to the south east along several poorly drained stream channels and shallow lakes, and there are several low-lying boggy areas across the site.

Vegetation coverage in and around the project site consists of spruce, fir, and some hardwood. Logging has been conducted in the area, and there has recently been clear felling of timber in the immediate vicinity of the project site.

The proposed open pit adjacent to Cameron Flowage, a stillwater area on the Killag River and a remnant of past logging operations (JWA, 1986a). Cameron Flowage is around 1.2 km long by up to 120 m wide (Figure 2). All surface water generated within the drainage catchment that includes the proposed open pit flows into Cameron Flowage.

There is a shallow sediment settling dam located in the eastern part of the proposed open pit (Figure 2). This dam was used to trap sediment generated by the dewatering of the Seabright underground operations in the mid-1980s before discharging to Cameron Flowage.

2.2 Prior Mining History and Dewatering

The following discussion is mostly adapted from Schofield (2015).

Gold was discovered at Beaver Dam in 1868, with first production recorded in 1871.

Intermittent attempts to develop a mine in the area occurred until 1949, with the property changing ownership several times. Some of these attempts focused on the Austen Shaft which was collared in 1902 and developed initially to a depth of 30 m with crosscuts 19 m north and 12 m south at a depth of 22 m. The southern crosscut was extended to a length of 90 m in 1927, and an incline was sunk to 61 m in 1936 from the southern crosscut.

The Austen Shaft and associated underground workings are within the perimeter of the proposed Beaver Dam open pit.

In 1985 the leases were acquired by Seabright Resources Inc who subsequently conducted a number of exploration programs which delineated an auriferous zone between 20 m and 30 m wide over a strike length of 700 m and depth 600 m. Between 1986 and 1988 Seabright conducted exploration from a new underground development that reached a maximum depth of 105 m and spanned 400 m of strike. All of the Seabright workings are within the perimeter of the proposed open pit, and they are not connected with any of the developments from the Austen Shaft.

No records of rates of long-term mine dewatering during the previous phases of mining and underground exploration have been discovered. There are notations that the Austen Shaft was dewatered on at least six occasions – 1928, 1934, 1954-57, 1965, and twice by Seabright in the late 1980s.

Jacques, Whitford and Associates Limited conducted a hydrogeological investigation at Beaver Dam in 1986 prior to Seabright's underground exploration program (JWA, 1986b). This work included a pumping test to dewater the Austen Shaft and associated workings. The results of this testing program are discussed in Section 3.1.

2.3 Rainfall, Evaporation, and Temperature

Precipitation data are available from the Middle Musquodoboit weather station, 33 km west of the Beaver Dam project site (CRA, 2005).

Precipitation occurs as rain, and during the cooler winter months as snow. Average annual precipitation (including snow as equivalent rainfall) is around 1,400 mm, and this is evenly distributed throughout the year with average monthly precipitation of between 100 mm and 140 mm. Lake evaporation data presented in CRA (2005) indicates evaporation rates are negligible from November to April, and range between

40 mm/month and 110 mm/month from May to October. Annual lake evaporation is around 500 mm, which is about 40% of the annual precipitation.

Average monthly temperatures range between -6°C in January and 18°C in July.

2.4 Geology and Hydrogeology

The Beaver Dam gold deposit is within the Meguma Group, which is a sequence of Cambro-Ordovician sandstones and mudstones that form the southern half of the province of Nova Scotia. The Meguma Group is divided into two stratigraphic units: the basal Goldenville Formation and overlying Halifax Formation. The dominant lithologies are greywacke in the Goldenville Formation and argillite in the Halifax Formation. The Goldenville Formation is at least 5,600 m thick, and the average thickness of the Halifax Formation is 4,400 m.

The Meguma Group sedimentary sequence was uplifted and deformed into a series of tightly folded sub-parallel northeast trending anticlines and synclines during the Arcadian Orogeny. This sequence has been metamorphosed to between greenschist and amphibolite (staurolite) facies, and intruded by granites and minor mafic intrusives.

The Meguma Group sequence, and predominantly the Goldenville Formation, is host to most of the gold mineralisation that has been exploited in Nova Scotia since 1860.

The Beaver Dam Project is within the argillite dominated Moose River Member of the Goldenville Formation (Figure 3). This member also hosts the Touquoy deposit to the SW and Fifteen Mile Stream deposit to the NE (Figure 1).

The Moose River Member is folded into three sub-parallel anticlines at Beaver Dam, and the gold deposit is associated with the southern overturned limb of the central anticline which dips to the north at between 75° and 90°. The sequence at Beaver Dam is sinistrally offset by two northwest trending faults: the Mud Lake Fault and the Cameron Flowage Fault. The Mud Lake Fault is described from drill cores as a 2 m to 3 m zone of gouge within a 10 m to 20 m wide brecciated zone.

The Meguma Group sequence at Beaver Dam is covered by glacial till deposits of varying thickness and occasional shallow peat bogs. The range of grain size of the till materials is large, being from clay to boulder. Regionally the sheet of till deposits has a mean thickness of about 3 m, but locally it can be up to 20 m thick (eg, at drumlin deposits). At Beaver Dam the till sheet is about 5 m thick, and there is evidence of a sediment-filled gully up to 25 m deep which intersects the trace of the Mud Lake Fault.

Groundwater occurs at shallow depths at the Beaver Dam site, and Cameron Flowage is probably an area of groundwater discharge. The bedrock sequence forms a fractured rock aquifer system, and this overlain by a thin aquifer in the till. The degree of hydraulic

connection amongst the smaller bedrock fracture systems is probably poor to moderate, and the main zones that are capable of storing and transmitting relatively large amounts of groundwater would be the larger scale faults.

The volume of groundwater stored in the bedrock aquifer is probably small, and this reflects the relatively small primary porosity of these rocks. Some of the larger bedrock structures may be hydraulically connected to surface water bodies which may become sources of aquifer recharge under a mine dewatering scenario.

Descriptions of drilling conditions through the Mud Lake Fault in JWA (1986b) indicate boreholes were quite unstable in this section, and groundwater flows were "low". The latter comment appears to refer to the groundwater yielding capability of boreholes for the purpose of supplying water for drilling rigs. One borehole, BD-86-47, is noted to be a flowing artesian borehole with measured flow rate of 0.1 L/sec. BD-86-47 is located slightly north of the south east end of Cameron Flowage, and has a total depth of 500 m.

3 PREVIOUS HYDROGEOLOGICAL INVESTIGATIONS

Jacques, Whitford and Associates conducted a hydrogeological investigation at the Beaver Dam site in 1986 prior to the exploration work by Seabright Resources Inc (JWA, 1986b). The objectives of the investigation were to predict the rates of groundwater inflow to the proposed underground exploration development, and the quality of water flowing into the underground. The scope of the investigation included a pumping test to dewater the Austen Shaft, and several single borehole packer tests using some of the diamond core holes. The results of this work are discussed in Sections 3.1 and 3.2.

In 2014, Stantec Consulting Ltd conducted packer testing of one diamond core hole at the Beaver Dam site. The objective of this investigation was to determine the hydraulic conductivity of various parts of the bedrock sequence at Beaver Dam including the Mud Lake Fault. Results of this work are discussed in Section 3.3.

3.1 Austen Shaft Dewatering 1986

This test involved pumping from the Austen Shaft, and monitoring water levels in the shaft during pumping and recovery (JWA, 1986b). The maximum pumping water level that could be achieved during testing was around 22 m. This depth is equivalent to the depths of the crosscuts that were developed off the shaft in 1902.

The first pumping test commenced at 1:35pm on 18 June 1986. The static water level (SWL) in the shaft prior to pumping was noted to be 3.86 m below the datum for the test, which presumably was close to ground level. The pumping rate during the test was

2,275 kL/day (26.3 L/sec), and all of the available drawdown was exhausted after 16 hours of pumping.

A graph of drawdown versus time from this pumping test is presented in Figure 4. There are three linear segments in this drawdown-time graph, with the rate of drawdown tending to decrease at longer times during the test. The linear trends of drawdown versus time indicate that, in this instance, there is a linear relationship between water level and water storage volume in each of the three vertical intervals of the shaft and its associated developments. This also indicates that the rate of pumping during the test was much greater than the rate of groundwater seepage into the shaft and underground developments.

The total volume of water pumped from the Austen Shaft and associated developments in the June 1986 test was 1,520 kL.

A second group of pumping tests was conducted in July 1986. In one of these test pumping occurred until the available drawdown was exhausted, and the pumping rate was then reduced to maintain a steady water level. The final pumping rate of 2.9 L/sec (249 kL/day) was maintained for a period of 5½ hours. Note that this pumping rate can be interpreted as the maximum rate of groundwater seepage into all of the underground voids of the Austen Shaft and associated underground developments which extend to a depth of 61 m.

3.2 Packer Testing 1986

Jacques, Whitford and Associates selected nine existing diamond core holes for conducting single borehole packer injection tests to determine values of formation hydraulic conductivity. Boreholes for testing were selected on the basis of their inclination (near-vertical holes preferred), and the lithology and structure intersected (Mud Lake Fault, ore zones, the anticline axis, greywacke, argillite, and quartzite). Initially sixteen boreholes were selected a possible candidates for testing, however only nine were suitable. Packer test were conducted in 56 intervals within these boreholes. The locations of the boreholes used for packer testing are indicated on Figure 5, and listed in Table 1.

A "straddle" packer consisting of a 4.5 m length of perforated pipe with 1 m long inflatable packers at either end was used in this testing program. The packer assembly was run in and out of the hole on a wireline. Nitrogen gas was used to inflate the packers, and water was injected into the packed-off interval through a high-pressure hose.

Table 1 lists the intervals in each borehole that were tested, the lithology and structure in these intervals, and the values of hydraulic conductivity calculated from the test data by JWA (1986b). All boreholes listed in Table 1 are inclined with dip angles between -60° and -70° at the collars, and the depth intervals are the depths within the borehole, ie these are not vertical depth intervals.

The range of hydraulic conductivity values determined by the 1986 testing program is 3.7×10^{10} m/sec and 1.9×10^{-6} m/sec. The mean of the set of values is 2.5×10^{-7} m/sec, and the geometric mean (approximate median)⁽¹⁾ value is 4.8×10^{-8} m/sec.

Five of the 1986 packer tested intervals intersected to Mud Lake Fault. Hydraulic conductivity determined from this group of tests ranges between 1.2×10^{-9} m/sec and 1.9×10^{-6} m/sec, and the mean and geometric mean values are 3.7×10^{-7} m/sec and 1.5×10^{-8} m/sec, respectively.

All of the values of hydraulic conductivity determined from the 1986 packer testing program are relatively small, and are not unusual given the geological and structural settings.

3.3 Packer Testing 2014

Stantec Consulting Ltd conducted five packer tests in diamond cored borehole BD14-188 in December 2014 (Stantec, 2015). The location of BD14-188 is indicated on Figure 5.

BD14-188 was selected for packer testing so that the tested intervals included the hanging wall sequence, the Mud Lake Fault, and the foot wall sequence. Five intervals were tested, with test interval lengths ranging between 8 m and 64 m. Results are listed in Table 1.

Stantec note that one of the tested intervals in the hanging wall and both tested intervals in the footwall did not accept any of the injected water. The values of hydraulic conductivity inferred from these three tests are indicated by the "<" character in Table 1.

Hydraulic conductivity calculated from the two successful packer tests conducted in December 2014 are within the range of hydraulic conductivities calculated from the 1986 testing program. The value of K determined by the test of the Mud Lake Fault is 1.0×10^{-8} m/sec, which is again within the range of values determined for this structure in the 1986 testing.

The geometric mean value of several hydraulic conductivity results based on similar tests is generally taken to be the best representative large-scale estimate of this parameter for subsequent use in groundwater flow rate calculations.

Stantec note that the intersection of the Mud Lake Fault in BD14-188 had a significantly higher rock mass quality than was anticipated on the basis of cores from adjacent boreholes. The implication is that parts of the Mud Lake Fault have larger hydraulic conductivities than the value determined from this packer test.

The geometric mean value of all of the hydraulic conductivity results from the 1986 and 2014 testing programs is 4.5×10^{-8} m/sec.

4 ESTIMATES OF OPEN PIT GROUNDWATER INFLOW RATES

As groundwater occurs at shallow depths across the Beaver Dam site, groundwater seepage into the proposed open pit will be one issue that will need to be managed basically from the start of mining.

Groundwater can be expected to seep into an open pit developed at the Beaver Dam site through the surficial glacial till deposits, and though fractures and structures in the bedrock. As dewatering progresses and groundwater levels in the vicinity of the open pit are lowered, some surface water bodies which are presently groundwater discharge areas may become areas of groundwater recharge. The main effect of this recharge will be to maintain some of the seepage into the open pit.

4.1 Seepage from Till

Atlantic Gold's Touquoy Project, 20 km SW of Beaver Dam, has similar geological and hydrogeological settings to Beaver Dam, with a thin sheet of surficial glacial till overlying folded and fractured argillite and greywacke. The estimated average groundwater inflow rate into an open pit at Touquoy from the till is 450 kL/day (5.2 L/sec) (Peter Clifton & Associates, 2006). Given the proposed open pits at Touquoy and Beaver Dam have similar crest perimeter lengths, this estimate of groundwater inflow rate from the till can also be applied to the Beaver Dam site.

Some spatial variation in the rates of groundwater inflow from the till must be expected around the crest of the pit. There are likely to be sections of the wall where seepage rates are negligible and other sections where the seepage is noticeable. Some seasonal variation in seepage rates from the till is also expected. The recommended approach for managing groundwater seepage from the till is discussed in Section 5.

4.2 Seepage from Bedrock

The results of extensive packer testing of the bedrock at Beaver Dam did not identified any large-scale permeable units from which large rates of groundwater seepage into an open pit could be expected. The geometric mean (approximate median) value of the

entire set of hydraulic conductivity values determined from these tests is 4.5×10^{-8} m/sec. This is a relatively small value of this parameter, however this is consistent with the lithology of the sequence at Beaver Dam apparent from diamond cores.

Some caution is needed when using the results of packer tests conducted in diamond core holes. Packer tests in core holes may underestimate the actual hydraulic conductivity of the tested interval due to blinding, or blocking, of permeable fractures by fine grained drill cuttings or viscous drilling fluid. It is not possible to quantify the magnitude of these effects, and they may not necessarily be a significant factor. The set of hydraulic conductivity results from the tests at Beaver Dam appears reasonable given the lithology and the type of aquifer (fractured bedrock).

One uncertainty is the role of the Mud Lake Fault in groundwater seepage into the proposed Beaver Dam open pit. All of the packer tests which have been conducted in the Mud Lake Fault produced hydraulic conductivity estimates which are not significantly different from the remainder of the tests. However, the Mud Lake Fault is described as a 2 m to 3 m zone of gouge within a 10 m to 20 m wide brecciated zone, and is noted to be associated with borehole instability issues during drilling. The Mud Lake Fault is only known from cores, and it was not intersected by any of the underground developments associated with the Austen Shaft and the Seabright workings.

If the actual hydraulic conductivity of the Mud Lake Fault is larger than indicated by the results of the packer tests, groundwater inflow rates to an open pit at Beaver Dam will be influenced more by the small hydraulic conductivities of the greywacke and argillite sequence. Recommendations for managing groundwater pressures in the Mud Lake Fault are included in Section 5.

Figure 6 is a graph of hydraulic conductivity versus depth based on the results of the packer tests. Only the results of the testing in 1986 have been included in this graph. While there is generally weak correlation between hydraulic conductivity and depth apparent in Figure 6, there is a tendency for the smaller values of K to occur at greater depths. This is an expected trend, and can be explained by slight dilation of fractures at shallower depths.

An estimate of the rate of groundwater inflow through the bedrock to an open pit at Beaver Dam can be made using a model which assumes that all of the flow enters the pit through the north and south walls (ie, the longer walls in the pit – see Figure 2). For a pit wall 800 m long and 100 m deep, and assuming a bulk formation hydraulic conductivity of 4.5 x 10⁻⁸ m/sec (the geometric mean of the packer test results) and hydraulic gradient of 1 (a conservative assumption), the estimated rate of groundwater seepage is 311 kL/day. The estimated groundwater seepage rate into the 100 m deep pit from both

the north and south walls would thus be 622 kL/day (7.2 L/sec). In deeper sections of the pit, groundwater inflows are expected to be smaller than these values due to the lower formation hydraulic conductivities that tend to occur with increasing depth at Beaver Dam.

It is recommended that a range of groundwater seepage rates from bedrock at Beaver Dam of between 100 kL/day (1.2 L/sec) and 1,000 kL/day (12 L/sec) be used for planning purposes.

5 RECOMMENDATIONS FOR MANAGING GROUNDWATER SEEPAGE

From a mine dewatering perspective there are two groundwater seepage issues at the proposed Beaver Dam open pit that require attention:

- Seepage from the glacial till deposits into the open pit (eg seepage that migrates along the till/bedrock contact)
- Seepage from the bedrock sequence into the open pit and the associated groundwater pressures in the pit walls – this is an important issue that can influence open pit wall stability

The above issues follow from the hydrogeological setting of the site, and different approaches are required to control inflows and seepage from these sources.

5.1 Seepage from Till

The glacial till at Beaver is a sheet of poorly sorted sediment with a fine grained matrix averaging 5 m thick. There is evidence of a sediment-filled gully up to 25 m deep which intersects the trace of the Mud Lake Fault.

Rates of seepage from the till exposed around the perimeter of the open pit will vary, and will primarily be related to the proportion of fine grained matrix material. Larger rates of seepage can be expected where the till is relatively coarse and contains a small proportion of fines.

Seepage rates from the till to the open pit will also vary by small amounts seasonally due to normal seasonal changes in the level of the water table. Seepage rates from the till are expected to be greatest following the spring thaw and during the early summer months.

Where the till consists of relatively coarse grained gravels with a small proportion of fines there is the potential for larger groundwater inflows to occur. Whether these inflow rates are sustained will depend on the lateral extent of the gravel deposits, and the degree of

interconnection between the gravels and surface water bodies. This may require further investigation if the risk is considered significant.

The estimated rate of groundwater seepage from the till into an open pit at Beaver Dam 450 kL/day. This is considered to be an average value, with seasonal variations superimposed.

Although the total rate of groundwater seepage from the till into the open pit is not expected to be large, if left unmanaged this could result in erosion, slumping of the till, and possibly water flowing over the crest of the pit. It is recommended that this seepage be intercepted and diverted before it reaches the open pit. This can be achieved with an open drain at the base of the till which is dug a short distance into the top of the bedrock, and one or more sumps at low points in the drain to collect the seepage and pump it from the pit. Because the expect flow rates are relatively small, the cross section area of the drain can safely be of order 1 m² and still provide sufficient carrying capacity. The drain may need to be lined where it crosses major structures to prevent recharge occurring to the bedrock groundwater system as this may cause problems for pit wall stability.

Where thicker accumulations of till occur drains and sumps will need to be positioned deeper within the open pit to intercept any seepage.

Figure 7 presents a conceptual design of a drain at the base of the till in an open pit at Beaver Dam. The distance between the edge of the drain and the inner pit crest (ie, bedrock crest) is about 30 m. This is also the recommended length of sub-horizontal drain holes in the pit walls (see Section 5.2).

5.2 Seepage from Bedrock

The ambient water table at Beaver Dam is close to the land surface and the bedrock sequence is saturated. Groundwater will therefore flow into an open pit at Beaver Dam, and dewatering will be required to maintain dry working conditions. Lowering of groundwater pressures in the pit walls will also be required for wall stability purposes, and dewatering of the bedrock sequence exposed in the walls will be important from this perspective. Dewatering facilities will also be needed in the pit to remove surface water that collects after rainfall.

Seepage through the bedrock sequence at Beaver Dam will largely be controlled by geological structures, and will vary around the pit due to variations in the density of joints and fractures, and the occurrence of major faults.

Managing groundwater pressures in the pit walls at Beaver Dam will require groundwater levels to be monitored in piezometers behind the walls, and groundwater pressures in the walls to be dissipated by means of sub-horizontal drain holes. It is recommended that drain holes be located to intersect permeable structures 20 m to 30 m back from the

walls. If possible, drain holes should be selectively located in areas where seepage is an obvious issue rather than placing them at regular spacing on every bench of the pit. A greater density of drains may be required to control groundwater pressures within and near the Mud Lake Fault.

Figure 7 presents a conceptual design of pit wall drainage by means of sub-horizontal drain holes. Drains should be about 30 m long, and can be drilled with a blast hole rig. Flows from drains will generally diminish over time, and drains on the higher benches may eventually cease flowing as the mine is developed. Discharge from drains should be directed to a sump either through a series of pipes or channels. Collaring of drain holes may be necessary if large and persistent flow rates are encountered, however in most cases flows are expected to be no greater than a trickle and should diminish over time.

Monitoring of groundwater levels will require piezometers to be constructed at the pit crest, and progressively on some benches as the open pit is developed. Piezometers can be vertical boreholes drilled to a depth of 40 m to 50 m, possibly with a blast hole drilling rig, and cased with 32 mm or 40 mm PVC pipe which has been slotted from 10 m below surface. The annulus outside the slotted casing should be packed with graded sand (~2 mm grain size) to about 3 m above the top of the slots. Slots can be cut with a hacksaw, or machine slotted casing can be used if this is available.

Piezometers located at the pit crest will require the glacial till sequence to be collared to below the till/bedrock contact so that groundwater in the till cannot seep into the borehole. These piezometers should also include annular bentonite clay seals of height about 1 m on top of the sand pack. It may be necessary to modify the design of these piezometers during construction to ensure that the bentonite seal is a few metres below the till/bedrock contact.

All piezometers should be finished with steel surface casing about 0.7 m above ground level, and these casings should be painted bright orange or green so that they are clearly visible. Piezometers should be surveyed to determine locations and reference elevations for measuring water levels against.

For planning purposes, allowance should be made for piezometers at the pit crest to be around 200 m apart, ie there will be nine or ten piezometers around the crest of the proposed Beaver Dam open pit. Transects of piezometers every 50 m vertically down the pit wall should be constructed at every second crest piezometer.

Data from the piezometers will provide profiles of the phreatic surface which will be important for assessing pit wall stability. If access to piezometers over the longer term is uncertain, consideration should be given to equipping these facilities with pressure transducers that connect to logging units at the crest of the pit.

6 REMAINING HYDROGEOLOGICAL ISSUES

Hydrogeological issues at Beaver Dam that may need to be considered are:

- Quality and quantity of any groundwater that may need to be discharged off site, ie in excess of what can be utilised for ore processing
- Groundwater and surface water monitoring programs that may need to be established under statutory requirement for mining operations in Nova Scotia

A possible issue that may need to be considered given the setting is the effect of freezing temperatures on groundwater seepage close to the pit walls. The expansion of water that occurs at temperatures below 4°C and when ice is formed has the potential to cause slight dilation of the rock mass and joints. This process may lead to exfoliation at the pit walls. Whether this will be a significant process in an open pit at Beaver Dam is unclear. Avoiding this condition would require that the wall rocks be completely dewatered, especially close to the face of the pit.

Peter Clifton & Associates

REFERENCES

- CRA, 2005, "Touquoy Mine Mine Permitting, Hydrologic Information Summary", consultant report prepared for Atlantic Gold NL by Conestoga-Rovers & Associates, November 2005.
- JWA, 1986a, "Environmental Assessment of Gold Mine Development, Beaver Dam, Nova Scotia", consultant report prepared for Seabright Resources Inc by Jacques, Whitford and Associates Limited and P Lane and Associates Limited (M1285, June 1986).
- JWA, 1986b, "Hydrogeological Investigation Beaver Dam Mine", consultant report prepared for Seabright Resources Inc by Jacques, Whitford and Associates Limited (M1289, July 1986).
- Peter Clifton & Associates, 2006, "Hydrogeological Investigations, Touquoy Gold Project, Nova Scotia", consultant report prepared for Atlantic Gold NL, (0506_R01, September 2006).
- Schofield, N, 2015, "Technical Report of the Beaver Sam Gold Project, Halifax County, Nova Scotia", consultant report prepare for Atlantic Gold Corporation by FSSI Consultants (Aust) Pty Ltd, March 2015.
- Stantec, 2015, "Packer Testing Beaver Dam Project", letter, Stantec Consulting Ltd to Mr J Morgan, Atlantic Gold Corporation. 23 January 2015.
- Westminer, 1989, "Westminer Canada Limited Seabright Operations, Beaver Dam Property Development License 0078, Report of Work and Expenditures for the Period May 1, 1986 to April 30, 1989", report to the Dept of Mines and Energy, Nova Scotia.

Table 1: Beaver Dam Project Packer Testing Results

Borehole	From	То	Lithology / Structure	K (m/sec)
	15.2	19.8	Argillite	5.2 x 10 ⁻⁷
DD0F 00F	19.8	24.4	Argillite	9.0 x 10 ⁻⁸
BD85-005	24.4	29	Argillite	1.8 x 10 ⁻⁷
	50.3	54.9	Greywacke	1.4 x 10 ⁻⁶
	15.2	19.8	Argillite	4.7 x 10 ⁻⁸
	19.8	24.4	Argillite, Quartzite	1.1 x 10 ⁻⁸
BD8E 007	24.4	29	Quartzite	8.4 x 10 ⁻⁷
BD85-007	56.4	61	Greywacke / Fault	2.0 x 10 ⁻⁹
	65.5	70.1	Greywacke	5.4 x 10 ⁻⁷
	88.4	93	Argillite	3.0 x 10 ⁻⁸
	21.6	26.2	Greywacke	2.0 x 10 ⁻⁸
	25.9	30.5	Greywacke, Quartzite	2.4 x 10 ⁻⁸
	81.7	86.3	Greywacke, Argillite	5.8 x 10 ⁻⁸
BD85-013	86	90.6	Argillite	4.1 x 10 ⁻⁸
	90.2	94.8	Argillite	2.8 x 10 ⁻⁸
	94.5	99.1	Argillite	2.5 x 10 ⁻⁸
	98.8	103.4	Argillite	4.3 x 10 ⁻⁸
	10.6	15.2	Greywacke, Quartzite	8.0 x 10 ⁻⁷
	15.2	19.8	Quartzite	1.6 x 10 ⁻⁶
BD85-016	19.8	24.4	Quartzite	4.9 x 10 ⁻⁸
BD63-010	76.2	80.8	Greywacke, Argillite	2.5 x 10 ⁻⁷
	80.8	85.3	Greywacke, Argillite	3.0 x 10 ⁻⁷
	85.3	89.9		3.9 x 10 ⁻⁷
	13.7	18.3	Argillite	4.7 x 10 ⁻⁷
	24.1	28.7	Greywacke	9.9 x 10 ⁻⁸
BD85-029	33.5	38.1	Greywacke	9.4 x 10 ⁻⁷
0003-023	39.6	44.2	Greywacke	9.0 x 10 ⁻⁸
	102.1	106.7	Greywacke, Argillite	4.9 x 10 ⁻⁸
	106.7	111.3	Greywacke	1.6 x 10 ⁻⁸
DD0E 042	19.8	24.4	Quartzite	8.3 x 10 ⁻⁹
BD85-043	24.4	29	Greywacke, Argillite	2.6 x 10 ⁻⁸

continued...

Table 1 (cont): Beaver Dam Project Packer Testing Results

Borehole	From	То	Lithology / Structure	K (m/sec)
	47.2	51.8	Greywacke	1.0 x 10 ⁻⁶
	51.8	56.4	Greywacke	2.3 x 10 ⁻⁷
	62.5	67.1	Greywacke	2.7 x 10 ⁻⁹
	67.1	71.6	Greywacke	3.4 x 10 ⁻⁹
BD85-043	117.3	121.9	Greywacke	1.0 x 10 ⁻⁹
(cont)	121.9	126.5	Greywacke	7.6 x 10 ⁻¹⁰
	126.5	131.1	Greywacke	2.6 x 10 ⁻⁹
	131.1	135.6	Greywacke, Argillite	1.6 x 10 ⁻⁹
	135.6	140.2	Argillite	5.5 x 10 ⁻¹⁰
	140.2	144.8	Argillite	3.7 x 10 ⁻¹⁰
	15.2	19.8	Greywacke	3.6 x 10 ⁻⁸
	19.8	24.4	Greywacke	1.1 x 10 ⁻⁶
DD0E 003	24.4	29	Quartzite / Fault	1.9 x 10 ⁻⁶
BD85-082	30.5	35.1	Greywacke	8.0 x 10 ⁻⁷
	41.1	45.7	Quartzite	6.1 x 10 ⁻⁷
	45.7	50.3	Quartzite	4.6 x 10 ⁻⁷
	39.6	44.2	Greywacke / Fault	1.5 x 10 ⁻⁸
	48.8	53.3	Greywacke / Fault	1.0 x 10 ⁻⁸
BD85-083	57.9	62.5	Greywacke / Fault	1.2 x 10 ⁻⁹
	71.6	76.2	Argillite	7.1 x 10 ⁻⁹
	80.8	85.3	Greywacke, Argillite	2.7 x 10 ⁻⁸
	19.8	24.4	Quartzite	3.1 x 10 ⁻⁸
DD8E 000	24.4	29	Greywacke	3.0 x 10 ⁻⁸
BD85-090	29	33.5	Greywacke, Quartzite	2.4 x 10 ⁻⁸
	33.5	38.1	Greywacke, Quartzite	8.1 x 10 ⁻⁸
	12	23	Hanging wall	<1.0 x 10 ⁻⁸
	33	50	Hanging wall	5.0 x 10 ⁻⁹
BD14-188	117	125	Fault	1.0 x 10 ⁻⁸
	147	160	Foot wall	<2.0 x 10 ⁻⁹
	147	210	Foot wall	<4.0 x 10 ⁻¹⁰

Notes: "K" is hydraulic conductivity

Boreholes with prefix "BD-85" tested in 1986 (JWA, 1986b)

Borehole BD14-188 tested in 2015 (Stantec, 2015)

Wetland Functional Assessment	Appendix F Summary Table

Significant Function	WL 1	WL 2	WL 3	WL 4	WL 5	WL 6	WL 7	WL 8	WL 9	WL 10	WL 11	WL 12	WL 13	WL 14	WL 15	WL 16	WL 17
SF1	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
SF2	M-L	M-L	М	M	М	М	М	M	L	M	М	M	М	М	М	М	M
SF3	Н	Н	Н	Н	Н	М	М	Н	М	Н	Н	Н	Н	Н	М	Н	Н
SF4	М	Н	Н	Н	Н	Н	М	Н	М	M	M	Н	М	Н	Н	Н	M
SF5	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF6	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF7	N	SpC, S2S3, S3, S3B, S3S4, S3S4N, S3S4B	N	S2S3	N	N	Ν	Thr, S3, S3N, S3B, S3S4B	N	S2S3, S3, S3N, S3S4B	N	S3	S3	Thr, SpC	N	S3, S3B, S3S4N, S3S4B	SpC, S3, S3N, S3B, S3S4B
SF8	N	N	Ν	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF9	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF10	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF11	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF12	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF13	NAT	NAT	NAT	NAT	NAT	NAT	NAT	MOD	MOD	NAT	NAT	NAT	MOD	NAT	MOD	NAT	NAT
SF14	N	Υ	N	Υ	Υ	N	N	Υ	N	N	N	N	N	N	Υ	Υ	N
SF15	М	Н	Н	М	М	Н	Н	M	Н	Н	L	Н	L	L	М	М	М
SF16	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	N	Y	N	N	N	Υ	Υ
SF17	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
SF18	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	М	Н	Н
SF19	N	N	N	N	N	N	Υ	N	N	N	N	N	N	N	N	N	N
SF20	Υ	Υ	Υ	Υ	Υ	Υ	N	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
SF21	NA	NA	NA	Н	NA	NA	NA	Н	NA	Н	М	NA	М	Н	L	NA	Н
SF22	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF23	Н	Н	L	Н	М	М	М	Н	L	M	Н	Н	Н	М	L	М	Н
SF24	Н	Н	Н	Н	Н	М	М	Н	Н	Н	Н	М	Н	М	М	Н	Н
SF25	N	N	N	Leptogium corticola (S2S3)	N	N	N	N	N	N	N	Carex wiegandii (S3)	N	Degelia plumbea (SARA and COSEWIC SpC, NSESA V)	N	N	Degelia plumbea (SARA and COSEWIC SpC, NSESA V)
SF26	N	Y	N	Y	Υ	N	N	Y	N	Υ	Υ	N	Υ	Υ	Υ	N	Υ
SF27	Z	Boreal Chickadee (S3), Gray Jay (S3), American Robin (S5B, S3N), Greater Yellowlegs (S3B, S3S4M), Pine Siskin (S2S3), Purple Finch (S4S5B, S3S4N), Red-breasted Nuthatch (S3), Red Crossbill (S3S4), Ruby-crowned Kinglet (S3S4B), Swainson's Thrush (S3S4B), Wilson's Snipe (S3B), Yellow-bellied Flycatcher (S3S4B)	z	N	Z	Z	N	Olive-sided Flycatcher (SARA, COSEWIC, NSESA T, S3B), Gray Jay (S3), American Robin (S5B, S3N), Greater Yellowlegs (S3B, S3S4M), Ruby- crowned Kinglet (S3S4B), Yellow-bellied Flycatcher (S3S4B)	Z	Gray Jay (S3), American Robin (S5B, S3N), Pine Siskin (S2S3), Swainson's Thrush (S3S4B), Yellow- bellied Flycatcher (S3S4B)	N	N	N	Olive-sided Flycatcher (SARA, COSEWIC, NSESA T, S3B)	N	Gray Jay (S3), Purple Finch (S4S5B, S3S4N), Ruby-crowned Kinglet (S3S4B), Wilson's Snipe (S3B), Yellow-bellied Flycatcher (S3S4B)	Peregrine Falcon (SARA, COSEWIC SC, NSESA V, SIB), American Robin (S5B, S3N), Greater Yellowlegs (S3B, S3S4M), Northern Harrier (S3S4B), Ruby-crowned Kinglet (S3S4B), Swainson's Thrush (S3S4B)
SF28	М	М	М	М	М	М	М	Н	М	Н	М	М	М	М	М	М	Н
SF29	Г	L	L	L	L	L	L	M	L	M	L	L	L	L	L	L	М

Notes

Birds included in these results are indicative of point count location within or adjacent to wetland, and does not confirm use of the wetland as crucial supporting habitat.

Cells highlighted in red indicate this function is considered to be critical to the watershed or represent a highly degraded watershed. These functions are typically unique or rare or associated with a high risk to the watershed if lost (NSE 2014c). Unless otherwise stated: H=High; M=Moderate/Medium; L=Low; Y=Yes; N=No; NAT=Natural; MOD=Modified; Smod= Significantly Modified; Thr=Threatened; SpC=Special Concern; End=Endangered

^{*} SF7/SF25/SF27 is considered a red rated function if a species present is listed by SARA or NSESA as Endangered/Threatened/Special Concern; or Ranked by ACCDC as S1.

^{**}SF14, SF21 where hydrologically connected features extend beyond PA boundaries, source of a stream/headwater was inferred from Wet Areas Mapping.

¹ Predicted NSE WSS Layer indicates WL64 is a WSS as a result of the presence of the OSFL in 2009. However, 2016 breeding bird surveys did not confirm the presence of the OSFL. See the SAR/SOCI section in the report for additional information.

Significant Function	WL 18	WL 19	WL 20	WL 21	WL 22	WL 23	WL 24	WL 25	WL 26	WL 27	WL 28	WL 29	WL 30	WL 31	WL 32	WL 33	WL 34	WL 35	WL 36	WL 37	WL 38	WL 39	WL 40	WL 41	WL 42	WL 43	WL 44	WL 45	WL 46
SF1	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
SF2	M	M	М	L	L	L	L	L	L	L	L	M-L	L	M-L	L	L	М	M-L	L	L	M-L	M	M	М	M	M	M	M	M
SF3	Н	M	M	M	H	Н	M	L	Н	Н	L	H-M	H	H	Н	H	M	M	H	M	H	L	Н	M	M	H	M	H	H
SF4 SF5	H N	M N	M N	M N	H N	M N	M N	L N	M N	M N	N	M 	H N	H N	H N	H N	M N	M N	M N	M N	M-L N	N	M N	M N	H N	H N	H N	H N	H N
SF6	N	N N	N	N	N	N	N	N	N	N	N	N N	N	N	N	N	N	N	N	N	N	N	N	N	N N	N	N	N	N
SF7	N	S3N, S3B, S3S4N	N	N	N	N	N	N	N	N	N	End, SpC, Thr, S2S3, S3	N	N	N	\$3	N	N	N	N	N	N	N	N	S3, S3N, S3S4B	N	N	N	N
SF8	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF9	N	N	N	N	N	N	N	N	N	N	N	N N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF10	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF11	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF12	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF13	NAT	NAT	NAT	NAT	NAT		NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	MOD	NAT	MOD		NAT	NAT	NAT	NAT	NAT	NAT		MOD		NAT
SF14	N	N	Y	N	N	N	N	N	N	Y	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Y	N	Y
SF15	Н	H	L	Н	Н	Н	Н	Н	Н	М	Н	H	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	М	Н	L
SF16	Υ	Y	N	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y	Υ	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y	Υ	Υ	Υ	N
SF17	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	Ĺ	L	L	L	L	L	L	L	L	Ĺ	L	L	L	L
SF18	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	М
SF19	Υ	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF20	N	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
SF21	NA	NA	М	NA	Н	NA	NA	NA	М	NA	NA	Н	NA	М															
SF22	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF23	L	M	Н	М	М	L	Н	Н	L	М	М	Н	Н	М	L	Н	Н	Н	Н	М	М	Н	Н	L	Н	М	Н	М	М
SF24	М	M	М	Н	Н	Н	М	L	Н	М	L	Н	Н	Н	Н	Н	М	М	М	Н	Н	L	М	Н	М	Н	М	Н	Н
SF25	N	N	N	N	Z	N	N	N	Z	N	N	Erioderma pedicellatum (SARA/COSEWIC/NSESA End)	N	N	N	Carex wiegandii (S3)	N	N	N	N	N	N	N	N	N	N	N	N	N
SF26	N	N	Υ	N	Ν	N	N	N	Ν	N	N	Υ	N	N	N	Υ	N	N	N	N	Ν	N	N	N	N	N	Υ	N	Υ
SF27	N	American Robin (S5B, S3N), Greater Yellowlegs (S3B, S3S4M), Purple Finch (S4S5B, S3S4N)	N	N	N	N	N	N	N	N	N	Canada Warbler (SARA/COSEWIC T, NSESA E, S3S4B)	N	N	N	N	N	N	N	N	N	N	N	N	Boreal Chickadee (53), Gray Jay (53), American Robin (55B, S3N), Ruby- crowned Kinglet (S3S4B)	N	N	N	N
SF28	М	M	М	М	М	М	М	М	М	М	М	Н	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М
SF29	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

Significant Function	WL 47	WL 48	WL 49	WL 50	WL 51	WL 52	WL 53	WL 54	WL 55	WL 56	WL 57	WL 58	WL 59	WL 60	WL 61	WL 62	WL 63
SF1	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
SF2	М	М	M	М	M	М	M	L	М	M	M	М	M	М	M	М	L
SF3	М	L	Н	Н	Н	М	Н	M	М	M	H-M	Н	M	М	Н	Н	Н
SF4	Н	М	Н	Н	H	Н	Н	M	Н	M	M	М	M	М	M	Н	M
SF5	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF6	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Υ	N	N
SF7	N	S3	N	N	Thr, S2S3, S3, S3N	N	Thr, \$3, \$3\$4B	S3, S3N, S3S4B	N	S1 , S3, S3B	Thr	N	S2S3, S3, S3N, S3B, S3S4N, S3S4B	N	SpC, S2S3, S3N, S3S4B	N	N
SF8	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF9	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF10	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF11	Ν	N	N	Ν	N	N	N	N	N	N	N	N	N	N	N	N	N
SF12	N	N	N	Ν	N	N	N	N	N	N	N	N	N	N	N	N	N
SF13	NAT	MOD	NAT	NAT	NAT	NAT	NAT	MOD	MOD	MOD	NAT	NAT	MOD	NAT	NAT	NAT	NAT
SF14	N	N	N	N	N	Υ	Υ	N	N	Υ	N	N	N	N	N	N	N
SF15	Н	М	Н	Н	Н	М	M	Н	Н	M	М	Н	Н	Н	M	М	Н
SF16	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
SF17	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
SF18	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	М
SF19	N	N	N	N	N	N	N	N	Υ	N	N	Υ	N	N	N	N	N
SF20	Υ	Υ	Υ	Υ	Y	Υ	Υ	Y	N	Y	Y	N	Y	Υ	Y	Υ	Υ
SF21	NA	Н	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	i	NA	Н	L	NA
SF22	N	N	N	N	N	N	N	N	N	N	N	N	N N	N	N	N	N
SF23	М	Н	М	М	Н	М	H	M	Н	H	Н	M	H	М	H	М	M
SF24	M	M	Н	H	Н	M	M	M	М	M	H	Н	M	М	H	Н	H
SF25	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF26	N	Υ	N	N	N	Υ	Υ	N	N	Υ	Υ	N	Υ	N	Υ	Υ	N
SF27	N	N	N	N	Olive-sided Flycatcher (SARA, COSEWIC, NSESA T, S3B), Gray Jay (S3), American Robin (S5B, S3N), Pine Siskin (S2S3)	N	Chimney Swift(SARA/COSEWIC T, NSESA E, S2B S1M), Boreal Chickadee (S3), Yellow-bellied Flycatcher (S3S4B)	Gray Jay (S3), American Robin (S5B, S3N), Swainson's Thrush (S3S4B)	N	Gray Jay (S3), Greater Yellowlegs (S3B, S3S4M), Red-breasted Nuthatch (S3)	Canada Warbler (SARA/COSEWIC T, NSESA E, S3S4B)	N	Gray Jay (S3), American Robin (S5B, S3N), Greater Yellowlegs (S3B, S3S4M), Pine Siskin (S2S3), Purple Finch (S4S5B, S3S4N), Ruby-crowned Kinglet (S3S4B), Spotted Sandpiper (S3S4B), Swainson's Thrush (S3S4B), Wilson's Snipe (S3B)	N	American Robin (S5B, S3N), Swainson's Thrush (S3S4B)	N	N
SF28	М	М	М	М	M	М	M	M	М	Н	M	М	Н	М	Н	М	М
SF29	L	L	L	L	L	L	L	L	L	L	L	L	M	L	M	L	L

																1 4	iccailuii	LLITY	II OT III I	Ciitai	Ltu.
Significant Function	WL 64	WL 65	WL 66	WL 67	WL 68	WL 69	WL 70	WL 71	WL 72	WL 73	WL 74	WL 75	WL 76	WL 77	WL 78	WL 79	WL 80	WL 81	WL 82	WL 83	WL 84
SF1	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
SF2	M	M	M	M	М	M	M	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
SF3	M	М	Н	Н	Н	Н	Н	Н	Н	Н	М	Н	М	Н	Н	Н	Н	Н	Н	Н	L
SF4	M	М	Н	Н	М	Н	М	M	M	Н	М	Н	M	Н	Н	М	М	М	Н	Н	M
SF5	N^1	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Ν	N
SF6	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF7	S3B, S3S4B	N	Thr, S3, S3N, S3S4B	N	N	N	N	Thr, S3, S3B, S3S4B	Thr, S3, S3B, S3S4B	N	N	N	Thr, S3N, S3S4B	N	N	N	S3	N	N	N	N
SF8	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF9	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF10	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF11	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Ν	N
SF12	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF13	MOD	NAT	MOD	NAT	NAT	NAT	NAT	NAT	MOD	MOD	MOD	NAT	MOD	NAT	NAT	MOD	MOD	NAT	NAT	NAT	MOD
SF14	Y	N	Y	N	N	N	N	N	Y	Υ	Υ	N	N	Υ	N	N	N	N	N	Υ	N
SF15	Н	Н	M	М	L	Н	Н	Н	M	Н	L	Н	Ĺ	М	Н	L	Н	Н	Н	Н	Н
SF16	Y	Υ	Y	Υ	Y	Υ	Υ	Y	Y	Υ	N	Υ	Y	Υ	Υ	Υ	Y	Υ	Υ	Υ	Y
SF17	L	Ĺ	i	i	Ė	i	i	L L	i L	i	i	i	Ĺ	Ė	i	Ė	Ĺ	Ĺ	i	i	L
SF18	M	Н	M	М	M	M	Н	H	L	L	L	Н	L	ī	Н	L	Н	Н	Н	М	Н
SF19	N	N	N	N	N	N	Υ	N	N	N	N	N	N	N	N	N	N	N	N	N	Υ
SF20	Y	Y	Y	Y	Y	Y	N	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N
SF21	NA NA	NA	Н	i	M	Н	NA	NA NA	NA	NA	Н	NA	Н	NA	NA	Н	NA NA	NA	NA	NA	NA
SF22	N N	N	N	N	N	N	N	N N	N N	N	N	N	N	N	N	N	N	N	N	N	N
SF23	H	L	H	Н	Н	H	M	M	M	Н	Н	M	Н	M	M	M	H	L	M	L	M
SF24	M	M	M	Н	Н	Н	H	H	H	М	М	H	M	M	M	H	M	1	H	Н	L
SF25	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Listera australis (S3)	N	N	N	N
SF26	Υ	N	Υ	Υ	Υ	Υ	N	N	N	Υ	Υ	N	Υ	N	N	Υ	N	N	N	N	N
SF27	Northern Goshawk (COSEWIC NAR, S3S4B), Blackpoll Warbler(S3S4B), Greater Yellowlegs (S3B, S3S4M), Swainson's Thrush (S3S4B)	N	Canada Warbler (SARA/COSEWIC T, NSESA E, S3S4B), American Robin (S5B, S3N), Blackpoll Warbler(S3S4B), Red-breasted Nuthatch (S3), Ruby-crowned Kinglet (S3S4B), Swainson's Thrush (S3S4B)	N	N	N	N	Canada Warbler (SARA/COSEWIC T, NSESA E, S3S4B), Gray Jay (S3), Greater Yellowlegs (S3B, S3S4M), Ruby-crowned Kinglet (S3S4B), Swainson's Thrush (S3S4B)	Canada Warbler (SARA/COSEWIC T, NSESA E, S3S4B), Gray Jay (S3), Greater Yellowlegs (S3B, S3S4M), Ruby-crowned Kinglet (S3S4B), Swainson's Thrush (S3S4B)	N	N	N	Canada Warbler (SARA/COSEWIC T, NSESA E, S3S4B), American Robin (S5B, S3N), Ruby- crowned Kinglet (S3S4B), Swainson's Thrush (S3S4B)	N	Ζ	N	N	N	Z	Z	N
SF28	M	М	Н	М	Н	Н	М	M	M	М	М	М	M	М	М	Н	М	М	М	М	М
SF29	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

				-										1					IVICC	Janan	LIIV	II OT III	lenta	Lta.
Significant Function	WL 85	WL 86	WL 87	WL 88	WL 89	WL 90	WL 91	WL 92	WL 93	WL 94	WL 95	WL 96	WL 97	WL 98	WL 99	WL 100	WL 101	WL 102	WL 103	WL 104	WL 105	WL 106	WL 107	WL 108
SF1	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
SF2	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
SF3	L	M	L	Н	M	М	Н	Н	М	М	Н	Н	Н	Н	Н	Н	Н	Н	М	M	М	М	Н	Н
SF4	M	M	М	H	M	М	М	Н	Н	Н	Η	Н	Н	Н	Н	Н	Н	Н	Η	Н	Н	Н	Н	Н
SF5	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF6	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF7	S2S3, S3, S3N, S3S4B	N	N	S2S3, S3, S3N	Thr, S3, S3N, S3S4B	N	N	N	N	N	N	N	N	S3B, S3N, S3S4B	Ν	N	N	N	N	N	N	N	N	N
SF8	N	N	N	N	N	Ν	N	N	N	N	Ν	N	N	N	N	N	N	N	N	N	Ν	Ν	Ν	N
SF9	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Ν	N	N	N	N	Ν	N
SF10	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF11	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF12	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF13	NAT	NAT	NAT	NAT	NAT	NAT	MOD	NAT	MOD	MOD	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT
SF14	N	N	N	N	N	Υ	N	Υ	N	Υ	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF15	Н	Н	Н	Н	Н	М	Н	М	Н	М	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
SF16	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
SF17	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
SF18	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
SF19	Υ	N	N	Υ	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF20	N	Υ	Υ	N	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
SF21	NA	NA	NA	NA	NA	NA	NA	NA	NA	L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SF22	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF23	L	L	L	M	M	Н	М	М	L	Н	М	М	L	M	L	М	М	Н	L	L	L	М	L	L
SF24	L	M	L	Н	M	М	M	М	M	Н	Н	М	Н	Н	Н	Н	M	М	М	M	M	М	Н	Н
SF25	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF26	N	N	N	N	N	N	N	N	N	Υ	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF27	American Robin (S5B, S3N), Evening Grosbeak (S3S4B, S3N), Pine Siskin (S2S3), Red-breasted Nuthatch (S3), Ruby- crowned Kinglet (S3S4B)	Barn Swallow (COSEWIC T, NSESA E, S3B)	N	Gray Jay (S3), American Robin (S5B, S3N), Pine Siskin (S2S3)	American Robin (SSB, S3N), Red-breasted Nuthatch (S3), Swainson's Thrush (S3S4B)	Ν	N	N	N	N	N	N	N	American Robin (SSB, S3N), Gray Catbird (S3B), Ruby-crowned Kinglet (S3S4B)	N	N	N	Z	N	Z	N	N	Ν	N
SF28	M	М	М	M	M	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	
SF29	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

Significant Function	WL 109	WL 110	WL 111	WL 112	WL 113	WL 114	WL 115	WL 116	WL 117	WL 118	WL 119	WL 120	WL 121	WL 122	WL 123	WL 124	WL 125	WL 126	WL 127	WL 128	WL 129	WL 130	WL 131	WL 132	WL 133
SF1	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
SF2	Н	H	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	H	Н
SF3	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
SF4	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
SF5	N	N	N	N	N	N	N	N	N	Ν	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF6	N	N	N	N	N	Ζ	N	N	Ν	Z	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF7	N	S3, S3S4N, S3S4B	N	SpC	S3, S3S4, S3S4B, S3S4N	Z	S3	N	N	N	N	N	N	N	N	N	N	N	S3	N	S3, S3S4B	N	N	Thr, S3, S3N, S3S4B	N
SF8	Ν	N	N	N	N	Ν	N	N	N	Ν	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF9	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF10	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF11	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF12	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF13	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT
SF14	N	N	Υ	Υ	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF15	Н	Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
SF16	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ
SF17	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	Ĺ	L	L	Ĺ	L
SF18	Н	Н	Н	H	H	Н	H	H	Н	Н	H	Н	Н	H	H	Н	H	Н	H	Н	Н	Н	Н	Н	Н
SF19	N	N N	N	N	N N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N N	N
SF20	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
SF21	NA		NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA
SF22	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF23	M	L	M	M	M	L	M	M	1	М	М	1	L	L	M	М	М	М	M	L	M	1	L	M	L
SF24	Н	H	H	Н	H	Н	H	H	Н	Н	H	Н	Н	Н	Н	H	Н	Н	Н	Н	H	Н	Н	H	Н
SF25	N	N	N	N	N	N	Listera australis (S3)	N	N	N	N	N	N	N	N	N	N	N	Listera australis (S3)	N	Listera australis (S3)	N	N	N	N
SF26	N	N	Υ	Υ	N	Ζ	N	N	Ν	Z	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF27	N	Boreal Chickadee (53), Purple Finch (S4SSB, S3S4N), Ruby-crowned Kinglet (S3S4B)	N	Z	Black-backed Woodpecker (S3S4B), Purple Finch (S4S5B, S3S4N), Red-breasted Nuthatch (S3), Red Crossbill (S3S4), Swainson's Thrush (S3S4B)	N	Z	N	Z	Z	N	N	N	N	N	N	N	N	N	N	Black-backed Woodpecker (S3S4B), Red breasted Nuthatch (S3)	- N	N	Canada Warbler (SARA/COSEWIC T, NSESA E, S3S4B), Gray Jay (S3), American Robin (S5B, S3N), Black-backed Woodpecker (S3S4B), Red breasted Nuthatch (S3), Ruby-crowned Kinglet (S3S4B), Swainson's Thrush (S3S4B)	l N
SF28	М	М	М	М	M	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	M	М	М	М	М
SF29	L		L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

Significant Function	WL 134	WL 135	WL 136	WL 137	WL 138	WL 139	WL 140	WL 141	WL 142	WL 143	WL 144	WL 145	WL 146	WL 147	WL 148	WL 149	WL 150	WL 151	WL 152	WL 153	
SF1	L	L	L	L	L	L	L	L	L	L	L	٦	L	L	L	L	L	L	L	L	L
SF2	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н
SF3	Н	Н	Н	Н	М	Н	Н	Н	Н	M	М	М	М	M	M	L	М	M	М	Н	М
SF4	Н	Н	Н	Н	Н	Н	Н	Н	Н	M	Н	М	М	M	M	М	М	M	М	М	М
SF5	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF6	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF7	N	S3	S3, S3S4B	S3	N	N	N	N	S3S4B	SpC	N	N	N	S3	Thr, S3, S3N, S3S4B	N	N	S3	N	N	N
SF8	N	N	N	N	N	Ν	N	Ν	N	N	N	N	N	N	N	N	N	N	N	N	N
SF9	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF10	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF11	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF12	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF13	NAT	NAT	NAT	NAT		MOD	NAT	MOD	MOD	MOD	MOD	MOD	MOD	NAT	MOD	MOD	MOD		NAT	NAT	MOD
SF14	N	Υ	N	Υ	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF15	Н	М	Н	L	Н	Н	Н	Н	M	M	М	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
SF16	Υ	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
SF17	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
SF18	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
SF19	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF20	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
SF21	NA	NA	NA	М	NA	NA	NA	NA	M	M	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SF22	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF23	М	Н	M	М	М	L	L	L	M	Н	Н	М	Н	Н	Н	Н	L	L	М	М	L
SF24	Н	Н	Н	Н	М	Н	Н	М	M	M	М	М	М	M	M	М	L	M	М	Н	М
SF25	N	Listera australis (S3)	N	Listera australis (S3)	N	N	N	N	N	N	N	N	N	Listera australis (S3)	N	N	N	N	N	N	N
SF26	N	Υ	N	Υ	N	Ν	Ν	Ν	Υ	Υ	Υ	Ν	Υ	N	N	N	N	N	N	N	Υ
SF27	N	N	Ruby-crowned Kinglet (S3S4B)	N	N	N	N	N	Ruby-crowned Kinglet (S3S4B)	Eastern Wood-Pewee (COSEWIC SC, NSESA V, S3S4B)	N	N	N	N	Canada Warbler (SARA/COSEWIC T, NSESA E, S3S4B), Gray Jay (S3), American Robin (S5B, S3N), Ruby-crowned Kinglet (S3S4B)	N	N	Red-breasted Nuthatch (S3)	N	N	N
SF28	М	М	М	М	М	L	М	L	M	M	М	М	Н	М	М	М	L	М	М	М	Н
SF29	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

																			WCCandill Liviloill		
Significant Function	WL 155	WL 156	WL 157	WL 158	WL 159	WL 160	WL 161	WL 162	WL 163	WL 164	WL 165	WL 166		WL 168	WL 169	WL 170	WL 171	WL 172	WL 173	WL 174	WL 175
SF1	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	
SF2	Н	H-M	H-M	М	М	М	М	М	М	M	M	М	М	M	М	М	М	М	M	М	М
SF3	Н	H-M	Н	М	Н	М	Н	М	М	Н	M	М	Н	Н	Н	Н	Н	М	Н	Н	М
SF4	Н	Н	Н	М	Н	Н	Н	Н	Н	Н	M	М	М	M	М	Н	Н	Н	M	М	М
SF5	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF6	Ν	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Υ	N	Υ	Υ	N
SF7	N	Thr, S3, S3N, S3S4B, S3S4N	Thr, S3, S3S4, S3S4B	N	N	N	N	N	N	S3S4B	S3, S3S4N	N	N	S3N, S3S4B, S3S4N	N	N	N	N	Thr, S3, S3S4B	N	N
SF8	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF9	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF10	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF11	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF12	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF13	NAT	NAT	NAT	MOD	NAT	NAT	NAT	NAT	NAT	NAT	MOD	NAT	NAT	NAT	NAT	NAT	NAT	MOD	NAT	NAT	NAT
SF14	N	N	N	N	N	N	N	N	N	N	Y	N	N	N	N	Υ	N	N	N	N	N
SF15	Н	Н	Н	Н	L	L	Н	Н	Н	Н	M	Н	Н	Н	Н	М	L	Н	L	L	М
SF16	Υ	γ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
SF17	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	
SF18	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
SF19	N	N	N	N	N	N	N	N	Υ	N	N	N	N	N	N	N	N	Υ	N	N	Y
SF20	Υ	Y	Y	Υ	Υ	Υ	Υ	Υ	N	Y	Y	Υ	Υ	Y	Υ	Υ	Υ	N	Y	Υ	N
SF21	NA	NA NA	H	М	М	NA	NA	NA	NA	NA NA	M	NA	NA	NA NA	NA	NA	Н	NA	M	NA	NA
SF22	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF23	М	Н	Н	Н	М	1	М	Н	L	M	M	М	М	Н	М	М	М	М	M	М	М
SF24	М	M	Н	L	М	Н	М	Н	М	Н	M	L	М	Н	Н	М	Н	L	Н	Н	М
SF25	N	N	Vaccinium corymbosum (S3S4)	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SF26	N	N	N	N	Υ	Υ	N	N	N	N	Υ	N	N	N	N	N	Υ	N	Υ	Υ	N
SF27	N	Olive-sided Flycatcher (SARA, COSEWIC, NSESA, T, S3B), Gray Jay (S3), American Robin (S5B, S3N), Black-backed Woodpecker (S3S4B), Purple Finch (S4S5B, S3S4N), Red-breasted Nuthatch (S3), Ruby- crowned Kinglet (S3S4B), Swainson's Thrush	Olive-sided Flycatcher (SARA, COSEWIC, NSESA T, S3B), Bay-breasted Warbler (S3S4B), Red- breasted Nuthatch (S3)	N	N	N	N	N	N	Northern Harrier (S3S4B), Ruby-crowned Kinglet (S3S4B)	Boreal Chickadee (S3), Purple Finch (S4S5B, S3S4N)	N	N	American Robin (SSB, S3N), Blackpoll Warbler(S3S4B), Purple Finch (S4SSB, S3S4N), Ruby-crowned Kinglet (S3S4B)	N	N	N	N	Canada Warbler (SARA/COSEWIC T, NSESA E, S3S4B), Gray Jay (S3), Black-backed Woodpecker (S3S4B), Ruby-crowned Kinglet (S3S4B), Swainson's Thrush (S3S4B)	N	N
SF28	М	(35346) M	Н	L	Н	Н	М	М	М	M	M	L	М	М	М	М	Н	L	M	М	М
SF29	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	М	L	L	L	L

Significant Function	WL 176	WL 177	WL 178	WL 179
SF1	L	L	L	L
SF2	М	M	М	M
SF3	Н	M	М	M
SF4	М	M	М	M
SF5	N	N	N	N
SF6	N	N	N	N
SF7	N	S3, S3S4B	N	S3, S3S4B
SF8	N	N	N	N
SF9	N	N	N	N
SF10	N	N	N	
SF11	N	N	N	
SF12	N	N	N	
SF13	NAT	NAT	NAT	
SF14	N	N	N	N
SF15	Н	Н	Н	H
SF16	Υ	Y	Υ	Y
SF17	Ĺ	Ĺ	L	L
SF18	H	Н	Н	H
SF19	Y	N N	Υ	Y
SF20	N	Y	N	N
SF21	NA	NA	NA	NA NA
SF22	N	N N	N	N N
SF23	M	M	M	H
SF24	H	M	M	M
SF25	N	N	N	N
SF26	N	N	N	N
SF27	N	Red-breasted Nuthatch (S3), Ruby-crowned Kinglet (S3S4B), Swainson's Thrush (S3S4B)	N	Red-breasted Nuthatch (S3), Ruby-crowned Kinglet (S3S4B), Swainson's Thrush (S3S4B)
SF28	M	M	M	M
SF29	L	L	L	L

Appendix G Wetland Characterization Table

FOOTPRINT	WETLAND ID*	SURFACE HYDROLOGY		DOMINANT VEGETATION			HYDRIC SOILS	
FOOTPRINT	WEILAND ID	SORFACE HIDROLOGI	Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators	
Mine	WL1.1	Surface Water (A1)	Carex trisperma	Nemopanthus mucronatus	Picea mariana	40-0cm	Histosol (A1)	
		High Water Table (A2)	Osmunda cinnamomea	Picea mariana	Acer rubrum	Organic	Hydrogen Sulphide (A4)	
		Hydrogen Sulphide (C1)						
Mine	WL1.2	Surface Water (A1)	Maianthemum trifolium	Picea mariana	Larix laricina	100-0cm	Histosol (A1)	
		High Water Table (A2)		Nemopanthus mucronatus	Picea mariana	Organic		
		Saturation (A3)						
		Hydrogen Sulphide (C1)						
Mine	WL1.3	High Water Table (A2)	Carex trisperma	Nemopanthus mucronatus	Larix laricina	65-0cm	Histosol (A1)	
		Water-Stained Leaves (B9)	Cornus canadensis		Picea mariana	Organic		
		Saturation (A3)						
Mine	WL1.4	High Water Table (A2)	None	Nemopanthus mucronatus	None	170-0cm	Histosol (A1)	
		Saturation (A3)		Larix laricina		Organic		
				Viburnum nudum				
Mine	WL2.1	High Water Table (A2)	None	Picea mariana	Larix laricina	45-0cm	Histosol (A1)	
		Saturation (A3)		Larix laricina	Picea mariana	Organic	Hydrogen Sulphide (A4)	
		Hydrogen Sulphide (C1)						
Mine	WL2.2	High Water Table (A2)	Carex atlantica	Picea mariana	None	60-0cm	Histosol (A1)	
		Saturation (A3)				Organic	Hydrogen Sulphide (A4)	
		Hydrogen Sulphide (C1)						
Mine	WL2.3	High Water Table (A2)	None	Picea mariana	Larix laricinia	40-0cm	Histosol (A1)	
		Saturation (A3)		Larix laricina			Hydrogen Sulphide (A4)	
		Hydrogen Sulphide (C1)						
Mine	WL2.4	High Water Table (A2)	None	Picea rubens	None	80-0cm	Histosol (A1)	
		Saturation (A3)		Larix laricina		Organic		
		Stunted or Stressed Plants (D1)		Pinus strobus				
Mine	WL2.5	High Water Table (A2)	Kalmia angustifolia	Nemopanthus mucronatus	Larix laricina	100-0cm	Histosol (A1)	
		Saturation (A3)	Gaultheria hispidula	Viburnum nudum	Picea rubens	Organic	Hydrogen Sulphide (A4)	
		Hydrogen Sulphide (C1)						
Mine	WL2.6	High Water Table (A2)	Carex trisperma	Nemopanthus mucronatus	Abies balsamea	40-0cm	Histosol (A1)	
		Saturation (A3)	Osmunda cinnamomea	Abies balsamea	Picea mariana	Organic		
					Acer rubrum			
Mine	WL2.7	High Water Table (A2)	Eleocharis tenuis	Larix laricina	Larix laricina	60-0cm	Histosol (A1)	
		Saturation (A3)		Picea rubens		Organic		
				Juniperus communis				
Mine	WL2.8	Surface Water (A1)	Dryopteris campyloptera	Abies balsamea	Picea rubens	18-0cm	Histosol (A1)	
		High Water Table (A2)	Oxalis montana			Organic		
		Saturation (A3)						
		Water-Stained Leaves (B9)						
		Secondary Indicators:						
		Drainage Patterns (B10)						

FOOTPRINT	WETLAND ID*	SURFACE HYDROLOGY		DOMINANT VEGETATION			HYDRIC SOILS		
FOOTPRINT		Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators			
		Moss Trim Lines (B16)							
		Dry-Season Water Table (C2)							
		Geomorphic Position (D2)							
Mine	WL3	Surface Water (A1)	Maianthemum trifolium	Abies balsamea	Larix laricina	40-0cm	Histosol (A1)		
		High Water Table (A2)		Gaylussacia baccata	Acer rubrum	Organic	Hydrogen Sulphide (A4)		
		Saturation (A3)							
		Hydrogen Sulphide (C1)							
Mine	WL4.1	Surface Water (A1)	None	Larix laricina	Larix laricina	100+cm	Histosol (A1)		
		High Water Table (A2)		Picea mariana		Organic	Hydrogen Sulphide (A4)		
		Saturation (A3)		Alnus incana					
		Water-Stained Leaves (B9)							
		Aquatic Fauna (B13)							
		Hydrogen Sulphide (C1)							
Mine	WL4.2	Surface Water (A1)	Carex trisperma	Picea mariana	Picea mariana	100+cm	Histosol (A1)		
		High Water Table (A2)	Osmunda cinnamomea	Acer rubrum	Acer rubrum	Organic	Hydrogen Sulphide (A4)		
		Saturation (A3)		Alnus incana					
		Hydrogen Sulphide (C1)							
Mine	WL5	Surface Water (A1)	Osmunda cinnamomea	Picea mariana	Abies balsamea	50-0cm	Histosol (A1)		
		High Water Table (A2)		Nemopanthus mucronatus	Picea mariana	Organic			
		Saturation (A3)			Acer rubrum				
		Water-Stained Leaves (B9)							
Mine	WL6	Saturation (A3)	Rubus pubescens	Abies balsamea	Acer rubrum	20-0cm	Histosol (A1)		
		Sparsely Vegetated Concave Surface (B8)	Cornus canadensis		Picea mariana	Organic			
		Water-Stained Leaves (B9)			Betula papyrifera				
Mine	WL7	Saturation (A3)	Scirpus cyperinus	None	None	18-0cm	Histosol (A1)		
		Algal Mat or Crust (B4)	Glyceria striata			Organic			
		Sparsely Vegetated Concave Surface (B8)							
		Water-Stained Leaves (B9)							
Mine	WL8.1	High Water Table (A2)	Carex trisperma	Picea mariana	Picea mariana	35-0cm	Histosol (A1)		
		Saturation (A3)	Cornus canadensis	Abies balsamea		Organic			
Mine	WL8.2	Surface Water (A1)	Carix stricta	Larix laricina	None	45-0cm	Histosol (A1)		
		High Water Table (A2)	Chamaedaphne calyculata			Organic			
		Saturation (A3)							
		Water-Stained Leaves (B9)							
	<u> </u>	Aquatic Fauna (B13)							
Mine	WL8.3	Surface Water (A1)	Carex stricta	None	Larix laricina	40-0cm	Histosol (A1)		
		High Water Table (A2)	Chamaedaphne calyculata		Acer rubrum	Organic			
		Saturation (A3)	Myrica gale		Picea mariana				
Mine	WL8.4	High Water Table (A2)	Kalmia angustifolia	Larix laricina	Larix laricina	60-0cm	Histosol (A1)		
		Saturation (A3)	Carex trisperma	Picea mariana	Picea mariana	Organic			

FOOTPRINT	WETLAND ID*	SURFACE HYDROLOGY		DOMINANT VEGETATION			HYDRIC SOILS	
FOOTFRINT	WEILANDID	SOM ACE ITIDIOLOGY	Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators	
Mine	WL9	Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sparsely Vegetated Concave Surface (B8) Secondary Indicators: Stunted or Stressed Plants (D1)	Kalmia angustifolia	Picea mariana	Picea mariana Acer rubrum	10-0cm Organic	Histosol (A1)	
Mine	WL10	Surface Water (A1) High Water Table (A2) Saturation (A3)	Carex stricta Chamaedaphne calyculata	Gaylussacia baccata	None	40-0cm Organic	Histosol (A1)	
Mine	WL11.1	Surface Water (A1) High Water Table (A2) Saturation (A3) Hydrogen Sulphide (C1)	Carex stricta Chamaedaphne calyculata	Picea mariana Viburnum nudum Acer rubrum	None	65-0cm Organic	Histosol (A1) Hydrogen Sulphide (A4)	
Mine	WL11.2	Surface Water (A1) High Water Table (A2) Saturation (A3) Sparsely Vegetated Concave Surface (B8) Water-Stained Leaves (B9)	Glyceria grandis	Alnusincana Abies balsamea	Acer rubrum Picea mariana	25-0cm Organic	Histosol (A1)	
Mine	WL12.1	High Water Table (A2) Saturation (A3)	Carex trisperma Osmunda cinnamomea	Abies balsamea Acer rubrum Picea mariana	Acer rubrum	35-0cm Organic	Histosol (A1)	
Mine	WL12.2	Surface Water (A1) High Water Table (A2) Saturation (A3) Water-Stained Leaves (B9) Secondary Indicators: Drainage Patterns (B10) Stunted or Stressed Plants (D1)	Carex trisperma Osmunda cinnamomea	Abies balsamea Picea mariana	Abies balsamea Picea mariana	35-0cm Organic	Histosol (A1)	
Mine	WL13.1	High Water Table (A2) Saturation (A3) Water Marks (B1) Algal Mat or Crust (B4) Sparsely Vegetated Concave Surface (B8) Water-Stained Leaves (B9) Hydrogen Sulphide (C1) Thin Muck Surface (C7)	Glyceria grandis	Picea mariana	Larix laricina Picea mariana	80-0cm Organic	Histosol (A1) Hydrogen Sulphide (A4)	
Mine	WL13.2	Surface Water (A1) High Water Table (A2) Saturation (A3)	Glyceria canadensis Carex trisperma	Acer rubrum Abies balsamea	Acer rubrum Picea mariana	40+cm Organic	Histosol (A1) Hydrogen Sulphide (A4)	

FOOTPRINT	WETLAND ID*	SURFACE HYDROLOGY		DOMINANT VEGETATION			HYDRIC SOILS	
FOOTFRINT	WEILANDID		Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators	
		Water-Stained Leaves (B9)						
		Aquatic Fauna (B13)						
		Hyrdrogen Sulphide						
		Secondary Indicators:						
		Moss Trim Lines (B16)						
		Dry-Season Water Table (C2)						
		Geomorphic Position						
		Stunted or Stressed Plants (D1)						
Mine	WL14.1	High Water Table (A2)	Glyceria canadensis	Abies balsamea	Picea mariana	60-0cm	Histosol (A1)	
		Saturation (A3)	Osmunda cinnamomea		Betula papyrifera	Organic		
		Water-Stained Leaves (B9)	Carex trisperma					
Mine	WL14.2	High Water Table (A2)	Carex stricta	Viburnum nudum	Acer rubrum	40-0cm	Histosol (A1)	
		Saturation (A3)	Rosa virginiana	Alnus incana		Organic		
Mine	WL14.3	Surface Water (A1)	Eriophorum angustifolium	Viburnum nudum	None	70-0cm	Histosol (A1)	
		High Water Table (A2)	Chamaedaphne calyculata			Organic		
		Saturation (A3)						
		Hydrogen Sulfide						
Mine	WL15	Surface Water (A1)	Glyceria grandis	Acer rubrum	None	50-0cm	Histosol (A1)	
		High Water Table (A2)		Larix laricina		Organic	Hydrogen Sulphide (A4)	
		Saturation (A3)						
		Hydrogen Sulfide						
Mine	WL16	Surface Water (A1)	Carex atlantica	Larix laricina	None	5-0cm	Histosol (A1)	
		High Water Table (A2)	Vaccinium oxycoccos	Viburnum nudum		Organic		
		Saturation (A3)		Acer rubrum				
				Picea mariana				
Mine	WL17.1	High Water Table (A2)	Carex stricta	Viburnum nudum	Larix laricina	35-0cm	Histosol (A1)	
		Saturation (A3)	Carex trisperma		Picea mariana	Organic		
					Abies balsamea			
Mine	WL17.2	High Water Table (A2)	Juniperus communi	Larix laricina	Larix laricina	100+	Histosol (A1)	
		Saturation (A3)	Grais spp.	Picea mariana	Picea mariana	Organic	Hydrogen Sulphide (A4)	
		Hydrogen Sulphide (C1)						
Mine	WL18	High Water Table (A2)	Carex trisperma	Larix laricina	Larix laricina	35-0cm	Histosol (A1)	
		Saturation (A3)	Gaultheria hispidula	Picea mariana	Picea mariana	Organic		
Mine	WL19	Surface Water (A1)	Carex trisperma	Acer rubrum	None	20-0cm	Histic Epipedon (A2)	
		High Water Table (A2)	Scirpus cyperinus	Betula populifolia		Organic		
		Saturation (A3)				0-12cm		
						Mineral		
Mine	WL20	Surface Water (A1)	Osmunda regalis	Acer rubrum	Acer rubrum	100cm+	Histosol (A1)	
		High Water Table (A2)		llex verticillata	Larix laricina	Organic	Hydrogen Sulphide (A4)	
		Saturation (A3)		Alnus incana				

FOOTPRINT	WETLAND ID*	SURFACE HYDROLOGY		DOMINANT VEGETATION		HYDRIC SOILS	
	WEI EAST		Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators
		Water-Stained Leaves (B9)					
		Hydrogen Sulphide (C1)					
		Secondary Indicators:					
		Moss Trim Lines (B16)					
		Drainage Patterns (B10)					
		Dry-Season Water Table (C2)					
		Stunted or Stressed Plants (D1)					
		Geomorphic Positions (D2)					
Mine	WL21	High Water Table (A2)	Cornus canadensis	Abies balsamea	Abies balsamea	22-0cm	Histic Epipedon (A2)
		Saturation (A3)		Betula papyrifera cordifolia	Betula papyrifera cordifolia	Organic	
		Water-Stained Leaves (B9)				0-15cm	
		Secondary Indicators:				Mineral	
		Moss Trim Lines (B16)					
		Dry-Season Water Table (C2)					
		Geomorphic Positions (D2)					
Mine	WL22	High Water Table (A2)	Ocemena nemoralis	Abies balsamea	Abies balsamea	27-0cm	Histic Epipedon (A2)
		Saturation (A3)	Cornus canadensis	Nemopanthus mucronatus	Acer rubrum	Organic	
		Water-Stained Leaves (B9)					
		Secondary Indicators:					
		Moss Trim Lines (B16)					
		Geomorphic Positions (D2)			<u>.</u>	22.0	
Mine	WL23	High Water Table (A2)	Carex trisperma	Abies balsamea	Picea mariana	22-0cm	Histosol (A1)
		Saturation (A3)		Picea mariana	Abies balsamea	Organic	
		Water-Stained Leaves (B9)		Betula papyrifera cordifolia			
		Secondary Indicators:					
		Moss Trim Lines (B16)					
		Dry-Season Water Table (C2)					
Mino	NA/I 2.4	Geomorphic Positions (D2)	Course twice a war a	Abias balanasa	Abiaa balaayaa	25 0000	History (A1)
Mine	WL24	High Water Table (A2)	Carex trisperma	Abies balsamea	Abies balsamea	25-0cm	Histosol (A1)
		Saturation (A3)		Picea mariana	Picea mariana	Organic	
		Water-Stained Leaves (B9)					
Mine	WL25	Surface Water (A1)	Carex trisperma	Abies balsamea	Abies balsamea	46-0cm	Histosol (A1)
		High Water Table (A2)	Osmunda cinnamomea	Acer rubrum	Picea mariana	Organic	
		Saturation (A3)					
		Water-Stained Leaves (B9)					
		Hydrogen Sulphide (C1)					
		Secondary Indicators:					
		Moss Trim Lines (B16)					

FOOTPRINT	WETLAND ID*	SURFACE HYDROLOGY		DOMINANT VEGETATION			HYDRIC SOILS	
FOOTPRINT	WEILANDID	JONIACE III DROLOGI	Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators	
		Dry-Season Water Table (C2)						
		Stunted or Stressed Plants (D1)						
		Geomorphic Positions (D2)						
Mine	WL26	Surface Water (A1)	Osmunda cinnamomea	Dead fall	Dead fall	id Assessm	Histosol (A1)	
		High Water Table (A2)						
		Saturation (A3)						
		Water-Stained Leaves (B9)						
		Water Marks (B1)						
		Algal Mat or Crust (B4)						
		Secondary Indicators:						
		Dry-Season Water Table (C2)						
		Geomorphic Positions (D2)						
Mine	WL27	Surface Water (A1)	Glyceria striata	Acer rubrum	Acer rubrum	20-0cm	Histic Epipedon (A2)	
		High Water Table (A2)		Abies balsamea	Abies balsamea	Organic		
		Saturation (A3)			Picea mariana	0-10		
		Water Marks (B1)				Mineral		
		Water-Stained Leaves (B9)						
Mine	WL28	High Water Table (A2)	Rubus hispidus	Picea mariana	Pinus strobus	42-0cm	Histosol (A1)	
		Saturation (A3)	Carex trisperma	Betula papyrifera cordifolia		Organic	Hydrogen Sulphide (A4)	
		Water-Stained Leaves (B9)						
		Secondary Indicators:						
		Stunted or Stressed Plants (D1)						
		Geomorphic Positions (D2)						
Mine	WL29.1	Surface Water (A1)	Osmunda cinnamomea	Nemopanthus mucronatus	Acer rubrum	35-0cm	Histosol (A1)	
		High Water Table (A2)			Larix laricina	Organic		
		Saturation (A3)			Picea mariana			
		Water-Stained Leaves (B9)						
Mine	WL29.2	High Water Table (A2)	Osmunda regalis	Nemopanthus mucronatus	Acer rubrum	45-0cm	Histosol (A1)	
		Saturation (A3)		Gaylussacia baccata	Larix laricina	Organic		
		Water-Stained Leaves (B9)						
Mine	WL29.3	Surface Water (A1)	Rhynchospora alba	Nemopanthus mucronatus	Larix laricina	45-0cm	Histosol (A1)	
		High Water Table (A2)		Larix laricina		Organic	Hydrogen Sulphide (A4)	
		Saturation (A3)						
		Hydrogen Sulphide (C1)						
Mine	WL29.4	High Water Table (A2)	Osmunda cinnamomea	Picea mariana	Abies balsamea	60-0cm	Histosol (A1)	
		Saturation (A3)	Carex trisperma	Abies balsamea	Picea mariana	Organic	Hydrogen Sulphide (A4)	
Mine	WL29.5	High Water Table (A2)	Kalmia angustifolium	Nemopanthus mucronatus	Larix laricina	35-0cm	Histosol (A1)	
		Saturation (A3)		Picea mariana	Picea mariana	Organic		
Mine	WL29.6	Surface Water (A1)	Rhynchospora alba	None	None	50-0cm	Histosol (A1)	
		High Water Table (A2)	Chamaedaphne calyculata			Organic		

FOOTPRINT	WETLAND ID*	SURFACE HYDROLOGY		DOMINANT VEGETATION			HYDRIC SOILS	
TOOTFRINT	WEILANDID		Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators	
		Saturation (A3)						
		Water-Stained Leaves (B9)						
		Aquatic Fauna (B13)						
Mine	WL30	Surface Water (A1)	Cornus canadensis	Abies balsamea	Picea rubens	25-0cm	Histosol (A1)	
		High Water Table (A2)	Gaultheria hispidula	Picea mariana		Organic		
		Saturation (A3)						
		Water-Stained Leaves (B9)						
Mine	WL31	High Water Table (A2)	Osmunda cinnamomea	Nemopanthus mucronatus	Picea mariana	65-0cm	Histosol (A1)	
		Saturation (A3)	Maianthemum canadense	Picea mariana		Organic	Hydrogen Sulphide (A4)	
		Water-Stained Leaves (B9)						
		Hydrogen Sulphide (C1)						
Mine	WL32	High Water Table (A2)	Maianthemum trifolium	Abies balsamea	Picea mariana	22-0cm	Histosol (A1)	
		Saturation (A3)			Abies balsamea	Organic	Hydrogen Sulphide (A4)	
		Water-Stained Leaves (B9)						
		Hydrogen Sulphide (C1)						
		Secondary Indicators:						
		Dry-Season Water Table (C2)						
		Stunted or Stressed Plants (D1)						
		Geomorphic Positions (D2)						
		Shallow Aquitard (D3)						
Mine	WL33	Surface Water (A1)	Osmunda cinnamomea	Abies balsamea	Abies balsamea	40+cm	Histosol (A1)	
		High Water Table (A2)	Carex trisperma	Nemopanthus mucronatus	Picea mariana	Organic	Hydrogen Sulphide (A4)	
		Saturation (A3)	Cornus canadensis					
		Water-Stained Leaves (B9)						
		Hydrogen Sulphide (C1)						
		Secondary Indicators:						
		Stunted or Stressed Plants (D1)						
		Geomorphic Positions (D2)						
Mine	WL34	High Water Table (A2)	Carex trisperma	Abies balsamea	Abies balsamea	40+cm	Histosol (A1)	
		Saturation (A3)	Fragaria virginiama	Betula alleghaniensis		Organic	Hydrogen Sulphide (A4)	
		Iron Deposits (B5)						
		Water-Stained Leaves (B9)		1				
		Hydrogen Sulphide (C1)		1				
		Secondary Indicators:		1				
		Stunted or Stressed Plants (D1)		1				
		Geomorphic Positions (D2)		1				
		Drainage Patterns (B10)		1				
		Moss Trim Lines (B16)		1				
	1	Dry-Season Water Table (C2)						
Mine	WL35	High Water Table (A2)	Osmunda cinnamomea	Abies balsamea	Picea mariana	42-0cm	Histosol (A1)	

FOOTPRINT	WETLAND ID*	SURFACE HYDROLOGY		DOMINANT VEGETATION			HYDRIC SOILS	
TOOTFRINT	WEILANDID	JOHN ACE ITT DROLLOGT	Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators	
		Saturation (A3)	Carex trisperma		Abies balsamea	Organic		
		Water-Stained Leaves (B9)						
		Hydrogen Sulphide (C1)						
		Secondary Indicators:						
		Dry-Season Water Table (C2)						
		Moss Trim Lines (B16)						
		Geomorphic Position (D2)						
Mine	WL36	Surface Water (A1)	Osmunda cinnamomea	Abies balsamea	Abies balsamea	32-0cm	Histosol (A1)	
		High Water Table (A2)		Acer rubrum	Picea mariana	Organic	Hydrogen Sulphide (A4)	
		Saturation (A3)						
		Water-Stained Leaves (B9)						
		Hydrogen Sulphide (C1)						
		Secondary Indicators:						
		Dry-Season Water Table (C2)						
		Geomorphic Position (D2)						
Mine	WL37	High Water Table (A2)	Oclemena accuminata	Betula papyrifera cordifolia	Betula papyrifera cordifolia	28-0cm	Histosol (A1)	
		Saturation (A3)	Oclemena nemoralis	Betula alleghaniensis		Organic	Hydrogen Sulphide (A4)	
		Water-Stained Leaves (B9)						
		Secondary Indicators:						
		Geomorphic Position (D2)						
Mine	WL38	High Water Table (A2)	Thelypteris simulata	Abies balsamea	Abies balsamea	58-0cm	Histosol (A1)	
		Saturation (A3)		llex verticillata	Picea mariana	Organic	Hydrogen Sulphide (A4)	
		Water-Stained Leaves (B9)		Picea mariana				
		Hydrogen Sulphide (C1)						
		Secondary Indicators:						
		Dry-Season Water Table (C2)						
		Geomorphic Positions (D2)						
		Stunted or Stressed Plants (D1)						
Mine	WL39	High Water Table (A2)	Osmunda cinnamomea	Abies balsamea	Acer rubrum	48-0cm	Histosol (A1)	
		Water-Stained Leaves (B9)	Carex trisperma		Picea mariana	Organic	Hydrogen Sulphide (A4)	
		Saturation (A3)			Abies balsamea			
Mine	WL40	High Water Table (A2)	Osmunda cinnamomea	Abies balsamea	Abies balsamea	100+cm	Histosol (A1)	
		Saturation (A3)		Picea mariana	Picea mariana	Organic	Hydrogen Sulphide (A4)	
		Water-Stained Leaves (B9)						
		Hydrogen Sulphide (C1)						
		Secondary Indicators:						
		Dry-Season Water Table (C2)						
		Geomorphic Positions (D2)				45.5		
Mine	WL41	High Water Table (A2)	Carex stricta	Alnus incana	None	45-0cm	Histosol (A1)	
		Saturation (A3)				Organic		

FOOTPRINT	WETLAND ID*	SURFACE HYDROLOGY		DOMINANT VEGETATION			HYDRIC SOILS
	WEI E WIE IS	301117102 11131102001	Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators
		Water Marks (B1)					
		Thin Muck Surface (C7)					
		Sparsely Vegetated Concave Surface (B8)					
		Water-Stained Leaves (B9)					
		Secondary Indicators:					
		Drainage Patterns (B10)					
		Stunted or Stressed Plants (D1)					
Mine	WL42	High Water Table (A2)	Carix canescens	Abies balsamea	Betula cordifolia	20-0cm	Histosol (A1)
		Saturation (A3)	Carex stricta	Larix laricina	Picea rubens	Organic	Hydrogen Sulphide (A4)
		Hydrogen Sulphide (C1)			Picea mariana		
Mine	WL43	High Water Table (A2)	None	Picea rubens	Betula papyrifera	15-0cm	Histosol (A1)
		Saturation (A3)		Nemopanthus mucronatus	Picea rubens	Organic	
		Water-Stained Leaves (B9)					
		Secondary Indicators:					
		Geomorphic Positions (D2)					
Mine	WL44	High Water Table (A2)	Osmunda cinnamomea	Abies balsamea	Acer rubrum	20-0cm	Histosol (A1)
		Saturation (A3)	Thelypteris simulata	Nemopanthus mucronatus	Picea rubens	Organic	
		Drift Deposits (B3)			Picea mariana		
		Water-Stained Leaves (B9)					
Mine	WL45	Surface Water (A1)	Nemopanthus mucronatus	Abies balsamea	Picea mariana	60-0cm	Histosol (A1)
		High Water Table (A2)		Picea mariana		Organic	Hydrogen Sulphide (A4)
		Saturation (A3)					
		Water Marks (B1)					
		Sparsely Vegetated Concave Surface (B8)					
		Water-Stained Leaves (B9)					
		Hydrogen Sulphide (C1)					
		Secondary Indicators:					
		Stunted or Stressed Plants (D1)		 			
Mine	WL46	Surface Water (A1)	Rubus canadensis	Acer rubrum	Abies balsamea	22-0cm	Histosol (A1)
		High Water Table (A2)	Glyceria canadensis	Betula papyrifera cordifolia	Acer rubrum	Organic	Hydrogen Sulphide (A4)
		Saturation (A3)					
		Water-Stained Leaves (B9)		1			
		Aquatic Fauna (B13)		1			
		Secondary Indicators:		1			
		Moss Trim Lines (B16)		1			
		Dry-Season Water Table (C2)		1			
NA:	14/1 47	Geomorphic Positions (D2)	Colomo nono oti	Danid nossesses	Me	: al A	
Mine	WL47	Surface Water (A1)	Calamagrostis canadensis	Rapid assessment	None	id Assessm	Histosol (A1)
		High Water Table (A2)	Iris versicolor				
		Saturation (A3)					

FOOTPRINT	WETLAND ID*	SURFACE HYDROLOGY		DOMINANT VEGETATION			HYDRIC SOILS
10011 1	WEILANDID	JONI ACE III DIGEOGI	Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators
		Water Marks (B1)					
		Sediment Deposits (B2)					
		Sparsely Vegetated Concave Surface (B8)					
		Water-Stained Leaves (B9)					
		Aquatic Fauna (B13)					
		Secondary Indicators:					
		Drainage Patterns (B10)					
		Stunted or Stressed Plants (D1)					
		Geomorphic Positions (D2)					
Mine	WL48.1	Thin Muck Surface (C7)	Rubus hispidus	None	Acer rubrum	60-0cm	Histosol (A1)
		Sparsely Vegetated Concave Surface (B8)				Organic	
		Water-Stained Leaves (B9)					
		Secondary Indicators:					
		Drainage Patterns (B10)					
		Stunted or Stressed Plants (D1)					
		Geomorphic Positions (D2)					
Mine	WL48.2	High Water Table (A2)	Osmunda cinnamomea	Picea mariana	Picea mariana	55-0cm	Histosol (A1)
		Saturation (A3)	Carex trisperma	Betula cordifolia		Organic	
		Water-Stained Leaves (B9)	Rubus hispidus	Abies balsamea			
		Secondary Indicators:					
		Geomorphic Positions (D2)					
Mine	WL49	Surface Water (A1)	Carex trisperma	None	Abies balsamea	50-0cm	Histosol (A1)
		High Water Table (A2)				Organic	
		Saturation (A3)					
		Sparsely Vegetated Concave Surface (B8)					
		Secondary Indicators:					
		Drainage Patterns (B10)					
		Geomorphic Positions (D2)					
Mine	WL50	High Water Table (A2)	Osmunda cinnamomea	Abies balsamea	None	40+cm	Histosol (A1)
		Saturation (A3)		Nemopanthus mucronatus		Organic	
		Water-Stained Leaves (B9)					
		Secondary Indicators:					
		Geomorphic Positions (D2)					
Mine	WL51	Surface Water (A1)	None	Pinus strobus	Betula cordifolia	55-0cm	Histosol (A1)
		High Water Table (A2)		Abies balsamea	Picea rubens	Organic	Hydrogen Sulphide (A4)
		Saturation (A3)					
		Water Marks (B1)					
		Water-Stained Leaves (B9)					
		Hydrogen Sulphide (C1)					
		Secondary Indicators:					

FOOTPRINT	WETLAND ID*	SURFACE HYDROLOGY		DOMINANT VEGETATION			HYDRIC SOILS
10011111111	WEILANDID	JOHN ACE ITTOROLOGY	Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators
		Drainage Patterns (B10)					
		Geomorphic Positions (D2)					
Mine	WL52	Surface Water (A1)	Viola cucullata	Abies balsamea	Picea rubens	22-0cm	Histosol (A1)
		High Water Table (A2)	Glyceria striata			Organic	
		Saturation (A3)					
		Water Marks (B1)					
		Drift Deposits (B3)					
		Thin Muck Surface (C7)					
		Sparsely Vegetated Concave Surface (B8)					
		Water-Stained Leaves (B9)					
		Aquatic Fauna (B13)					
		Secondary Indicators:					
		Drainage Patterns (B10)					
		Geomorphic Positions (D2)					
		Stunted or Stressed Plants (D1)					
Mine	WL53	Surface Water (A1)	Osmunda cinnamomea	Acer rubrum	None	40-0cm	Histosol (A1)
		High Water Table (A2)	Glyceria striata	Picea mariana		Organic	
		Saturation (A3)					
		Thin Muck Surface (C7)					
		Sparsely Vegetated Concave Surface (B8)					
		Water-Stained Leaves (B9)					
		Secondary Indicators:					
		Drainage Patterns (B10)					
N diana)A/I F 4	Geomorphic Positions (D2)	Constitution	4	Dia a su ma suriam su	60.0	
Mine	WL54	Surface Water (A1)	Carex trisperma	Acer rubrum	Picea mariana	60-0cm	Histosol (A1)
		High Water Table (A2)	Osmunda cinnamomea	Betula cordifolia	Picea rubrum	Organic	Hydrogen Sulphide (A4)
		Saturation (A3)	Kalmia angustifolia	Abies balsamea			
		Water Marks (B1) Water-Stained Leaves (B9)					
		` '					
		Hydrogen Sulphide (C1) Secondary Indicators:					
		Geomorphic Positions (D2)					
Mine	WL55	High Water Table (A2)	Scirpus cyperinus	Salix pyrifolia	Acer rubrum	30-0cm	Histosol (A1)
Willie	VVLJJ	Saturation (A3)	Scii pus cyperinus	Acer rubrum	Abies balsamea	Organic	Tilstosof (A1)
		Water Marks (B1)		Spiraea tomentosa	אטוכט טעוטעוווכע	Organic	
		Algal Mat or Crust (B4)		Spiraca tomentosa			
		Thin Muck Surface (C7)					
		Sparsely Vegetated Concave Surface (B8)					
		Water-Stained Leaves (B9)					
		Secondary Indicators:					

FOOTPRINT	WETLAND ID*	SURFACE HYDROLOGY		DOMINANT VEGETATION			HYDRIC SOILS		
FOOTFRINT		Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators			
		Drainage Patterns (B10)							
		Stunted or Stressed Plants (D1)							
		Geomorphic Positions (D2)							
Mine	WL56.1	Saturation (A3)	Dryopteris intermedia	Abies balsamea	Larix laricina	80-0cm	Histosol (A1)		
		Water-Stained Leaves (B9)	Rubus hispidus	Acer rubrum		Organic			
		Secondary Indicators:	Carex trisperma	Larix laricina					
		Drainage Patterns (B10)							
Mine	WL56.2	High Water Table (A2)	Juncus effusus	Larix laricina	Betula papyrifera	5-0cm	Depleted Matrix (F3)		
		Saturation (A3)		Betula papyrifera		Organic			
		Thin Muck Surface (C7)		Alnus incana		0-20cm			
		Sparsely Vegetated Concave Surface (B8)				Mineral			
		Water-Stained Leaves (B9)							
		Secondary Indicators:							
		Surface Soil Cracks (B6)							
		Geomorphic Position (D2)							
		Drainage Patterns (B10)							
Mine	WL56.3	High Water Table (A2)	Kalmia angustifolium	Picea mariana	Picea mariana	100cm+	Histosol (A1)		
		Saturation (A3)				Organic	Hydrogen Sulphide (A4		
		Hydrogen Sulphide (C1)							
		Water-Stained Leaves (B9)							
Mine	WL57.1	Surface Water (A1)	Osmunda cinnamanea	Nemopanthus mucronatus	Acer rubum	50+	Histosol (A1)		
		High Water Table (A2)	Carex trisperma		Picea mariana	Organic	Hydrogen Sulphide (A4		
		Saturation (A3)			Abies balsamea				
		Water-Stained Leaves (B9)							
		Aquatic Fauna (B13)							
		Hydrogen Sulphide (C1)							
		Secondary Indicators:							
		Moss Trim Lines (B16)							
		Dry-Season Water Table (C2)							
		Stunted or Stressed Plants (D1)							
		Geomorphic Positions (D2)							
Mine	WL57.2	High Water Table (A2)	Osmunda cinnamanea	Abies balsamea	Abies balsamea	18-0cm	Histosol (A1)		
		Saturation (A3)	Cornus canadensis			Organic			
		Water-Stained Leaves (B9)							
		Secondary Indicators:							
		Moss Trim Lines (B16)							
		Dry-Season Water Table (C2)							
		Microtopographical Relief (D4)							
Mine	WL57.3	Surface Water (A1)	Carex leptalia	Betula alleghaniensis	None	10-0cm	Hydrogen Sulphide (A4		
		High Water Table (A2)	Osmunda cinnamanea			Organic	Depleted Matrix (F3)		

FOOTPRINT	WETLAND ID*	SURFACE HYDROLOGY	DOMINANT VEGETATION			HYDRIC SOILS	
1 COTT MINT			Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators
		Saturation (A3) Iron Deposits (B5) Thin Muck Surface (C7) Water-Stained Leaves (B9) Aquatic Fauna (B13) Hydrogen Sulphide (C1) Presence of Reduced Iron (C4) Secondary Indicators: Drainage Patterns (B10) Moss Trim Lines (B16)	Glyceria striata			0-12cm Mineral	Histic Epipedon (A2)
Mine	WL58	Dry-Season Water Table (C2) Microtopographical Relief (D4) High Water Table (A2) Saturation (A3)	Thelypteris simulata	Abies balsamea	Acer rubrum	3-0cm Organic	Depleted Matrix (F3) Histic Epipedon (A2)
		Water Marks (B1) Thin Muck Surface (C7) Sparsely Vegetated Concave Surface (B8) Water-Stained Leaves (B9) Secondary Indicators: Drainage Patterns (B10) Geomorphic Positions (D2) Microtopographical Relief (D4)				0-18cm Mineral	
Mine	WL59	Surface Water (A1) High Water Table (A2) Saturation (A3) Sparsely Vegetated Concave Surface (B8) Water-Stained Leaves (B9) Aquatic Fauna (B13) Iron Deposits (B5) Hydrogen Sulphide (C1) Secondary Indicators: Drainage Patterns (B10) Stunted or Stressed Plants (D1)	None	Picea mariana Viburnum nudum Acer rubrum	Picea mariana Larix laricina	30-0cm Organic	Histosol (A1) Hydrogen Sulphide (A4)
Mine	WL60	High Water Table (A2) Saturation (A3) Water-Stained Leaves (B9) Secondary Indicators: Moss Trim Lines (B16) Dry-Season Water Table (C2) Geomorphic Positions (D2)	Scirpus cyperinus	Picea rubens	Picea rubens Picea mariana	24-0cm Organic 0-12cm Mineral	Histic Epipedon (A2)

FOOTPRINT	WETLAND ID*	SURFACE HYDROLOGY	DOMINANT VEGETATION			HYDRIC SOILS	
	WEILANDID		Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators
Mine	WL61.1	High Water Table (A2) Saturation (A3) Water-Stained Leaves (B9) Secondary Indicators:	Osmunda regalis	Acer rubrum	Acer rubrum	20-0cm Organic	Histosol (A1)
		Drainage Patterns (B10)					
Mine	WL61.2	Surface Water (A1) High Water Table (A2) Saturation (A3)	Carex stricta	Alnus incana	Acer rubrum	40-0cm Organic	Histosol (A1) Hydrogen Sulphide (A4)
Mine	WL61.3	Surface Water (A1) High Water Table (A2) Saturation (A3)	Osmunda regalis Oclemena nemoralis	Acer rubrum Alnus incana	Acer rubrum Larix laricina	5-0cm Organic 0-15cm Mineral	Depleted Matrix (F3)
Mine	WL62	High Water Table (A2) Saturation (A3) Water Marks (B1) Water-Stained Leaves (B9)	Osmunda regalis	Abies balsamea	Larix laricina	16-0cm Organic	Histosol (A1)
Mine	WL63	High Water Table (A2) Saturation (A3) Water-Stained Leaves (B9)	Osmunda cinnamomea Theypteris noveboracensis Carex trisperma	Abies balsamea Nemopanthus mucronatus Viburnum nudum	Picea mariana Acer rubrum Abies balsamea	23-0cm Organic	Histosol (A1)
Haul Road	WL64.1	Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Water-Stained Leaves (B9)	Carex trisperma Thelypteris noveboracensis	Betula alleghaniensis	Abies balsamea	20-0cm Organic	Histosol (A1)
Haul Road	WL64.2	Surface Water (A1) High Water Table (A2) Saturation (A3)	Carex trisperma Glyceria grandis	Abies balsamea	Abies balsamea Larix laricina	15-0cm Organic 0-5cm Silt Clay	Histic Epipedon (A2)
Haul Road	WL65	High Water Table (A2) Saturation (A3) Water-Stained Leaves (B9)	Carex echinata	Abies balsamea	None	5-0cm Organic 0-15cm Mineral	Histic Epipedon (A2)
Haul Road	WL66.1	Surface Water (A1) High Water Table (A2) Saturation (A3) Mark Marks (B1)	Carex echinata Carex magellanica Dulichium arundinaceum	None	None	120-0cm Organic	Histosol (A1)
Haul Road	WL66.2	Surface Water (A1) High Water Table (A2) Saturation (A3)	Thelypteris noveboracensis	Abies balsamea Alnus viridis Betula alleghaniensis	Abies balsamea	25-0cm Organic	Histosol (A1)
Haul Road	WL66.3	High Water Table (A2)	Glyceria grandis	Larix laricina	None	65-0cm	Histosol (A1)

FOOTPRINT	WETLAND ID*	SURFACE HYDROLOGY		DOMINANT VEGETATION		HYDRIC SOILS		
	WEID III		Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators	
		Saturation (A3)		Alnus incana		Organic		
Haul Road	WL67.1	High Water Table (A2)	Chamaedaphne calyculata	Picea mariana	None	73-0cm	Histosol (A1)	
		Saturation (A3)		Larix laricina		Organic		
Haul Road	WL67.2	High Water Table (A2)	Osmunda cinnamomea	Viburnum nudum	Acer rubrum	32-0cm	Histosol (A1)	
		Saturation (A3)		Nemopanthus mucronatus	Larix laricina	Organic		
		Water-Stained Leaves (B9)			Abies balsamea			
Haul Road	WL68	Surface Water (A1)	Carex stricta	Spiraea alba	Acer rubrum	72-0cm	Histosol (A1)	
		High Water Table (A2)		Rhododendron canadense	Larix laricina	Organic		
		Saturation (A3)		Myrica gale				
		Water-Stained Leaves (B9)						
Haul Road	WL69	Surface Water (A1)	Carex stricta	Myrica gale	None	100-0cm	Histosol (A1)	
		High Water Table (A2)				Organic		
		Saturation (A3)						
		Water-Stained Leaves (B9)						
Haul Road	WL70	High Water Table (A2)	Osmunda cinnamomea	Acer rubrum	Acer rubrum	28-0cm	Histosol (A1)	
		Saturation (A3)	Scirpus cyperinus	Alnus incana		Organic		
		Water-Stained Leaves (B9)						
Haul Road	WL71	High Water Table (A2)	Glyceria grandis	Abies balsamea	Betula alleghaniensis	16-0cm	Histic Epipedon (A2)	
		Saturation (A3)	Trientalis borealis	Betula alleghaniensis		Organic		
		Water-Stained Leaves (B9)		Picea rubens		0-11cm		
						Mineral		
Haul Road	WL72	High Water Table (A2)	Glyceria grandis	Acer rubrum	Acer rubrum	40-0cm	Histic Epipedon (A2)	
		Saturation (A3)	Carex crinita			Organic		
						0-7cm		
						Sandy		
Haul Daad	VA/1.72.4	Curfo co Motor (A1)	Council trian arms a	Alous in cons	Abias balanas	Loam	Listand (A4)	
Haul Road	WL73.1	Surface Water (A1)	Carex trisperma Glyceria grandis	Alnus incana	Abies balsamea Acer rubrum	58-0cm	Histosol (A1)	
		High Water Table (A2) Saturation (A3)	Giyceria granais	Nemopanthus mucronatus	ACEI TUDIUIII	Organic		
		Water-Stained Leaves (B9)						
Haul Road	WL73.2	Surface Water (A1)	Maianthemum trifolium	Kalmia angustifolia	Larix laricina	36-0cm	Histosol (A1)	
Hadi Noda	WE75.2	High Water Table (A2)	Widiantinemann trijonam	Alnus incana	Larix faricina	Organic	111310301 (A1)	
		Saturation (A3)		7 III as meana		Organic		
		Water-Stained Leaves (B9)						
Haul Road	WL74.1	Surface Water (A1)	Rubus hispidus	Abies balsamea	Acer rubrum	35-0cm	Histosol (A1)	
		High Water Table (A2)	Carex folliculata		Abies balsamea	Organic		
		Saturation (A3)	,,			- 1 6		
Haul Road	WL74.2	Surface Water (A1)	Glyceria grandis	None	Acer rubrum	10-0cm	Histosol (A1)	
		High Water Table (A2)	, , , , , ,		•	Organic	, ,	
		Saturation (A3)						

FOOTPRINT	WETLAND ID*	SURFACE HYDROLOGY		DOMINANT VEGETATION			HYDRIC SOILS	
TOOTFRINT		JONI ACE ITIDIOLOGI	Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators	
		Water Marks (B1)						
		Water-Stained Leaves (B9)						
Haul Road	WL75	Surface Water (A1)	Phegopteris connectilis	Abies balsamea	Picea rubens	60-0cm	Histosol (A1)	
		High Water Table (A2)		Nemopanthus mucronatus	Acer rubrum	Organic	Hydrogen Sulfide (A4)	
		Saturation (A3)			Abies balsamea			
Haul Road	WL76.1	Surface Water (A1)	Lycopus uniflorus	Abies balsamea	Acer rubrum	70-0cm	Histosol (A1)	
		High Water Table (A2)		Alnus incana	Picea mariana	Organic	Hydrogen Sulfide (A4)	
		Saturation (A3)						
		Sparsely Vegetated Concave Surface (B8)						
Haul Road	WL76.2	Surface Water (A1)	Carex canescens	Alnus incana	Picea rubens	50-0cm	Histosol (A1)	
		High Water Table (A2)	Calamagrostis canadensis	Acer rubrum		Organic		
		Saturation (A3)						
Haul Road	WL77	High Water Table (A2)	Carex stricta	Betula papyrifera	Picea mariana	28-0cm	Histosol (A1)	
		Saturation (A3)	Rubus pubsescens	Alnus incana	Acer rubrum	Organic		
		Hydrogen Sulfide Odor (C1)						
Haul Road	WL78	High Water Table (A2)	Glyceria melicaria	Picea rubens	Picea rubens	25-0cm	Histosol (A1)	
		Saturation (A3)	Carex echinata		Acer rubrum	Organic		
		Sparsely Vegetated Concave Surface (B8)						
		Water-Stained Leaves (B9)						
Haul Road	WL79	High Water Table (A2)	Carex gynandra	Abies balsamea	Abies balsamea	20-0cm	Histosol (A1)	
		Saturation (A3)	Coptis trifolia	Nemopanthus mucronatus	Picea mariana	Organic		
		Water-Stained Leaves (B9)						
Haul Road	WL80	High Water Table (A2)	Maianthemum trifolium	Viburnum nudum	Picea mariana	36-0cm	Histosol (A1)	
		Saturation (A3)		Picea mariana	Larix laricina	Organic		
		Water-Stained Leaves (B9)						
Haul Road	WL81	Surface Water (A1)	Glyceria grandis	Alnus incana	None	17-0cm	Histosol (A1)	
		High Water Table (A2)				Organic		
		Saturation (A3)						
Haul Road	WL82	Surface Water (A1)	Glyceria grandis	Abies balsamea	Abies balsamea	20-0	Histosol (A1)	
		High Water Table (A2)	Lycopus uniflorus	Acer rubrum		Organic		
		Saturation (A3)				0-5cm	Histic Epipedon (A2)	
11. 15. 1	14/1 00	C (for 144)		84 / 4 / 4	Del le ille i de	Clay	112-1	
Haul Road	WL83	Surface Water (A1)	Acer rubrum	Betula alleghaniensis	Betula alleghaniensis	23-0cm	Histosol (A1)	
		High Water Table (A2)	Lycopus uniflorus		Abies balsamea	Organic		
		Saturation (A3)						
Hand Dood	14/104	Water Marks (B1)	Outro trade	Assault	A1	25.0	115-1-1/84	
Haul Road	WL84	Surface Water (A1)	Rubus hispidus	Acer rubrum	None	35-0cm	Histosol (A1)	
		High Water Table (A2)	Scirpus cyperinus	Betula alleghiensis		Organic		
Hand Dood	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Saturation (A3)	Company of the transfer of the	Abias halas as	A1	45.000	11:	
Haul Road	WL85	High Water Table (A2)	Carex crinita	Abies balsamea	None	15-0cm	Histosol (A1)	

FOOTPRINT	WETLAND ID*	SURFACE HYDROLOGY		DOMINANT VEGETATION		HYDRIC SOILS		
POOTPRINT	WEILANDID		Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators	
		Saturation (A3)	Scirpus cyperinus	Alnus incana		Organic		
Haul Road	WL86	Surface Water (A1) High Water Table (A2) Saturation (A3) Water-Stained Leaves (B9)	Maianthemum trifolium	Betula alleghaniensis	Abies balsamea	40-0cm Organic	Histosol (A1)	
Haul Road	WL87	Surface Water (A1) High Water Table (A2) Saturation (A3)	Carex trisperma Scirpus cyperinus	Abies balsamea	None	22-0cm Organic	Histosol (A1)	
Haul Road	WL88	High Water Table (A2) Saturation (A3)	Rubus hispidus Carex trisperma	Betula papyrifera Picea rubens	None	25-0cm Organic	Histosol (A1)	
Haul Road	WL89	High Water Table (A2) Saturation (A3)	Osmunda cinnamomea	Acer rubrum Abies balsamea Nemopanthus mucronatus	Abies balsamea Picea rubens	25-0cm Organic	Histosol (A1)	
Haul Road	WL90	Surface Water (A1) High Water Table (A2) Saturation (A3)	Calamagrostis canadensis Carex trisperma	Abies balsamea Nemopanthus mucronatus	Abies balsamea Acer rubrum	60-0cm Organic	Histosol (A1)	
Haul Road	WL91	Surface Water (A1) High Water Table (A2) Saturation (A3)	Kalmia angustifolia Cornus canadensis Osmunda cinnamomea Vaccinium myrtilloides	Alnus incana	Acer rubrum Larix laricina	20-0cm Organic	Histosol (A1)	
Haul Road	WL92	Surface Water (A1) High Water Table (A2) Saturation (A3)	Cornus canadensis	Picea mariana Abies balsamea	Acer rubrum Picea mariana	30-0cm Organic	Histosol (A1)	
Haul Road	WL93	Surface Water (A1) High Water Table (A2) Saturation (A3) Water-Stained Leaves (B9)	Scirpus cyperinus	Alnus incana	None	10-0cm Organic 0-22cm Mineral	Histosol (A1)	
Haul Road	WL94	Surface Water (A1) High Water Table (A2) Saturation (A3)	Carex trisperma Cornus canadensis	Abies balsamea Picea mariana	Picea mariana Acer rubrum	20-0cm Organic	Histosol (A1)	
Haul Road	WL95	Surface Water (A1) High Water Table (A2) Saturation (A3)	Dryopteris cristata	Virburnum nudum Abies balsamea	Acer rubrum Abies balsamea	25-0cm Organic	Histosol (A1)	
Haul Road	WL96	High Water Table (A2) Saturation (A3)	Carex trisperma Rubus hispidus	Betulaa populifolia	Acer rubrum Abies balsamea Picea mariana	24-0cm Organic	Histosol (A1)	
Haul Road	WL97	Surface Water (A1) High Water Table (A2) Saturation (A3) Water-Stained Leaves (B9)	Osmunda cinnamomea Lycopus uniflorus	Abies balsamea Acer rubrum	Abies balsamea	42-0cm Organic	Histosol (A1)	

FOOTPRINT	WETLAND ID*	SURFACE HYDROLOGY		DOMINANT VEGETATION		HYDRIC SOILS	
FOOTPRINT	WEILANDID		Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators
Haul Road	WL98	Surface Water (A1)	Oxalis montana	Alnus incana	Abies balsamea	25-0cm	Histosol (A1)
		High Water Table (A2)	Phegopteris connectilis		Acer rubrum	Organic	
		Saturation (A3)					
Haul Road	WL99	Surface Water (A1)	Kalmia angustifolia	Abies balsamea	Abies balsamea	23-0cm	Histosol (A1)
		Water Marks (B1)	Dennstaedtia punctilobula		Picea rubens	Organic	
		Water-Stained Leaves (B9)				0-3cm	
						Sandy	
						Loam	
Haul Road	WL100	High Water Table (A2)	Osmunda cinnamomea	Nemopanthus mucrantus	None	68-0cm	Histosol (A1)
		Saturation (A3)		Kalmia angustifolia		Organic	
		Water-Stained Leaves (B9)		Betula papyrifera			
Haul Road	WL101	Saturation (A3)	Carex trisperma	Betula populifolia	Abies balsamea	20-0cm	Histosol (A1)
			Osmunda cinnamomea	Acer rubrum	Acer rubrum	Organic	
				Abies balsamea			
Haul Road	WL102.1	High Water Table (A2)	Cornus canadensis	Ledum groenlandicum	Acer rubens	75-0cm	Histosol (A1)
		Saturation (A3)	Osmunda cinnamomea		Picea mariana	Organic	
		Water-Stained Leaves (B9)					
Haul Road	WL102.2	High Water Table (A2)	Osmunda cinnamomea	Picea rubens	Abies balsamea	82-0cm	Histosol (A1)
		Saturation (A3)	Thelypteris noveboracensis	Abies balsamea	Picea rubens	Organic	
		Water-Stained Leaves (B9)					
Haul Road	WL103	High Water Table (A2)	Cornus canadensis	Picea mariana	None	45-0cm	Histosol (A1)
			Kalmia angustifolia	Betula papyrifera		Organic	
Haul Road	WL104	Saturation (A3)	Rubus hispidus	Abies balsamea	None	35-0cm	Histosol (A1)
		Stunted or Stressed Plants (D1)	Cornus canadensis	Acer rubrum		Organic	
			Gaultheria hispidula				
Haul Road	WL105	High Water Table (A2)	Osmunda cinnamomea	Populus tremuloides	None	46-0cm	Histosol (A1)
			Carex trisperma	Betula papyrifera		Organic	
Haul Road	WL106	Water-Stained Leaves (B9)	Kalmia angustifolia	Viburdnum nudum	None	25-0cm	Histosol (A1)
				Betula papyrifera		Organic	
Haul Road	WL107	Saturation (A3)	Coptis trifolia	Picea rubens	Abies balsamea	26-0cm	Histosol (A1)
		Drainage Patterns (B10)	Oxalis montana			Organic	
		Stunted or Stressed Plants (D1)					
Haul Road	WL108	Saturation (A3)	Rubus hispidus	Betula papyrifera	None	26-0cm	Histosol (A1)
		Drainage Patterns (B10)	Osmunda cinnamomea	Abies balsamea		Organic	
		Stunted or Stressed Plants (D1)					
Haul Road	WL109	High Water Table (A2)	Osmunda cinnamomea	Nemopanthus mucronatus	Picea rubens	15-0cm	Histosol (A1)
		Saturation (A3)			Abies balsamea	Organic	
					Acer rubrum		
Haul Road	WL110	Surface Water (A1)	Carex trisperma	Abies balsamea	None	100-0cm	Histosol (A1)
		High Water Table (A2)	Kalmia angustifolia	Picea mariana		Organic	

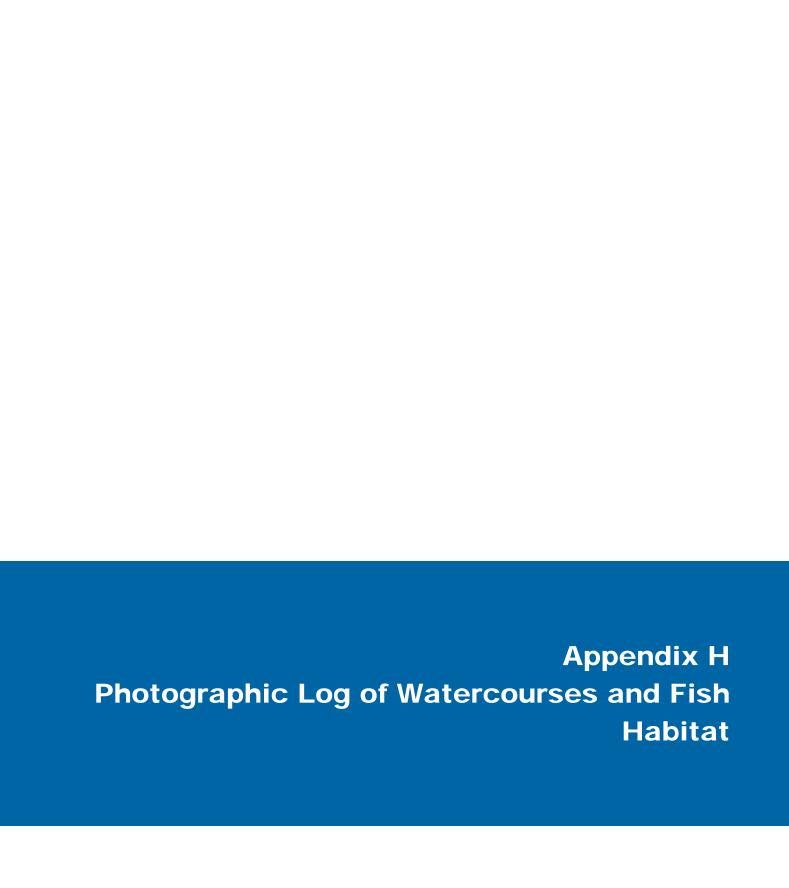
FOOTPRINT	WETLAND ID*	SURFACE HYDROLOGY		DOMINANT VEGETATION			HYDRIC SOILS	
FOOTPRINT	WEILANDID		Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators	
		Saturation (A3)						
		Water Marks (B1)						
		Water-Stained Leaves (B9)						
Haul Road	WL111	Surface Water (A1)	Osmunda cinnamomea	Picea rubrum	Abies balsamea	130-0cm	Histosol (A1)	
		High Water Table (A2)	Acer rubrum	Abies balsamea	Picea mariana	Organic		
		Saturation (A3)	Oxalis montana		Acer rubrum			
		Water-Stained Leaves (B9)						
Haul Road	WL112	High Water Table (A2)	Carex trisperma	Abies balsamea	Abies balsamea	68-0cm	Histosol (A1)	
		Saturation (A3)	Coptis trifolia		Picea mariana	Organic		
		Water-Stained Leaves (B9)			Acer rubrum			
Haul Road	WL113	Surface Water (A1)	Osmunda cinnamomea	Abies balsamea	Abies balsamea	32-0cm	Histosol (A1)	
		High Water Table (A2)	Carex trisperma	Picea mariana	Acer rubrum	Organic		
		Saturation (A3)						
		Water-Stained Leaves (B9)						
Haul Road	WL114	Surface Water (A1)	Carex trisperma	Abies balsamea	Abies balsamea	68-0cm	Histosol (A1)	
		High Water Table (A2)			Picea rubens	Organic		
		Saturation (A3)						
Haul Road	WL115	Surface Water (A1)	Gaylussacia baccata	Picea rubens	Acer rubrum	67-0cm	Histosol (A1)	
		High Water Table (A2)	Osmunda cinnamomea	Picea mariana	Picea mariana	Organic		
		Saturation (A3)						
Haul Road	WL116	High Water Table (A2)	Cornus canadensis	Picea mariana	Picea mariana	38-0cm	Histosol (A1)	
		Saturation (A3)	Kalmia augustifolia		Abies balsamea	Organic		
		Water-Stained Leaves (B9)						
Haul Road	WL117	Surface Water (A1)	Ledum groenlandicum	Nemopanthus mucronatus	Abies balsamea	40-0cm	Histosol (A1)	
		High Water Table (A2)	Nemopanthus mucronatus	Picea mariana	Larix laricina	Organic		
		Saturation (A3)	Coptis trifolia					
			Kalmia angustifolia					
Haul Road	WL118	Surface Water (A1)	Osmunda cinnamomea	Abies balsamea	Picea mariana	87-0cm	Histosol (A1)	
		High Water Table (A2)		Nemopanthus mucronatus		Organic		
		Saturation (A3)						
Haul Road	WL119	High Water Table (A2)	Kalmia angustifolia	Abies balsamea	Abies balsamea	66-0cm	Histosol (A1)	
		Saturation (A3)	Vaccinium angustifolium	Gaylussacia baccata		Organic		
	1	Water-Stained Leaves (B9)	Gaylussacia baccata					
Haul Road	WL120	Surface Water (A1)	Kalmia angustifolia	Picea rubens	None	55-0cm	Histosol (A1)	
		High Water Table (A2)	Cornus canadensis	Picea mariana		Organic		
		Saturation (A3)	Carex trisperma					
Haul Road	WL121	Surface Water (A1)	Cornus canadensis	Abies balsamea	Abies balsamea	45-0cm	Histosol (A1)	
		High Water Table (A2)	Vaccinium angustifolium	Nemopanthus mucronatus		Organic		
	<u> </u>	Saturation (A3)						
Haul Road	WL122	High Water Table (A2)	Osmunda cinnamomea	Abies balsamea	Picea mariana	63-0cm	Histosol (A1)	

FOOTPRINT	WETLAND ID*	SURFACE HYDROLOGY		DOMINANT VEGETATION			HYDRIC SOILS	
FOOTPRINT	WEILANDID		Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators	
		Saturation (A3)			Abies balsamea	Organic		
Haul Road	WL123	Surface Water (A1)	Osmunda cinnamomea	Nemopanthus mucronatus	Picea mariana	125-0cm	Histosol (A1)	
		High Water Table (A2)		Abies balsamea	Acer rubrum	Organic		
		Saturation (A3)						
		Water-Stained Leaves (B9)						
Haul Road	WL124	High Water Table (A2)	Dennstaedtia punctilobula	Abies balsamea	Picea mariana	90-0cm	Histosol (A1)	
		Saturation (A3)			Acer rubrum	Organic		
Haul Road	WL125	High Water Table (A2)	Osmunda cinnamomea	Abies balsamea	Abies balsamea	60-0cm	Histosol (A1)	
		Saturation (A3)	Picea mariana		Acer rubrum	Organic		
Haul Road	WL126	Saturation (A3)	Kalmia angustifolia	Nemopanthus mucronatus	Abies balsamea	45-0cm	Histosol (A1)	
				Abies balsamea		Organic		
Haul Road	WL127	Surface Water (A1)	Osmunda cinnamomea	Picea mariana	Picea mariana	80-0cm	Histosol (A1)	
		High Water Table (A2)		Nemopanthus mucronatus		Organic		
		Saturation (A3)						
Haul Road	WL128	High Water Table (A2)	Osmunda cinnamomea	Picea mariana	None	100-0cm	Histosol (A1)	
		Saturation (A3)	Carex trisperma	Acer rubrum		Organic		
		Water-Stained Leaves (B9)	Gaylussacia baccata					
Haul Road	WL129	Surface Water (A1)	Ledum groenlandicum	Picea mariana	Acer rubrum	100-0cm	Histosol (A1)	
		High Water Table (A2)				Organic		
		Saturation (A3)						
		Water-Stained Leaves (B9)						
Haul Road	WL130	Surface Water (A1)	Maianthemum trifolium	Picea mariana	Picea mariana	120-0cm	Histosol (A1)	
		High Water Table (A2)	Osmunda cinnamomea	Abies balsamea		Organic		
		Saturation (A3)						
		Water-Stained Leaves (B9)						
Haul Road	WL131	Surface Water (A1)	Phegopteris connectilis	Picea mariana	Picea mariana	75-0cm	Histosol (A1)	
		High Water Table (A2)		Nemopanthus mucronatus	Acer rubrum	Organic		
		Saturation (A3)						
		Hydrogen Sulfide Odor (C1)						
Haul Road	WL132	High Water Table (A2)	Osmunda cinnamomea	Nemopanthus mucronatus	Picea mariana	95-0cm	Histosol (A1)	
		Saturation (A3)	Cornus canadensis	Picea mariana	Acer rubrum	Organic		
		Water-Stained Leaves (B9)						
Haul Road	WL133	High Water Table (A2)	Carex trisperma	Kalmia angustifolia	None	22-0cm	Histosol (A1)	
		Saturation (A3)	Osmunda cinnamomea	Ledum groenlandicum		Organic		
	<u> </u>	Water-Stained Leaves (B9)		Nemopanthus mucronata				
Haul Road	WL134	Surface Water (A1)	Osmunda cinnamomea	Abies balsamea	Abies balsamea	125-0cm	Histosol (A1)	
		High Water Table (A2)	Carex trisperma	Picea mariana	Acer rubrum	Organic		
		Saturation (A3)						
		Water Marks (B1)						
Haul Road	WL135	High Water Table (A2)	Osmunda cinnamomea	Acer rubrum	None	68-0cm	Histosol (A1)	

FOOTPRINT	WETLAND ID*	SURFACE HYDROLOGY		DOMINANT VEGETATION		HYDRIC SOILS	
10011 KIIVI		Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators	
		Saturation (A3)		Pinus strobus		Organic	
		Water-Stained Leaves (B9)		Picea mariana			
Haul Road	WL136	High Water Table (A2)	Thelypteris noveboracensis	Acer balsamea	Abies balsamea	23-0cm	Histosol (A1)
		Saturation (A3)		Acer rubrum	Picea rubens	Organic	
Haul Road	WL137	Surface Water (A1)	Osmunda cinnamomea	Picea rubens	Acer rubrum	62-0cm	Histosol (A1)
		High Water Table (A2)	Thelypteris noveboracensis	llex verticillata	Picea rubens	Organic	
		Saturation (A3)					
		Water-Stained Leaves (B9)					
Haul Road	WL138	Surface Water (A1)	Vaccinium oxycoccos	Acer rubrum	None	10-0cm	Histosol (A1)
		High Water Table (A2)				Organic	
		Saturation (A3)					
		Water Marks (B1)					
Haul Road	WL139	Surface Water (A1)	Osmunda cinnamomea	Abies balsamea	None	65-0cm	Histosol (A1)
		High Water Table (A2)		Picea mariana		Organic	
		Saturation (A3)					
		Water-Stained Leaves (B9)					
Haul Road	WL140	High Water Table (A2)	Ledum groenlandicum	Nemopanthus mucronatus	Abies balsamea	20-0cm	Histosol (A1)
		Saturation (A3)	Coptis trifolium	Acer rubrum	Larix laricina	Organic	
		Water-Stained Leaves (B9)	Kalmia angustifolia				
Haul Road	WL141	Surface Water (A1)	Ledum groenlandicum	Abies balsamea	None	18-0cm	Histosol (A1)
		High Water Table (A2)	Rhododendron canadense	Picea mariana		Organic	
		Saturation (A3)					
		Water-Stained Leaves (B9)					
Haul Road	WL142	Surface Water (A1)	Ledum groenlandicum	Acer rubrum	None	26-0cm	Histosol (A1)
		High Water Table (A2)	Carex projecta	Ledum groenlandicum		Organic	
		Saturation (A3)					
		Water-Stained Leaves (B9)					
Haul Road	WL143.1	Surface Water (A1)	Ledum groenlandicum	Acer rubrum	Picea mariana	65-0cm	Histosol (A1)
		High Water Table (A2)	Carex projecta			Organic	
		Saturation (A3)					
Haul Road	WL143.2	Surface Water (A1)	Oxalis montana	Betula alleghaniensis	Acer rubrum	18-0cm	Histosol (A1)
		High Water Table (A2)	Thelypteris noveboracensis	Abies balsamea	Abies balsamea	Organic	
		Saturation (A3)		Picea rubrum			
		Sparsely Vegetated Concave Surface (B8)					
		Water-Stained Leaves (B9)					
		Thick Muck Surface (C7)					
Haul Road	WL144	Surface Water (A1)	Carex projecta	Picea mariana	None	55-0cm	Histosol (A1)
		High Water Table (A2)		Larix laricina		Organic	
		Saturation (A3)					
		Stunted or Stressed Plants (D1)					

FOOTBRINT	WETLAND ID*	CUREACE LIVEROLOGY	C	DOMINANT VEGETATION			HYDRIC SOILS	
FOOTPRINT	WETLAND ID*	ETLAND ID* SURFACE HYDROLOGY	Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators	
Haul Road	WL145	Surface Water (A1)	Vaccinium oxycoccos	Picea mariana	None	45-0cm	Histosol (A1)	
		High Water Table (A2)	Maianthemum trifolium			Organic		
		Saturation (A3)						
		Water-Stained Leaves (B9)						
Haul Road	WL146.1	Surface Water (A1)	Drosera rotundifolia	None	None	120-0cm	Histosol (A1)	
		High Water Table (A2)	Carex canescens			Organic		
		Saturation (A3)	Dulichium arundinaceum					
Haul Road	WL146.2	Surface Water (A1)	Lycopus uniflorus	Abies balsamea	Abies balsamea	45-0cm	Histosol (A1)	
		High Water Table (A2)	Triadenum virginicum		Acer rubrum	Organic		
		Saturation (A3)						
		Water Marks (B1)						
Haul Road	WL147.1	Surface Water (A1)	Vaccinium macrocarpon	None	None	50-0cm	Histosol (A1)	
		High Water Table (A2)	Vaccinium oxycoccos			Organic		
		Saturation (A3)	Carex magellanica					
Haul Road	WL147.2	High Water Table (A2)	Carex trisperma	Acer rubrum	Larix laricina	50-0cm	Histosol (A1)	
		Saturation (A3)	· ·		Abies balsamea	Organic		
Haul Road	WL148	Surface Water (A1)	Chamaedaphne calyculata	Picea mariana	None	45-0cm	Histosol (A1)	
		High Water Table (A2)	Vaccinium oxycoccos			Organic		
		Saturation (A3)	ŕ					
		Water Marks (B1)						
Haul Road	WL149	Surface Water (A1)	Scirpus cyperinus	Larix laricina	None	65-0cm	Histosol (A1)	
		High Water Table (A2)	Carex trisperma	Picea mariana		Organic		
		Saturation (A3)	Carex magellanica					
Haul Road	WL150	Surface Water (A1)	Rhododendron canadense	None	None	5-0cm	Histic Epipedon (A2)	
		High Water Table (A2)	Scirpuus cyperinus			Organic	,, ,	
		Saturation (A3)	. "			0-20cm		
		,				Sandy		
						Clay		
Haul Road	WL151	Surface Water (A1)	Kalmia angustifolia	Picea mariana	None	120-0cm	Histosol (A1)	
		High Water Table (A2)	Carex trisperma			Organic	, ,	
		Saturation (A3)				2 0		
		Water Marks (B1)						
Haul Road	WL152	High Water Table (A2)	Scirpus cyperinus	Acer rubrum	Picea mariana	40-0cm	Histosol (A1)	
		Saturation (A3)	Juncus canadensis	Picea mariana	Larix laricina	Organic	, ,	
			Carex trisperma			- 0		
Haul Road	WL153	Surface Water (A1)	Maianthemum trifolium	Acer rubrum	None	65-0cm	Histosol (A1)	
		High Water Table (A2)		Larix laricina		Organic	()	
		Saturation (A3)		- 300-200-20		- 8		
Haul Road	WL154	Surface Water (A1)	Chamaedaphne calyculata	None	None	65-0cm	Histosol (A1)	
		High Water Table (A2)	Dulichium arundinaceum			Organic	()	

FOOTPRINT	WETLAND ID*	WETLAND ID* SURFACE HYDROLOGY		DOMINANT VEGETATION			HYDRIC SOILS	
FOOTPRINT	WEILANDID		Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators	
		Saturation (A3)						
Haul Road	WL155	Surface Water (A1)	Osmunda cinnamomea	Abies balsamea	Abies balsamea	20-0cm	Histosol (A1)	
		High Water Table (A2)		Picea mariana	Acer rubrum	Organic		
		Saturation (A3)			Picea mariana			
Haul Road	WL156	High Water Table (A2)	Ledum groenlandicum	Nemopanthus mucronatus	None	65-0cm	Histosol (A1)	
		Saturation (A3)		Viburnum nudum		Organic		
Haul Road	WL157.1	High Water Table (A2)	Carex stricta	Alnus incana	Acer rubrum	50-0cm	Histosol (A1)	
		Saturation (A3)		Acer rubrum		Organic		
Haul Road	WL157.2	High Water Table (A2)	Rubus pubescens	Alnus incana	Acer rubrum	20-0cm	Histic Epipedon (A2)	
		Saturation (A3)	Carex folliculata		Abies balsamea	Organic		
						0-5cm		
						Mineral		
Haul Road	WL158	Surface Water (A1)	Juncus effuses	Larix laricina	None	20-0cm	Histic Epipedon (A2)	
		High Water Table (A2)	Carex echinata			Organic		
		Saturation (A3)				0-10cm		
						Mineral		
Haul Road	WL159	Surface Water (A1)	Carex trisperma	Abies balsamea	Betula populifolia	20-0cm	Histic Epipedon (A2)	
		High Water Table (A2)		Viburnum nudum	Acer rubrum	Organic		
		Saturation (A3)			Picea mariana	0-5cm	Depleted Matrix (F3)	
		Water-Stained Leaves (B9)				Mineral		
Haul Road	WL160	Surface Water (A1)	Chamaedaphne calyculata	Picea rubens	None	20-0cm	Histosol (A1)	
		High Water Table (A2)	Glyceria canadensis	Acer rubrum		Organic		
		Saturation (A3)	Vaccinium macrocarpon					
		Water-Stained Leaves (B9)						
Haul Road	WL161	High Water Table (A2)	Osmunda cinnamomea	Nemopanthus mucronatus	Picea mariana	30-0cm	Histosol (A1)	
		Saturation (A3)	Ledum groenlandicum	Picea mariana	Betula papyrifera	Organic		
			Carex trisperma					
Haul Road	WL162	Surface Water (A1)	Eleocharis ovata	Alnus incana	Picea mariana	25-0cm	Histosol (A1)	
		High Water Table (A2)		Picea mariana	Acer rubrum	Organic		
		Saturation (A3)						
Haul Road	WL163	Surface Water (A1)	Carex trisperma	Picea mariana	None (Clear cut)	5-0cm	Histic Epipedon (A2)	
		High Water Table (A2)		Acer rubrum		Organic		
		Saturation (A3)				0-20cm		
		Water-Stained Leaves (B9)				Mineral		
Haul Road	WL164	Surface Water (A1)	Nemopanthus mucronatus	Abies balsamea	Acer rubrum	45-0cm	Histosol (A1)	
		High Water Table (A2)	Ledum groenlandicum	Nemopanthus mucronatus	Larix laricina	Organic		
		Saturation (A3)			Picea mariana			
Haul Road	WL165	Surface Water (A1)	Cornus canadensis	Alnus incana	Acer rubrum	3-0cm	Histic Epipedon (A2)	
		High Water Table (A2)	Trientalis borealis	Abies balsamea	Abies balsamea	Organic		


FOOTPRINT	WETLAND ID*	WETLAND ID* SURFACE HYDROLOGY		DOMINANT VEGETATION			HYDRIC SOILS	
POOTPRINT	WEILANDID		Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators	
		Saturation (A3)	Carex trisperma			0-50cm		
		Water-Stained Leaves (B9)				Mineral		
Haul Road	WL166	Surface Water (A1)	Carex projecta	Alnus incana	None	40-0cm	Histosol (A1)	
		High Water Table (A2)	Vaccinium macrocarpon	Acer rubrum		Organic		
		Saturation (A3)						
		Water-Stained Leaves (B9)						
Haul Road	WL167	Surface Water (A1)	Osmunda cinnamomea	Picea mariana	Picea mariana	50-0cm	Histosol (A1)	
		High Water Table (A2)		Abies balsamea	Abies balsamea	Organic		
		Saturation (A3)						
		Water-Stained Leaves (B9)						
Haul Road	WL168	Surface Water (A1)	Myrica gale	Acer rubrum	None	100-0cm	Histosol (A1)	
		High Water Table (A2)				Organic		
		Saturation (A3)						
		Water Marks (B1)						
		Drift Deposits (B3) Sparsely Vegetated Concave Surface (B8)						
		' ' '						
Haul Road	WL169	Aquatic Fauna (B13) High Water Table (A2)	Osmunda cinnamomea	Nemopanthus mucronatus	Abies balsamea	10-0cm	Histic Epipedon (A2)	
Haui Noau	VVLIOS	Saturation (A3)	Osmanaa ciimamomea	Picea mariana	Acer rubrum	Organic	nistic Epipedoli (AZ)	
		Saturation (AS)		ricea manana	Acertabiani	0-5cm		
						Mineral		
Haul Road	WL170	High Water Table (A2)	Osmunda cinnamomea	Abies balsamea	Acer rubrum	30-0cm	Histosol (A1)	
Tiddi Noda	WEI76	Saturation (A3)	Thelypteris noveboracensis	Alnus incana	Picea mariana	Organic	111310301 (711)	
		Catalian (187	, p. c c c. c. c. c. c. c. c. c. c.	Picea mariana		0.8		
Haul Road	WL171	Surface Water (A1)	Coptis trifolia	Alnus incana	Acer rubrum	17-0cm	Histosol (A1)	
		High Water Table (A2)	, ,		Betula alleghaniensis	Organic	, ,	
		Saturation (A3)			Picea rubens			
		Sediment Deposits (B2)						
		Thin Muck Surface (C7)						
		Stunted or Stressed Plants (D1)						
Haul Road	WL172	Surface Water (A1)	Solidago canadensis	Alnus incana	Abies balsamea	5-0cm	Histic Epipedon (A2)	
		High Water Table (A2)		Betula populifolia	Betula populifolia	Organic	Depleted Matrix (F3)	
		Saturation (A3)		Picea mariana	Picea mariana	0-40cm		
		Water-Stained Leaves (B9)				Mineral		
Haul Road	WL173	Surface Water (A1)	Galium pallustre	Alnus incana	Picea mariana	40-0cm	Histosol (A1)	
		High Water Table (A2)	Calamagrotis canadensis	Abies balsamea	Betula populifolia	Organic		
		Saturation (A3)	Juncus effusus		Picea mariana			
		Water-Stained Leaves (B9)	Onoclea sensibilis					
Haul Road	WL174	Surface Water (A1)	Cornus canadensis	Pices mariana	Acer rubrum	17-0cm	Histosol (A1)	
		High Water Table (A2)	Osmunda cinamomea	Abies balsamea	Abies balsamea	Organic		

FOOTPRINT	WETLAND ID*	SURFACE HYDROLOGY	DOMINANT VEGETATION				HYDRIC SOILS	
10011111111	WEIEARDID		Herbs	Shrubs	Trees	Depth	Hydric Soil Indicators	
		Saturation (A3)			Picea mariana			
		Water-Stained Leaves (B9)						
Haul Road	WL175	Surface Water (A1)	Osmunda claytoniana	Abies balsamea	None	40-0cm	Histosol (A1)	
		High Water Table (A2)	Osmunda cinamomea	Alnus incana		Organic		
		Saturation (A3)	Thelypteris noveboracensis					
Haul Road	WL176	High Water Table (A2)	Carex trisperma	Betula populifolia	Acer rubrum	4-0cm	Histic Epipedon (A2)	
		Water-Stained Leaves (B9)	Carex stricta	Abies balsamea	Abies balsamea	Organic	Depleted Matrix (F3)	
		Sparsely Vegetated Concave Surface (B8)				0-5cm		
						Mineral		
Haul Road	WL177	Surface Water (A1)	Glyceria canadensis	Alnus incana	None	7-0cm	Histosol (A1)	
		High Water Table (A2)				Organic		
		Saturation (A3)						
		Water-Stained Leaves (B9)						
Haul Road	WL178	Surface Water (A1)	Linnea borealis	Alnus incana	Larix larcina	80+ cm	Histosol (A1)	
		High Water Table (A2)	Rubus hispidus	Picea rubens	Picea rubens	Organic		
		Saturation (A3)			Betula papyrifera			
		Water-Stained Leaves (B9)						
Haul Road	WL179	Surface Water (A1)	Maianthemum canadensis	Alnus incana	Picea mariana	50-0cm	Histosol (A1)	
		High Water Table (A2)		Acer rubrum	Acer rubrum	Organic		
		Saturation (A3)						
		Water-Stained Leaves (B9)						

Notes

^{*} Wetland complex: data has been divided into separate vegetated communities which represents the variation in wetland characteristics.

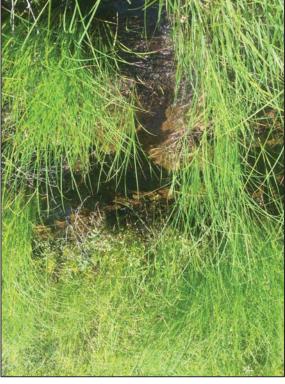


PHOTO 1 - WATERCOURSE 4

PHOTO 2 - WATERCOURSE 5 NEAR WETLAND 2

PHOTOGRAPHIC LOG OF WATERCOURSES AND FISH HABITAT

088664-20 May 24, 2017

PHOTO 3 - WATERCOURSE 5 NEAR WETLAND 14

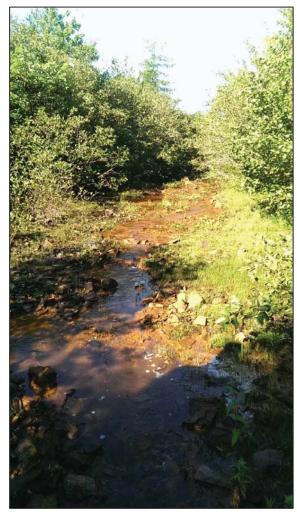


PHOTO 4 - WATERCOURSE 12

088664-20 May 24, 2017

PHOTOGRAPHIC LOG OF WATERCOURSES AND FISH HABITAT

PHOTO 5 - WATERCOURSE 13

PHOTO 6 - WATERCOURSE 14

May 24, 2017

088664-20

PHOTOGRAPHIC LOG OF WATERCOURSES AND FISH HABITAT

PHOTO 7 - CAMERON FLOWAGE

PHOTO 8 - MUD LAKE

088664-20

May 24, 2017

PHOTOGRAPHIC LOG OF WATERCOURSES AND FISH HABITAT

PHOTO 9 - CRUSHER LAKE

PHOTO 10 - WATERCOURSE A

PHOTOGRAPHIC LOG OF WATERCOURSES AND FISH HABITAT

088664-20 May 24, 2017

PHOTO 11 - WATERCOURSE B

PHOTO 12 - WATERCOURSE D

May 24, 2017

088664-20

PHOTOGRAPHIC LOG OF WATERCOURSES AND FISH HABITAT

PHOTO 13 - WATERCOURSE E

PHOTO 14 - WATERCOURSE L

088664-20

May 24, 2017

PHOTOGRAPHIC LOG OF WATERCOURSES AND FISH HABITAT

PHOTO 15 - WATERCOURSE J

PHOTO 16 - WATERCOURSE H

PHOTOGRAPHIC LOG OF WATERCOURSES AND FISH HABITAT

088664-20 May 24, 2017

PHOTO 17 - WATERCOURSE N - WEST RIVER SHEET HARBOUR

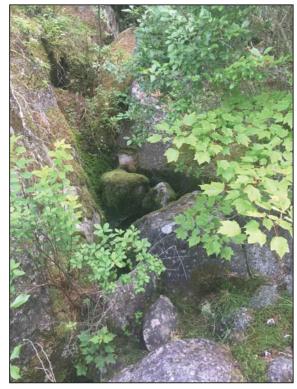


PHOTO 18 - WATERCOURSE Q

088664-20 May 24, 2017

PHOTOGRAPHIC LOG OF WATERCOURSES AND FISH HABITAT

PHOTO 19 - WATERCOURSE T

PHOTO 20 - WATERCOURSE V

088664-20 May 24, 2017

PHOTOGRAPHIC LOG OF WATERCOURSES AND FISH HABITAT

FIGURE H₁₀

PHOTO 21 - WATERCOURSE O

PHOTO 22 - WATERCOURSE AD - MORGAN RIVER

088664-20 May 24, 2017

PHOTOGRAPHIC LOG OF WATERCOURSES AND FISH HABITAT

PHOTO 23 - WATERCOURSE AA

PHOTO 24 - WATERCOURSE W

088664-20 May 24, 2017

PHOTOGRAPHIC LOG OF WATERCOURSES AND FISH HABITAT

PHOTO 25 - WATERCOURSE AH

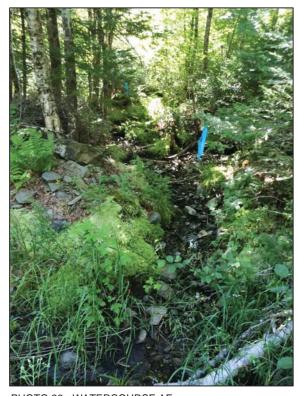


PHOTO 26 - WATERCOURSE AE

PHOTOGRAPHIC LOG OF WATERCOURSES AND FISH HABITAT

088664-20 May 24, 2017

PHOTO 27 - WATERCOURSE AG

PHOTO 28 - WATERCOURSE 4 INLET TO WETLAND 13

May 24, 2017

088664-20

PHOTOGRAPHIC LOG OF WATERCOURSES AND FISH HABITAT

PHOTO 29 - WATERCOURSE 4 OUTLET FROM WETLAND 13

PHOTO 30 - WATERCOURSE 5 INSIDE WETLAND 17

088664-20 May 24, 2017

PHOTOGRAPHIC LOG OF WATERCOURSES AND FISH HABITAT

PHOTO 31 - WATERCOURSE 3 IN WETLAND 20

PHOTO 32 - WATERCOURSE 10 IN WETLAND 29

088664-20 May 24, 2017

PHOTOGRAPHIC LOG OF WATERCOURSES AND FISH HABITAT

PHOTO 33 - WATERCOURSE 11 IN WETLAND 29

PHOTO 34 - WATERCOURSE 11 IN WETLAND 33

088664-20 May 24, 2017

PHOTOGRAPHIC LOG OF WATERCOURSES AND FISH HABITAT

PHOTO 35 - WATERCOURSE 5 IN WETLAND 44 (IMPOUNDED BY BEAVER ACTIVITY)

PHOTO 36 - WATERCOURSE 12 INLET INTO WETLAND 56

088664-20 May 24, 2017

PHOTOGRAPHIC LOG OF WATERCOURSES AND FISH HABITAT

PHOTO 37 - WATERCOURSE 13 IN WETLAND 61

PHOTO 38 - WATERCOURSE A IN WETLAND 64

088664-20 May 24, 2017

PHOTOGRAPHIC LOG OF WATERCOURSES AND FISH HABITAT

PHOTO 39 - WATERCOURSE B IN WETLAND 66

PHOTO 40 - WATERCOURSE E IN WETLAND 73

PHOTOGRAPHIC LOG OF WATERCOURSES AND FISH HABITAT

088664-20 May 24, 2017

PHOTO 41 - WATERCOURSE F IN WETLAND 74

PHOTO 42 - WATERCOURSE G IN WETLAND 76

088664-20 May 24, 2017

PHOTOGRAPHIC LOG OF WATERCOURSES AND FISH HABITAT

PHOTO 43 - WATERCOURSE Z IN WETLAND 146

PHOTO 44 - WATERCOURSE 154

088664-20 May 24, 2017

PHOTOGRAPHIC LOG OF WATERCOURSES AND FISH HABITAT

PHOTO 45 - WATERCOURSE AA IN WETLAND 159

PHOTO 46 - WATERCOURSE AA IN WETLAND 160

088664-20 May 24, 2017

PHOTOGRAPHIC LOG OF WATERCOURSES AND FISH HABITAT

Appendix I Priority Species List

Scientific Name	Common Name	SARA ⁱ	COSEWIC ⁱⁱ	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
Birds						
Botaurus lentiginosus	American Bittern				S3S4B	Preferred habitats of the American Bittern include freshwater wetlands with tall emergent vegetation. In Nova Scotia, it occurs widely in most regions, but is scarce on the Atlantic slope and Cape Breton Island, where marshes are few and relatively infertile.
Turdus migratorius	American Robin				S5B, S3N	American Robins are common across the continent in gardens, parks, yards, golf courses, fields, pastures, tundra, as well as deciduous woodlands, pine forests, shrublands, and forests regenerating after fires or logging.
Icterus galbula	Baltimore Oriole				S2S3B	The Baltimore Oriole is an adaptable species (found breeding in diverse habitats), but typically favors woodland edge (especially riparian) and open areas with scattered trees; strong preference for deciduous over coniferous trees. During spring and fall migration, it is found in variety of habitats, but generally favors open woodlands, woodland margins, hedgerows, and urban parks.
Dendroica castanea	Bay-breasted Warbler				S3S4B	The Bay-breasted is one of the less widespread warblers, breeding in a narrow band across the closed boreal forests from northeast British Columbia to western Newfoundland, and south just into the U.S.A. Although during migrations and while foraging it is often seen in mixed stands, this bird nests only in conifers. Reaching highest densities in Balsam Fir forest infested with spruce budworm.

Scientific Name	Common Name	SARA	COSEWIC ⁱⁱ	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
Picoides arcticus	Black-backed Woodpecker				S3S4	In the Maritimes, the Black-backed Woodpecker is widely but thinly distributed in conifer forests throughout, becoming more common farther north. The Black-backed Woodpecker is very local in southwest Nova Scotia. These birds forage on trees damaged by forest insects, especially bark beetles, and their characteristic flaking-off bark fragments in search of food can be an aid in detecting them. Nests here are often in quite open situations, such as cut-over areas, open Jack Pine stands, and the edges of woodland gardens.
Poecile hudsonica	Boreal Chickadee				S3	The Boreal Chickadee prefers conifer, and especially spruce, forests across the northern regions of Canada. Boreal Chickadees are found in all parts of the Maritimes. Most are residents, but some wander after breeding season.
Dendroica tigrina	Cape May Warbler				S2B	In summer, the Cape May Warbler is found in northern conifer forests. One of several warbler species that attain high densities during spruce budworm outbreaks, but is more usual in mature spruces than in Balsam Fir stands. Activity is mostly at the tops of tall spruces. Rarely observed in the southwest of Nova Scotia due to unsuitable habitat.
Wilsonia canadensis	Canada Warbler	Т	Т	Endangered	S3S4B	In Nova Scotia, the Canada Warbler has only been found sparsely on Cape Breton Island and in the extreme southwest of the province. They are less predictable from habitat than most warblers, they are usually found in dense understory vegetation of mature to mid-aged mixed forest, most closely associated with broad-leafed trees and shrubs, but with conifers usually present too.
Chordeiles minor	Common Nighthawk	Т	Т	Threatened	S2S3B	Common Nighthawks nest on sparsely vegetated or bare ground in open "wastelands" such as pine barrens, forest cut-overs, or burns, and secondarily on flat roofs of buildings.

Scientific Name	Common Name	SARAi	COSEWIC	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
Civil a similar	Factoria Dhagh ind		NAD		Can	The Eastern Bluebird nests in woodpecker holes, as well as nest-boxes. They forage in open areas of low vegetation with scattered
Sialia sialis	Eastern Bluebird		NAR		S3B	trees for nesting.
						In its breeding range, the Eastern Kingbird uses open environments; usually breeds in fields with scattered shrubs and trees, orchards, along shelterbelts, and especially along woodland edges in forested regions. A "savannah species", but given suitable nest sites and perches, will nest in many other habitats—e.g., desert riparian, quaking aspen (Populus tremuloides) parkland, recently burned forest, beaver ponds, golf courses and forested river valleys, and urban environments with tall trees and scattered open spaces. Also, appears drawn to water; often nests densely in trees that overhang water or in dead, standing snags surrounded
Tyrannus tyrannus	Eastern Kingbird				S3B	by water.
Coccothraustes vespertinus	Evening Grosbeak				S3S4B, S3N	Evening Grosbeaks breed in mature and second-growth coniferous forests of northern North America and the Rocky Mountains, including spruce-fir, pine-oak, pinyon-juniper, and aspen forests. Less commonly, they nest in deciduous woodlands, parks, and orchards. They breed as far south as Mexico at 5,000–10,000 feet of elevation in pine and pine-oak woodlands. In winter Evening Grosbeaks live in coniferous forest and deciduous forest as well as in urban and suburban areas. When wintering in urban environments they are most abundant in small woodlots near bird feeders.
Dumetella carolinensis	Gray Catbird				S3	The gray catbird inhabits shrubbery in both upland and river-edge situations, mostly in areas where tree cover is of broad-leafed species. The Maritimes are at the northeast edge of its range, and catbirds are nearly absent in upland areas of Cape Breton Island, as well as in regions with extensive conifer forest cover.

Scientific Name	Common Name	SARA ⁱ	COSEWIC ⁱⁱ	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
Perisoreus canadensis	Gray Jay				S3	The Gray Jay breeds in boreal regions and occurs year-round in the conifer forests. These birds are found all over the Maritimes except where extensive conifer forests are lacking. They seldom leave the spruce and fir forests where they nest.
Tringa melanoleuca	Greater Yellowlegs				S3B, S3S4M	During migration, the Greater Yellowlegs is a familiar sight in salt marshes and around ponds and rivers, but their breeding habitat is very different. Yellowlegs breed in wooded bogs and muskegs access the boreal forest from northern British Columbia and Mackenzie to Labrador, Newfoundland and eastern Nova Scotia.
Charadrius vociferus	Killdeer				S3B	Killdeer are found throughout Nova Scotia, but scarce on the Atlantic slope and on Cape Breton Island. Breed in farmlands, gravel pits, forest clear-cut areas, and open lands along the coast.
						Though it is more generally found in the boreal forest region, likely because less often disturbed there, the Northern Goshawk is also widespread in more temperate habitats. It nests in most forest types found throughout its geographic range. In eastern deciduous forests, Goshawks prefer nesting in mature, mixed hardwood–hemlock stands of birch (Betula sp.), beech (Fagus sp.), maple (Acer sp.), and Eastern Hemlock. Found scattered throughout the forests of the Maritimes. Hunts in diverse habitats
Accipiter gentilis	Northern Goshawk		NAR		S3S4	ranging from open-sage steppes to dense forests, including riparian areas.

Scientific Name	Common Name	SARA	COSEWIC ⁱⁱ	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
						The Northern Mockingbird uses open habitats with scattered
						shrubs and small trees. In the East, typical habitats are parkland,
						cultivated lands, and early successional habitat at low elevations.
						Throughout its range found in suburban and urban habitats such as
						gardens and cemeteries, especially favoring mowed lawns adjacent
						to bare areas (e.g. concrete, asphalt, and sidewalks) with access to
						shrubs or hedges for cover and nesting. Absent from the interior of
	Northern					all forested habitat but frequents forest edge. Found in the same
Mimus polyglottos	Mockingbird				S1B	habitat year-round.
						The Olive-sided Flycatcher is found in open woodlands and other
		-	_	- 1	COD	places where scattered trees remain after cutting or fire in forested
Contopus cooperi	Olive-sided Flycatcher	I	1	Threatened	S3B	regions. Found throughout the Maritimes, but not abundantly.
						This Philadelphia Vireo is found mainly in broad-leafed trees, in
						pure or mixed woods, but it sings and forages more often in young
Vireo philadelphicus	Philadelphia Vireo				S2?B	stands and in the sub-canopy. Breeding has never been proven in Nova Scotia.
vireo prinduerpriicus	Priliadelprila vireo				32:0	Nova Scotia.
						In the Maritimes, the Pine Grosbeak approaches the southern limit
					S2S3B,	of its range, they are found generally in Nova Scotia. In general,
Pinicola enucleator	Pine Grosbeak				SN5	they avoid warmer, hardwood-dominated regions.
						,
						The Pine Siskin is primarily found in open coniferous forests. Also
						breeds in ornamental conifers in parks, cemeteries, and the like,
						and in mixed coniferous-deciduous and even deciduous tree
Carduelis pinus	Pine Siskin				S2S3	associations. May forage in trees, shrubs, and grassy areas.
						Purple Finches are mostly found in moist, cool conifer forests. They
					S4S5B,	are also found in mixed forests along streams and in tree-lined
Haemorhous purpureus	Purple Finch				S3S4N	suburbs.
	Red-breasted	_				Red-breasted Nuthatches live mainly in deciduous woods and in
Sitta canadensis	Nuthatch				S3	coniferous forests.

Scientific Name	Common Name	SARA	COSEWICii	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
Loxia curvirostra	Red Crossbill				S3S4	Red Crossbills are found in mature coniferous forests.
						Rose-breasted Grosbeaks use a wide variety of habitats, including
						deciduous and mixed wooded uplands and lowlands; often at
						shrubby ecotones at the edge of woods at streams, ponds,
						marshes, roads, or pastures. Commonly uses second-growth
						woodlands and well-vegetated suburban areas, parks, gardens,
						and orchards. Exhibits a preference for mesic woodlands, swamp
						forests, riparian corridors; avoids dry oak (Quercus spp.)
	Rose-breasted					woodlands. Uses a wide variety of habitats during spring and fall
Pheucticus Iudovicianus	Grosbeak				S2S3B	migration.
						Ruby-crowned Kinglets prefer spruce-fir forests, however they also
						live in mixed wood forests, isolated trees in meadows, coniferous
						and deciduous forests, mountain-shrub habitat, and floodplain
Regulus calendula	Ruby-crowned Kinglet				S3S4B	forests of oak, pine, spruce or aspen.
						Rusty Blackbirds use wet coniferous and mixed forests from
						northern edge of tundra southward to beginning of deciduous
						forests and grasslands. Frequents fens, alder (Alnus)—willow (Salix)
						bogs, muskegs, beaver ponds, and other openings in the forest
						such as swampy shores along lakes and streams. Exceptionally, on
						Cape Breton Island, Nova Scotia, drier sites such as pasture edges
						are used. During spring and fall migration, it forages in stubble,
						pasture, plowed fields, and edges of swamps. Fall migrants also
5 1		66				frequent wooded areas, particularly for roosting. Occasionally
Euphagus carolinus	Rusty Blackbird	SC	SC	Endangered	S2B	roosts on the ground in open fields.
						Swainson's Thrush are predominantly found in closed-canopy
Cathanna	Considerate In Theory				C2C4D	forests. Breeding habitat includes deciduous and coniferous
Catharus ustulatus	Swainson's Thrush				S3S4B	forests.

Scientific Name	Common Name	SARA	COSEWIC ⁱⁱ	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
Vermivora peregrina	Tennessee Warbler				S3S4B	In its breeding range, the Tennessee Warbler is associated with Boreal zone in deciduous, mixed, and coniferous forests from near sea level to 450 m. Associated with open areas that contain grasses, dense shrubs, and scattered clumps of young deciduous trees.
Empidonax traillii	Willow Flycatcher				S2B	In general, the Willow Flycatcher prefers moist, shrubby areas, often with standing or running water. During spring and fall migration, it uses areas similar to its breeding habitat.
Gallinago delicata	Wilson's Snipe				S3B	The Wilson's Snipe breeds in sedge bogs, fens, willow (Salix spp.) and alder (Alnus spp.) swamps, and marshy edges of ponds, rivers, and brooks. Requires soft organic soil rich in food organisms just below surface, with clumps of vegetation offering both cover and good view of approaching predators. Avoids marshes with tall, dense vegetation (cattails [Typha], reeds [Phragmites], etc.). In Canada, they use four primary types of breeding habitat: sedge bogs, fens, swamps, and pond and river edges. During spring and fall migration, they use marshes (including cattails), swamps, wet meadows, wet pastures, wet fallow fields, and marshy edges of streams and ditches. As during the breeding season, they require wet organic soils rich in food with clumps of cover.
Wilsonia pusilla	Wilson's Warbler				S3B	Western montane, northern, and northeastern populations of Wilson's Warbler are restricted to mesic shrub thickets of riparian habitats, edges of beaver ponds, lakes, bogs, and overgrown clearcuts of montane and boreal zone; may reach into alpine zone. During spring and fall migration, occurs in most deciduous shrub habitats, but primarily riparian shrub understory. Also, found in most other woodlands, suburban habitats, agricultural areas, desert scrub, and montane forests.

Scientific Name	Common Name	SARAi	COSEWIC ⁱⁱ	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
Empidonax flaviventris	Yellow-bellied Flycatcher				S3S4B	The Yellow-bellied Flycatcher is a characteristic breeding bird of Canadian boreal conifer forests and peatlands. It nests in typically cool, moist conifer or mixed forests, bogs, swamps, and muskegs; landscapes often flat or poorly drained. Breeding habitat is usually well stratified, with open canopy, saplings and seedlings, shrubs, and abundant, thick moss cover. Shade is provided by conifer trees and saplings, as well as layers of shrubs, ferns, and herbs; undergrowth is usually dense.
Other Vertebrates						
Perimyotis subflavus	Eastern Pipistrelle	Е	E	Endangered	S1	Prefers partly open country with large trees and woodland edges. Avoids deep woods and open fields. Probably roosts in the summer in tree foliage and occasionally in buildings; may use cave as night roost between foraging forays. Usually hibernates in caves and mines with high humidity. Generally, maternity colonies utilize manmade structures or tree cavities; often in open sites that would not be tolerated by most other bats. The Eastern Red Bat lives in forests, forest edges and hedgerows. It
Lasiurus borealis	Eastern Red Bat				S1	roosts among foliage, usually in deciduous trees, but it will sometimes roost in coniferous trees.
Lasiurus cinereus	Hoary Bat				S1	Hoary Bats are thought to be rare in Nova Scotia. Insectivorous, migratory. Poorly understood. Authorities disagree as to the bat's preference for coniferous versus broadleaf trees. Hoary Bats are thought to prefer trees at the edge of clearings, but have been found in trees in heavy forests, open wooded glades, and shade trees along urban streets and in city parks.

Scientific Name	Common Name	SARA	COSEWIC ⁱⁱ	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
						For Little Brown Myotis, the maternity colonies often exist in warm
						sites that facilitate pup growth rates, such as attics of buildings and
						under bridges, in rock crevices, or in cavities of canopy trees in
						forests. Males roost during daytime in a wide variety of structures,
						including buildings and bridges (mainly M. lucifugus), rock crevices,
						behind flaking bark, and within tree cavities, often at many
						different sites during the summer. Myotis species generally roost in
						tall, large-diameter snags that are in the early to middle stages of
						decay and located in open areas within mature-over mature forest.
						Myotis lucifugus congregates in caves and abandoned mines used
						for hibernation through the winter. About 16 hibernation sites are
Myotis lucifugus	Little Brown Myotis	E	E	Endangered	S1	known in Nova Scotia.
						The Maritime Shrew is most often found in marshes and wet
						meadows. It is only found in two provinces in Canada: New
Sorex maritimensis	Maritime Shrew				S3	Brunswick and Nova Scotia.
						Mainland Moose are herbivores who live in boreal and mixed-
						wood forests. They are often found where there is an abundance
						of food (twigs, stems, and foliage of young deciduous trees and
						shrubs). In spring, islands and peninsulas are often used by cows
						when giving birth. In summer, access to wetlands (and aquatic
Alces americanus	Mainland Moose			Endangered	S1	vegetation) is important.

Scientific Name	Common Name	SARA	COSEWIC ⁱⁱ	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
Myotis septentrionalis	Northern Long-eared Myotis	E	E	Endangered	S1	The Northern Long-eared Bat is found in many regions of Canada. Although there are numerous records of its presence in eastern Canada and the United States, it has only been recorded sporadically in the west. This bat has two habitats: a winter hibernation habitat as well as a summer roosting and foraging habitat. The Northern Long-eared Bat hibernates in caves or abandoned mines during the cold winter months. During the summer months, the bats commonly use crevices behind peeling bark or cavities in partially-decayed trees as summer day roosts. Within thick forests, summer activity may be focused along watercourses and small ponds.
Microtus chrotorrhinus	Rock Vole			3	S2	Optimal habitat for the Rock Vole is ferns/mossy debris near flowing water in coniferous forests. It also occupies deciduous forest/spruce clear cuts (mainly recent cuts), forest ecotones, grassy balds near forest, and sterile-looking rocky road fills. Occupies shallow burrows and runways. Nests probably are placed under logs or in similar protected sites. They are made of moss with a lining of grass and have multiple entrance tunnels. Breeding season is from March to mid-October.
Lasionycteris noctivagans	Silver-haired Bat				S1	Scarce in eastern Canada. During the summer months, Silverhaired Bats are found in forested habitats, particularly coniferous woodlands, adjacent to aquatic habitats like ponds, lakes and streams. Both sexes fly south between the middle of August and early October.
Chelydra serpentina	Snapping Turtle	SC	sc	Vulnerable	S3	southern New Brunswick and parts of mainland Nova Scotia in ponds, lakes, slow-moving streams and sometimes in brackish water if these water bodies have soft mud bottoms and abundant aquatic vegetation.

Scientific Name	Common Name	SARA	COSEWIC ⁱⁱ	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
Glyptemys insculpta	Wood Turtle	Т	Т	Threatened	S2	Habitat destruction and fragmentation due to intense development and accompanying stream alterations are serious problems in the southeastern portion of the Wood Turtle's range. Protection of wooded stream corridors, nesting, feeding, basking, and overwintering sites, and an upland buffer would be necessary to include in preserve design
						Lives along permanent streams during much of each year, but in summer may roam widely overland and can be found in a variety of terrestrial habitats adjacent to streams, from deciduous woods, cultivated fields, and woodland bogs, to marshy pastures. Use of woodland bogs and marshy fields is most common in the northern part of the range.
Fish						
Anguilla rostrata	American Eel		Т		S5	The American Eel moves from salt water into fresh water when quite young and spend their adult life in fresh water returning to spawn in tropical oceans up to several decades later. Widely distributed in freshwaters, estuaries and coastal marine waters connected to the Atlantic Ocean. Although small streams may be critical to the persistence of eels in a watershed, they may use these streams only once or twice a year, while moving to and from more preferred habitats.
	Atlantic Salmon –					
	Southern Uplands					Found in freshwater rivers and streams that are clear, cool, and
Salmo salar	Population		E		S2	well oxygenated, with gravel, cobble, or boulder bottoms.
Rhinichthys atratulus	Blacknose Dace				S3	The Blacknose Dace is common in cool, clear, gravel bottom rivers and streams, however it can survive in slow moving or stagnant waters.

Scientific Name	Common Name	SARA	COSEWICii	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
-						This species generally occupies cool, clear, heavily weeded, spring-fed creeks, small rivers, lakes, and ponds, usually in shallow, quiet to flowing pools and backwaters over sand or mud. Sometimes it burrows into soft bottoms. Occasionally this fish can be found in brackish water. In a lake in Manitoba, adults were most abundant at the outer margin of emergent vegetation (Moodie 1986). Eggs are deposited in a nest made of plant material by the male just
Culaea inconstans	Brook Stickleback				S3	above the bottom in shallow water.
Invertebrates						
Euphydryas phaeton	Baltimore Checkerspot				S3	Found in fresh-water marshes, wet roadsides and meadows. Larvae found feeding on Turtlehead (Chelone glabra) and has been reported to feed on Beardtongue (Penstemon digitalis).
Amblyscirtes vialis	Common Roadside- Skipper				S2	Found in trails, roads in wooded areas and often near streams. Larvae are found feeding off of a variety of grass species.
Polygonia progne	Grey Comma				S3S4	Found in woods and aspen parklands. Larvae found feeding on currants and gooseberries (Ribes sp.) and sometimes Elm (Ulmus sp.).
Danaus plexippus	Monarch	SC	SC		S2B	Almost anywhere during the spring (northward) migration; near the larval foodplains during the breeding season; in the fall commonly near the coast, often in large numbers, all heading south. Larvae are found feeding on the following Milkweed species: Common Milkweed (Ascelpias syriaca) and Swamp Milkweed (A. incarnata), neither of which are abundant plants in Nova Scotia. Common Milkweed is very common in lower Saint John river valley (NB) and possibly north central Nova Scotia.
Pieris oleracea	Mustard White				S2	Found in deciduous woods and bogs. Larvae feed off of various plants belonging to the Brassicaceae (mustard) family.

Scientific Name	Common Name	SARA	COSEWIC ⁱⁱ	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
						Found in moist woods and dominated by graminoids in the
						herbaceous layer of forests. Larvae feed off of woodland grasses
						such as Bearded Shortgrass (Brachyelytrum erectum) and False
Lethe anthedon	Northern Pearly-Eye				S3	Melic Grass (Schizachne purpurascens).
	Pepper and Salt					Found on the edges of forests and streams. Larvae found feeding
Amblyscirtes hegon	Skipper				S2	on a variety of grass species.
						In the Northeast, the larvae inhabit large rivers where they burrow
Gomphus ventricosus	Skillet Clubtail	E	E		S1	in the soft mud of deep pools.
						Found in deciduous forest edges, gardens and roadsides. Larvae found feeding off of members of the Rosaceae family such as plum and cherries (Prunus spp.). Occurrences with Oak (Quercus spp.),
Satyrium liparops	Striped Hairstreak				S3	Willow (Salix spp.) and Blueberry (Vaccinium spp.).
						Frequently found in stream and rivers in sand and gravel
Alasmidonta undulata	Triangle Floater				S2S3	substrates.
Vascular Plants					·	
Isoetes acadiensis	Acadian Quillwort				S 3	In water up to depth of 1m, bordering lakes, ponds or along rivers, infrequent but scattered through province.
Rhamnus alnifolia	Alder-leaved Buckthorn				S3	Grows in wooded swamps or bogs, meadows or alluvial soils in the alkaline regions, in Hants, Cumberland and Inverness Counties.
						Wide tolerance of moisture and fertility, but generally acidic soils
Vaccinium uliginosum	Alpine Bilberry				S3	in Halifax, Digby & Cape Breton.
Barbarea orthoceras	American Yellow Rocket				S1	Alpine or subalpine zones, shores of rivers or lakes, talus and rocky slopes.
Polypodium						
appalachianum	Appalachian Polypody				S3?	Cliffs and rocky slopes, distribution unclear.
Viola sagittata	Arrow-Leaved Violet				S3S4	Sterile woods, clearing and fields, common from Yarmouth to Halifax and Hants Counties.
Viola sagittata var. ovata	Arrow-Leaved Violet				S3S4	Sterile woods, clearing and fields, common from Yarmouth to Halifax and Hants Counties.
Salix serissima	Autumn Willow				S1	Fens (calcium-rich wetlands), meadows and fields, swamps.

Scientific Name	Common Name	SARA ⁱ	COSEWICii	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
						Colonizes recently burned or cleared land; recently exposed
						lakeshores, Sporadic from southern counties to central Nova
Geranium bicknellii	Bicknell's Crane's-bill				S3	Scotia.
Fraxinus nigra	Black Ash			Threatened	S1S2	Typical habitat includes poorly drained soils and swampy woods.
						Prefers acidic or run-out soil as found in fallow fields or brushlands,
Polygala sanguinea	Blood Milkwort				S2S3	scattered through central portion of province.
						Shade-tolerant, restricted to river floodplain deciduous forests. A
Caulophyllum						wide and patchy distribution over northern portion of the province
thalictroides	Blue Cohosh				S2	from Annapolis River to River Denys in Cape Breton.
thanctiolacs	Dide Collosii				32	Found in wet forest soils and swales. Collected from Kings and
Carex tribuloides	Blunt Broom Sedge				S3?	Queens counties to Cape Breton.
Carex tribuloides var.	Bidit Broom Scage				33.	Queens counties to cape breton.
tribuloides	Blunt Broom Sedge				S3?	Found in wet forest soils and swales.
Galium obtusum ssp.	Blunt-leaved					Swamps, swampy grounds, wet areas of prairies, wet woods and
obtusum	Bedstraw				S2S3	thickets, roadside ditches.
						Ponds, pools, lakes and sluggish streams often over deep mucky
	Blunt-leaved					substrate. Northern from Cumberland Co., to northern Cape
Potamogeton obtusifolius	Pondweed				S3	Breton.
Betula pumila var.						
renifolia	Bog Birch				S1?	Bogs and meadows amongst alders.
Betula pumila var. pumila	Bog Birch				S2S3	Bogs and meadows amongst alders.
						Grows in acidic substrate as in bogs; nutrient-rich marshes and in
Salix pedicellaris	Bog Willow				S2	sphagnous lacustrine habitats.
						Lacustrine gravels, streamsides and edges of peatlands. Scattered
Symphyotrichum boreale	Boreal Aster				S2?	from Yarmouth to Cape Breton and uncommon.
						Floodplain (river or stream floodplains), forests, shores of rivers or
Bromus latiglumis	Broad-Glumed Brome				S1	lakes.
		_				In thickets, meadows and stony shores. Grows in alluvial soils in
Anemone canadensis	Canada Anemone				S2	calcareous regions.

Scientific Name	Common Name	SARA ⁱ	COSEWIC ⁱⁱ	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
						Found on dry rock barrens and other open areas in Yarmouth,
Potentilla canadensis	Canada Cinquefoil				S2S3	Halifax, Kings, Shelburne and Hants Co.
Potentilla canadensis var.						Found on dry rock barrens and other open areas in Yarmouth,
canadensis	Canada Cinquefoil				S2S3	Halifax, Kings, Shelburne and Hants Co.
						Grows in dry sandy soils. Local and scattered from Shelburne to
Piptatherum canadense	Canada Rice Grass				S2	Halifax and Colchester counties.
						Anthropogenic (man-made or disturbed habitats), meadows and
Polygonum careyi	Carey's Smartweed				S1	fields, shores of rivers or lakes.
	Coastal Plain Blue-					
Sisyrinchium fuscatum	eyed-grass				S1	Grows on sandy soils. Collected only from western counties.
Eupatorium dubium	Coastal Plain Joe-pye- weed				S2	Found in wet meadows, damp thickets, shores, and along the roadside. It grows best in full sun but can also grow in semi-shade and enjoys grows well-drained soil that is moisture retentive.
						Pastures, fields, ditches and streamsides. Very common
Galium aparine	Common Bedstraw				S2S3	throughout.
Humulus lupulus var. lupuloides	Common Hop				S1?	Anthropogenic (man-made or disturbed habitats), floodplain (river or stream floodplains), forests, shrublands or thickets.
Botrychium lunaria	Common Moonwort				S1	Open slopes. Sand or gravel; shores and meadows. Basic soils. Known from Conrad's Beach, Halifax County and from New Campbellton and Indian Brook in northern Cape Breton.
Equisetum hyemale	Common Scouring- rush				S3S4	Grows in sandy, gravelly soil, on banks or in low areas; often in calcareous regions. Scattered, mostly from Digby County, through the Annapolis Valley, northward to Cape Breton.
Equisetum hyemale var. affine	Common Scouring- rush				S3S4	Grows in sandy, gravelly soil, on banks or in low areas; often in calcareous regions. Scattered, mostly from Digby County, through the Annapolis Valley, northward to Cape Breton.

Scientific Name	Common Name	SARAi	COSEWIC	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
						Moist soil as in meadows, damp fields and other low ground.
Cardamine pratensis var.						Scattered in the province, frequent along the Annapolis River and
angustifolia	Cuckoo Flower				S1	even spreading into roadsides ditches, north to Cape Breton.
						Anthropogenic (man-made or disturbed habitats), fresh tidal
Ranunculus sceleratus	Cursed Buttercup				S1S2	marshes or flats, marshes, swamps.
Ranunculus sceleratus						Anthropogenic (man-made or disturbed habitats), fresh tidal
var. sceleratus	Cursed Buttercup				S1S2	marshes or flats, marshes, swamps.
	Cut-Leaved					Floodplain (river or stream floodplains), forests, shores of rivers or
Rudbeckia laciniata	Coneflower				S1S2	lakes, swamps, wetland margins (edges of wetlands).
naabeena raemata	conchower				3132	lakes, swamps, wedana margins (eages of wedanas).
Rudbeckia laciniata var.	Cut-Leaved					Floodplain (river or stream floodplains), forests, shores of rivers or
gaspereauensis	Coneflower				S1S2	lakes, swamps, wetland margins (edges of wetlands).
						Wet mucky soils in lacustrine habitats; historically collected from
	Disguised St John's-					Digby to Halifax Co. with a single specimen from each of Pictou and
Hypericum dissimulatum	wort				S2S3	Guysborough counties.
						Forms large colonies in woodlands and thickets; Only recently
	Downy Rattlesnake-					discovered in Nova Scotia (1963) and so far known from Queens,
Goodyera pubescens	Plantain				S2	Kings, Annapolis, Hants and Halifax counties.
						Bogs and other peatlands; Scattered throughout Cape Breton,
Epilobium strictum	Downy Willowherb				S3	infrequent elsewhere.
	Drummond's					
Arabis drummondii	Rockcress				S2	Cliff or talus slope.
						A habitat generalist; known from Annapolis, Hants and Lunenburg
Juncus dudleyi	Dudley's Rush				S3	counties.
Vaccinium caespitosum	Dwarf Bilberry				S3	Cliff or talus slope, disturbed sites, field meadow.
,	<u> </u>					, , , , , , , , , , , , , , , , , , ,
Vaccinium caespitosum						
var. caespitosum	Dwarf Bilberry				S3	Cliff or talus slope, disturbed sites, field meadow.

Scientific Name	Common Name	SARA	COSEWIC ⁱⁱ	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
						Usually grows in cool shady habitats as found on forested slopes of
						maple-beech, in the centre of the province. So far, only known
						from West Branch, Pictou Co.; Little River, near Brookfield, Halifax
Pilea pumila	Dwarf Clearweed				S1	Co.; and along the Herbert River, Hants Co. at Woodville.
						Usually grows in cool shady habitats as found on forested slopes of
						maple-beech, in the centre of the province. So far, only known
						from West Branch, Pictou Co.; Little River, near Brookfield, Halifax
Pilea pumila var. pumila	Dwarf Clearweed				S1	Co.; and along the Herbert River, Hants Co. at Woodville.
Pilea parmia var. parmia	Dwarr Clearweed				31	Co., and along the herbert river, hants co. at woodville.
						Anthropogenic (man-made or disturbed habitats), brackish or salt
Baccharis halimifolia	Eastern Baccharis		Т	Threatened	S1	marshes and flats, coastal beaches (sea beaches), marshes.
						Found in damp peat, sandy soils that are poorly drained. Common
	Eastern Blue-Eyed-					from Yarmouth and Shelburne counties east to Lunenberg Co.
Sisyrinchium atlanticum	Grass				S3S4	Scattered elsewhere.
						Clearings, thickets and bogs, swales and lakeshores. Common in
Solidago latissimifolia	Elliott's Goldenrod				S3S4	Yarmouth Co., east to Halifax Co.
						Brackish or salt marshes and flats, intertidal, subtidal or open
Carex vacillans	Estuarine Sedge				S1S3	ocean, shores of rivers or lakes.
Panicum dichotomiflorum						Anthropogenic (man-made or disturbed habitats), shores of rivers
var. puritanorum	Fall Panic Grass				S1?	or lakes.
var. paritanorum	Farwell's Water				31:	Ponds and slow-flowing fresh water. Scattered across the
Myriophyllum farwellii	Milfoil				S2	mainland.
Wiyi topityilaiti jai wellii	Willion				32	Preferred habitat is dry and sandy soils as on barrens. Scattered
Carex foenea	Fernald's Hay Sedge				S3?	from Yarmouth to northern Cape Breton.
Potamogeton	Flat-stemmed				33:	nom ramouth to northern cape breton.
zosteriformis	Pondweed				S2S3	Lacustrine (in lakes or ponds), riverine (in rivers or streams).
Stellaria crassifolia and	- Onaweeu				3233	Lacastinic (in takes of portas), frecinic (in frecis of streams).
var. crassifolia	Fleshy Stitchwort				S1	Frequents pond edges and wet seepy slopes.
	co, octom or t				1	Anthropogenic (man-made or disturbed habitats), grassland,
Trichostema dichotomum	Forked Bluecurls				S1	meadows and fields, sandplains and barrens.

Scientific Name	Common Name	SARA ⁱ	COSEWIC ⁱⁱ	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
						Anthropogenic (man-made or disturbed habitats), floodplain (river
Carex alopecoidea	Foxtail Sedge				S1	or stream floodplains), forests, marshes.
	Gmelin's Water					
Ranunculus gmelinii+	Buttercup				S3	Riverine (in rivers or streams), swamps.
						Meadows, shores, thickets and even wooded swamps. Occasionally
						reported: Pomquet and South River, Antigonish Co., Upper
Zizia aurea	Golden Alexanders				S1	Musquodoboit, Halifax Co.
						Open moist meadows. Found once in the meadow along the
						stream at the Kentville Research Station and to be expected
Veratrum viride	Green False Hellebore				S1	elsewhere. This is possibly native.
Carex viridula var. elatior	Greenish Sedge				S1	Crins of alkaline, lime-rich soils.
						Granite ledges, crevices and gravels, coastal headlands. Halifax and
						Lunenburg counties; French Mountain, Inverness County. Recently
Minuartia groenlandica	Greenland Stitchwort				S3	collected from White's Cove, Digby Co.
						Alpine or subalpine zones, anthropogenic (man-made or disturbed
Lycopodium sabinifolium	Ground-Fir				S3?	habitats), meadows and fields.
Carex haydenii	Hayden's Sedge				S1	Marshes, meadows and fields, shores of rivers or lakes.
Cyperus lupulinus and ssp.						Anthropogenic (man-made or disturbed habitats), grassland,
macilentus	Hop Flatsedge				S1	meadows and fields.
	Inflated Narrow-					
Carex grisea	leaved Sedge				S1	Floodplain (river or stream floodplains), forests.
Datu sahis malama adatu ma	Lanca Lant Crana					
Botrychium lanceolatum	Lance-Leaf Grape-				caca	Fertile soils on woodland hillsides.
var. angustisegmentum Carex lapponica	Fern Lapland Sedge				S2S3 S1?	Sphagnum bogs, wet, nutrient-poor areas, mostly lowlands
ситех тирроппси	Lapianu Seuge				31!	Spriagitum bogs, wet, nutrient-poor areas, mostly lowianus
	Large Purple Fringed					Favours wet meadows and riparian habitats - More often found in
Platanthera grandiflora	Orchid				S3	north-central Nova Scotia. Infrequent in southwestern NS.
						Wet or dry open soil. Widely scattered locations. Until recently,
						only known from Halifax area and Big Baddeck, Victoria County,
Hypericum majus	Large St John's-wort				S2	and thought to be historic.
, periculii iliajas	-4.60 30301113 44010		<u> </u>		<u> </u>	and thought to be motorie.

Common Name	SARA ⁱ	COSEWIC ⁱⁱ	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
					Found in dry, open forest or recent clearings on acidic, gravelly
					soils. Most frequent after fire - Scattered and not common, from
					Kejimkujik National Park to Cumberland Co.; northern Cape Breton.
Lesser Brown Sedge				S2S3	Recently collected from Williams Lake area of Halifax Co.
					Anthropogenic (man-made or disturbed habitats), meadows and
					fields, shores of rivers or lakes, wetland margins (edges of
Sedge				S1	wetlands).
					Sphagnous wet areas, upper peaty lakeshores and undrained
					depressions. Scattered throughout the Atlantic counties and
Little Curlygrass Fern				S3	frequent in the northern plateau of Cape Breton.
					Alpine or subalpine zones, anthropogenic (man-made or disturbed
					habitats), meadows and fields, mountain summits and plateaus,
Little Yellow Rattle				S1	talus and rocky slopes
					Anthropogenic (man-made or disturbed habitats), fens (calcium-
					rich wetlands), lacustrine (in lakes or ponds), meadows and fields,
Loesel's Twayblade				S3S4	shores of rivers or lakes.
					Dama grassy habitats in sandy or muslay sails Locally abundant
					Damp grassy habitats, in sandy or mucky soils. Locally abundant along the Salmon River at Truro and Kemptown, Colchester Co.;
Long loaved Starwort				ca	along the Musquodoboit and Stewiacke rivers; Isle Haute.
Long-leaved Star wort				32	Of wetlands, marshes and swamps. A single collection each from
March Horsetail				C1	Kings County and Halifax Co.
Iviai sii i ioi setaii				31	Kings County and Hamax Co.
Marsh Mermaidweed				S3	Lakeshore fens and streamsides.
Meadow Barley				S1	Anthropogenic (man-made or disturbed habitats).
Michaux's Dwarf					Limited to peat bogs. Scattered localities from Brier Island, Digby
				S2	Co., east to Guysborough, Cape Breton and Inverness counties.
	Lesser Brown Sedge Limestone Meadow Sedge Little Curlygrass Fern Little Yellow Rattle Loesel's Twayblade Long-leaved Starwort Marsh Horsetail Marsh Mermaidweed	Lesser Brown Sedge Limestone Meadow Sedge Little Curlygrass Fern Little Yellow Rattle Loesel's Twayblade Long-leaved Starwort Marsh Horsetail Marsh Mermaidweed Meadow Barley Michaux's Dwarf	Lesser Brown Sedge Limestone Meadow Sedge Little Curlygrass Fern Little Yellow Rattle Loesel's Twayblade Long-leaved Starwort Marsh Horsetail Marsh Mermaidweed Meadow Barley Michaux's Dwarf	Lesser Brown Sedge Limestone Meadow Sedge Little Curlygrass Fern Little Yellow Rattle Loesel's Twayblade Long-leaved Starwort Marsh Horsetail Marsh Mermaidweed Meadow Barley Michaux's Dwarf	Lesser Brown Sedge Limestone Meadow Sedge S1 Little Curlygrass Fern S3 Little Yellow Rattle Loesel's Twayblade S2 Marsh Horsetail Marsh Mermaidweed S3 Meadow Barley Michaux's Dwarf

Scientific Name	Common Name	SARA	COSEWIC ⁱⁱ	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
						Found in disturbed habitats such as roadsides, fields, sandplains,
						riparian meadows and barrens. Its NS distribution is limited to
Amelanchier	Nantucket					Cumberland, Shelburne and Halifax counties. No collection for the
nantucketensis	Serviceberry				S1	Halifax Co. locality.
						Grows in rocky soils on outcrops, cliffs, streamsides. Found on
						Cape Blomidon, Cape d'Or and scattered from Halifax and Hants
Trisetum spicatum	Narrow False Oats				S3S4	counties to northern Cape Breton.
	Narrow-Leaved Wild					Rich deciduous woodlands, wooded bluffs, wooded areas along
Allium burdickii	Leek				S1?	rivers and streams, and cemetery prairies
Saxifraga cernua	Nodding Saxifrage				S1	Alpine or subalpine zones, cliffs, balds, or ledges.
						Sterile soils, swamps and sandy or cobbly lakeshores. Known from
	Northern Adder's-					Yarmouth and Digby Counties; scattered east to Halifax and
Ophioglossum pusillum	tongue				S2S3	Amherst; a single Cape Breton record from George River.
Betula borealis	Northern Birch				S2	Bogs and wooded swamps.
						Cool, mossy sites: bogs, streamsides and wet woods. Rare in
						Shelburne Co., Colchester and Cumberland counties northward.
Viola nephrophylla	Northern Bog Violet				S2	Generally, a northern ranging species within NS.
Lycopodium						
complanatum	Northern Clubmoss				S3S4	Open woodlands, thickets, heathland and rocky slopes;
						Damp sands and other sterile soils, especially in acid or peaty sites.
						Disjunct sites in Halifax, Kings and Cumberland counties;
Geocaulon lividum	Northern Comandra				S3	widespread but local in Cape Breton.
	Northern Meadow-					
Thalictrum venulosum	rue				S1	Shores of rivers or lakes.
	Northern					
Spiraea septentrionalis	Meadowsweet				S1?	Open, moist areas
Vaccinium ovalifolium	Oval-leaved Bilberry				S1	Sterile and dry soils in barrens, thickets and coniferous woods
					-	Grows on muddy streamsides, streambeds and lakeshores, often in
Eleocharis ovata	Ovate Spikerush				S2?	subsiding water.

Scientific Name	Common Name	SARA ⁱ	COSEWIC ⁱⁱ	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
Torreyochloa pallida var.	Pale False Manna					Lacustrine (in lakes or ponds), riverine (in rivers or streams),
pallida	Grass				S1	swamps.
Platanthera flava var.						Anthropogenic (man-made or disturbed habitats), floodplain (river or stream floodplains), forest edges, forests, fresh tidal marshes or flats, grassland, meadows and fields, riverine (in rivers or streams), shrublands or thickets, swamps, wetland margins (edges
herbiola	Pale Green Orchid				S2	of wetlands), woodlands.
Impatiens pallida	Pale Jewelweed				S2	Alluvial soils as along intervales and in thickets. Uncommon from Kings Co,.lsle Haute, to northern Cape Breton and more frequent eastward.
Hieracium paniculatum	Panicled Hawkweed				S3	Mixed forest on dryish soils, especially oak. Occasional from Yarmouth east to Kings and Halifax counties. Common about Kentville and at Kejimkujik.
Rumex persicarioides	Peach-leaved Dock				S2?	Anthropogenic (man-made or disturbed habitats), brackish or salt marshes and flats, coastal beaches (sea beaches), meadows and fields.
·	Pennsylvania					Anthropogenic (man-made or disturbed habitats), marshes, shores
Ranunculus pensylvanicus	Buttercup				S1	of rivers or lakes, swamps.
Erigeron philadelphicus	Philadelphia Fleabane				S2	Habitats include fields, meadows and springy slopes. Not common, scattered stations from Digby and Cumberland counties to central Cape Breton.
Erigeron philadelphicus var. philadelphicus	Philadelphia Fleabane				S2	Habitats include fields, meadows and springy slopes. Not common, scattered stations from Digby and Cumberland counties to central Cape Breton.
Empetrum eamesii ssp.	· ····································					Barrens, beach or coastal shore, bog, exposed rock or sand,
atropurpureum	Pink Crowberry				S2S3	headland
Empetrum eamesii ssp. eamesii	Pink Crowberry				S2S3	Barrens, beach or coastal shore, bog, exposed rock or sand, headland
Empetrum eamesii	Pink Crowberry				S 3	Barrens, beach or coastal shore, bog, exposed rock or sand, headland
Pyrola asarifolia and ssp. asarifolia	Pink Pyrola				S3	Found in moist and riparian forests and in swamps dominated by northern white-cedar (Thuja occidentalis).

Scientific Name	Common Name	SARA	COSEWIC	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
-	Plantain-Leaved					
Carex plantaginea	Sedge				S1	Forests.
Rosa acicularis and ssp.						Cliffs, balds, or ledges, ridges or ledges. Inhabits areas of
sayi	Prickly Rose				S1	calcareous rock or rich sediments.
						Alpine or subalpine zones, cliffs, balds, or ledges, talus and rocky
Festuca prolifera	Proliferous Fescue				S1S2	slopes.
						edges of fields and thickets, Antigonish and Lunenburg Co. to Cape
Crataegus submollis	Quebec Hawthorn				S1?	Breton.
						Floodplain (river or stream floodplains), forests, shores of rivers or
Fraxinus pennsylvanica	Red Ash				S1	lakes, swamps.
Lashanathas annslinian a	Dadract	cc	CC.) (v.l.a.a.va.la.l.a	63	Charac of vivare or lakes
Lachnanthes caroliniana	Redroot Red-stemmed	SC	SC	Vulnerable	S2	Shores of rivers or lakes.
					C4	Fens (calcium-rich wetlands), marshes, shores of rivers or lakes,
Eleocharis erythropoda	Spikerush				S1	wetland margins (edges of wetlands).
Crataegus robinsonii	Robinson's Hawthorn				S1?	Prairie, meadows, fields.
						Grows in dry soils beneath deciduous forests and thickets.
Carex rosea	Rosy Sedge				S 3	Common from Annapolis Co. to northern Cape Breton.
Hieracium scabrum var.						Usually in poor soils in pastures, fields and fallow sites. Common
leucocaule	Rough Hawkweed				S1	throughout.
						Anthropogenic (man-made or disturbed habitats), grassland,
Plantago rugelii	Rugel's Plantain				S2S3	meadows and fields.
Plantago rugelii var.						Anthropogenic (man-made or disturbed habitats), grassland,
rugelii	Rugel's Plantain				S2S3	meadows and fields.
Cypripedium reginae	Showy Lady's-Slipper				S2	Bog, swamp. Widely scattered localities in province
						LOake or pond shore, riparian zones. Rare only reported from
						western NS. Parr Lake and Lake Fanning, Yarmouth Co.; Queens
Salix sericea	Silky Willow				S2	and Lunenburg counties to Halifax County
Eriophorum gracile and						Wet peat and inundated shores. Scattered eastward from
var. gracile	Slender Cottongrass				S2	Annapolis and Halifax counties.
	Small-flowered					
Agalinis paupercula	Agalinis				S1	Meadows and fields, shores of rivers or lakes, wetland margins.

Scientific Name	Common Name	SARA ⁱ	COSEWIC ⁱⁱ	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
						Beach or coastal shore, coastal island, lake or pond shore, river or
						stream. Yarmouth, Shelburne, Queens and Cumberland counties;
Limosella australis	Southern Mudwort				S3	Sable Island; Cape Breton and likely elsewhere.
						Bog, mixed wood forest, swamps. Scattered from Shelburne, to
Listera australis	Southern Twayblade				S3	Halifax, to Kings to Cape Breton counties.
						Aquatic perennial herb that grows in standing water. Yarmouth,
Potamogeton pulcher	Spotted Pondweed			Vulnerable	S2S3	Queens and Halifax Counties, reported in Digby Co.
Halenia deflexa ssp.						
brentoniana	Spurred Gentian				S1?	Forest edge, forests, meadows and fields
Acalonias incarnata con						Doday soils plans lakeshores marshos streamsides or postland
Asclepias incarnata ssp.	Coordinate NASILinear and				COO	Rocky soils along lakeshores, marshes, streamsides or peatland
pulchra	Swamp Milkweed				S3?	edges. Infrequently found from Yarmouth to Cape Breton.
Veronica serpyllifolia ssp.	Thyme-Leaved					
humifusa	Speedwell				S2S3	Moist soils, fields and roadsides. Common throughout.
_	Tuckerman's Panic					
Panicum tuckermanii	Grass				S3S4	Meadows and fields, shores of rivers and lakes.
Equisetum variegatum						Wetlands or wet seeps. Wide ranging in NS, with disjunct localities:
and var. variegatum	Variegated Horsetail				S3	Halifax County, Cumberland Co., Victoria Co.
Symphyotrichum						Edges of fields and forests. Lunenburg Co. Queens, Hants, Kings
undulatum	Wavy-leaved Aster				S2	and Halifax counties
						Fry or mesic slopes, mixed deciduous forests, rocky outcrops, old
						quarries. King's Co., Rhodes Co., Lunenburg Co. Halifax and the
Carex peckii	White-Tinged Sedge				S2?	Pennants area.
	Whorled Yellow					
Lysimachia quadrifolia	Loosestrife				S1	Disturbed habitat, grassland, woodlands
						Ponds, lakes, and quiet streams at depths of 1 to 4 m. Colchester
						Co., Halifax Co., Cumberland Co. Reported from Northern Cape
Vallisneria americana	Wild Celery				S2	Breton.
Alliuma aabaaa						Distruction of backs and a second sec
Allium schoenoprasum	VACILAL Claires a				62	Disturbed habitats, floodplain, meadows and fields, ridges or
and var. sibiricum	Wild Chives			<u> </u>	S2	ledges, shores of rivers and lakes.

Scientific Name	Common Name	SARAi	COSEWIC ⁱⁱ	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
Allium tricoccum	Wild Leek				S1	Hardwood forest, intervale
						Conifer woods and spruce swamps, where substrate is soggy.
Juncus subcaudatus	Woods-Rush				S3	Yarmouth to Kings and Halifax Counties. Richmond County
Juncus subcaudatus var.						Conifer woods and spruce swamps, where substrate is soggy.
planisepalus	Woods-Rush				S3	Yarmouth to Kings, Halifax Counties and Richmond County.
Dichanthelium						
acuminatum var.						
lindheimeri	Woolly Panic Grass				S1?	Open sites and sandy soils. Widespread and common.
						Dry barrens, sandy or peaty soils, bogs, lakeshores. Common in
						southwestern counties becoming scarcer eat to Annapolis and
Bartonia virginica	Yellow Bartonia				S3	Halifax; St. Peter's area of Cape Breton
Cypripedium parviflorum	Yellow Lady's-slipper				S2S3	Occasionally under mixed deciduous trees
	Yellowish-white					
Utricularia ochroleuca	Bladderwort				S1	Rooted free floating plant
Lichens						
	Black-footed Reindeer					
Cladina stygia	Lichen				S2S3	Most frequent in peatlands, particularly treeless bogs
						This species occurs on the bark of hardwoods, and more rarely
						conifers, in humid forested habitats throughout temperate eastern
Anzia colpodes	Black-foam Lichen				S3	North America.
	Blistered Jellyskin					This lichen species is widespread and grows on the bases of
Leptogium corticola	Lichen				S2S3	hardwoods and occasionally on rocks in moist woods.
	Blistered Tarpaper					On bark of hardwood and sometimes coniferous trees, especially in
Collema furfuraceum	Lichen				S3	old forests
						Mature forests within varying moisture regimes. Typically located
Degelia plumbea	Blue Felt Lichen		SC	Vulnerable	S2	in hardwood stands, with Red maple, Sugar maple, or Yellow Birch.

Scientific Name	Common Name	SARA	COSEWICii	NSESA ⁱⁱⁱ	SRank ^{iv}	Habitat Requirements
						NA-turn to a superior Delay Fintensia
Friedermer van die ellet van	Donad Falt Liaban					Mature to over mature Balsam Fir trees in open softwood forests
Erioderma pedicellatum	Boreal Felt Lichen -					with little to no regenerating understory. Typically, though not
(Atlantic pop.)	Atlantic pop.	E	E	Endangered	S1S2	necessarily found in or near wetlands or wetland margins.
	Bottlebrush Frost					
Physconia detersa	Lichen				S2S3	On bark and wood; occasionally on rock
Erioderma mollissimum	Graceful Felt Lichen	Е	E	Endangered	S1S2	Mature to over mature Balsam Fir trees in open softwood forests with little to no regenerating understory. Typically, though not necessarily found in or near wetlands or wetland margins.
Erioderina monissimam	Peppered Moon	<u> </u>	-	Litatingcica	3132	recessarily round in or near wedands or wedand margins.
Sticta fuliginosa	Lichen				S3	Grows on mossy bark
	Rimmed Shingles					
Fuscopannaria leucosticte	Lichen				S1S2	On bark or occasionally rocks often among mosses.

¹ Government of Canada. 2015. Species at Risk Public Registry. Accessed online, 11 December 2015. https://www.registrelepsararegistry.gc.ca/default.asp?lang=En&n=24F7211B-1

ii Government of Canada. 2015. Committee on the Status of Endangered Wildlife in Canada. Accessed online, 11 December 2015. http://www.cosewic.gc.ca/eng/sct5/index_e.cfm

Province of Nova Scotia. 2015. Categorized List of Species at Risk made under Section 12 of the Endangered Species Act S.N.S. 1998, c. 11, N.S. Reg. 21/2015 (March 26, 2013). Accessed online, 11 December 2015. https://www.novascotia.ca/just/regulations/regs/eslist.htm

^{iv} Atlantic Canada Conservation Data Centre. 2015. Status Ranks. Accessed online, 11 December 2015. http://accdc.com/en/ranks.html