Appendix E:

Mainland Moose Surveys

Appendix F:

Wetlands Assessment

October 11, 2013

Mr. Andy MacCallum Natural Forces Wind Inc. 1030 – 1791 Barrington Street Halifax, NS B3J 3L1

Dear Mr. MacCallum

Re: Wetland and Watercourse Assessment Auld's Mountain, NS

INTRODUCTION

Strum Consulting was retained by Natural Forces Wind Inc. to conduct a wetland and watercourse assessment on the site of a proposed wind energy development at Auld's Mountain, Nova Scotia (the Project). The objective of the assessment was to identify and characterize areas of wetland habitat and watercourses on the Project site in the areas around the proposed locations of turbine infrastructure and along the associated access road (the Assessment Area).

The scope of the assessment involved completing a desktop review to create mapping that would identify the potential for wetland habitat and watercourses. This was followed by a field survey to confirm, flag, and characterize wetland habitat, and to characterize watercourses within the Assessment Area.

SITE DETAILS

The Project site is located in Pictou County near the community of Piedmont NS, approximately 21 km east of the town of New Glasgow (Drawing 1). The Project site consists of un-developed forested land on the western extent of Auld's Mountain approximately 240 m above sea level. A woods road, historically used to access timber resources, extends 160 m from the Piedmont Valley Road to the Project site. Adjacent properties consist of other private woodlots, small agricultural farms, and residential properties.

Engineering • Surveying • Environmental

<u>Head Office</u> Railside, 1355 Bedford Hwy. Bedford, NS B4A 1C5 t. 902.835.5560 (24/7) f. 902.835.5574 Antigonish Office 3-A Vincent's Way Antigonish, NS B2G 2X3 t. 902.863.1465 f. 902.863.1389 <u>Deer Lake Office</u> 101 Nicholsville Road Deer Lake, NL A8A 1V5 t. 855.770.5560 f. 902.835.5574

DESKTOP REVIEW

Data Sources

The following local databases, maps, and background information were reviewed prior to completing the field survey, to identify potential wetlands and watercourses:

- NS Department of Natural Resources (NSDNR) Significant Species and Habitat Database;
- NS Geomatics Centre;
- NSDNR Wet Areas Mapping (WAM);
- Aerial Photography; and
- Topogr aphical Maps.

Results

Information from the data sources was compiled to create digital mapping layers to review the potential for wetland habitat and watercourses at the Assessment Area.

No wetland habitat was identified by the NS Geomatics Centre or the NS Significant Species and Habitats databases within the Assessment Area. The closest wetland habitat (a marsh) is identified by the NS Significant Species and Habitats database approximately 1km west of the Assessment Area boundary, abutting the Piedmont Valley Road (Drawing 2). The WAM database shows potential for wet areas (as indicated by a depth to water table of 0.5m or less) in several areas along the access road at the northern extent of the Assessment Area, as well as an isolated narrow feature in southern portions of the Assessment Area.

The NS Geomatics Centre also identified one mapped watercourse that originates adjacent to Piedmont Valley Road and crosses beneath the existing access road in northern portions of the Assessment Area (Drawing 2).

FIELD SURVEY

The wetland survey was conducted on October 1st and 2nd, 2013.

Methodology

The Assessment Area was walked to assess for potential wetland habitat and the presence of watercourses. Wetland boundaries were delineated based on the methodology set out by the US Corps of Engineers Wetland Delineation Manual (1987). Wetland boundaries were flagged using pink flagging tape marked 'wetland delineation'. The boundaries were documented by recording the position of each flag using the track function on a GPS receiver capable of sub-5m accuracy. Detailed delineation methodologies are attached.

As part of the survey, a general characterization of the wetlands and watercourses identified in the study area was also completed.

Results

Detailed information for wetland and watercourse characteristics is provided in Tables 1 and 2 (attached). Representative photos of the different wetland types are provided in the Photo Log (attached).

The wetland survey resulted in the identification of twelve wetlands and seven watercourses within the Assessment Area (Drawings 3A and 3B). The wetlands on the site are mostly hardwood or mixed wood treed or shrub swamps in sandy/mucky modified soils or organic soils. Wetlands found along the road are treed or shrub swamps located in small topographic basins sourced by watercourses or ephemeral drainage features that are sufficient to maintain wetland hydrology. One wet meadow (Wetland 1) exists at the northern extent of the proposed access road where it meets the Piedmont Valley Road. This wetland comprises poorly drained land located adjacent to an agricultural field, which sources the wetland water via surface runoff.

In southern portions of the Assessment Area, which encompass the proposed turbine locations, several mixed wood treed swamps exist. , Conditions in these wetlands exhibit thin organic soils on a restrictive rock surface. These swamps typically source ephemeral drainage features or watercourses which drain downhill beyond the Assessment Area. One marsh (Wetland 12) exists in the eastern extent of the Assessment Area in a shallow basin. This marsh appears to have formed by the detainment of surface water in rutting associated with historic logging activities.

Several small watercourses (*i.e.*, bank full width less than 2m) were also confirmed at the Project site. Most of these watercourses arise from ephemeral drainage features that are often sourced by wetlands, and become more channelized as they drain downhill.

PROVINCIAL WETLAND REGULATIONS

g;

The Nova Scotia Wetland Alteration Approval process determines the following activities as a wetland alteration:

- filling;
- drainin
- flooding; and
- excavating.

Certain exemptions for wetland alteration approval are possible under the Nova Scotia Environment Wetland Conservation Policy. One such exemption includes linear developments that are less than 10 m wide and less than 600 square meters in total area (*e.g.*, forest access roads, secondary roads and driveways) through shrub or wooded swamps that are not classified as "Wetlands of Special Significance".

October 10, 2013 Project #12-4509

RECOMMENDATIONS

Based on the completed assessment, Strum provides the following recommendations:

- 1. Alteration of wetland habitat is subject to provincial permitting requirements. If required, approvals for wetland alteration should be obtained in advance.
- 2. Alteration of watercourses identified on the property will require provincial permitting and should be obtained in advance.

If you have any questions, please contact us.

Thank you,

Andy Walter, B.Sc. Environmental Specialist awalter@strum.com

Carys Burgess, MMM Senior Environmental Specialist cburgess@strum.com

Fable 1: Wetland Characteristics - Aulds Mountain Project # 12-4509											
WETLAND ID	WETLAND TYPE		LANDFORM	M WATER FLOW	HYDRIC SOIL	SURFACE/HYDROLOGIC	WETLAND	DOMIN	ANT VEGETATION	N	WATERCOURSE/WATER BODY
		POSITION			INDICATOR	CONDITIONS	BOUNDARY	Herbs	Shrubs	Trees	PRESENT
Wetland 1	Wet meadow	Terrene	Basin	Outflow	F21: Red parent material; A4: Hydrogen sulfide odour	1) Saturated at surface 2) Groundwater within 8 cm	Gentle to moderate	sensitive fern; Canada goldenrod;	None	None	None observed.
Wetland 2	Shrub swamp	Terrene	Sloped basin	Throughflow (ephemeral)	S1: Sandy mucky mineral	 Saturated at surface Intermittent surface water Drainage patterns Sparcley vegetated concave surface 	Moderate	creeping buttercup; cinnamon fern; sensitive fern; narrow leaved goldenrod	white ash; yellow birch; white birch	None	Receives drainage from the roadside ditch as well as from the southeast.
Wetland 3	Treed swamp	Terrene	Basin	Throughflow	S1: Sandy mucky mineral	1) Saturated at surface 2) Flowing surface water	Gentle to moderate	sensitive fern; flat-topped aster; bluejoint reedgrass	white birch; witch-hazel	trembling poplar; white birch	Watercourse 2 flows through this wetland.
Wetland 4	Treed swamp	Lotic	Slope	Throughflow (ephemeral)	Organic on rock (A1 - histosol)	1) Saturated at surface; 2) Water-stained leaves	Gentle	flat-topped aster; creeping buttercup; sensitive fern; fringed sedge; wooly rush	speckled alder	white spruce	Drainage input from southeast; drains away to the northwest.
Wetland 5	Shrub swamp	Terrene	Slope	Throughflow (ephemeral)	S1: Sandy mucky mineral; redox concentrations around roots	1) Saturated at surface; 2) Water-stained leaves	Gentle	flat-topped aster; common cinquefoil	speckled alder; white spruce	None	Drainage input via culvert beneath existing road; drainage output to the northwest.
Wetland 6	Treed swamp	Terrene	Slope	Throughflow (ephemeral)	S1: Sandy mucky mineral; redox concentrations around roots	1) Saturated at surface; 2) Water-stained leaves	Gentle	wooly rush; canada rush; flat-topped aster	white spruce; yellow birch; willow species	white spruce; yellow birch	Drainage input via culvert beneath existing road; drainage output to the north.
Wetland 7	Treed swamp	Terrene	Basin	Outflow (ephemeral)	Organic on rock (A1 - histosol)	 Saturated at surface Standing surface water Groundwater at surface 	Gentle	cinnamon fern; three-seeded sedge; evergreen wood fern;	balsam fir; yellow birch; red maple	balsam fir; black spruce; yellow birch; red maple	The wetland is located on high land and drains ephemerally to the south and north. Northern drainage sources water to Watercourse 4.
Wetland 8	Treed swamp	Terrene	Basin	Throughflow (ephemeral)	Organic over depleted mineral (A2- histic epipedon)	1) Saturated at surface; 2) Water-stained leaves	Gentle	cinammon fern; ostrich fern; tussock sedge	white ash; white spruce	red maple; white spruce	Drainage in from southeast, drainage out to northwest.
Wetland 9	Treed swamp	Terrene	Basin	Isolated	Organic over depleted mineral (A2- histic epipedon)	1) Saturated at surface; 2) Water-stained leaves	Gentle to steep	flat-topped aster; cinammon fern; sensitive fern	yellow birch	balsam fir; yellow birch	None observed.
Wetland 10	Treed swamp	Terrene	Basin	Throughflow (ephemeral)	Organic over depleted mineral (A2- histic epipedon); iron- rich layer beneath depleted layer	1) Saturated at surface; 2) Water-stained leaves	Gentle to moderate	cinammon fern; white ash; yellow birch; New York fern	yellow birch; white spruce; balsam fir	white ash; striped maple; red maple	Drainige input from northeast, drainage output to southwest which sources Watercourse 5.
Wetland 11	Treed swamp	Terrene	Basin	Throughflow (ephemeral)	Organic over depleted mineral (A2- histic epipedon); iron- rich layer beneath depleted layer	1) Saturated at surface; 2) Water-stained leaves	Gentle	creeping buttercup; cinammon fern; sensitive fern	balsam fir; eastern hemlock; yellow birch	yellow birch; red maple	Drainage input from northeast, drainage output to southwest.
Wetland 12	Marsh	Terrene	Basin	Throughflow (ephemeral)	Organic over depleted mineral (A2- histosol)	1) Saturated at surface; 2) Standing surface water	Gentle	wooly bullrush; wide-leaved cattain; fringed sedge; flat-topped aster; Canada goldenrod	red spruce	None	Drains to the south. Receives seepage input from a drainage feature to the west.

Table 2: Watercourse Characteristics - Aulds Mountain

Project # 12-4509

FFATURE ID	WIDTH (m)		DEPTH (cm)		SUBSTRATE	DRAINAGE	OTHER OBSERVATIONS	
	Bankfull	Wetted	Bankfull	Wetted		DIRECTION		
Watercourse 1A	2	0.75	75	10	cobble, boulders	northwest	Deeply entrenched within a steep ravine; several small waterfalls; significant amount of	
Watercourse 1B	1.5	0.5	200	25	cobble, silt	northwest	in-stream woody debris.	
Watercourse 2	0.6	0.2	30	5	cobble, silt	northwest	Emerges from drainage outflow from Wetland 4; becomes increasingly entrenched as it extends downslope.	
Watercourse 3	2	0.5	50	8	boulders, silt	northwest	Sourced by roadside drainage ditch then drains northwest offsite.	
Watercourse 4	1.25	0.45	45	15	cobble, sand, silt	north	Emerges from uphill drainage feature; well defined, stable banks.	
Watercourse 5	1.5	0.5	40	20	cobble, silt	southwest	Sourced from drainage exiting Wetlands 10 and 11; becomes entrenched as it drains towards existing road, flows beneath the road via a culvert and southwest offsite; significant amounts of organic material and coarse woody debris in stream.	
Watercourse 6	0.75	0.5	25	10	cobble, silt	southwest	Emerges from an uphill drainage feature; poorly channelized, diverges into a braided stream before merging and becoming moderately well channelized. Significant in- stream vegetation in some areas.	
Watercourse 7	1	0.5	40	10	cobble, gravel	northeast	Becomes entrenched as it flows downhill.	

Photo 1: Wetland 1; a wet meadow.

Photo 3: Wetland 4; a roadside treed swamp.

Photo 2: Wetland 3; a hardwood treed swamp.

Photo 4: Wetland 5; a shrub swamp.

Photo 5: Wetland 8; a mixed wood treed swamp.

Photo 6: Wetland 12; a marsh.

Photo 7: Watercourse 1A.

Photo 8: Typical drainage feature.

Photo 10: Watercourse 7.

Photo 9: Watercourse 5.

Wetlands and Watercourses in Nova Scotia

Wetlands in Nova Scotia are regulated by NSE under Section 105 of the *Environment Act*. Under the Act, wetlands are:

Land referred to as a marsh, swamp, fen, or bog that either periodically or permanently has water table at, near, or above the land surface or that is saturated with water, and sustains aquatic processes as indicated by the presence of poorly drained soils, hydrophytic vegetation, and biological activities adapted to wet conditions.

Watercourses are defined in the Environment Act as:

Any creek, brook, stream, river, lake, pond, spring, lagoon, or any other natural body of water, and includes all the water in it, and also the bed and the shore (whether there is actually any water in it or not). It also includes all groundwater.

Watercourses are defined in Halifax Regional Municipality (HRM) land use by-laws as:

A lake, river, stream, ocean, or other natural body of water.

Delineation Methodology

In order for a wetland determination to be made, the following three criteria were assessed the field:

- Presence of hydrophytic (water loving) vegetation;
- Presence of hydrologic conditions that result in periods of flooding, ponding, or saturation during the growing season; and
- Presence of hydric soils (anaerobic conditions in upper part).

Soil pits were completed frequently to confirm the presence/absence of wetland hydrology and hydric soils, as per the methodology below. A general vegetation survey was also completed within the wetlands to confirm hydrophytic vegetation.

Identification of Hydrophytic Vegetation

Hydrophytic vegetation is defined as the sum total of macrophytic plant life that occurs in areas where the frequency and duration of inundation or soil saturation produce permanent or periodically saturated soils of sufficient duration to exert a controlling influence on the plant species present (Environmental Laboratory 1987). Hydrophytic vegetation should be the dominant plant type in wetland habitat (Environmental Laboratory 1987).

Dominant plant species observed in each wetland were classified according to indicator status (probability of occurrence in wetlands), in accordance with the U.S. Fish and Wildlife Service (USFWS) National List of Vascular Plant Species that Occur in Wetlands: NE Region (Region 1) (Reed 1988). Please refer to Table 1 (below) for these classifications. These indicators are used as this region most closely resembles the flora of Nova Scotia and climate regime. Further relevant information was reviewed in Flora of Nova Scotia (Zinck, 1998).

		- [
Plant Species Classification	Abbreviation ²	Probability of Occurring in Wetland
Obligate O	BL	>99%
Facultative Wetland	FACW	66-99%
Facultative F	AC	33-66%
Facultative Upland	FACU	1-33%
Upland UP	L	<1%
No indicator status	NI	Insufficient information to determine status
Plants That Are Not Listed	NL	Does not occur in wetlands in any region.
(assumed upland species)		

Table 1: Classification of Wetland-Associated Plant Species¹

¹ Source: Reed 1988

² A '+' or '-' symbol can be added to the classification to indicate greater or lesser probability, respectively, of occurrence in a wetland.

If the majority (greater than 50%) of the dominant vegetation at a data point is classified as obligate (OBL), facultative wetland (FACW), or facultative (FAC), then the location of the data point is considered to be dominated by hydrophytic vegetation.

Identification of Hydric Soils

A hydric soil is a soil that has formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (USDA-NRCS 2010). Indicators of the presence of a hydric soil include soil colour (gleyed soils and soils with bright mottles and/or low matrix chroma), aquic or preaquic moisture regime, reducing soil conditions, sulfidic material (odour), soils listed on the hydric soils list, iron and manganese concretions, organic soils (histosols), histic epipedon, high organic content in surface layer in sandy soils, and organic streaking in sandy soils.

Soil pits were excavated to a maximum depth of 40 cm or refusal. The soil in each was then examined for hydric soil indicators. The matrix colour and mottle colour (if present) of the soil were determined using the Munsell Soil Colour Charts.

Determination of Wetland Hydrology

Wetland habitat, by definition, either periodically or permanently, has a water table at, near, or above the land surface or that is saturated with water. To be classified as a wetland, a site should have at least one primary indicator or two secondary indicators of wetland hydrology, as shown in Table 2.

WETLAND DELINEATION IDENTIFICATION METHODOLOGY

······							
Examples of Primary Indicators	Examples of Secondary Indicators						
Water marks	Oxidized Root Channels in the Upper 30 cm						
Drift Lines	Local Soil Survey Data						
Sediment Deposition	Dry season Water Table						
Drainage Patterns	Stunted or Stressed Plants						
Water-stained leaves							
Visual Observation of Saturated Soils							
Visual Observation of Inundation							

Table 2: Indicators of Wetland Hydrology

Wetland habitat is assessed for signs of hydrology, via visual observations across the area and through assessment of soil pits.

References

Environmental Laboratory (1987), Corps of Engineers Wetlands Delineation Manual, US Army Corp of Engineers, 1987.

Reed. 1988. National List of Plant Species that Occur in Wetlands: NE Region (Region 1) U.S. Fish and Wildlife Service, Washington, DC.

USDA-NRCS. (United States Department of Agriculture- Natural Resources Conservation Service). 2010. *Field Indicators of Hydric Soils in the United States: A Guide for Identifying and Delineating Hydric Soils*. Version 7.0. 53 pp.

Zinck, M. 1998. Rolands Flora of Nova Scotia. Nimbus Publishing, Nova Scotia.

Environmental Laboratory. (1987). "Corps of Engineers wetlands delineation manual," <u>Technical Report Y-87-1</u>, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS. NTIS No. AD A176 912 (Note: Appendix C information is outdated and must be obtained from regional Wetlands offices)

Appendix G:

Vascular Plant Study

A vascular plant inventory and plant community assessment of wind turbine sites at Aulds Mountain, Nova Scotia with notes on breeding birds

Photographs from the proposed turbine sites at Aulds Mountain.

July 24, 2012

Conducted by Sean Blaney, Atlantic Canada Conservation Data Centre

for Natural Forces

METHODS

Sean Blaney conducted 6 hours of fieldwork at the site on June 18, 2013. Fieldwork was on foot and focused on covering the development footprint (proposed roadways and turbine sites - Figure 1) and surrounding areas, but also covering the linear portions of the project footprint in two passes and covering the turbine sites by meanders around the central point. I recorded the areas covered in the field with a GPS unit set to record position approximately every 15 seconds while moving (the "more often" track recording setting on a Garmin GPS 76Cx unit). I compiled a full vascular plant list and I recorded notes on the community type and species composition of each proposed turbine site.

Definitions for S-ranks and for Nova Scotia General Status ranks (the primary ranks by which species' significance is determined by Nova Scotia Department of Natural Resources), are given in Appendix 1.

Results and Discussion

I. Site Coverage

Over the 6 hours I spent on the site, I walked 11.5 km, covering the two proposed turbine sites and surrounding areas, the existing road corridor likely to be used for access to the turbine sites and additional areas within the leased properties. I accessed the site from the south and the coverage values above include about one hour and 3.5 km covered along a southern access road outside the proposed development footprint but on the margin of a leased property. GPS tracks of areas covered are mapped in Figure 1. Fieldwork results should represent a rather complete picture of the vascular flora and plant communities on the site as well as providing a good indication of which areas have the most significant natural heritage value. Additional fieldwork would undoubtedly add more plant species to the site's list, but there is low potential for undocumented provincially rare species within the turbine footprint areas based on the habitats present (primarily forest regenerating on old field, and disturbed deciduous forest) and the strong focus on covering those areas.

II. Species Information

I recorded 225 vascular plant species (173 native, 52 exotic). The full species list is given in Table 1. Only one taxon is potentially of conservation concern based on General Status Ranks or S-ranks. I found one small patch of a polypody fern (*Polypodium* sp.) species that exhibited some characteristics of Appalachian Polypody (*Polypodium appalachianum*, S3? – Undetermined). The fronds of this fern had the relatively pointed pinnae tips of Appalachian Polypody but lacked that species' typical broadly triangular overall frond shape (mapped in Figure 2). They were infertile and could not be determined to species with certainty. They might represent a hybrid Appalachian x Common Polypody (*P. appalachianum* x *virgininianum*) or a slightly atypical Appalachian Polypody. For management purposes I recommend they be treated as Appalachian Polypody. The small colony was present at 45.59439°N, 62.37273°W, 110 m southeast of proposed turbine one (Figure 2). This is likely outside the development footprint under the proposed layout.

Although inventory of breeding birds was not the focus of my efforts, I recorded 28 bird species during incidental bird observations (Table 2), which included two species of conservation significance. I recorded singing Eastern Wood-Pewee (*Contopus virens*, S3 – Sensitive, COSEWIC Threatened and Vulnerable under the Nova Scotia Species at Risk Act) in deciduous forest suitable for nesting at two locations. The first (not mapped) was at 45.58149°N, 62.37116°W, 1100 m south of proposed turbine two and well outside the project development footprint. The second was at 45.59578°N, 62.37322°W, 120 m northeast of proposed turbine one (mapped in Figure 2) where the bird was in fairly mature deciduous forest along the margin of the clearcut in which turbine construction is proposed.

The other bird species of conservation significance was a Yellow-bellied Flycatcher (*Empidonax flaviventris*, S3 – Sensitive), singing in moist mixed forest suitable for nesting at 45.59436°N, 62.37096°W, 240 m east-southeast of proposed turbine one and outside of the properties leased for turbine construction (mapped in Figure 2).

II. Significant Plant Communities and Wetlands

The natural heritage value of the project footprint area is limited due to past agricultural use and extensive recent disturbance from forestry and meteorological tower construction. A relatively small portion of the potential project footprint is in mature forest (areas mapped west and south of turbine one in Figure 2 and perhaps some other patches not covered in the field). Brief descriptions of the plant community types of each proposed turbine site are given in Table 3 and photographs of each proposed turbine site are given in Figures 3 and 4. The project footprint area, especially around turbine two, is largely regenerated from old field, including both natural woody regeneration with a mix of native and exotic herbs at various stages of canopy closure and spruce plantation around 20 years old which is quite dense with little understorey. The remainder of the project area is mostly heavily cut-over Sugar Maple-dominated hardwood forest. The locations where new roads would be constructed between the main access road and proposed turbine sites were not available at the time of survey so the extent to which they would affect the limited remaining areas of mature forest within the area of potential construction is unclear. Avoidance of the small areas of remaining mature deciduous forest in constructing new roads would reduce impacts on the site's natural heritage values.

The largest and most significant area of mature forest is mapped in Figure 2 between waypoints 121 and 126 and appears to be well outside the area directly affected by project construction. This forest includes areas with relatively rich soil [as indicated by the presence of species such as Hairy Sweet Cicely (*Osmorhiza claytonii*), Zig-zag Goldenrod (*Solidago flexicaulis*), Ostrich Fern (*Matteuccia struthiopteris*) and Silvery Glade Fern (*Deparia acrostichoides*) among the herbaceous flora and substantial amounts of White Ash (*Fraxinus americana*) and Ironwood (*Ostrya virginiana*) among the tree cover]. Significant groundwater seepage in this area feeds a small stream.

I noted several small wet areas (not all of which are necessarily large enough to be covered under provincial wetland regulations), as indicated in Figure 3. The area between waypoints 120 and 130 is an open herbaceous and shrub wetland community occupying a 140 m by 10 m to 30 m linear depression, which is within about 20 m of the proposed site of turbine two. It is illustrated in Figure 4. The area around waypoint 144 is a small seepy stream in young deciduous forest which might be affected by access road construction to turbine one. The other two wetland areas are likely well outside the project footprint. The area between 122 and 125 is a fairly rich seepage wetland along the upper reaches of a small stream within fairly rich deciduous and mixed forest and would appear to be well outside the project footprint. The area around waypoint 132 is a small forested seepage wetland about 50 m by 10 m.

Table 1. Vascular plants recorded in the study area, with Nova Scotia S-ranks and General Status (GS) ranks (defined in Appendix 1). Taxonomy follows Kartesz (1999) – *Synthesis of the North American Flora*, CD-ROM. "Abund." refers to a generalized assessment of the abundance of the species within the project area. "r" = rare, "u" = uncommon, "f" = fairly common, "c" = common. Abundance estimates followed by an asterisk "*" indicate species that were seen only in the saltmarsh to the east of the project footprint.

			S-		
Family	English Name	Species	rank	General Status	ID Notes
Equisetaceae	Field Horsetail	Equisetum arvense	S5	Secure	
	Woodland				
Equisetaceae	Horsetail	Equisetum sylvaticum	S5	Secure	
Osmundaceae	Cinnamon Fern	Osmunda cinnamomea	S5	Secure	
Osmundaceae	Interrupted Fern	Osmunda claytoniana	S5	Secure	
Osmundaceae	Interrupted Fern	Osmunda claytoniana	S5	Secure	
Polypodiaceae	Appalachian Polypody or hybrid	Polypodium appalachianum	S3?	Undetermined	ID uncertain - infertile but strongly pointed pinnae on some fronds, though not as broad-based frond shape as would be expected in good P. appalachianum
Dennstaedtiaceae	Eastern Hay- Scented Fern	Dennstaedtia punctilobula	S5	Secure	
Dennstaedtiaceae	Bracken Fern	Pteridium aquilinum var. latiusculum	S5	Secure	
Thelypteridaceae	Northern Beech Fern	Phegopteris connectilis	S5	Secure	
Thelypteridaceae	New York Fern	Thelypteris noveboracensis	S5	Secure	

Family	English Name	Species	S- rank	General Status	ID Notes
	J	Athyrium filix-femina			
Dryopteridaceae	Lady Fern	ssp. angustum	S5	Secure	
Dryopteridaceae	Silvery Spleenwort	Deparia acrostichoides	S4	Secure	
	Mountain Wood-	Dryopteris	_		
Dryopteridaceae	Fern	campyloptera	S5	Secure	
Dryopteridaceae	Crested Shield- Fern	Dryopteris cristata	S5	Secure	
	Evergreen				
Dryopteridaceae	Woodfern	Dryopteris intermedia	S5	Secure	
Dryopteridaceae	Fern	dryopteris	S5	Secure	
Dryopteridaceae	Ostrich Fern	Matteuccia	S 5	Secure	
Dryopteridaceae	Sensitive Fern	Onoclea sensibilis	\$5	Secure	
Dryopiendaceae	Ochisitive i chi	Polvstichum	00	Occure	
Dryopteridaceae	Christmas Fern	acrostichoides	S5	Secure	
Pinaceae	Balsam Fir	Abies balsamea	S5	Secure	
Pinaceae	White Spruce	Picea glauca	S5	Secure	
Pinaceae	Red Spruce	Picea rubens	S5	Secure	
Pinaceae	Eastern White Pine	Pinus strobus	S5	Secure	
Pinaceae	Eastern Hemlock	Tsuga canadensis	S5	Secure	
Ranunculaceae	baneberry sp.	Actaea sp.		[native, non-rare]	
Ranunculaceae	Tall Butter-Cup	Ranunculus acris	SNA	Exotic	
Ranunculaceae	Creeping Butter- Cup	Ranunculus repens	SNA	Exotic	
Fagaceae	American Beech	Fagus grandifolia	S5	Secure	
		Alnus incana ssp.		_	
Betulaceae	Speckled Alder	rugosa	S5	Secure	
Betulaceae	Green Alder	crispa	S5	Secure	
Betulaceae	Yellow Birch	Betula alleghaniensis	S5	Secure	
	Heart-Leaved	Betula papyrifera var.			
Betulaceae	Paper Birch	papyrifera	S5	Secure	
Betulaceae	Gray Birch	Betula populifolia	S5	Secure	
Betulaceae	Beaked Hazelnut	Corylus cornuta	S5	Secure	
Betulaceae	Hornbeam	Ostrva virginiana	S4S5	Secure	
	Common Mouse-	Cerastium fontanum			
Caryophyllaceae	ear Chickweed	ssp. vulgare	SNA	Exotic	
Caryophyllaceae	Grove Sandwort	Moehringia lateriflora	S5	Secure	
Carvophyllaceae	Procumpent Pearlwort	Sagina procumbens	S5	Exotic	
Carvophyllaceae	Little Starwort	Stellaria graminea	SNA	Exotic	
	Fringed Black		_		
Polygonaceae	Bindweed	Polygonum cilinode	S5	Secure	
Polygonaceae	Marshpepper Smartweed	Polygonum hydropiper	SNA	Exotic	
Dalamana	Arrow-Leaved	Polygonum	05	0	
Polygonaceae		sagittatum	55	Secure	
Polygonaceae	Sneep Sorrei	Rumex acetosella	SINA	Exotic	
Polygonaceae	A St. John's-	Rumex crispus Hypericum	SINA	EXOLIC	
Clusiaceae	Wort	perforatum	SNA	Exotic	
Clusiaceae	Marsh St. John's-Wort	Triadenum fraseri	S5	Secure	
	Marsh Blue		_		
Violaceae	Violet	Viola cucullata	S5	Secure	
Violaceae	Labrador Violet	Viola labradorica	S4S5	Secure	

Family	English Name	Species	S- rank	General Status	ID Notes
- .	Smooth White	Viola macloskeyi ssp.			
Violaceae	Violet	pallens	S5	Secure	
Violaceae	Woolly Blue Violet	Viola sororia	S5	Secure	
	Large-Tooth	Populus			
Salicaceae	Aspen	grandidentata	S 5	Secure	
Salicaceae	Quaking Aspen	Populus tremuloides	S5	Secure	
Salicaceae	Bebb's Willow	Salix bebbiana	S5	Secure	
Salicaceae	Pussy Willow	Salix discolor	S 5	Secure	
Salicação	Heart-Leaved	Salix ariacanhala	95	Socuro	
Salicaceae		Salix enocephaia	- 55 - 65	Secure	
Salicaceae		Salix nurrifolio	55	Secure	
Salicaceae		Salix pyriiolia	- 30	Secure	
Brassicaceae	Toothwort	Cardamine diphylla	S4S5	Secure	
Brassicaceae	Dame's Rocket	Hesperis matronalis	SNA	Exotic	
Ericaceae	Creeping Snowberry	Gaultheria hispidula	S5	Secure	
	Late Lowbush	Vaccinium			
Ericaceae	Blueberry	angustifolium	S5	Secure	
Primulaceae	Northern Starflower	Trientalis borealis	S5	Secure	
Grossulariaceae	Skunk Currant	Ribes glandulosum	S5	Secure	
	Smooth		0.5		
Grossulariaceae	Gooseberry Bristly Black	Ribes hirtellum	55	Secure	
Grossulariaceae	Currant	Ribes lacustre	S5	Secure	
Rosaceae	Woodland Agrimony	Agrimonia striata	S5	Secure	
Rosaceae	serviceberry sp.	Amelanchier sp.		[native, non-rare]	
	Virginia				
Rosaceae	Strawberry	Fragaria virginiana	S 5	Secure	
Rosaceae	Yellow Avens	Geum aleppicum	S5	Secure	ID to sp. probable only
Rosaceae	Purple Avens	Geum rivale	S 5	Secure	
Rosaceae	Common Apple	Malus pumila	SNA	Exotic	
Rosaceae	Old-Field Cinquefoil	Potentilla simplex	S5	Secure	
Rosaceae	Fire Cherry	Prunus pensylvanica	S5	Secure	
_	Wild Black			-	
Rosaceae	Cherry	Prunus serotina	S5	Secure	
Rosaceae	Choke Cherry	Prunus virginiana	S5	Secure	
Rosaceae	Carolina Rose	Rosa carolina	S4S5	Secure	
Rosaceae	Virginia Rose	Rosa virginiana	S5	Secure	
Rosaceae	Blackberry	Rubus allegheniensis	S5	Secure	
	Smooth			2	
Rosaceae	Blackberry	Rubus canadensis	S5	Secure	ID refere to the option
					the broad sense –
Rosaceae	Bristly Dewberry	Rubus hispidus	S5	Secure	toward vermontanus
	American Red	Rubus idaeus ssp.			
Rosaceae	Raspberry	strigosus	S5	Secure	
Possoss	Dwarf Red	Pubus pubasaana	QE	Sociaro	
RUSACEAE	American	Rubus pubescens	55	Secure	
Rosaceae	Mountain-Ash	Sorbus americana	S5	Secure	
Deserve	Northern	Spiraea alba var.	0.5	0.	
козасеае	Neadow-Sweet	latifolia	55	Secure	
Rosaceae	Spiraea	Spiraea tomentosa	S5	Secure	

Family	English Name	Creation	S-	Conoral Status	ID Netes
Family		Species	rank	General Status	ID Notes
Fabaceae	Birds-Foot Tretoli	Lotus corniculatus	SNA	Exotic	
Fabaceae	Black Wedic	Medicago iupulina	SINA	Exotic	
Fabaceae	Low Hop Clover	Trifolium campestre	SINA	Exotic	
Fabaceae	Alsike Clover		SNA	Exotic	
Fabaceae	Red Clover	Tritolium pratense	SNA	Exotic	
Fabaceae	White Clover	Trifolium repens	SNA	Exotic	
Fabaceae	Tufted Vetch	Vicia cracca	SNA	Exotic	
Onagraceae	Fireweed	angustifolium	S5	Secure	
Onagraceae	Small Enchanter's Nightshade	Circaea alpina	S5	Secure	
Opagraceae	Hairy Willow-	Enilohium ciliatum	S 5	Secure	
Ollagraceae	Linear-Leaved	Epilobium		Secure	
Onagraceae	Willow-Herb	leptophyllum	S5	Secure	
Onagraceae	primrose sp.	parviflora/biennis	#N/A	#N/A	
Onagraceae	Small Sundrops	Oenothera perennis	S5	Secure	
	Alternate-Leaf				
Cornaceae	Dogwood	Cornus alternifolia	S5	Secure	
Cornaceae	Dwarf Dogwood	Cornus canadensis	S5	Secure	
Cornaceae	Silky Dogwood	Cornus sericea	S5	Secure	
Aquifoliaceae	Black Holly	llex verticillata	S5	Secure	
Aceraceae	Striped Maple	Acer pensylvanicum	S5	Secure	
Aceraceae	Norway Maple	Acer platanoides	SNA	Exotic	
Aceraceae	Red Maple	Acer rubrum	S5	Secure	
Aceraceae	Sugar Maple	Acer saccharum	S5	Secure	
Aceraceae	Mountain Maple	Acer spicatum	S5	Secure	
Anacardiaceae	Staghorn Sumac	Rhus typhina	S5	Secure	
Oxalidaceae	White Wood- Sorrel	Oxalis montana	S5	Secure	
	Upright Yellow				
Oxalidaceae	Wood-Sorrel	Oxalis stricta	S5	Secure	
Araliaceae	Wild Sarsaparilla	Aralia nudicaulis	S5	Secure	
Apiaceae	Spotted Water- Hemlock	Cicuta maculata	S5	Secure	
Apiaceae	Wild Carrot	Daucus carota	SNA	Exotic	
Convolvulaceae	Hedge Bindweed	Calystegia sepium	S5	Secure	
Boraginaceae	Small Forget- Me-Not	Myosotis laxa	S5	Secure	
Lamiaceae	Brittle-Stem Hempnettle	Galeopsis tetrahit	SNA	Exotic	
Lamiaceae	Ground Ivy	Glechoma hederacea	SNA	Exotic	
Lamiaceae	Northern Bugleweed	Lvcopus uniflorus	S5	Secure	
Lamiaceae	Self-Heal	Prunella vulgaris	S5	Secure	
Plantaginaceae	English Plantain	Plantago lanceolata	SNA	Exotic	
Plantaginaceae	Nipple-Seed Plantain	Plantago maior	SNA	Exotic	
Oleaceae	White Ash	Fraxinus americana	.55	Secure	
Scrophulariaceae	White Turtlehead	Chelone alahra	\$5 \$5	Secure	
Scrophulariaceae		Funbrasia sp	#NI/A		
Scrophulanaceae	Little Yellow-	ματιαδία δμ.	#TN//*	#IN//A	
Scrophulariaceae	Rattle	Rhinanthus minor	S5	Secure	
Scrophulariaceae	Speedwell	Veronica americana	S5	Secure	
Scrophulariaceae	Gypsy-Weed	Veronica officinalis	S5	Exotic	

Family	English Name	Species	S- rank	General Status	ID Notes
	Thyme-Leaved	Veronica serpyllifolia	Turin		
Scrophulariaceae	Speedwell Great Hedge	ssp. serpyllifolia	SNA	Exotic	
Rubiaceae	Bedstraw	Galium mollugo	SNA	Exotic	
Rubiaceae	Marsh Bedstraw	Galium palustre	S5	Secure	
Rubiaceae	Small Bedstraw	Galium trifidum	S5	Secure	ID to sp. probable, not confirmed
Rubiaceae	Sweet-Scent Bedstraw	Galium triflorum	S 5	Secure	
Rubiaceae	Partridge-Berry	Mitchella renens	S5	Secure	
Caprifoliaceae	Northern Bush-	Diervilla Ionicera	 S5	Secure	
Caprifoliaceae	Twinflower	Linnaea borealis ssp.	\$5	Secure	
Caprifoliaceae	American Fly-		05	Secure	
Caprifoliaceae	Honeysuckie	Lonicera canadensis	<u>55</u>	Secure	
Caprifoliaceae	Red Elderberry	Sambucus racemosa	\$5	Secure	
Asteraceae	Common Yarrow	Achillea millefolium	S5	Secure	
Asteraceae	Everlasting	Anaphalis margaritacea	S 5	Secure	
Asteraceae	Lesser Burdock	Arctium minus	SNA	Exotic	ID to sp. probable, not confirmed
Asteraceae	Parasol White- Top	Doellingeria umbellata	S5	Secure	
Asteraceae	Daisy Fleabane	Erigeron strigosus	S5	Secure	
Asteraceae	Common Boneset	Eupatorium	S 5	Secure	
Asteraceae	Flat-Top	perioliatari	00	Occure	
Asteraceae	Fragrant-Golden-	Futhamia graminifolia	S 5	Secure	
Asteraceae	Orange Hawkweed	Hieracium aurantiacum	SNA	Exotic	
Asteraceae	Canada	aurantiacam	ONA	Exotic	
Asteraceae	Hawkweed	Hieracium canadense	S5	Secure	
Asteraceae	Common Hawkweed	Hieracium lachenalii	SNA	Exotic	
Asteraceae	Mouseear	Hieracium pilosella	SNA	Exotic	
Asteraceae	Tall Blue Lettuce	Lactuca biennis	S5	Secure	
Asteraceae	Autumn Hawkbit	Leontodon autumnalis	SNA	Exotic	
		Leucanthemum			
Asteraceae	Oxeye Daisy Pineapple-Weed	vulgare	SNA	Exotic	
Asteraceae	Chamomile	Matricaria discoidea	SNA	Exotic	
Asteraceae	Whorled Aster	Oclemena acuminata	S5	Secure	
Asteraceae	Robbins Squaw- Weed	Packera schweinitziana	S4	Secure	
Asteraceae	Black-Eyed	Rudbeckia hirta var.	SNIA	Exotic	
Asteraceae	Tansy Ragwort	Senecio iacobaea	SNA	Exotic	
Asteraceae	White Goldenrod	Solidado bicolor	S5	Secure	
Asteraceae	Canada	Condago Dicolor	00	Occure	
Asteraceae	Goldenrod Brood Looved	Solidago canadensis	S5	Secure	
Asteraceae	Goldenrod	Solidago flexicaulis	S5	Secure	
Asteraceae	Smooth Goldenrod	Solidago gigantea	S5	Secure	
Asteraceae	Early Goldenrod	Solidago iuncea	S5	Secure	
Asteraceae	Downy Goldenrod	Solidago puberula	S5	Secure	
	Rough-Leaf				
Asteraceae	Goldenrod	Solidago rugosa	S5	Secure	
Family	English Name	Species	S- rank	General Status	ID Notes
-------------	-------------------------	---------------------------------	--------------	----------------	-------------------------
,		Symphyotrichum			
Asteraceae	Heart-Leaf Aster	cordifolium	S5	Secure	
Asteraceae	Farewell- Summer	Symphyotrichum lateriflorum	S5	Secure	
	New Belgium	Symphyotrichum			
Asteraceae	American-Aster	novi-belgii	S5	Secure	
Asteraceae	Swamp Aster	Symphyotrichum puniceum	S5	Secure	
Asteraceae	Common Dandelion	Taraxacum officinale	SNA	Exotic	
Asteraceae	Meadow Goat's- Beard	Tradopodon pratensis	SNA	Exotic	
Asteraceae	Colt's Foot	Tussilago farfara	SNA	Exotic	
Juncaceae	Soft Rush	Juncus effusus	S5	Secure	
Juncaceae	Slender Rush	Juncus tenuis	S5	Secure	
	Common			000010	
Juncaceae	Woodrush	Luzula multiflora	S5	Secure	
Cyperaceae	Emmons Sedge	Carex albicans var. emmonsii	S2	Secure	
Cyperaceae	Black Sedge	Carex arctata	S5	Secure	
Cyperaeeae	- Shake Cougo	Carex brunnescens		000010	
Cyperaceae	Brownish Sedge	ssp. sphaerostachya	S5	Secure	
Cyperaceae	Hoary Sedge	Carex canescens	S5	Secure	
Cyperaceae	Fibrous-Root Sedge	Carex communis	S5	Secure	
	White-Edge	Carex debilis var.			
Cyperaceae	Sedge	rudgei	S5	Secure	
Cyperaceae	Sedge	Carex echinata	S5	Secure	
Cyperaceae	Yellow Sedge	Carex flava	S5	Secure	
Cyperaceae	Graceful Sedge	Carex gracillima	S5	Secure	
Cyperaceae	A Sedge	Carex gynandra	S5	Secure	
Cyperaceae	Bladder Sedge	Carex intumescens	S5	Secure	
Curporagooo	Bristly-Stalk	Carax lantalaa	85	Socuro	
Cyperaceae	Finely-Nerved		- 35	Secure	
Cyperaceae	Sedge	Carex leptonervia	S5	Secure	
Cyperaceae	Black Sedge	Carex nigra	S4S5	Secure	
0	New England		05	Carrier	
Cyperaceae	Sedge Dela Cadra	Carex novae-angliae	55 05	Secure	
Cyperaceae	Pale Sedge	Carex pallescens	- 55 - 65	Secure	
Cyperaceae	Longstalk Sedge	Carex pedunculata	55	Secure	
Cyperaceae	Pointed Broom	Carex scaprala	30	Secure	ID to sp. probable
Cyperaceae	Sedge	Carex scoparia	S5	Secure	not confirmed
Cuperaceae	Stalk-Grain	Carex stinata	S 5	Secure	
Cyperaceae	Twisted Sedge	Carex torta	\$5 \$5	Secure	
Cyperaceae	Three-Seed	Carex trisperma var.	- 55	Secure	
Cyperaceae	Sedge	trisperma	S5	Secure	ID refere to the online
	Cottongrass				the broad sense
Cyperaceae	Bulrush	Scirpus cyperinus	S5	Secure	(incl. S. atrocinctus)
Cyperaceae	Bulrush	Scirpus hattorianus	S4	Secure	
	Small-Fruit				
Cyperaceae	Bulrush	Scirpus microcarpus	S5	Secure	
Poaceae	Bentgrass	Agrostis capillaris	SNA	Exotic	
Poaceae	Meadow Foxtail	Alopecurus pratensis	SNA	Exotic	
Deese	Sweet Vernal	Anthoxanthum	0114	E	
roaceae	Grass	odoratum	SNA	EXOTIC	

Family	English Name	Species	S- rank	General Status	ID Notes
Paacaaa		Bromus inormis	SNIA	Evotio	10 110100
Poaceae	Pvo Bromo			ID uncertain vs. other exotic annual	
FUALEAE	Rye blone Blue- loint	Calamagrostic	SINA	LXUIIC	Bronnus spp.
Poaceae	Reedgrass	canadensis	S 5	Secure	
Poaceae	Slender Wood Reedgrass	Cinna latifolia	S5	Secure	
Poaceae	Orchard Grass	Dactylis glomerata	SNA	Exotic	
	Flattened				
Poaceae	Oatgrass	Danthonia compressa	S1	Secure	
	Poverty Oat-				
Poaceae	Grass	Danthonia spicata	S5	Secure	
Poaceae	Panic Grass	Dichanthelium acuminatum	S5	Secure	
	Northern	Dichanthelium			
Poaceae	Witchgrass	boreale	S5	Secure	
Poaceae	Hair Fescue	Festuca filiformis	SNA	Exotic	
Poaceae	Spreading Fescue	Festuca heteromalla	SNA	Exotic	
Poaceae	Fowl Manna- Grass	Glyceria striata	S5	Secure	
Poaceae	Tall Rye Grass	Lolium arundinaceum	SNA	Exotic	or possibly <i>L.</i> pratensis
Poaceae	Meadow Timothy	Phleum pratense	SNA	Exotic	
	Annual	i incuiri piatorioc	0.0.1	2/10110	
Poaceae	Bluegrass	Poa annua	SNA	Exotic	
Poaceae	Canada Bluegrass	Poa compressa	SNA	Exotic	
Poaceae	Fowl Bluegrass	Poa palustris	S5	Secure	
Poaceae	Kentucky Bluegrass	Poa pratensis	S 5	Secure	
Poaceae	Drooping Bluegrass	Poa saltuensis	S4S5	Secure	
Typhaceae	Broad-Leaf Cattail	Typha latifolia	S5	Secure	
Liliaceae	Wild Lily-of-The- Valley	Maianthemum canadense	S5	Secure	
Liliaceae	Downy Solomon's-Seal	Polygonatum pubescens	S5	Secure	
	Strict Blue-Eyed-	Sisyrinchium			
Iridaceae	Grass	montanum	S5	Secure	
Orchidaceae	Pink Lady's-	Cyprinedium acaule	S 5	Secure	
Ciciliuaceae	Small Purple-		- 55	Jecuie	
Orchidaceae	Fringe Orchis	Platanthera psycodes	S4	Secure	

Table 2. Bird species observed incidentally during plant fieldwork, with breeding evidence. S = singing male in suitable habitat, H = adult observed in suitable habitat.

			General	Breeding
Common Name	Species	S-rank	Status	Evidence
Hairy Woodpecker	Picoides villosus	S5	Secure	Н
Northern Flicker	Colaptes auratus	S5B	Secure	Н
Eastern Wood-Pewee	Contopus virens	S3S4B	Sensitive	S
Yellow-bellied Flycatcher	Empidonax flaviventris	S3S4B	Sensitive	S
Alder Flycatcher	Empidonax alnorum	S5B	Secure	S
Least Flycatcher	Empidonax minimus	S4B	Secure	S
Hermit Thrush	Catharus guttatus	S5B	Secure	S
American Robin	Turdus migratorius	S5B	Secure	S
Cedar Waxwing	Bombycilla cedrorum	S5B	Secure	Н
Blue-headed Vireo	Vireo solitarius	S5B	Secure	S
Red-eyed Vireo	Vireo olivaceus	S5B	Secure	S
Northern Parula	Parula americana	S5B	Secure	S
Chestnut-sided Warbler	Dendroica pensylvanica	S5B	Secure	S
Magnolia Warbler	Dendroica magnolia	S5B	Secure	S
Yellow-rumped Warbler	Dendroica coronata	S5B	Secure	Н
Black-throated Green Warbler	Dendroica virens	S4S5B	Secure	S
Blackburnian Warbler	Dendroica fusca	S4B	Secure	S
Black-and-white Warbler	Mniotilta varia	S4S5B	Secure	S
American Redstart	Setophaga ruticilla	S5B	Secure	S
Ovenbird	Seiurus aurocapilla	S5B	Secure	S
Mourning Warbler	Oporornis philadelphia	S4B	Secure	S
Common Yellowthroat	Geothlypis trichas	S5B	Secure	S
Chipping Sparrow	Spizella passerina	S4S5B	Secure	S
Song Sparrow	Melospiza melodia	S5B	Secure	Н
White-throated Sparrow	Zonotrichia albicollis	S5B	Secure	S
Purple Finch	Carpodacus purpureus	S4S5	Secure	S
Evening Grosbeak	Coccothraustes vespertinus	S4B,S5N	Secure	Н

Table 3. Plant community descriptions of proposed turbine locations (as mapped in Figure 1).

 Photographs of turbine locations are given in Figures to 5.

Location	Community Description
	White Spruce plantation over old field. 20 year old white spruce (70%) - balsam fir
	(20%) - (gray birch - red maple - white ash - 10%); 60% tree cover overall (patchy);
	limited shrub cover. Herb dominants: Danthonia spicata; Pteridium aquilinum;
Turbine 1	Solidago rugosa; Hieracium spp.
	Deciduous forest clearcut at edge of remnant 80 year old stand (sugar maple
	100%, a few dead white ash); 80-90% shrub/sapling cover - Rubus idaeus ssp.
	strigosus; White Ash; Sugar Maple. Herbaceous dominants: Dryopteris
	campyloptera; Carex brunnescens ssp. sphaerostachya; Carex gynandra; Carex
Turbine 2	debilis var. rudgei; Doellingeria umbellata; Dennstaedtia punctilobula

Figure 1. Track taken in the field as recorded by GPS (blue line), with proposed turbine locations. Aerial photograpy from Google Earth.

Figure 2. Significant species (EWPE = Eastern Wood Pewee, YBFL = Yellow-bellied Flycatcher) and noteworthy community locations at the Aulds Mountain site. Pale shading represents leased property boundaries. Wetland (green shading) and mature forest (pink shading) were not mapped in the field but boundaries of these community types were noted. Therefore shaded areas do not represent the full extent of these community types and absence of wetland and mature forest can only be inferred in areas along the track covered in the field (blue line). Significant communities and wetlands are described in the text, with reference to the waypoint numbers mapped.

Figure 3. Proposed turbine site 1.

Figure 4. Proposed turbine site 2.

Figure 5. Linear wetland just south of proposed turbine site 2.

Appendix 1. Definitions of Atlantic Canada Conservation Data Centre (AC CDC) provincial ranks (S-ranks) and Nova Scotia Department of Natural Resources General Status Ranks. Both sets of ranks were developed through the consensus of the Nova Scotia Flora Ranking Committee, cooperatively led by Nova Scotia Department of Natural Resources and AC CDC. The ranks reflect the best understanding of plant status at the time of ranking, but are subject to revision as new information becomes available.

Definitions of provincial (subnational) ranks (S-ranks):

- S1 Extremely rare throughout its range in the province (typically or fewer occurrences or very few remaining individuals). May be especially vulnerable to extirpation.
- S2 Rare throughout its range in the province (usually 6 to 20 occurrences or few remaining individuals). May be vulnerable to extirpation due to rarity or other factors.
- S Uncommon throughout its range in the province (usually 21 to 100 occurrences), or found only in a restricted range, even if abundant in at some locations.
- S Usually widespread, fairly common throughout its range in the province (usually 100+ occurrences), and apparently secure, but the element is of long-term concern.
- S Demonstrably widespread, abundant, and secure throughout its range in the province, and essentially ineradicable under present conditions (100+ occurrences).
- S#S# Numeric range rank: A range between two consecutive numeric ranks. Denotes range of uncertainty about the exact rarity of the Element (e.g., S1S2).
- SNA Conservation status not applicable: The taxon is exotic, its occurrence in the jurisdiction is not confirmed, or it is a hybrid without conservation value.
- ? Is used as a qualifier indicating uncertainty: for numeric ranks, denotes inexactness, e.g., SE? denotes uncertainty of exotic status. (The ? qualifies the character immediately preceding it in the SRANK).

<u>Definitions of National General Status Ranks (from Wild Species: the General Status</u> Program in Canada, Lisa Twolan and Simon Nadeau, 2004, Canadian Wildlife Service, Ottawa)

- *Extirpated*: species that have disappeared from (or are no longer present in) a given geographic area but which occur in other areas
- *Extinct:* species that are extirpated worldwide (i.e., they no longer exist anywhere)
- At Risk: species for which a formal detailed risk assessment (COSEWIC assessment or provincial or territorial equivalent) has been completed, and which have been determined to be at risk of extirpation or extinction (i.e., Endangered) or are likely to become at risk of extirpation or extinction if limiting factors are not reversed (i.e., Threatened)
- *May Be At Risk*: species that may be at risk of extirpation or extinction and are, therefore, candidates for a detailed risk assessment by COSEWIC or the provincial or territorial equivalent

- *Sensitive*: species that are believed to not be at risk of extirpation or extinction but which may require special attention or protection to prevent them from becoming at risk
- *Secure*: species that are believed to not belong in the categories At Risk, May Be At Risk, Extirpated, Extinct, Accidental, or Exotic. This category includes some species that show a declining trend in numbers in Canada but which remain relatively widespread or abundant.
- *Undetermined*: species for which insufficient data, information, or knowledge is available with which to reliably evaluate their general status
- *Not Assessed*: species that are known or believed to be present in the geographic area in Canada to which the general status rank applies but which have not yet been assessed
- *Exotic*: species that have been moved beyond their natural range as a result of human activity. In the *Wild Species 200* report, exotic species have been purposefully excluded from all other categories.
- Accidental: species occurring infrequently and unpredictably outside their usual range

Appendix H:

Noise Impact Assessment

Aulds Mountain Wind Farm Noise Impact Assessment Report October 2013

CONFIDENTIALITY

This document contains proprietary and confidential information, which is provided on a commercial in confidence basis. It may not be reproduced or provided in any manner to any third party without the consent of Natural Forces Wind Inc.

© Copyright Natural Forces Wind Inc. 2013

This work and the information contained in it are the copyright of Natural Forces Wind Inc. No part of this document may be reprinted or reproduced without the consent of Natural Forces Wind Inc.

Disclaimer

Whilst every effort has been made to ensure the accuracy of this information, the publisher accepts no responsibility for any discrepancies and omissions that may be contained herein.

Natural Forces Wind Inc. 1801 Hollis Street Suite 1205 Halifax, NS B3J 3N4 P +1 (902) 422 9663 F +1 (902) 422 9780

Report Information

Client	Natural Forces Wind Inc.
Client Contact	Amy Pellerin
Report Name	Aulds Mountain Wind Farm Noise Impact Assessment
Created By	Amy Pellerin
Signature	Any Pelli

** The WindPRO v2.8, Decibel Module Calculation Results for Enercon E-92 2.3 MW @ 98m Hub Height. To review General Specification for the Enercon E-92 2.3 MW please contact:

Amy Pellerin, Development Engineer Natural Forces Wind Inc. 1801 Hollis Street Suite 1205 Halifax Nova Scotia B3J 3N4 Telephone: 902 422 9663 ext. 211 Fax: 902 422 9780 Contact email: apellerin@naturalforces.ca

Table of Contents

I. Introduction	I
2. General Description of Project Site and Surrounds	2
3. Noise Guidelines for Wind Farm	3
3.1. Provincial and Municipal Noise Guidelines	3
3.2. Ontario Provincial Noise Guidelines	3
4. Description of Receptors	4
5. Description of Sources	6
5.1. Turbine Locations	6
5.2. Turbine Types	6
5.3. Power Curve Data	7
6. Wind Turbine Noise Emission Rating	8
7. Impact Assessment	9
7.1. Prediction Methodology	9
7.2. Results of Noise Predictions	9
8. Conclusions and Recommendations	.12
9. References	.13

List of Figures

Figure	I – Power	curve for t	he Enercon	E-92 2.3.	7	1
--------	-----------	-------------	------------	-----------	---	---

List of Tables

Table I - Summary of sound level limits for wind turbines	. 3
Table 2 - Description of receptors	.4
Table 3 - Coordinates of proposed turbine locations	.6
Table 4 - Enercon E-92 2.3 MW turbine characteristics	.6
Table 5 - Enercon E-92 2.3 MW noise emission data for 98m hub height	. 8
Table 6 - Wind turbine noise impact assessment summary	10

List of Annexes

Annex A:

Site Layout Map WindPRO v2.8, Decibel Module Calculation Results – Enercon E-92 2.3 MW. Annex B:

I. Introduction

Natural Forces Wind Inc. has undertaken a noise impact assessment for the proposed Aulds Mountain Wind Farm site to assess the impact of the wind farm's sound emissions on the surrounding points of immission. Details outlining the project, immission receptors, prediction methodology and assumptions made for the assessment are included herein, with WindPRO modelling results supplied in the annexes. The Land Use By-law for the Municipality of Pictou County does not state any restrictions pertaining to sound pressure levels relating to wind turbines activities. Therefore, the Ontario *Noise Guidelines for Wind Farms* will be used during this assessment as a guideline regarding acceptable noise emission from the proposed Aulds Mountain Wind Farm.

The noise analysis was conducted using the ISO 9613-2: Acoustics – Attenuation of sound during propagation outdoors – Part 2: General method of calculation model within the Decibel module of the software package, WindPRO version 2.8.

2. General Description of Project Site and Surrounds

The proposed Aulds Mountain Wind Farm consists of a maximum of 2 wind turbine generators located in the Municipality of Pictou County, Nova Scotia. Currently, Enercon E-92 2.3 MW wind turbines are being considered for the project and therefore were used to calculate predicted sound pressure levels, however if the turbine type was to change, a new noise assessment would be conducted.

The project site is situated approximately 6 kilometers south east of Merigomish and adjacent to the Piedmont Valley Road. Land around the proposed project area is zoned as a General Development Zone and so, will not require re-zoning. A map of the site is included in Annex A.

The predominant noise sources in the area are from road traffic along Piedmont Valley Road, the Trans-Canada Highway 104 and Highway 4.

3. Noise Guidelines for Wind Farm

3.1. **Provincial and Municipal Noise Guidelines**

As previously mentioned, the Land Use By-law for the Municipality of Pictou County does not include any restrictions concerning acceptable sound pressure levels being emitted from wind turbines.

The province of Nova Scotia does not have any guidelines or written restrictions for acceptable sound pressure levels, but adheres to the guidelines outlined in Ontario's *Noise Guidelines for Wind Farms*.

3.2. Ontario Provincial Noise Guidelines

For the proposed Aulds Mountain Wind Farm, the Ontario Noise Guidelines for Wind Farms was used as a general guideline. The guidelines describe receptors in rural environments as Class 3. The sound level limits established for this class of receptors is demonstrated in Table 1 for wind turbines at different wind speeds.

Table I - Summary of sound level limits for wind turbines (Ministry of the Environment, 2008).

Wind Speed (m/s) at 10 m height	4	5	6	7	8	9	10
Wind Turbine Sound Level Limits Class 3 Area, dB(A)	40.0	40.0	40.0	43.0	45.0	49.0	51.0

To ensure a conservative assessment of the sound level limits emitted by the proposed Aulds Mountain Wind Farm, a general limit of 40 dB(A) was used for all wind speeds ranging between and including 4 and 12 m/s.

The noise assessment used the height above grade at the centre of the receptors of 4.5 m as proposed by the guideline for single and two story dwellings.

4. Description of Receptors

The 71 points of reception taken into consideration for this noise impact assessment are residential buildings and/or seasonal camps located within 2,000 metres (m) of the project land. The receptors are located at dwellings along Piedmont Valley Road and Highway 4. Details of receptor locations and distances to nearest wind turbine are below in Table 2. The point of reception ID letter correspond with the WindPRO generated map included in Annex B.

Table 2 - Description of receptors.

Point of	Location (UT NAC	TM Zone 20, 9 83)	Distance from Receptor to		
ID Letter	Easting	Northing	Wind turbine I	Wind turbine 2	
А	548,191	5,046,842	2458	2104	
В	549,470	5,047,384	1956	1455	
С	548,952	5,047,164	2064	1609	
D	548,658	5,046,958	2270	1851	
E	549,574	5,050,920	1864	2217	
F	550,369	5,047,049	2679	2181	
G	547,730	5,049,519	1113	1501	
Н	550,244	5,050,999	2287	2537	
	547,657	5,049,541	1189	1575	
J	548,531	5,046,840	2399	1995	
К	549,014	5,047,124	2110	1647	
L	547,719	5,049,698	1184	1606	
М	549,877	5,050,924	2012	2313	
Ν	549,212	5,047,208	2056	1573	
0	548,418	5,046,857	2397	2010	
Р	549,693	5,047,001	2394	1890	
Q	550,858	5,047,141	2925	2448	
R	547,617	5,046,912	2598	2336	
S	548,382	5,046,890	2370	1989	
Т	548,958	5,050,538	1324	1769	
U	549,277	5,047,177	2100	1613	
V	547,138	5,046,896	2861	2664	
W	550,053	5,051,008	2179	2459	
Х	548,662	5,046,569	2658	2233	
Y	550,284	5,051,082	2377	2629	
Z	547,241	5,047,018	2702	2505	
AA	548,046	5,046,892	2451	2122	
AB	547,553	5,049,636	1316	1713	
AC	548,644	5,046,524	2704	2280	
AD	549,806	5,047,119	2331	1825	
AE	549,074	5,047,312	1931	1460	
AF	549,905	5,051,116	2190	2502	

Point of	Location (U NAD	UTM Zone 20, Distance from Recep		n Receptor to
ID Letter	Easting	Northing	Wind turbine I	Wind turbine 2
AG	550,021	5,047,024	2514	2008
AH	549,992	5,047,101	2432	1927
AI	546,755	5,048,938	2068	2282
AJ	548,276	5,050,153	1069	1575
AK	549,834	5,050,893	1963	2269
AL	549,640	5,046,824	2541	2040
AM	547,762	5,049,508	1079	1468
AN	549,210	5,047,276	1989	1506
AO	550,388	5,047,252	2529	2037
AP	547,777	5,046,898	2541	2254
AQ	547,848	5,046,870	2539	2239
AR	547,960	5,046,874	2496	2178
AS	549,048	5,050,592	1391	1821
AT	547,741	5,049,543	1109	1503
AU	547,813	5,049,385	1003	1364
AV	547,845	5,049,378	970	1332
AW	547,876	5,046,912	2490	2189
AX	549,267	5,050,625	1477	1869
AY	548,063	5,049,636	847	1298
AZ	548,828	5,047,202	2021	1582
BA	548,151	5,046,945	2369	2027
BB	551,477	5,046,917	3531	3069
BC	548,899	5,046,990	2235	1786
BD	550,247	5,047,130	2543	2042
BE	548,345	5,049,845	772	1274
BF	548,144	5,046,870	2443	2098
BG	546,771	5,048,966	2048	2268
BH	546,960	5,049,282	1844	2133
BI	547,758	5,049,878	1233	1687
BJ	547,494	5,049,611	1365	1752
BK	547,398	5,049,436	1421	1763
BL	549,175	5,050,587	1414	1822
BM	550,339	5,051,031	2372	2611
BN	547,103	5,047,078	2737	2566
BO	547,420	5,046,923	2684	2452
BP	548,673	5,047,093	2134	1716
BQ	549,349	5,047,188	2107	1615
BR	549,632	5,047,012	2361	1859
BS	550,567	5,047,151	2721	2232

5. Description of Sources

5.1. Turbine Locations

A map of the project area with the proposed wind turbine layout is illustrated in Annex A. There are no existing or proposed wind farms within 5 kilometers of the project, thus it is unlikely any cumulative noise effects will occur. UTM coordinates of the turbines are given below in Table 3. Wind turbine ID numbers included in Table 3 correspond with the labels to the WindPRO generated map included Annex B.

Table 3 - Coordinates of proposed turbine locations.

	Proposed Wind Turbine				
Wind Turbine	Location				
ID Number	(UTM Zone 20, NAD 83)				
	Easting	Northing			
I	548,803	5,049,223			
2	549,031	5,048,771			

5.2. Turbine Types

The model of wind turbines being considered for the proposed wind farm is the Enercon E-92 2.3 MW.

This model utilizes horizontal axis, upwind, 3-bladed, and a microprocessor pitch control system. Table 4 below outlines their main characteristics.

	Table 4 - Enercon	E-92 2.3 MW	turbine characteristics.	(Enercon, 2012))
--	-------------------	-------------	--------------------------	-----------------	---

Generator	Rotor	Hub Height	Rated Output
Гуре	Diameter (m)	(m)	(MVV)
E-92 2.3	92	98	2.3

5.3. Power Curve Data

The power curve for the E-92 2.3 MW wind turbines at Noise Mode 0 and with an air density of 1.225 kg/m^3 is shown below in Figure 1.

E92-2.3 Power Curve

Figure I – Power curve for the Enercon E-92 2.3. (Enercon, 2012)

6. Wind Turbine Noise Emission Rating

The noise emission data for the Enercon E-92 2.3 wind turbines, shown in Table 5 below, was provided by Enercon Canada (2012). The Sound Pressure Levels (SPL) were measured to IEC 61400-11 standards, which stipulate measurements at a height of 10m above ground level (a.g.l.) with an air density of 1.225 kg/m³that is taken to be representative of the project area. Where data is shown as 'N/A', WindPRO has extrapolated octave band data to generate appropriate SPL values in order to complete the calculation. These source noise levels are incorporated in the prediction calculations referenced in Section 7.

Wind speed	SPL (LWA)	Octave Band Centre Frequency (Hz)									
at 10m a.g.l. (m/s)	(dB(A) re 10 ⁻¹² Watts)	63	125	250	500	1000	2000	4000	8000		
4	97.6	79.2	86.2	89.6	92.2	92.2	89.1	84.3	74.8		
5	99.9	81.5	88.5	91.9	94.5	94.3	91.4	86.6	77.1		
6	102.2	83.8	90.8	84.2	96.8	96.6	93.7	88.9	79.4		
7	103.4	85.0	92.0	95.4	98.0	97.8	94.9	90.1	80.6		
8	104.4	86.0	93.0	96.4	99.0	98.8	95.9	91.1	81.6		
9	105.0	86.6	93.6	97.0	99.6	99.4	96.5	91.7	82.2		
10	105.0	86.6	93.6	97.0	99.6	99.4	96.5	91.7	82.2		
II	105.0	86.6	93.6	97.0	99.6	99.4	96.5	91.7	82.2		
12	105.0	86.6	93.6	97.0	99.6	99.4	96.5	91.7	82.2		

Table 5 - Enercon E-92 2.3 MW noise emission data for 98m hub height.

7. Impact Assessment

7.1. Prediction Methodology

The SPL was calculated at each point of reception (listed in Table 2) using the Decibel module of WindPRO v.2.8 which uses the ISO 9613-2 model "Attenuation of sound during propagation outdoors, Part 2: A general method of calculation". The calculations were performed using the Enercon E-92 2.3 MW wind turbine generators with a hub height of 98m. A global ground attenuation of 0.0 was used to represent a 'worst case scenario' that produces results that are unaffected by sound absorption from topographical characteristics such as trees, grass, etc. The WindPRO generated noise contour map for the Enercon E-92 2.3 with a 98m hub height can be found in Annex B.

As another conservative measure, downwind propagation has been assumed to occur simultaneously in all directions and from all wind turbines. Furthermore, no attenuation from topographical shielding (other buildings, barns, trees etc.) has been considered between the turbines and receptors. In reality, noise propagation in an upwind direction would lead to a significant reduction of incident noise levels at receptors located in the upwind direction in relation to the wind turbine.

No correction for special audible characteristics such as clearly audible tones, impulses or modulation of sound levels has been made. These are not common characteristics of modern wind turbine generators in a well designed wind farm. The absence of tonal noise is normally guaranteed by wind turbine manufacturers. Furthermore, impulses and modulation of sound levels from the wind farm under normal conditions would not be of a level to necessitate the application of any penalty.

A full list of parameters assumed for the predictions is provided in Annex B.

7.2. Results of Noise Predictions

The results of the noise prediction model at each point of immission, as summarized in Table 6 below, prove compliance with the Ontario *Noise Guidelines for Wind Farms* and the 40 dB(A) conservative SPL emission limit. The table demonstrates the loudest noise levels for any wind speed modelled between and including 4 to 12 m/s. As the guideline requirements have been exceeded, it was deemed unnecessary to conduct noise monitoring to establish background noise levels.

The receptor with the highest perceived noise immission was receptor BF, which received a maximum worst case emission of 37.6 dB(A) from the Enercon E-92 2.3 MW machine, at a 98m hub heights.

The modelled noise results for a wind speed of 9 m/s, approximately the 'noisiest' operational speed of a Enercon E92 wind turbine is mapped in Annexe B. The receptor ID labels on the contour plot correspond with the WindPRO ID listed in Table 2.

Table 6 - Wind turbine noise impact assessment summary.

Point of Reception ID letter	Distance from Receptor to nearest wind turbine (m)	Max Sound Level from wind farm for all wind speeds dB(A)	Compliance with Ontario Guidelines (Yes/No)	Compliance with 40 dB(A) Noise Level (Yes/No)
Α	2104	27.9	Yes	Yes
В	1455	31.5	Yes	Yes
С	1609	30.6	Yes	Yes
D	1851	29.1	Yes	Yes
E	1864	29.2	Yes	Yes
F	2181	27.2	Yes	Yes
G	1113	34.4	Yes	Yes
Н	2287	27.1	Yes	Yes
I	1189	33.8	Yes	Yes
J	1995	28.4	Yes	Yes
К	1647	30.3	Yes	Yes
L	1184	33.8	Yes	Yes
М	2012	28.5	Yes	Yes
N	1573	30.8	Yes	Yes
0	2010	28.3	Yes	Yes
Р	1890	28.8	Yes	Yes
Q	2448	25.9	Yes	Yes
R	2336	26.8	Yes	Yes
S	1989	28.4	Yes	Yes
Т	1324	32.6	Yes	Yes
U	1613	30.5	Yes	Yes
V	2664	25.4	Yes	Yes
W	2179	27.6	Yes	Yes
Х	2233	27.1	Yes	Yes
Y	2377	26.6	Yes	Yes
Z	2505	26.1	Yes	Yes
AA	2122	27.8	Yes	Yes
AB	1316	32.8	Yes	Yes
AC	2280	26.8	Yes	Yes
AD	1825	29.1	Yes	Yes
AE	1460	31.6	Yes	Yes
AF	2190	27.5	Yes	Yes
AG	2008	28.1	Yes	Yes
AH	1927	28.5	Yes	Yes
AI	2068	28.3	Yes	Yes
AJ	1069	34.6	Yes	Yes
AK	1963	28.7	Yes	Yes
AL	2040	27.9	Yes	Yes

Point of Reception ID letter	Distance from Receptor to nearest wind turbine (m)	Max Sound Level from wind farm for all wind speeds dB(A)	Compliance with Ontario Guidelines (Yes/No)	Compliance with 40 dB(A) Noise Level (Yes/No)
AM	1079	34.7	Yes	Yes
AN	1506	31.2	Yes	Yes
AO	2037	28	Yes	Yes
AP	2254	27.2	Yes	Yes
AQ	2239	27.3	Yes	Yes
AR	2178	27.5	Yes	Yes
AS	1391	32.1	Yes	Yes
AT	1109	34.5	Yes	Yes
AU	1003	35.5	Yes	Yes
AV	970	35.8	Yes	Yes
AW	2189	27.5	Yes	Yes
AX	1477	31.6	Yes	Yes
AY	847	36.9	Yes	Yes
AZ	1582	30.8	Yes	Yes
BA	2027	28.3	Yes	Yes
BB	3069	23.3	Yes	Yes
BC	1786	29.5	Yes	Yes
BD	2042	27.9	Yes	Yes
BE	772	37.6	Yes	Yes
BF	2098	27.9	Yes	Yes
BG	2048	28.4	Yes	Yes
BH	1844	29.4	Yes	Yes
BI	1233	33.3	Yes	Yes
BJ	1365	32.4	Yes	Yes
ВК	1421	32.1	Yes	Yes
BL	1414	32	Yes	Yes
BM	2372	26.7	Yes	Yes
BN	2566	25.9	Yes	Yes
BO	2452	26.3	Yes	Yes
BP	1716	30	Yes	Yes
BQ	1615	30.5	Yes	Yes
BR	1859	28.9	Yes	Yes
BS	2232	26.9	Yes	Yes

8. Conclusions and Recommendations

Natural Forces Wind Inc. has completed a thorough assessment to evaluate the noise impact of the proposed Aulds Mountain Wind Farm at residential locations within 2 kilometers of a proposed wind turbine. Based on the parameters used to run the WindPRO noise prediction model, it has been shown that the predicted sound pressure levels emitted by any of the proposed wind turbine generators are less than 40 dB(A), thus demonstrating compliance with the Ontario *Noise Guidelines for Wind Farms*. As a result of this study, no noise mitigation strategies are recommended.

9. References

Municipality of the County of Pictou (2007). Land Use By-Law Wind Energy Developments. Pictou.

Enercon GmbH ed. (2012). Sound power level of the Enercon E-92. Germany.

Enercon GmbH ed. (2012). Power Curve Enercon E-92. Germany.

Enercon GmbH ed. (2012). Wind energy converter characteristics. Germany.

Enercon GmbH ed. (2012). Technical information data pack ENERCON E-92. Germany.

International Organization for Standardization (1996). ISO 9613-2: Acoustics – Attenuation of sound during propagation outdoors – Part 2: General method of calculation. WindPRO.

Ministry of the Environment (2008). Noise guidelines for wind farms. Ontario.

ANNEX A

Site Layout Map

ANNEX B

WindPRO v2.8, Decibel Module Calculation Results

Enercon E-92 2.3 MW @ 98m Hub Height

WindPRO version 2.8.579 Dec 2012

Printed/Page 10/10/2013 11:39 AM / 1

Licensed user: **Natural Forces Wind Inc** 1791 Barrington Street Suite 1030 CA-HALIFAX, Nova Scotia B3J 3L1

Amy / apellerin@naturalforces.ca ^{Calculated:} 09/10/2013 3:52 PM/2.8.579

DECIBEL - Main Result

Calculation: Aulds Mountain - Final Noise Impact Assessment

Noise calculation model: ISO 9613-2 General Wind speed: 4.0 m/s - 12.0 m/s, step 1.0 m/s Ground attenuation: None Meteorological coefficient, C0: 0.0 dB Type of demand in calculation: 1: WTG noise is compared to demand (DK, DE, SE, NL etc.) Noise values in calculation:

All noise values are mean values (Lwa) (Normal)
Pure tones:

Pure and Impulse tone penalty are added to WTG source noise Height above ground level, when no value in NSA object: 4.5 m Don't allow override of model height with height from NSA object Deviation from "official" noise demands. Negative is more restrictive, positive is less restrictive.:

0.0 dB(A)

🙏 New WTG

Noise sensitive area

WTGs

U	TM (north	n)-NAD83 (l	JS+CA) Zone: 20	WTG	type					Noise d	lata					
	East	North	Z	Row data/Description	Valid	Manufact.	Type-generator	Power,	Rotor	Hub	Creator	Name	First	LwaRef	Last	LwaRef	Pure
								rated	diameter	height			wind		wind		tones
													speed		speed		
			[m]					[kW]	[m]	[m]			[m/s]	[dB(A)]	[m/s]	[dB(A)]	
1	548,803	5,049,223	233.8	ENERCON E-92 2,3 MW 2300 .	Yes	ENERCON	E-92 2,3 MW-2,300	2,300	92.0	98.0	EMD	Level 0 - calculated - Op.Mode I - 03/2012	4.0	97.6	12.0	105.0	0 dB g
2	549,031	5,048,771	230.0	ENERCON E-92 2,3 MW 2300 .	Yes	ENERCON	E-92 2,3 MW-2,300	2,300	92.0	98.0	EMD	Level 0 - calculated - Op.Mode I - 03/2012	4.0	97.6	12.0	105.0	0 dB g
h) G	eneric o	ctave distr	ributio	on used													
- N - D				the set is a set of a set of the													

g) Data calculated from data for other wind speed (uncertain)

Calculation Results

Sound Level

Noise s	ensitive area	UTM (north)-NAD83 (L	JS+CA) Zone: 20	Demands		Sound Level	Deman	ds fulfilled	1?
No.	Name	East	North	Z	Imission height	Max Noise	Distance	Max From WTGs	Noise	Distance	All
				[m]	[m]	[dB(A)]	[m]	[dB(A)]			
	A Noise sensitive point: User defined (98)	548,191	5,046,842	106.2	4.5	40.0	600	27.9	Yes	Yes	Yes
	B Noise sensitive point: User defined (99)	549,470	5,047,384	87.4	4.5	40.0	600	31.5	Yes	Yes	Yes
	C Noise sensitive point: User defined (100)	548,952	5,047,164	93.9	4.5	40.0	600	30.6	Yes	Yes	Yes
	D Noise sensitive point: User defined (101)	548,658	5,046,958	100.0	4.5	40.0	600	29.1	Yes	Yes	Yes
	E Noise sensitive point: User defined (102)	549,574	5,050,920	80.0	4.5	40.0	600	29.2	Yes	Yes	Yes
	F Noise sensitive point: User defined (103)	550,369	5,047,049	100.0	4.5	40.0	600	27.2	Yes	Yes	Yes
	G Noise sensitive point: User defined (104)	547,730	5,049,519	70.0	4.5	40.0	600	34.4	Yes	Yes	Yes
	H Noise sensitive point: User defined (105)	550,244	5,050,999	94.3	4.5	40.0	600	27.1	Yes	Yes	Yes
	I Noise sensitive point: User defined (106)	547,657	5,049,541	70.0	4.5	40.0	600	33.8	Yes	Yes	Yes
	J Noise sensitive point: User defined (107)	548,531	5,046,840	109.9	4.5	40.0	600	28.4	Yes	Yes	Yes
	K Noise sensitive point: User defined (108)	549,014	5,047,124	95.8	4.5	40.0	600	30.3	Yes	Yes	Yes
	L Noise sensitive point: User defined (109)	547,719	5,049,698	70.9	4.5	40.0	600	33.8	Yes	Yes	Yes
	M Noise sensitive point: User defined (110)	549,877	5,050,924	84.5	4.5	40.0	600	28.5	Yes	Yes	Yes
	N Noise sensitive point: User defined (111)	549,212	5,047,208	93.1	4.5	40.0	600	30.8	Yes	Yes	Yes
	O Noise sensitive point: User defined (112)	548,418	5,046,857	107.4	4.5	40.0	600	28.3	Yes	Yes	Yes
	P Noise sensitive point: User defined (113)	549,693	5,047,001	94.0	4.5	40.0	600	28.8	Yes	Yes	Yes
	Q Noise sensitive point: User defined (114)	550,858	5,047,141	110.4	4.5	40.0	600	25.9	Yes	Yes	Yes
	R Noise sensitive point: User defined (115)	547,617	5,046,912	95.2	4.5	40.0	600	26.8	Yes	Yes	Yes
	S Noise sensitive point: User defined (116)	548,382	5,046,890	104.3	4.5	40.0	600	28.4	Yes	Yes	Yes
	T Noise sensitive point: User defined (117)	548,958	5,050,538	80.0	4.5	40.0	600	32.6	Yes	Yes	Yes
	U Noise sensitive point: User defined (118)	549,277	5,047,177	98.7	4.5	40.0	600	30.5	Yes	Yes	Yes
	V Noise sensitive point: User defined (119)	547,138	5,046,896	79.8	4.5	40.0	600	25.4	Yes	Yes	Yes
	W Noise sensitive point: User defined (120)	550,053	5,051,008	86.3	4.5	40.0	600	27.6	Yes	Yes	Yes

To be continued on next page..

WindPRO is developed by EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

WindPRO version 2.8.579 Dec 2012

Printed/Page 10/10/2013 11:39 AM / 2 Licensed user:

Natural Forces Wind Inc 1791 Barrington Street Suite 1030 CA-HALIFAX, Nova Scotia B3J 3L1

Amy / apellerin@naturalforces.ca

09/10/2013 3:52 PM/2.8.579

DECIBEL - Main Result

N

Calculation: Aulds Mountain - Final Noise Impact Assessment

.continued	from previous page										
loise sen	sitive area	UTM (north	า)-NAD83 (L	JS+CA) Zone: 20	Demands		Sound Level	Deman	ds fulfilled	1?
lo.	Name	East	North	Z	Imission	Max Noise	Distance	Max From	Noise	Distance	All
					height			WTGs			
				[m]	[m]	[dB(A)]	[m]	[dB(A)]			
>	K Noise sensitive point: User defined (121)	548,662	5,046,569	127.2	4.5	40.0	600	27.1	Yes	Yes	Yes
١	/ Noise sensitive point: User defined (122)	550,284	5,051,082	90.0	4.5	40.0	600	26.6	Yes	Yes	Yes
2	Z Noise sensitive point: User defined (123)	547,241	5,047,018	84.9	4.5	40.0	600	26.1	Yes	Yes	Yes
AA	A Noise sensitive point: User defined (124)	548,046	5,046,892	104.6	4.5	40.0	600	27.8	Yes	Yes	Yes
AE	3 Noise sensitive point: User defined (125)	547,553	5,049,636	70.0	4.5	40.0	600	32.8	Yes	Yes	Yes
AC	C Noise sensitive point: User defined (126)	548,644	5,046,524	129.3	4.5	40.0	600	26.8	Yes	Yes	Yes
AD	D Noise sensitive point: User defined (127)	549,806	5,047,119	90.0	4.5	40.0	600	29.1	Yes	Yes	Yes
AE	E Noise sensitive point: User defined (128)	549,074	5,047,312	88.4	4.5	40.0	600	31.6	Yes	Yes	Yes
A	- Noise sensitive point: User defined (129)	549,905	5,051,116	80.7	4.5	40.0	600	27.5	Yes	Yes	Yes
AC	S Noise sensitive point: User defined (130)	550,021	5,047,024	90.7	4.5	40.0	600	28.1	Yes	Yes	Yes
AF	Noise sensitive point: User defined (131)	549,992	5,047,101	90.0	4.5	40.0	600	28.5	Yes	Yes	Yes
A	I Noise sensitive point: User defined (132)	546,755	5,048,938	51.9	4.5	40.0	600	28.3	Yes	Yes	Yes
A.	J Noise sensitive point: User defined (133)	548,276	5,050,153	87.7	4.5	40.0	600	34.6	Yes	Yes	Yes
Ał	Noise sensitive point: User defined (134)	549,834	5,050,893	85.6	4.5	40.0	600	28.7	Yes	Yes	Yes
AI	Noise sensitive point: User defined (135)	549,640	5,046,824	110.8	4.5	40.0	600	27.9	Yes	Yes	Yes
AN	Noise sensitive point: User defined (136)	547,762	5.049.508	70.0	4.5	40.0	600	34.7	Yes	Yes	Yes
AN	Noise sensitive point: User defined (137)	549.210	5.047.276	90.0	4.5	40.0	600	31.2	Yes	Yes	Yes
AC) Noise sensitive point: User defined (138)	550,388	5.047.252	100.0	4.5	40.0	600	28.0	Yes	Yes	Yes
AF	P Noise sensitive point: User defined (139)	547,777	5.046.898	100.0	4.5	40.0	600	27.2	Yes	Yes	Yes
AC	Noise sensitive point: User defined (140)	547,848	5.046.870	104.3	4.5	40.0	600	27.3	Yes	Yes	Yes
AF	R Noise sensitive point: User defined (141)	547 960	5 046 874	106.5	4.5	40.0	600	27.5	Yes	Yes	Yes
AS	S Noise sensitive point: User defined (142)	549 048	5 050 592	80.0	4.5	40.0	600	32.1	Yes	Yes	Yes
Δ-	Noise sensitive point: User defined (142)	547 741	5 049 543	70.0	4.0	40.0	600	34.5	Ves	Ves	Vac
	1 Noise sensitive point: User defined (143)	547 813	5,049,045	84.8	4.5	40.0	600	35.5	Ves	Ves	Vac
	/ Noise sensitive point: User defined (144)	547,015	5,049,000	87.5	4.5	40.0	600	35.8	Ves	Ves	Vac
	/ Noise sensitive point: User defined (146)	547,045	5,045,070	102.8	4.5	40.0	600	27.5	Vec	Vec	Voc
~~~	(Noise sensitive point: User defined (140)	540.267	5,040,912	01.0	4.5	40.0	600	21.5	Voc	Voc	Voc
A7	(Noise sensitive point: User defined (147)	549,207	5,050,025	01.4	4.5	40.0	600	26.0	Voc	Voc	Voc
A 1	7 Noise sensitive point. User defined (140)	540,003	5,049,030	09.7	4.0	40.0	600	20.9	Vee	Vee	Vee
A2	Noise sensitive point. User defined (149)	040,020 E40.1E1	5,047,202	00.3	4.5	40.0	600	30.0	Vee	Yes	Vee
	A Noise sensitive point. User defined (150)	546,151	5,046,945	97.9	4.5	40.0	600	20.3	Vee	Yes	Vee
D	S Noise sensitive point: User defined (151)	51,477	5,046,917	140.0	4.5	40.0	600	23.3	Yes	res	Yes
BU	Noise sensitive point: User defined (152)	548,899	5,046,990	100.2	4.5	40.0	600	29.5	Yes	res	Yes
BL	D Noise sensitive point: User defined (153)	550,247	5,047,130	97.3	4.5	40.0	600	27.9	Yes	res	res
BE	Noise sensitive point: User defined (154)	548,345	5,049,845	92.1	4.5	40.0	600	37.6	Yes	Yes	Yes
BI	- Noise sensitive point: User defined (155)	548,144	5,046,870	103.2	4.5	40.0	600	27.9	Yes	Yes	Yes
BG	Noise sensitive point: User defined (156)	546,771	5,048,966	51.4	4.5	40.0	600	28.4	Yes	Yes	Yes
BF	Noise sensitive point: User defined (157)	546,960	5,049,282	50.2	4.5	40.0	600	29.4	Yes	Yes	Yes
В	I Noise sensitive point: User defined (158)	547,758	5,049,878	95.2	4.5	40.0	600	33.3	Yes	Yes	Yes
B	J Noise sensitive point: User defined (159)	547,494	5,049,611	70.0	4.5	40.0	600	32.4	Yes	Yes	Yes
Bł	K Noise sensitive point: User defined (160)	547,398	5,049,436	60.0	4.5	40.0	600	32.1	Yes	Yes	Yes
BI	Noise sensitive point: User defined (161)	549,175	5,050,587	80.1	4.5	40.0	600	32.0	Yes	Yes	Yes
BN	I Noise sensitive point: User defined (162)	550,339	5,051,031	90.0	4.5	40.0	600	26.7	Yes	Yes	Yes
BN	Noise sensitive point: User defined (163)	547,103	5,047,078	70.0	4.5	40.0	600	25.9	Yes	Yes	Yes
BC	O Noise sensitive point: User defined (164)	547,420	5,046,923	91.5	4.5	40.0	600	26.3	Yes	Yes	Yes
BF	P Noise sensitive point: User defined (165)	548,673	5,047,093	88.4	4.5	40.0	600	30.0	Yes	Yes	Yes
BC	Q Noise sensitive point: User defined (166)	549,349	5,047,188	98.8	4.5	40.0	600	30.5	Yes	Yes	Yes
BF	R Noise sensitive point: User defined (167)	549,632	5,047,012	98.3	4.5	40.0	600	28.9	Yes	Yes	Yes
BS	S Noise sensitive point: User defined (168)	550,567	5,047,151	104.2	4.5	40.0	600	26.9	Yes	Yes	Yes

#### WindPRO version 2.8.579 Dec 2012

Printed/Page 10/10/2013 11:39 AM / 3 Licensed user:

Natural Forces Wind Inc 1791 Barrington Street Suite 1030 CA-HALIFAX, Nova Scotia B3J 3L1

Amy / apellerin@naturalforces.ca

09/10/2013 3:52 PM/2.8.579

## DECIBEL - Main Result

Calculation: Aulds Mountain - Final Noise Impact Assessment

Distances (m)									
WTG									
NSA	1	2							
A	2458	2104							
В	1956	1455							
C	2064	1609							
F	1864	2217							
F	2679	2181							
Ğ	1113	1501							
н	2287	2537							
I	1189	1575							
J	2399	1995							
K	2110	1647							
	2012	2313							
N	2056	1573							
0	2397	2010							
Р	2394	1890							
Q	2925	2448							
R	2598	2336							
S	2370	1989							
1	1324	1769							
V	2861	2664							
Ŵ	2179	2459							
Х	2658	2233							
Y	2377	2629							
Z	2702	2505							
AA	2451	2122							
AB	1316	1713							
	2331	1825							
AE	1931	1460							
AF	2190	2502							
AG	2514	2008							
AH	2432	1927							
AI	2068	2282							
AJ	1069	1575							
ΔI	25/1	2269							
AM	1079	1468							
AN	1989	1506							
AO	2529	2037							
AP	2541	2254							
AQ	2539	2239							
AR	2496	2178							
	1100	1021							
AU	1003	1364							
AV	970	1332							
AW	2490	2189							
AX	1477	1869							
AY	847	1298							
AZ PA	2021	1582							
BR	∠309 3531	2027							
BC	2235	1786							
BD	2543	2042							

To be continued on next page..

WindPRO is developed by EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

### WindPRO version 2.8.579 Dec 2012

^{Printed/Page} 10/10/2013 11:39 AM / 4

Licensed user: **Natural Forces Wind Inc** 1791 Barrington Street Suite 1030 CA-HALIFAX, Nova Scotia B3J 3L1

Amy / apellerin@naturalforces.ca

09/10/2013 3:52 PM/2.8.579

# DECIBEL - Main Result

Calculation: Aulds Mountain - Final Noise Impact Assessment

# WindPRO version 2.8.579 Dec 2012

Printed/Page 10/10/2013 1:32 PM / 1 Licensed user:

Natural Forces Wind Inc 1791 Barrington Street Suite 1030 CA-HALIFAX, Nova Scotia B3J 3L1

Amy / apellerin@naturalforces.ca

09/10/2013 3:52 PM/2.8.579

DECIBEL - Map 8.0 m/s Calculation: Aulds Mountain - Final Noise Impact Assessment



Noise calculation model: ISO 9613-2 General. Wind speed: 8.0 m/s

WindPRO is developed by EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk
#### WindPRO version 2.8.579 Dec 2012

Printed/Page 10/10/2013 1:30 PM / 1 Licensed user:

Natural Forces Wind Inc 1791 Barrington Street Suite 1030 CA-HALIFAX, Nova Scotia B3J 3L1

Amy / apellerin@naturalforces.ca

09/10/2013 3:52 PM/2.8.579

### **DECIBEL** - Assumptions for noise calculation

Calculation: Aulds Mountain - Final Noise Impact Assessment

Noise calculation model: ISO 9613-2 General Wind speed: 4.0 m/s - 12.0 m/s, step 1.0 m/s Ground attenuation: None Meteorological coefficient, C0: 0.0 dB Type of demand in calculation: 1: WTG noise is compared to demand (DK, DE, SE, NL etc.) Noise values in calculation: All noise values are mean values (Lwa) (Normal) Pure tones: Pure and Impulse tone penalty are added to WTG source noise Height above ground level, when no value in NSA object: 4.5 m Don't allow override of model height with height from NSA object Deviation from "official" noise demands. Negative is more restrictive, positive is less restrictive.: 0.0 dB(A) Octave data required Air absorption 125 250 500 1,000 2,000 4,000 8,000 63 [db/km] [db/km] [db/km] [db/km] [db/km] [db/km] [db/km]

9.7

WTG: ENERCON E-92 2,3 MW 2300 92.0 !-! Noise: Level 0 - calculated - Op.Mode I - 03/2012

1.0

1.9

3.7

0.1

0.4

Source Source/Date Creator Edited Manufacturer 16/03/2012 EMD 16/03/2012 5:58 PM According to manufacturer specification document "SIAS-04-SPL-E-92 OM I 2 3 MW Est Rev1 1-en-eng.pdf" dated 03/2012

32.8

117.0

.

					Octa	ve da	ta					
Status	Hub height	Wind speed	LwA,ref	Pure tones	63	125	250	500	1000	2000	4000	8000
	[m]	[m/s]	[dB(A)]		[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
ExtraPolated	98.0	4.0	97.6	No	Generic data 79.2	86.2	89.6	92.2	92.0	89.1	84.3	74.8
From Windcat	98.0	5.0	99.9	No	Generic data 81.5	88.5	91.9	94.5	94.3	91.4	86.6	77.1
From Windcat	98.0	6.0	102.2	No	Generic data 83.8	90.8	94.2	96.8	96.6	93.7	88.9	79.4
From Windcat	98.0	7.0	103.4	No	Generic data 85.0	92.0	95.4	98.0	97.8	94.9	90.1	80.6
From Windcat	98.0	8.0	104.4	No	Generic data 86.0	93.0	96.4	99.0	98.8	95.9	91.1	81.6
From Windcat	98.0	9.0	105.0	No	Generic data 86.6	93.6	97.0	99.6	99.4	96.5	91.7	82.2
From Windcat	98.0	10.0	105.0	No	Generic data 86.6	93.6	97.0	99.6	99.4	96.5	91.7	82.2
From Windcat	98.0	11.0	105.0	No	Generic data 86.6	93.6	97.0	99.6	99.4	96.5	91.7	82.2
From Windcat	98.0	12.0	105.0	No	Generic data 86.6	93.6	97.0	99.6	99.4	96.5	91.7	82.2

NSA: Noise sensitive point: User defined (98)-A Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (99)-B Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

#### WindPRO version 2.8.579 Dec 2012

Printed/Page 10/10/2013 1:30 PM / 2 Licensed user:

Natural Forces Wind Inc 1791 Barrington Street Suite 1030 CA-HALIFAX, Nova Scotia B3J 3L1

Amy / apellerin@naturalforces.ca

09/10/2013 3:52 PM/2.8.579

# DECIBEL - Assumptions for noise calculation

Calculation: Aulds Mountain - Final Noise Impact Assessment

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (100)-C Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (101)-D Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (102)-E Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (103)-F Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (104)-G Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (105)-H Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

#### WindPRO version 2.8.579 Dec 2012

Printed/Page 10/10/2013 1:30 PM / 3 Licensed user:

Natural Forces Wind Inc 1791 Barrington Street Suite 1030 CA-HALIFAX, Nova Scotia B3J 3L1

Amy / apellerin@naturalforces.ca

09/10/2013 3:52 PM/2.8.579

# DECIBEL - Assumptions for noise calculation

Calculation: Aulds Mountain - Final Noise Impact Assessment

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (106)-I Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (107)-J Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (108)-K Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (109)-L Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (110)-M Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (111)-N Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

#### WindPRO version 2.8.579 Dec 2012

Printed/Page 10/10/2013 1:30 PM / 4 Licensed user:

Natural Forces Wind Inc 1791 Barrington Street Suite 1030 CA-HALIFAX, Nova Scotia B3J 3L1

Amy / apellerin@naturalforces.ca

09/10/2013 3:52 PM/2.8.579

# DECIBEL - Assumptions for noise calculation

Calculation: Aulds Mountain - Final Noise Impact Assessment

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (112)-O Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (113)-P Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (114)-Q Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (115)-R Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (116)-S Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (117)-T Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

#### WindPRO version 2.8.579 Dec 2012

Printed/Page 10/10/2013 1:30 PM / 5 Licensed user:

Natural Forces Wind Inc 1791 Barrington Street Suite 1030 CA-HALIFAX, Nova Scotia B3J 3L1

Amy / apellerin@naturalforces.ca

09/10/2013 3:52 PM/2.8.579

# DECIBEL - Assumptions for noise calculation

Calculation: Aulds Mountain - Final Noise Impact Assessment

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (118)-U Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (119)-V Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (120)-W Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (121)-X Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (122)-Y Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (123)-Z Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

#### WindPRO version 2.8.579 Dec 2012

Printed/Page 10/10/2013 1:30 PM / 6 Licensed user:

Natural Forces Wind Inc 1791 Barrington Street Suite 1030 CA-HALIFAX, Nova Scotia B3J 3L1

Amy / apellerin@naturalforces.ca

09/10/2013 3:52 PM/2.8.579

# DECIBEL - Assumptions for noise calculation

Calculation: Aulds Mountain - Final Noise Impact Assessment

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (124)-AA Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (125)-AB Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (126)-AC Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (127)-AD Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (128)-AE Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (129)-AF Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

#### WindPRO version 2.8.579 Dec 2012

Printed/Page 10/10/2013 1:30 PM / 7 Licensed user:

Natural Forces Wind Inc 1791 Barrington Street Suite 1030 CA-HALIFAX, Nova Scotia B3J 3L1

Amy / apellerin@naturalforces.ca

09/10/2013 3:52 PM/2.8.579

# **DECIBEL** - Assumptions for noise calculation

Calculation: Aulds Mountain - Final Noise Impact Assessment

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (130)-AG Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (131)-AH Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (132)-AI Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (133)-AJ Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (134)-AK Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (135)-AL Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

#### WindPRO version 2.8.579 Dec 2012

Printed/Page 10/10/2013 1:30 PM / 8 Licensed user:

Natural Forces Wind Inc 1791 Barrington Street Suite 1030 CA-HALIFAX, Nova Scotia B3J 3L1

Amy / apellerin@naturalforces.ca

09/10/2013 3:52 PM/2.8.579

# DECIBEL - Assumptions for noise calculation

Calculation: Aulds Mountain - Final Noise Impact Assessment

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (136)-AM Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (137)-AN Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (138)-AO Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (139)-AP Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (140)-AQ Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (141)-AR Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

#### WindPRO version 2.8.579 Dec 2012

Printed/Page 10/10/2013 1:30 PM / 9 Licensed user:

Natural Forces Wind Inc 1791 Barrington Street Suite 1030 CA-HALIFAX, Nova Scotia B3J 3L1

Amy / apellerin@naturalforces.ca

09/10/2013 3:52 PM/2.8.579

# DECIBEL - Assumptions for noise calculation

Calculation: Aulds Mountain - Final Noise Impact Assessment

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (142)-AS Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (143)-AT Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (144)-AU Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (145)-AV Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (146)-AW Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (147)-AX Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

#### WindPRO version 2.8.579 Dec 2012

Printed/Page 10/10/2013 1:30 PM / 10 Licensed user:

Natural Forces Wind Inc 1791 Barrington Street Suite 1030 CA-HALIFAX, Nova Scotia B3J 3L1

Amy / apellerin@naturalforces.ca

09/10/2013 3:52 PM/2.8.579

# DECIBEL - Assumptions for noise calculation

Calculation: Aulds Mountain - Final Noise Impact Assessment

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (148)-AY Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (149)-AZ Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (150)-BA Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (151)-BB Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (152)-BC Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (153)-BD Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

#### WindPRO version 2.8.579 Dec 2012

Printed/Page 10/10/2013 1:30 PM / 11 Licensed user:

Natural Forces Wind Inc 1791 Barrington Street Suite 1030 CA-HALIFAX, Nova Scotia B3J 3L1

Amy / apellerin@naturalforces.ca

09/10/2013 3:52 PM/2.8.579

# DECIBEL - Assumptions for noise calculation

Calculation: Aulds Mountain - Final Noise Impact Assessment

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (154)-BE Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (155)-BF Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (156)-BG Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (157)-BH Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (158)-BI Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (159)-BJ Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

#### WindPRO version 2.8.579 Dec 2012

Printed/Page 10/10/2013 1:30 PM / 12 Licensed user:

Natural Forces Wind Inc 1791 Barrington Street Suite 1030 CA-HALIFAX, Nova Scotia B3J 3L1

Amy / apellerin@naturalforces.ca

09/10/2013 3:52 PM/2.8.579

# DECIBEL - Assumptions for noise calculation

Calculation: Aulds Mountain - Final Noise Impact Assessment

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (160)-BK Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (161)-BL Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (162)-BM Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (163)-BN Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (164)-BO Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (165)-BP Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

### WindPRO version 2.8.579 Dec 2012

Printed/Page 10/10/2013 1:30 PM / 13 Licensed user:

Natural Forces Wind Inc 1791 Barrington Street Suite 1030 CA-HALIFAX, Nova Scotia B3J 3L1

Amy / apellerin@naturalforces.ca

09/10/2013 3:52 PM/2.8.579

# DECIBEL - Assumptions for noise calculation

Calculation: Aulds Mountain - Final Noise Impact Assessment

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (166)-BQ Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (167)-BR Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

NSA: Noise sensitive point: User defined (168)-BS Predefined calculation standard: Imission height(a.g.l.): Use standard value from calculation model

Noise demand: 40.0 dB(A) Ambient noise: 0.0 dB(A) Margin or Allowed additional exposure: 0.0 dB(A) Sound level always accepted: 0.0 dB(A) Distance demand: 600

Appendix I:

Shadow Flicker Impact Assessment

# Aulds Mountain Wind Farm Shadow Flicker Assessment Report October 2013



#### CONFIDENTIALITY

This document contains proprietary and confidential information, which is provided on a commercial in confidence basis. It may not be reproduced or provided in any manner to any third party without the consent of Natural Forces Wind Inc.

#### © Copyright Natural Forces Wind Inc. 2013

This work and the information contained in it are the copyright of Natural Forces Wind Inc. No part of this document may be reprinted or reproduced without the consent of Natural Forces Wind Inc.

#### Disclaimer

Whilst every effort has been made to ensure the accuracy of this information, the publisher accepts no responsibility for any discrepancies and omissions that may be contained herein.

Natural Forces Wind Inc. 1801 Hollis Street Suite 1205 Halifax, NS B3J 3N4 P +1 (902) 422 9663 F +1 (902) 422 9780

# **Report Information**

Client	Natural Forces Wind Inc.
Client Contact	Amy Pellerin
Report Name	Aulds Mountain Wind Farm Shadow Flicker Assessment
Created By	Amy Pellerin
Signature	1 000

** The WindPRO v2.8, Decibel Module Calculation Results for Enercon E-92 2.3 MW @ 98m Hub Height. To review General Specification for the Enercon E-92 2.3 MW please contact:

Amy Pellerin, Development Engineer Natural Forces Wind Inc.. 1801 Hollis Street Suite 1205 Halifax Nova Scotia B3J 3N4 Telephone: 902 422 9663 ext. 211 Fax: 902 422 9780 Contact email: apellerin@naturalforces.ca

# **Table of Contents**

١.	Introduction	. I
2.	Background	.2
3.	Policy and Guidelines	.3
4.	General Description of Project Site and Surrounds	.4
5.	Description of Receptors	. 5
6.	Description of Sources	.7
7.	Impact Assessment	.8
8.	Conclusions and Recommendations	11
9.	References	12

# List of Tables

Table I: Description of receptors	. 5
Table 2: Coordinates of proposed turbine locations.	.7
Table 3 - Enercon E-92 2.3 MW turbine characteristics	.7
Table 4: Predicted shadow flicker for E-92 2.3 MW @ 98 m hub height	.9

# List of Annexes

Annex A: Site Layout Map Annex B: WindPRO v2.8, Shadow Module Calculation Results – E92-2.3 MW @ 98m Hub Height

# I. Introduction

Natural Forces Wind Inc. has undertaken a shadow flicker impact assessment for the proposed Aulds Mountain Wind Farm to assess the potential impact of shadow flicker on the surrounding shadow receptors. Details outlining the shadow receptors, prediction methodology and assumptions made for the assessment are included herein, with complete WindPRO results supplied in the annexes. This report also provides background information on shadow flicker.

As there are very few federal, provincial or municipal guidelines or policies for governing or quantifying what is an acceptable amount of shadow flicker at this time, the German standards, *Hinweise zur Ermittlung und Beurteilung der optischen Immissionen von Windenergianlagen*, have been adopted for this study. Often, careful site design in the first instance is recommended, followed by industry accepted mitigation strategies thereafter. This assessment will be used as supporting documentation to demonstrate compliance with these standards. The shadow flicker analysis was conducted using the Shadow module of the software package, WindPRO version 2.8.

# 2. Background

Flicker is caused by incident light rays on a moving object which then casts an intermittent shadow on a receptor. This intermittent shadow, perceived as a change in light intensity to an observer, as it pertains to wind turbines, is referred to as shadow flicker. Shadow flicker is caused by incident sun rays on the rotor blades as they turn.

For shadow flicker to occur, the following criteria must be met:

- 1. The sun must be shining and not obscured by any cloud cover.
- 2. The wind turbine must be between the sun and the shadow receptor.
- 3. The line of sight between the turbine and the shadow receptor must be clear. Lightimpermeable obstacles, such as vegetation, buildings, awnings etc., will prevent shadow flicker from occurring at the receptor.
- 4. The shadow receptor has to be close enough to the turbine to be in the shadow.

# 3. Policy and Guidelines

As previously stated, there are very few federal, provincial or municipal guidelines or policies for governing or quantifying what is an acceptable amount of shadow flicker. As a result, the German standards have been adopted for this study. The German shadow flicker guidelines provide a means of quantifying acceptable levels of shadow flicker exposure based on the astronomic worst case. Acceptable levels at shadow receptors are:

- no more than 30 hours per year of astronomical maximum shadow (worst case), and
- no more than 30 minutes on the worst day of astronomical maximum shadow (worst case).

The guidelines also stipulate two factors that limit the shadow flicker effect, due to optic conditions in the atmosphere:

- 1) the angle of the sun over the horizon, which must be at least 3 degrees, and
- 2) the blade of the WTG must cover at least 20 % of the sun.

Receptors not exposed to more than 30 minutes per day on the worst affected day or a total of 30 hours per year from all surrounding wind turbines are considered unlikely to require technical mitigation.

# 4. General Description of Project Site and Surrounds

The proposed Aulds Mountain Wind Farm consists of a maximum of 2 wind turbine generators (WTG) located in the Municipality of Pictou County, Nova Scotia. Currently, Enercon E-92 2.3 MW WTG are being considered for the project and therefore were used in this assessment, however if the turbine type was to change, a new shadow flicker assessment would be conducted.

The project site is situated approximately 6 kilometers south east of Merigomish and adjacent to the Piedmont Valley Road. Land around the proposed project area is zoned as a General Development Zone and so, will not require re-zoning. A map of the site is included in Annex A.

# 5. Description of Receptors

The 71 points of reception taken into consideration for this shadow flicker assessment are residential buildings and/or seasonal homes located within 2 km from the project land. The receptors are located at dwellings generally along Piedmont Valley Road and Highway 4.

Details of receptor locations and distances to nearest WTG are detailed in Table 1. Receptor ID letters included in Table I correspond with the WindPRO generated maps included in Annex B.

Point of	Location (U NAE	TM Zone 20, 0 83)	Distance from	n Receptor to
ID Letter	Easting	Northing	Wind	Wind
			turbine l	turbine 2
A	548,191	5,046,842	2458	2104
В	549,470	5,047,384	1956	1455
C	548,952	5,047,164	2064	1609
D	548,658	5,046,958	2270	1851
E	549,574	5,050,920	1864	2217
F	550,369	5,047,049	2679	2181
G	547,730	5,049,519	1113	1501
Н	550,244	5,050,999	2287	2537
I	547,657	5,049,541	1189	1575
J	548,531	5,046,840	2399	1995
К	549,014	5,047,124	2110	1647
L	547,719	5,049,698	1184	1606
М	549,877	5,050,924	2012	2313
N	549,212	5,047,208	2056	1573
0	548,418	5,046,857	2397	2010
Р	549,693	5,047,001	2394	1890
Q	550,858	5,047,141	2925	2448
R	547,617	5,046,912	2598	2336
S	548,382	5,046,890	2370	1989
Т	548,958	5,050,538	1324	1769
U	549,277	5,047,177	2100	1613
V	547,138	5,046,896	2861	2664
W	550,053	5,051,008	2179	2459
Х	548,662	5,046,569	2658	2233
Y	550,284	5,051,082	2377	2629
Z	547,241	5,047,018	2702	2505
AA	548,046	5,046,892	2451	2122
AB	547,553	5,049,636	1316	1713
AC	548,644	5,046,524	2704	2280
AD	549,806	5,047,119	2331	1825
AE	549,074	5,047,312	1931	1460
AF	549,905	5,051,116	2190	2502

Table I: Description of receptors.

Point of	Location (UT NAE	TM Zone 20, 0 83)	Distance from Receptor to			
ID Letter	Fasting	Northing	Wind	Wind		
			turbine l	turbine 2		
AG	550,021	5,047,024	2514	2008		
AH	549,992	5,047,101	2432	1927		
AI	546,755	5,048,938	2068	2282		
AJ	548,276	5,050,153	1069	1575		
AK	549,834	5,050,893	1963	2269		
AL	549,640	5,046,824	2541	2040		
AM	547,762	5,049,508	1079	1468		
AN	549,210	5,047,276	1989	1506		
AO	550,388	5,047,252	2529	2037		
AP	547,777	5,046,898	2541	2254		
AQ	547,848	5,046,870	2539	2239		
AR	547,960	5,046,874	2496	2178		
AS	549,048	5,050,592	1391	1821		
AT	547,741	5,049,543	1109	1503		
AU	547,813	5,049,385	1003	1364		
AV	547,845	5,049,378	970	1332		
AW	547,876	5,046,912	2490	2189		
AX	549,267	5,050,625	1477	1869		
AY	548,063	5,049,636	847	1298		
AZ	548,828	5,047,202	2021	1582		
BA	548,151	5,046,945	2369	2027		
BB	551,477	5,046,917	3531	3069		
BC	548,899	5,046,990	2235	1786		
BD	550,247	5,047,130	2543	2042		
BE	548,345	5,049,845	772	1274		
BF	548,144	5,046,870	2443	2098		
BG	546,771	5,048,966	2048	2268		
BH	546,960	5,049,282	1844	2133		
BI	547,758	5,049,878	1233	1687		
BJ	547,494	5,049,611	1365	1752		
BK	547,398	5,049,436	1421	1763		
BL	549,175	5,050,587	1414	1822		
BM	550,339	5,051,031	2372	2611		
BN	547,103	5,047,078	2737	2566		
BO	547,420	5,046,923	2684	2452		
BP	548,673	5,047,093	2134	1716		
BQ	549,349	5,047,188	2107	1615		
BR	549,632	5,047,012	2361	1859		
BS	550,567	5,047,151	2721	2232		

# 6. Description of Sources

# 6.1. Turbine Locations

A map of the project area with the proposed WTG layout is illustrated in Annex A. There are no existing or proposed wind farms within 5 kilometers the project, thus it is unlikely any cumulative shadow effects will occur. Coordinates of the wind turbines are given below in Table 2. Turbine ID numbers included in Table 2 with the WindPRO generated figures included Annex B.

Table 2: Coordinates of proposed turbine locations.

Wind Turbine	Proposed Tu (UTM Zone	Proposed Turbine Location (UTM Zone 20, NAD 83)				
ID Number	Easting	Northing				
l	548,803	5,049,223				
2	549,031	5,048,771				

### **6.2. Turbine Types**

The models of WTGs being considered for the proposed wind farm are the Enercon E-92 2.3 MW.

This model utilizes horizontal axis, upwind, 3-bladed, and a microprocessor pitch control system. Table 3 - Enercon E-92 2.3 MW turbine characteristics below outlines their main characteristics.

Generator	Rotor	Hub Height	Swept Area	Rated Output
Туре	Diameter (m)	(m)	(m²)	(MW)
E-92 2.3	92	98	6648	2.3

Table 3 - Enercon E-92 2.3 MW turbine characteristics. (Enercon, 2012)

# 7. Impact Assessment

# 7.1. **Prediction Methodology**

The shadow flicker impact was calculated at each receptor using the Shadow module of the software package, WindPRO version 2.8. The model simulates the Earth's orbit and rotation, to provide the astronomical maximum shadow, also known as the astronomical worst-case scenario. The astronomical maximum shadow calculation assumes that for every day of the year:

- 1. The sky is cloudless between sunrise and sunset,
- 2. The turbines are always in operation, and
- 3. The wind direction changes throughout the day such that the rotor plane is perpendicular to the incident sun rays at all times.

The position of the sun relative to the wind turbine rotor plane and the resulting shadow is calculated in steps of one minute intervals throughout a complete year. If the rotor plane, assumed to be a solid disk equivalent in size to the swept area shown in Table 3 casts a shadow on a receptor window during one of these intervals, it is registered as one minute of potential shadow impact.

As previously noted, following the German guidelines, the impact of shadow flicker on surrounding receptors is limited by two factors. The first being that the angle of the sun over the horizon must be greater than 3 degrees, due to optic conditions in the atmosphere which cause the shadow to dissipate before it could potentially reach a receptor. The second is that the blade of the wind turbine must cover at least 20% of the incident solar rays in order to have a noticeable effect.

Each receptor was treated as a 'greenhouse' with 3m high windows for 360° of the building. Furthermore, no topographical shielding (other buildings, barns, trees etc.) has been considered between the wind turbines and receptors. This is a worst-case assumption and results in a conservative prediction of the potential shadow flicker impacts.

Table 4 below provides results of the analysis for shadow flicker at each of the 71 receptors used in this assessment.

### 7.2. Results of Shadow Flicker Predictions

The results of the shadow flicker prediction model at each receptor, as summarized Table 4, prove compliance with the German standards of no more than 30 hours per year of astronomical maximum shadow (worst case), and no more than 30 minutes on the worst day of astronomical maximum shadow (worst case). Furthermore, some receptors within 2,000 km of the closest WTGs will not encounter any shadow flicker impacts.

While all receptors are subject to less than 30hrs/year or 30mins/day, the worst affected receptors are located on Piedmont Valley Road with the highest worst case shadow flicker hours per year being 22:31. Tabulated results for the Enercon E-92 2.3 MW can be found in Table 4, while modelled results representing shadow flicker hours per year are mapped in Annex B.

Table 4: Predicted shadow flicker for E-92 2.3 MW @ 98 m hub height.

Point of	Shadow flicker							
Reception ID letter	Shadow hours per year (hr/year)	Shadow days per year (days/year)	Shadow hours per day (hours/day)					
Δ	0.00	0	0.00					
B	0:00	0	0:00					
C	0:00	0	0:00					
D	0:00	0	0:00					
E	0:00	0	0:00					
F	0:00	0	0:00					
G	10:02	45	0:19					
Н	0:00	0	0:00					
I	9:03	42	0:18					
J	0:00	0	0:00					
К	0:00	0	0:00					
L	10:05	48	0:19					
М	0:00	0	0:00					
N	0:00	0	0:00					
0	0:00	0	0:00					
Р	0:00	0	0:00					
Q	0:00	0	0:00					
R	0:00	0	0:00					
S	0:00	0	0:00					
Т	0:00	0	0:00					
U	0:00	0	0:00					
V	0:00	0	0:00					
W	0:00	0	0:00					
X	0:00	0	0:00					
Y	0:00	0	0:00					
	0:00	0	0:00					
AA	0:00	0	0:00					
AB	4:27	21	0:17					
	0:00	0	0:00					
AD	0.00	0	0.00					
	0.00	0	0.00					
	0.00	0	0.00					
	0.00	0	0.00					
ΔΙ	0.00	0	0.00					
ΔΙ	0.00	0	0.00					
AK	0:00	0	0:00					
AL	0:00	0	0:00					

Point of	Shadow flicker							
Reception ID	Shadow hours	Shadow days	Shadow hours					
letter	per year	per year	per day					
	(hr/year)	(days/year)	(hours/day)					
AM	10:34	47	0:20					
AN	0:00	0	0:00					
AO	0:00	0	0:00					
AP	0:00	0	0:00					
AQ	0:00	0	0:00					
AR	0:00	0	0:00					
AS	0:00	0	0:00					
AT	10:13	45	0:19					
AU	12:07	50	0:21					
AV	12:47	52	0:22					
AW	0:00	0	0:00					
AX	0:00	0	0:00					
AY	19:04	69	0:25					
AZ	0:00	0	0:00					
BA	0:00	0	0:00					
BB	0:00	0	0:00					
BC	0:00	0	0:00					
BD	0:00	0	0:00					
BE	22:31	62	0:29					
BF	0:00	0	0:00					
BG	0:00	0	0:00					
BH	0:00	0	0:00					
BI	6:08	26	0:18					
BJ	4:11	20	0:16					
ВК	3:46	19	0:15					
BL	0:00	0	0:00					
BM	0:00	0	0:00					
BN	0:00	0	0:00					
BO	0:00	0	0:00					
BP	0:00	0	0:00					
BQ	0:00	0	0:00					
BR	0:00	0	0:00					
BS	0:00	0	0:00					

# 8. Conclusions and Recommendations

Natural Forces Wind Inc. has completed a thorough assessment to evaluate the astronomical worst case shadow flicker impact of the proposed Aulds Mountain Wind Farm at receptor locations within 2,000 m of the project land. Based on the parameters used to run the shadow flicker prediction model via WindPRO, it has been shown that the predicted duration of shadow flicker emitted by the wind turbine generators at all points of reception is less than the German guidelines, adopted for this assessment. As a result of this study, no mitigation strategies are recommended.

# 9. References

Enercon Canada (2012). Enercon E-92 2.3 MW Wind Turbine Generator data sheet.

Nielson, P. (2012). Windpro 2.8 user guide. (1st ed.). Denmark: EMD International A/S.

WEA-Schattenwurf-Hinweise (2002). *Hinweise zur Ermittlung und Beurteilung der optischen Immissionen von Windenergianlagen (Notes on the identification and assessment of the optical pollutions of Wind Turbines).* WindPRO

# **ANNEX A**

Site Layout Map



# **ANNEX B**

WindPRO v2.8, Shadow Module Calculation Results

E92-2.3 MW @ 98m Hub Height

#### Project: Aulds Mountain Wind Farm

# WindPRO version 2.8.579 Dec 2012

Printed/Page 10/10/2013 1:34 PM / 1

Licensed user: **Natural Forces Wind Inc** 1791 Barrington Street Suite 1030 CA-HALIFAX, Nova Scotia B3J 3L1

Amy / apellerin@naturalforces.ca ^{Calculated:} 09/10/2013 4:03 PM/2.8.579

SH	IADOW	/ - Main	Res	ult												
Cal	culation	: Aulds M	lounta	in- Fin	al Sha	idow F	licker Asses	sment								
As	sumptio	ns for sh	adow	calcu	Ilation	S		87		and A.			ort- 4\\3 [7			20468
Max	timum dista	ance for influ	lence					E.			1. 18 3	1	and the		与宋马	
Calc	culate only ase look in	when more WTG table	than 20	) % of s	un is cov	vered by	the blade	9	i = 1		1.3					
							•		т.,				EAK	FBIM		are a
Mini Dav	mum sun h	neight over i alculation	norizon	for influ	ence		3 ° 1 davs		-}-		1.0	A.I				
Tim	e step for c	alculation					1 minut	es 🎽	195	3	++ C	BBBB		a Paul		N. and
The	calculated	times are "	worst c	ase" giv	en by th	e follow	ing assumptions	s:		-1-1		AUS	2013		es contra	
-	The sun is The rotor p	shining all t	he day,	from su	inrise to	sunset	m the W/TC to th	<b>5</b>	1.3	353	BG	1		F CRIT	in Cale in	
9	sun		iys perp	enuicui		inte noi					Sur Sat		2	$p = p^{2}$	A REAL PROPERTY.	and the second
-	The WTG i	s always op	erating					0		A Det	7-1-30	100	A.	to the	- Salat	
ΑZV	/I (Zones o	f Visual Influ	uence)	calculati	ion is pe	rformed	before flicker		5	-14	1767			1		
calcı	ulation so r	non visible V	VTG do	not con	ntribute t	o calcula	ated flicker value	es. A 🚦	×.				ZAN	AOST		
WTG	S will be vis	sible if it is v	isible fr	om any	part of the	he recei	ver window. The	e ZVI 📲	1			AWA j5	AL	A MAR	BB	
Heid	aht contour	ased on the s used: Hei	aht Cor	ng assur ntours: C	CONTOL	JRLINE	ONLINEDATA	0.wpo	14			AC		A SP	Ar Inter	15
Obs	tacles use	d in calculat	ion								aller st					1
Eye	height: 1.5	5 m										Scale 1:	100,000			
Gno	resolution	: 10.0 m						Y	New	WTG	0	Shadow r	eceptor			
wт	Gs															
U	TM (north	)-NAD83 (U	IS+CA)	Zone: 2	20		w	TG type							Shadow dat	a
	East	North	Z	Row da	ta/Descr	ription	Va	ilid Manu	fact.	Type-ge	enerator	Power,	Rotor	Hub	Calculation	RPM
			[m]									[kW]	[m]	[m]	[m]	[RPM]
1	548,803	5,049,223	233.8	ENERC	ON E-92	2 2,3 MV	V 2300 92 Ye	s ENEF	RCON	E-92 2,	3 MW-2,300	2,300	92.0	98.0	1,639	16.0
2	549,031	5,048,771	230.0	ENERC	ON E-92	2 2,3 M\	V 2300 92 Ye	s ENEF	RCON	E-92 2,	3 MW-2,300	2,300	92.0	98.0	1,639	16.0
<u>.</u> .																
Sha	adow re	ceptor-In	put	A) 7												
No	East	North	(US+C	Width	e: 20 Height	Height	Degrees from	Slope of	Di	rection m	node					
	Laor	Horar	-	matri	rioigin	a.g.l.	south cw	window	DI		1040					
			[m]	[m]	[m]	[m]	[°]	[°]								
A	548,191	5,046,842	106.2	3.0	3.0	1.0	0.0	90.0	"Gre	en house	e mode"					
C	548.952	5.047.164	93.9	3.0	3.0	1.0	0.0	90.0	"Gre	en house	e mode"					
D	548,658	5,046,958	100.0	3.0	3.0	1.0	0.0	90.0	"Gre	en house	e mode"					
E	549,574	5,050,920	80.0	3.0	3.0	1.0	0.0	90.0	"Gre	en house	e mode"					
L G	550,369	5,047,049	100.0	3.0	3.0	1.0	0.0	90.0	"Gre	en nouse en house	e mode" mode"					
H	550,244	5,050,999	94.3	3.0	3.0	1.0	0.0	90.0	"Gre	en house	e mode"					
l	547,657	5,049,541	70.0	3.0	3.0	1.0	0.0	90.0	"Gre	en house	e mode"					
J	548,531	5,046,840	109.9	3.0	3.0	1.0	0.0	90.0	"Gre	en house	e mode"					
Ľ	549,014	5.047,124	95.0 70.9	3.0	3.0	1.0	0.0	90.0 90.0	"Gre	en house en house	e mode"					
M	549,877	5,050,924	84.5	3.0	3.0	1.0	0.0	90.0	"Gre	en house	e mode"					
N	549,212	5,047,208	93.1	3.0	3.0	1.0	0.0	90.0	"Gre	en house	e mode"					
	548,418	5,046,857	107.4	3.0 2.0	3.0	1.0	0.0	90.0	"Gre	en house	e mode" mode"					
Q	550.858	5,047,141	110.4	3.0	3.0	1.0	0.0	90.0	"Gre	en house	e mode"					
R	547,617	5,046,912	95.2	3.0	3.0	1.0	0.0	90.0	"Gre	en house	e mode"					
S	548,382	5,046,890	104.3	3.0	3.0	1.0	0.0	90.0	"Gre	en house	e mode"					
	548,958	5,050,538	80.0 98.7	3.0 3.0	3.0 3.0	1.0 1.0	0.0	90.0 90.0	Gre "Gre	en nouse en house	e mode"					
v	547,138	5,046,896	79.8	3.0	3.0	1.0	0.0	90.0	"Gre	en house	e mode"					

To be continued on next page..

WindPRO is developed by EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

Printed/Page 10/10/2013 1:34 PM / 2

Licensed user: **Natural Forces Wind Inc** 1791 Barrington Street Suite 1030 CA-HALIFAX, Nova Scotia B3J 3L1

Amy / apellerin@naturalforces.ca

09/10/2013 4:03 PM/2.8.579

# SHADOW - Main Result

Calculation: Aulds Mountain- Final Shadow Flicker Assessment

...continued from previous page

	UTM (north)-NAD83 (US+CA) Zone: 20											
No.	East	North	Z	Width	Height	Height	Degrees from	Slope of	Direction mode			
					Ũ	a.g.l.	south cw	window				
			[m]	[m]	[m]	[m]	[°]	[°]				
W	550,053	5,051,008	86.3	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
Х	548,662	5,046,569	127.2	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
Y	550,284	5,051,082	90.0	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
Z	547,241	5,047,018	84.9	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AA	548,046	5,046,892	104.6	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AB	547,553	5,049,636	70.0	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AC	548,644	5,046,524	129.3	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AD	549,806	5,047,119	90.0	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AE	549,074	5,047,312	88.4	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AF	549,905	5,051,116	80.7	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AG	550,021	5,047,024	90.7	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AH	549,992	5,047,101	90.0	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AI	546.755	5.048.938	51.9	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AJ	548.276	5.050.153	87.7	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AK	549.834	5.050.893	85.6	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AL	549,640	5.046.824	110.8	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AM	547.762	5.049.508	70.0	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AN	549,210	5.047.276	90.0	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AO	550.388	5.047.252	100.0	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AP	547,777	5.046.898	100.0	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AQ	547,848	5,046,870	104.3	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AR	547,960	5.046.874	106.5	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AS	549 048	5 050 592	80.0	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AT	547 741	5 049 543	70.0	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AU	547,813	5.049.385	84.8	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AV	547 845	5 049 378	87.5	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AW	547,876	5.046.912	102.8	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AX	549,267	5.050.625	81.4	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
AY	548,063	5,049,636	89.7	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
A7	548,828	5.047.202	86.3	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
BA	548 151	5 046 945	97.9	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
BB	551 477	5 046 917	140.0	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
BC	548 899	5 046 990	100.2	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
BD	550 247	5 047 130	97.3	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
BE	548 345	5 049 845	92.1	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
BF	548 144	5 046 870	103.2	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
BG	546 771	5 048 966	51 4	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
BH	546 960	5 049 282	50.2	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
RI	5/17 758	5 0/9 878	00.2 05.2	3.0	3.0	1.0	0.0	QU U	"Green house mode"			
BI	5/7 /0/	5 0/9 611	70.0	3.0	3.0	1.0	0.0	00.0 00.0	"Green house mode"			
RK	5/7 308	5 049 436	60.0	3.0	3.0	1.0	0.0	00.0 00.0	"Green house mode"			
BI	5/0 175	5,050,587	80.0	3.0	3.0	1.0	0.0	00.0	"Green house mode"			
	550 330	5,050,507		3.0	3.0	1.0	0.0	90.0 00.0	"Green house mode"			
	547 102	5,051,051	70.0	2.0	2.0	1.0	0.0	90.0	"Green house mode"			
BU	547 420	5 0/6 022	01 F	3.0	3.0 2 A	1.0	0.0	90.0 00.0	"Green house mode"			
BD BD	5/12 672	5 017 002	91.0 88 /	3.0	3.0 2 A	1.0	0.0	90.0 00.0	"Green house mode"			
	540,073	5,047,095	00.4	3.0	3.0	1.0	0.0	90.0	"Green house mode"			
	549,049	5 0/7 010	30.0 09.2	3.0	3.U 2 A	1.0	0.0	90.0	"Green house mode"			
RQ	550 567	5 047 151	10/ 2	3.0 3.0	3.0 3.0	1.0	0.0	90.0 QN N	"Green house mode"			
00	000,007	0,077,101	104.4	0.0	0.0	1.0	0.0	30.0				
#### Aulds Mountain Wind Farm

#### WindPRO version 2.8.579 Dec 2012

Printed/Page 10/10/2013 1:34 PM / 3 Licensed user:

Natural Forces Wind Inc 1791 Barrington Street Suite 1030 CA-HALIFAX, Nova Scotia B3J 3L1

Amy / apellerin@naturalforces.ca

09/10/2013 4:03 PM/2.8.579

#### SHADOW - Main Result

Calculation: Aulds Mountain- Final Shadow Flicker Assessment

#### Calculation Results

Shadow	recept	tor	
Sh	adow.	wors	t case

No.	Shadow hours	Shadow days	Max shadow
	per year	per year	hours per day
	[h/year]	[days/year]	[h/day]
Α	0:00	0	0:00
В	0:00	0	0:00
С	0:00	0	0:00
D	0:00	0	0:00
Е	0:00	0	0:00
F	0:00	0	0:00
G	10:02	45	0:19
Н	0:00	0	0:00
- 1	9:03	42	0:18
J	0:00	0	0:00
K	0:00	0	0:00
L	10:05	48	0:19
Μ	0:00	0	0:00
Ν	0:00	0	0:00
0	0:00	0	0:00
Р	0:00	0	0:00
Q	0:00	0	0:00
R	0:00	0	0:00
S	0:00	0	0:00
Т	0:00	0	0:00
U	0:00	0	0:00
V	0:00	0	0:00
W	0:00	0	0:00
X	0:00	0	0:00
Y	0:00	0	0:00
Z	0:00	0	0:00
AA	0:00	0	0:00
AB	4:27	21	0:17
AC	0:00	0	0:00
AD	0:00	0	0:00
AE	0:00	0	0:00
AF	0:00	0	0:00
AG	0:00	0	0:00
	0:00	0	0:00
	0.00	0	0.00
AJ	0.00	0	0.00
	0.00	0	0.00
	10.34	47	0.00
	0.00		0.20
	0.00	0	0.00
ΔΡ	0.00	0	0.00
AQ.	0.00	Ő	0.00
AR	0.00	õ	0.00
AS	0.00	õ	0.00
AT	10.13	45	0.00
AU	12:07	50	0.10
AV	12:47	52	0:22
AW	0:00	0	0:00
AX	0:00	õ	0:00
AY	19:04	69	0:25
AZ	0:00	0	0:00
BA	0:00	0	0:00

To be continued on next page..

WindPRO is developed by EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

#### Aulds Mountain Wind Farm

#### WindPRO version 2.8.579 Dec 2012

Printed/Page 10/10/2013 1:34 PM / 4

Licensed user: **Natural Forces Wind Inc** 1791 Barrington Street Suite 1030 CA-HALIFAX, Nova Scotia B3J 3L1

Amy / apellerin@naturalforces.ca

09/10/2013 4:03 PM/2.8.579

#### SHADOW - Main Result

Calculation: Aulds Mountain- Final Shadow Flicker Assessment

#### ...continued from previous page

	Shauow, worst	Lase	
No.	Shadow hours	Shadow days	Max shadow
	per year	per year	hours per day
	[h/year]	[days/year]	[h/day]
BB	0:00	0	0:00
BC	0:00	0	0:00
ΒD	0:00	0	0:00
BE	22:31	62	0:29
BF	0:00	0	0:00
BG	0:00	0	0:00
ΒH	0:00	0	0:00
BI	6:08	26	0:18
BJ	4:11	20	0:16
ΒK	3:46	19	0:15
ΒL	0:00	0	0:00
ΒM	0:00	0	0:00
ΒN	0:00	0	0:00
BO	0:00	0	0:00
BP	0:00	0	0:00
BQ	0:00	0	0:00
BR	0:00	0	0:00
BS	0:00	0	0:00

Total amount of flickering on the shadow receptors caused by each WTG No. Name

1 ENERCON E-92 2,3 MW 2300 92.0 !-! hub: 98.0 m (TOT: 144.0 m) (1)

2 ENERCON E-92 2,3 MW 2300 92.0 !-! hub: 98.0 m (TOT: 144.0 m) (2)

Worst case Expected [h/year] [h/year] 68:57 23:36

#### Aulds Mountain Wind Farm

#### WindPRO version 2.8.579 Dec 2012

Printed/Page 10/10/2013 1:36 PM / 1

Licensed user: **Natural Forces Wind Inc** 1791 Barrington Street Suite 1030 CA-HALIFAX, Nova Scotia B3J 3L1

Amy / apellerin@naturalforces.ca

09/10/2013 4:03 PM/2.8.579

# SHADOW - Map

Calculation: Aulds Mountain- Final Shadow Flicker Assessment



Flicker map level: Height Contours: CONTOURLINE ONLINEDATA 0.wpo (1)

WindPRO is developed by EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@ernd.dk

Appendix J:

EMI Study



#### TABLE OF CONTENTS

#### Contents

PURPOSE OF REPORT:	2
ANALYSIS METHODOLOGY:	2
LIMITATIONS OF INDUSTRY CANADA DATA:	2
LIMITATIONS OF ANALYSIS:	3
INPUTS:	4
FINDINGS:	4
ANALYSIS: I	2
CONCLUSIONS/RECOMMENDATIONS:	4
APPENDIX A - TAFL DATA (SEPT 15 TH , 2013) - 35KM RADIUS BARRACHOIS MOUNTAIN 1	5

#### LIST OF FIGURES

IGURE 1 - ACTIVE LICENSED NON-PROTECTED PTP LINKS WITHIN 35KM RADIUS OF PROPOSED PIEDMONT
VALLEY TURBINES
GURE 2 - ROGERS' PIEDMONT VALLEY RADIO SITE AND PROPOSED TURBINE LOCATIONS (T1 AND T2)6
GURE 3 - ROGERS PIEDMONT VALLEY TOWER
IGURE 4 - MACLELLANS MOUNTAIN RADIO SITES - LICENSED LINKS TO PIEDMONT VALLEY (ROGERS) AND
BROWNS MTN (ROGERS)
IGURE 5 - ROGERS BROWNS MOUNTAIN RADIO SITE
IGURE 6 - ROGERS BROWNS MOUNTAIN



## PURPOSE OF REPORT:

Natural Forces is proposing to construct 2 wind turbines in the Piedmont Valley, NS area. As part of the design phase of the project, MacNeil Telecom Inc. was contacted to examine the impact the proposed wind turbines may have on the performance of existing radio communication systems that exist in the area.

## ANALYSIS METHODOLOGY:

- 1. Identify proposed location and size of wind turbines.
- 2. Obtain data for licensed radio systems within 35km of the wind farm from the radio spectrum licensing authority, Industry Canada (IC) TAFL database.
- 3. Plot applicable radio links on a map to show their proximity wrt to the turbines.
- 4. Review the Industry Canada data records/map to produce a "short list" of radio systems that could potentially be impacted by the turbines.
- 5. Perform a site visit to verify the location of applicable radio towers and to verify the existence of the antennas identified on the "short list".
- 6. Tabulate a "verified inventory" of existing radio links that may be of concern and update maps with field verified data.
- 7. Calculate the recommended required clearance between the radio links of concern and the wind turbine = Fresnel zone and turbine radius.
- 8. Calculate the expected achievable clearance based on field verified radio site coordinates and specified turbine locations.
- 9. Assess the results and identify potential issues.
- 10. If required, recommend what steps can be taken to minimize the impact the turbines will have on existing radio links. The first approach will to work with Natural Forces to consider the possibility of relocating those wind turbines that infringe on existing radio links.

## LIMITATIONS OF INDUSTRY CANADA DATA:

The data contained in the Industry Canada database, like any database is subject to certain limitations:

#### 1. Accuracy of Data

System parameters such as site locations (latitudes and longitudes), antenna heights and radio operating parameters are provided by the licensee (or their representative) and are sometimes prone to error. Other system parameters such as the operating frequencies assigned by Industry Canada are much less likely to suffer from serious errors. For the purpose of this particular report, the accuracy of physical parameters of the radio systems (i.e. site locations, elevations, antenna heights, etc.) are of highest importance, making it necessary to confirm the parameters by means of field survey.

#### 2. Extent of Data

The report considers only systems data included in the Industry Canada database as of September 15th, 2013.

#### 3. Licensed Radio Systems

The Industry Canada database only includes radio systems that require a license from Industry Canada to operate. Non-licensed radio systems (e.g. certain spread-spectrum radios) are not captured in the database and therefore cannot be identified.

#### 4. Status of Systems

It is assumed that all systems identified on the Industry Canada database are still in service (provided the antennas associated with that system was found to still exist during the field survey).

## LIMITATIONS OF ANALYSIS:

#### 1. Point-to-point Radio Links

The report considers point-to-point (PTP) radio links employing narrow beamwidth (e.g parabolic) antennas operating above 900MHz. It does not consider lower frequency systems (i.e. below 900MHz) employing wide beam antennas (e.g. omni-direction or yagi antennas) as the performance of such systems is not expected to be significantly impacted by the proposed structures. Typically, lower frequency systems operating in the VHF and UHF band for example are much less susceptible to diffraction loss resulting from obstructions beyond the immediate proximity of its antennas. The dimensions and shape of the proposed wind turbines (i.e. tower and blades) are considered relatively narrow wrt the wavelength of such lower frequency systems and would therefore only be of concern (to cause significant performance degradation) if positioned in very close proximity to the antenna itself. The performance of cellular type radio systems operating in the 1900/2100 MHz bands that use sectorial antennas and operate in the near vicinity of the wind turbines are also examined.

#### 2. Accuracy of Field Measurements

Location and ground elevations of towers were measured using Magellan Explorist 310 GPS receiver. The expected accuracy of this unit is in the neighborhood of +/- 5m horizontal.

#### 3. Accuracy of Customer Data

The accuracy of the location of the proposed wind turbines is unknown.

## INPUTS:

The location of the proposed wind turbines have been identified as:

Turbine 1	45°35'41.44"N	62°22'26.32"W
Turbine 2	45°35'28.58"N	62°22'9.66"W

Initial indications are the proposed turbines will have a rotor radius of 46m (92m diameter).

## FINDINGS:

**Table A** in Appendix A outlines the active licensed non-protected PTP radio links operating in the vicinity (within 35km) of the proposed wind turbines as of Sept 15th, 2013. This data was sourced from Industry Canada's TAFL. This information is shown visually on a map in **Figure 1**. **Figure 2** shows a close up view of the area around the turbines and the links operating nearby.

An existing radio site on the same mountain as the turbine farm is of the most concern and the focus of the study can be narrowed down to a two active microwave link operating in the area. Both radio links in question are operated by Rogers Communications and links Rogers' Piedmont Valley radio site and Rogers' Browns Mountain site back to Rogers' McLellans Mountain site (north of New Glasgow).



Figure 1 - Active Licensed Non-Protected PTP Links within 35km radius of Proposed Piedmont Valley Turbines





Figure 2 - Rogers' Piedmont Valley Radio Site and Proposed Turbine Locations (T1 and T2)



Figure 3 - Rogers Piedmont Valley Tower





Figure 4 - MacLellans Mountain Radio Sites – Licensed Links To Piedmont Valley (Rogers) and Browns Mtn (Rogers)







Figure 5 - Rogers Browns Mountain Radio Site



Figure 6 - Rogers Browns Mountain

## ANALYSIS:

Two (2) active licensed point-to-point radio links shoot in the proximity of the proposed wind turbines. The PTP links between McLellans Mountain to Piedmont Valley and McLellans Mountain to Browns Mountain are owned by Rogers Communications and operates in the 10.5GHz band and 6.5GHz bands respectively.

Site	Description	UTM Northing (m)	UTM Easting (m)	Site Elev. (m)		
1	Rogers McLellans Mtn	5042770.78	534256.97	176		
2	Rogers Piedmont	5049122.22	550354.54	252		
3	Rogers Browns Mtn	5054763.17	568155.66	301		

#### TABLE A – MEASURED RADIO SITE DATA

The required clearance around a given radio link to avoid diffraction loss is inversely proportional to its frequency (i.e. the higher the frequency, the narrower the clearance - aka the Fresnel zone).

The absolute minimum clearance required for a given radio link to avoid diffraction loss is 60% of the first fresnel zone (0.6 F1) at the obstruction. However to account for limitations of field measurements and inaccuracies of the actual positioning of turbines, we recommend a minimum clearance of 30m + F1.

IADLE															
Freq (GHz)	Wave D (km) d1 Length Link		d1 (km)	F1 (m)	F1 + 30m	Rotor Radius	Recommended Minimum								
	(cm)	Length			(m)	(m)	Clearance (m)								
10.5	3	17.3	1.2	6m	36m	46m	82m								
6.5	5	36	18.2	20.5m	50.5m	46m	97m								

#### TABLE B - FRESNEL ZONE CALCULATION

TABLE C – SPECIFIED TURBINE LOCATIONS AND CALCULATED OFFSET WRT PIEDMONT RADIO LINK

Site	UTM Northing (m)	UTM Easting (m)	Calculated Offset (m)	Rec. Min Clearance (m)	Difference (m)	Status
T1	5049224.00 m	548827.00 m	655m	82m	+573m	OK
T2	5048830.00 m	549191.00 m	155m	82m	+73m	OK

# TABLE D – SPECIFIED TURBINE LOCATIONS AND CALCULATED OFFSET WRT BROWNS MTN RADIO LINK

Site	UTM Northing (m)	UTM Easting (m)	Calculated Offset (m)	Rec. Min Clearance (m)	Difference (m)	Status
T1	5049224.00 m	548827.00 m	1224	97	+1127	OK
T2	5048830.00m	549191.00 m	731	97	+634	OK

#### **Cellular Systems**

It is noted that there are no cellular type systems operating on the Rogers' tower at Piedmont Valley. There is 850MHz cellular operating at Bell's tower at Piedmont Valley however its performance is not expected to be negatively impacted by the turbines due to its distance (1.5 km) and operating frequency (wl=35cm).

## **CONCLUSIONS/RECOMMENDATIONS:**

Based on the results of our findings, the proposed wind turbines at Piedmont Valley are not expected to cause significant performance degradations on existing radio systems in the area.

#### **Point To Point Systems:**

The proposed wind turbines are not expected to significantly impact the performance of licensed PTP radio systems operating in the area.

#### Fixed Mobile Radio Systems:

Lower frequency fixed systems (below 900MHz) utilizing non-directional antennas (i.e. omni-direction or sector type antennas) that operate close to the turbines are not expected to be negatively impacted with the possible exception being high EMI or local signal scatter that could negatively impacting mobile radio units operating very near the wind turbines.

#### HSPA/LTE Cellular Systems:

There are no cellular type systems (1900/2100 MHz bands) operating at the closest identified tower (Rogers Piedmont) Mountain. There is 850MHz cellular operating at Bell's tower at Piedmont Valley however it's performance is not expected to be negatively impacted by the turbines due to its distance (1.5km) and operating frequency.

**Appendix A** – TAFL Data (Sept  $15^{\text{TH}}$ , 2013) – 35km Radius Piedmont Valley Turbines

Ref#	Tx Freq (MHz)	Rx Freq (MHz)	Status	Latitude (ddmmss)	Longitude (dddmmss)	Station Location	Twr Height AGL (m)	Tx Ant Gain	Tx Ant Az (deg)	Tx Ant Hgt (AGL- m)	Tx Ant BW (deg)	Link Call Sign	Link Licence Number	Link Station Location	Az (deg) wrt Site	Dist (km) wrt Site	Licensee Name	Licence Number	Call Sign
1	931.6125		6	453214	623339	MCLELLANS MOUNTAIN, NOVA S	110	10	0	110	6				248.06	16.07	Rogers Communications Inc. (Paging) Wilson Tam, Mgr. Radio Engineering	4852402	XMQ887
2	931.6875		6	453214	623339	MCLELLANS MOUNTAIN, NOVA S	110	10	0	110	6				248.06	16.07	Rogers Communications Inc. (Paging) Wilson Tam, Mgr. Radio Engineering	4852402	XMQ887
3	931.7375		6	453508	624041	SUTHERLANDS BOG N.S.	69	9	0	69					268.56	24.02	Bell Mobility Inc Attn: Meyang Yunga: PEIN 6026826	3665648	VAC511
4	931.7375		6	453520	620841	JAMES RIVER N.S.	69	9	0	69					90.83	17.49	Bell Mobility Inc Attn: Meyang Yunga: PEIN 6026826	3665646	VAC510
5	931.9375		6	453214	623339	MCLELLANS MOUNTAIN, NOVA S	110	10	0	110	6				248.06	16.07	Rogers Communications Inc. (Paging) Wilson Tam, Mgr. Radio Engineering	4852402	XMQ887
e	932.00526	941.49375	4	454358	620242	MARYVALE NS , (WIND FARM)	18	10	138	18	48	CKS446	5153741	FAIRMONT	57.94	29.71	NOVA SCOTIA POWER CUSTOMER OPERATIONS - RAL	5153742	CKS447
7	932.33125	941.33125	6	453715	623850	TRENTON N.S. (GEN UNIT #6)	70	9.9	240	55	48				278.72	21.86	NOVA SCOTIA POWER CUSTOMER OPERATIONS - RAL	3524863	VAC690
8	932.6	941.6	6	454116	620703	MAPLE RIDGE, NS	56	18.4	241.2	50		CHX245	5102106	GLEN DHU WIND FARM	61.22	22.33	NOVA SCOTIA POWER CUSTOMER OPERATIONS - RAL	819092	XOA238
g	933.8	942.8	6	453200	623353	MCLELLAN'S MOUNTAIN, NS	53	18.4	326.2	45		CHG527	5088518	TRENTON	247.06	16.52	NOVA SCOTIA POWER CUSTOMER OPERATIONS - RAL	5037321	CIJ446
10	934.2	943.2	6	453200	623353	MCLELLAN'S MOUNTAIN, NS	53	26.6	266.3	61		CHG528	5088520	DALHOUSIE MTN SUB	247.06	16.52	NOVA SCOTIA POWER CUSTOMER OPERATIONS - RAL	5037321	CIJ446
11	934.2	943.2	6	454116	620703	MAPLE RIDGE, NS	56	18.4	93.2	28		CIJ444	5037255	FAIRMONT	61.22	22.33	NOVA SCOTIA POWER CUSTOMER OPERATIONS - RAL	819092	XOA238
12	941.33125	932.33125	6	453545	624229	MICHELIN GRANTON SUBSTATION	24	9.9	60	24	48				271.2	26.35	NOVA SCOTIA POWER CUSTOMER OPERATIONS - RAL	5083885	CHA249
13	941.48125	932.48125	4	454056	615846	FAIRMONT NS (DOT & PW SITE)	46	10	318	40	48	CKS447	5153742	MARYVALE	71.44	31.96	NOVA SCOTIA POWER CUSTOMER OPERATIONS - RAL	5153741	CKS446
14	941.6	932.6	6	453847	621323	BARNEY'S RIVER STN, NS (GLEN DHU)	32	18.4	61.1	30		XOA238	819092	MAPLE RIDGE	61.7	12.92	NOVA SCOTIA POWER CUSTOMER OPERATIONS - RAL	5102106	CHX245
15	942.8	933.8	6	453715	623850	TRENTON. NS (GEN UNIT #6)	61	18.4	146.2	61		CIJ446	5037321	MCLELLAN'S MOUNTAIN (DND)	278.72	21.86	NOVA SCOTIA POWER CUSTOMER OPERATIONS - RAL	5088518	CHG527
16	943.2	934.2	6	454056	615843	FAIRMONT, NS (DOT & PW SITE)	46	18.4	273.3	29		XOA238	819092	MAPLE RIDGE	71.47	32.02	NOVA SCOTIA POWER CUSTOMER OPERATIONS - RAL	5037255	CU444
17	943.8	934.8	6	454056	615843	FAIRMONT, NS (DOT & PW SITE)	46	26.2	224.3	44		CIJ449	5037253	KILTARLITY	71.47	32.02	NOVA SCOTIA POWER CUSTOMER OPERATIONS - RAL	5037255	CIJ444
18	959.75		6	453706	615953	ANTIGONISH, NS - 85 KIRK ST	18	16.7	337	17	3	CG0354	5118451	ANTIGONISH, NS - TX SITE	83.95	29.05	ATLANTIC BROADCASTERS LTD. ATTN: GORD	5118450	CGO340
10	1432.25	1481 25	6	454025	624032		8	17	30.7	8	,	CIP935	112728		291 12	25.55	BELL ALIANT REGIONAL COMM. INC. Attn	853853	CGE647
20	1481 25	1432.25	6	454846	623325		15	17	210.8	5		CGE647	853853		329.46	28.6	BELL ALIANT REGIONAL COMM. INC. Attn Karen Bradbury- Contract Mgt	112728	CIP935
20	1850	17/1 5	6	453200	623353		67	31.2	210.0	62		XM7583	937917		247.06	16.52	NS Dept. of Transportations & PW Public Safety & Eield Comm. Office	037016	XM7584
23	1850	1741.5	0	433200	023333	WACLELLAN WOONTAIN, NS	07	51.2	272.0	02		XIVI2383	557517	NOTIBI	247.00	10.32		557510	XIVIZJ04
22	5912.375	5878.875	6	453834	620729	BROWNS MTN, NOVA SCOTIA	122	40.8	107.4	122		VEL430		LOWER SOUTH RIVER, NS	73.2	19.87	ATTN: M VUJOSEVIC, TRANSMISSION ENG	3510732	XKH211
22	6002.45	6245 40	6	45 41 22	624212		122	40.9	220.1	25		CCE083	2405051	PROOKLAND	202.54	28.20	ROGERS COMMUNICATIONS PARTNERSHIP	4025062	V/FN4421
2:	6 0095.45	0545.49	0	454155	024212	PICTOD, NS	122	40.8	226.1	35		CGE985	5405051	BROOKLAND	295.54	26.23		4955965	VEIVI451
24	6445	6785	6	453214	623339	MCLELLANS MOUNTAIN, NS	107	44	70.5	54		хкн211	3510732	BROWNS MOUNTAIN, NS	248.06	16.07	ATTN: M VUJOSEVIC, TRANSMISSION ENG	3405053	CGE984
		6705		15004.4	60000		107									10.07	ROGERS COMMUNICATIONS PARTNERSHIP		
25	6445	6785	6	453214	623339	MCLELLANS MOUNTAIN, NS	107	44	261.1	38		CGG895	4811904	THOM, NS	248.06	16.07	ATTN: M VUJOSEVIC, TRANSMISSION ENG	3405053	CGE984
26	6505	6845	6	453214	623339	MCLELLANS MOUNTAIN, NS	107	44	70.5	54		ХКН211	3510732	BROWNS MOUNTAIN, NS	248.06	16.07	ATTN: M VUJOSEVIC, TRANSMISSION ENG	3405053	CGE984
																	ROGERS COMMUNICATIONS PARTNERSHIP		
27	6505	6845	6	453214	623339	MCLELLANS MOUNTAIN, NS	107	44	261.1	38		CGG895	4811904	THUM, NS	248.06	16.07	ATTN: M VUJOSEVIC, TRANSMISSION ENG	3405053	CGE984
28	6535	6875	6	453214	623339	MCLELLANS MOUNTAIN, NS	107	42	271	54		CGE983	3405051	BROOKLAND, NS	248.06	16.07	ROGERS COMMUNICATIONS PARTNERSHIP ATTN: M VUJOSEVIC, TRANSMISSION ENG	3405053	CGE984
																	ROGERS COMMUNICATIONS PARTNERSHIP		
29	6535	6875	6	453214	623339	MCLELLANS MOUNTAIN, NS	107	43.8	70.7	54		XKH211	3510732	BROWNS MOUNTAIN, NS	248.06	16.07	ATTN: M VUJOSEVIC, TRANSMISSION ENG	3405053	CGE984

Ref#	Tx Freq (MHz)	Rx Freq (MHz)	Status	Latitude (ddmmss)	Longitude (dddmmss)	Station Location	Twr Height AGL (m)	Tx Ant Gain	Tx Ant Az (deg)	Tx Ant Hgt (AGL- m)	Tx Ant BW (deg)	Link Call Sign	Link Licence Number	Link Station Location	Az (deg) wrt Site	Dist (km) wrt Site	Licensee Name	Licence Number	Call Sign
30	6565	6905	6	453214	623339	MCLELLANS MOUNTAIN, NS	107	44	70.5	54		ХКН211	3510732	BROWNS MOUNTAIN, NS	248.06	16.07	ROGERS COMMUNICATIONS PARTNERSHIP ATTN: M VUJOSEVIC, TRANSMISSION ENG	3405053	CGE984
31	6565	6905	6	453214	623339	MCLEILANS MOUNTAIN INS	107	44	261.1	38		CGG895	4811904	THOM NS	248.06	16.07	ROGERS COMMUNICATIONS PARTNERSHIP	3405053	CGF984
	6795	6445		452924	620720		107	45.4	01.0	30		VKU212	2510724		72.2	10.07	ROGERS COMMUNICATIONS PARTNERSHIP	2510722	VKU211
32	6785	6445	0	455854	620729	BROWNS MIN, NOVA SCOTIA	122	43.4	91.8	41		XKH212	5510754	FRAINKVILLE, INS	73.2	19.87	ROGERS COMMUNICATIONS PARTNERSHIP	3510732	AKH211
33	6785	6445	6	453834	620729	BROWNS MTN, NOVA SCOTIA	122	45.4	250.8	56		CGE984	3405053	MCLELLANS MOUNTAIN, NS	73.2	19.87	ATTN: M VUJOSEVIC, TRANSMISSION ENG ROGERS COMMUNICATIONS PARTNERSHIP	3510732	XKH211
34	6845	6505	6	453834	620729	BROWNS MTN, NOVA SCOTIA	122	45.4	91.8	41		ХКН212	3510734	FRANKVILLE	73.2	19.87	ATTN: M VUJOSEVIC, TRANSMISSION ENG	3510732	XKH211
35	6845	6505	6	453834	620729	BROWNS MTN, NOVA SCOTIA	122	45.4	250.8	56		CGE984	3405053	MCLELLANS MOUNTAIN, NS	73.2	19.87	ATTN: M VUJOSEVIC, TRANSMISSION ENG	3510732	XKH211
36	6875	6535	6	453834	620729	BROWNS MTN, NOVA SCOTIA	122	43.8	251	52		CGE984	3405053	MCLELLANS MOUNTAIN, NS	73.2	19.87	ROGERS COMMUNICATIONS PARTNERSHIP ATTN: M VUJOSEVIC, TRANSMISSION ENG	3510732	ХКН211
37	6875	6535	6	453834	620729	BROWNS MTN, NOVA SCOTIA	122	45.4	90.4	40		XKH212	3510734	FRANKVILLE	73.2	19.87	ROGERS COMMUNICATIONS PARTNERSHIP ATTN: M VUJOSEVIC, TRANSMISSION ENG	3510732	XKH211
38	6905	6565	6	453834	620729	BROWNS MTN, NOVA SCOTIA	122	45.4	91.8	41		XKH212	3510734	FRANKVILLE, NS	73.2	19.87	ROGERS COMMUNICATIONS PARTNERSHIP ATTN: M VUJOSEVIC, TRANSMISSION ENG	3510732	XKH211
39	6905	6565	6	453834	620729	BROWNS MTN, NOVA SCOTIA	122	45.4	250.8	56		CGE984	3405053	MCLELLANS MOUNTAIN, NS	73.2	19.87	ROGERS COMMUNICATIONS PARTNERSHIP ATTN: M VUJOSEVIC, TRANSMISSION ENG	3510732	ХКН211
40	7208.75	7383.75	6	453626	615953	ANTIGONISH, NS	15	40.5	313.9	15		XOA238	5142394	MAPLE RIDGE	86.38	28.95	NOVA SCOTIA POWER CUSTOMER OPERATIONS - RAL	858358	XMZ558
41	7383.75	7208.75	6	454116	620703	MAPLE RIDGE, NS	56	40.5	133.8	55		XMZ558	858358	ANTINGONISH	61.22	22.33	NOVA SCOTIA POWER CUSTOMER OPERATIONS - RAL	5142394	XOA238
42	7533.75	7683.75	6	453626	615953	ANTIGONISH, NS	15	40.5	313.9	15		XOA238	5142394	MAPLE RIDGE	86.38	28.95	NOVA SCOTIA POWER CUSTOMER OPERATIONS - RAL NOVA SCOTIA POWER CUSTOMER	858358	XMZ558
43	7683.75	7533.75	6	454116	620703	MAPLE RIDGE, NS	56	40.5	133.8	55		XMZ558	858358	ANTIGONISH	61.22	22.33	OPERATIONS - RAL	5142394	XOA238
44	10552.5	10617.5	6	453214	623339	MCLELLANS MOUNTAIN, NS	107	45.9	68.6	35		XMZ289	4725204	PIEDMONT	248.06	16.07	ROGERS COMMUNICATIONS PARTNERSHIP ATTN: M VUJOSEVIC, TRANSMISSION ENG	3405053	CGE984
45	10617.5	10552.5	6	453537	622115	PIEDMONT, NOVA SCOTIA	91	45.9	248.8	60		CGE984	3405053	MCLELLANS MOUNTAIN	78.25	1.21	ROGERS COMMUNICATIONS PARTNERSHIP ATTN: M VUJOSEVIC, TRANSMISSION ENG	4725204	XMZ289
46	10725	11215	6	453214	623339	MCLELLANS MOUNTAIN, NS	107	40.4	308.1	30		CHL355	5110688	NEW GLASGOW (MTS SITE)	248.06	16.07	ROGERS COMMUNICATIONS PARTNERSHIP ATTN: M VUJOSEVIC, TRANSMISSION ENG	3405053	CGE984
47	10735	11225	6	453522	624246	MOUNT WILLIAM NS (574 MT WILLIAM)	90	43.6	253.5	45		CGE983	3405051		269.66	26.72	ROGERS COMMUNICATIONS PARTNERSHIP	5025973	CI0386
47	10/35	11225		455522	024240	NOON WELAW, NO (574 WI WELAW)	50	45.0	255.5			COLUES	5405051	BROOKDAND, NS	205.00	20.72	ROGERS COMMUNICATIONS PARTNERSHIP	5025575	0000
48 49	11215 14471	10725 12171	6	453503 451910	623847 620210	NEW GLASGOW, NS (MTS ALLSTREAM) MLV 40 (***), NS	30	40.4 46.5	128.1 232.6	23	0.8	CGE984	3405053	MCLELLANS MOUNTAIN, NOVA	267.96 139.19	21.57 39.88	ATTN: M VUJOSEVIC, TRANSMISSION ENG RIGNET (CA), INC.	5110688 4860002	CHL355 VE967
50	14471	12171	6	452015	621934	MLV 64 (***), NS	3	46.5	232.3	3	0.8				173.16	28.43	RIGNET (CA), INC.	4860003	VE968
52	14471	12171	6	452255	624656	MLV 106 (***), NS	3	46.5	232.2	3	0.8				246.77	35.03	RIGNET (CA), INC.	4860004	VE969 VE970
53	14630	15105	6	453834	620729	BROWNS MTN, NOVA SCOTIA	122	42.7	194.8	50		XMZ287	4722187	BARNEY'S RIVER	73.2	19.87	ROGERS COMMUNICATIONS PARTNERSHIP ATTN: M VUJOSEVIC, TRANSMISSION ENG	3510732	XKH211
54	14893.75		6	452854	623347	BROOKVILLE, NOVA SCOTIA	80	46	62.4	80			4837488	BROWNS MOUNTAIN	231.09	19.4	Global Maritimes Division of Shawmedia Inc.	4837486	CZJ419
55	15105	14630	6	453523	620841	BARNEY'S RIVER, NOVA SCOTIA	91	42.7	14.8	41		XKH211	3510732	BROWNS MTN	90.53	17.49	ROGERS COMMUNICATIONS PARTNERSHIP ATTN: M VUJOSEVIC, TRANSMISSION ENG	4722187	XMZ287
56	19007.5	18667.5	6	453708	615938	ANTIGONISH, NS	30	39.2	111	30		VEL430	4900896	LOWER SOUTH RIVER. NS	83.89	29.37	ROGERS COMMUNICATIONS PARTNERSHIP ATTN: M VUJOSEVIC, TRANSMISSION FNG	4956118	CJL736

#### TAFL Data - Active Licensed Unprotected TX - 35km Search About Piedmont Valley, NS - Sept 15/13

R	ef#	Tx Freq (MHz)	Rx Freq (MHz)	Status	Latitude (ddmmss)	Longitude (dddmmss)	Station Location	Twr Height AGL (m)	Tx Ant Gain	Tx Ant Az (deg)	Tx Ant Hgt (AGL- m)	Tx Ant BW (deg)	Link Call Sign	Link Licence Number	Link Station Location	Az (deg) wrt Site	Dist (km) wrt Site	Licensee Name	Licence Number	Call Sign
																		ATLANTIC BROADCASTERS LTD. ATTN: GORD		
	57		959.75	6	454306	620328	ANTIGONISH, NS - TX SITE	76					CGQ340	5118450	ANTIGONISH, NS - 85 KIRK	59.66	28.04	CAMERON	5118451	CGQ354
Γ	58		14893.75	6	453826	620732	BROWNS MOUNTAIN, NOVA SCOTIA	50					CZJ419	4837486	BROOKVILLE	73.84	19.74	Global Maritimes Division of Shawmedia Inc.	4837488	XJO28

Appendix K:

**Complaint Resolution Plan** 

# Formal complaints procedure for Natural Forces Wind Inc. Aulds Mountain Wind Farm

Natural Forces Wind Inc. is committed to addressing any public concerns regarding Aulds Mountain Wind Farm in Aulds Mountain in the Municipality of Pictou County. The intention is that this policy can inform the public on the ways that they can communicate their concerns to Natural Forces Wind Inc., and how complaints will be addressed.

## **1.0 PURPOSE**

The purpose of this policy is to ensure all public complaints are dealt with consistently and effectively. Natural Forces Wind Inc. aims to:

- Manage complaints openly, promptly and properly;
- Try to resolve complaints as soon as possible; and
- Learn from complaints and improve our services.

## 2.0 SCOPE

This policy will address any complaint; written or spoken expression of dissatisfaction.

## 3.0 PROCEDURE

All complaints of the Aulds Mountain Wind Farm will be directed to the Project Manager, Andy MacCallum:

Andy MacCallum | VP Developments Natural Forces Wind Inc. 1801 Hollis Street | Suite 1205 | Halifax | NS | B3J 3N4 Tel: +1 902 422 9663 x 214 Fax: +1 902 425 7840 For more information please refer to Natural Forces Wind Inc. website <u>www.naturalforces.ca</u>

Complainant will be notified upon receipt of the complaint. The Project Manager will investigate complaints within 20 days of receiving the complaint; upon which complainant will be notified of how the concern was or will be addressed.



#### 3.1 Noise

Complaints dealing with noise will be assessed on whether noise monitoring is necessary.

If there are several complaints regarding noise from the Aulds Mountain Wind Farm, then a noise monitoring program may be implemented.

Ways on reducing noise will be discussed with the wind farm operators.

Complainant(s) will be informed of noise mitigation strategies and will be contacted within a year of implemented noise reduction strategies on the success of the noise reduction strategy. This will help address any noise issues that may arise from the Aulds Mountain Wind Farm.

#### **3.2** Construction and Operation

Complaints regarding operation and construction activities will be discussed with workers or contractors involved.

Solutions to the complaints will be established with worker(s) and contractor(s). Complainant will be informed of how issue was addressed.

If complaints persist, then worker(s) and contractor(s) may be dismissed.

### 4.0 CLOSURE

If the complainant is not satisfied with the initial response, the complaint will be referred to a higher authority within the company to further resolve the issue.



Appendix L:

**Stakeholder Consultation** 

Date	Person Contacted	Band/Organization	Method of Communication	Content
December 4, 2011	Chief Aileen Francis	Pictou Landing First Nation	Letter	Invitation to the First Public Meeting
August 29, 2012	Office Receptionist	Office of Aboriginal Affairs	Phone Call	Engagement effort with the Mi'Kmaq community
July 3, 2013	Beata Dera	Office of Aboriginal Affairs	Phone Call	Discussed scoping for MEKS and their requirement for ComFIT
September 6, 2013	Chief Aileen Francis	Pictou Landing First Nation	Letter	Invitation to the Second Public Meeting
September 9, 2013	Chief Aileen Francis	Pictou Landing First Nation	Phone Call	Invitation to the Second Public Meeting
August 19, 2013	Twila Gaudet, Consultation Liaison Officer	Kwilmu'kw Maw- Klusuaqn Negotiation Office	Letter	Wind Farm Update

Date	Person Contacted	Department / Agency	Method of Communication	Content			
		Municipal					
June 28, 2013	Sally Fraser, Councillor	Municipality of Pictou County	Phone call	Introduction to project			
July 23, 2013	Van Mcleod	Municipality of Pictou County	Phone call	Discussed development permit			
August 14, 2013	Clarrie MacKinnon, Councillor	Municipality of Pictou County	Meeting	Meeting to give update on project and to introduce Community Economic Development Investment Fund.			
August 20, 2013	Clarrie MacKinnon, Councillor	Municipality of Pictou County	Letter	Project Update			
August 20, 2013	Sally Fraser, Councillor	Municipality of Pictou County	Letter	Project Update			
September 6, 2013	Councillors	Municipality of Pictou County	Letter	Invitation to the Second Public Meeting			
September 6, 2013	Sally Fraser, Councillor	Municipality of Pictou County	Phone Call	Invitation to Public Meeting			
Provincial							
November 7, 2012	Steve Stanford	Nova Scotia Environment – EA Branch	Meeting	Discussed EA process, forming CLC, health Canada study and EA scoping.			
November 27, 2013	Mark Elderkin & Peter MacCullins	Nova Scotia Environment	Meeting	Discussed conducting moose surveys and timing of avian studies			
September 18, 2013	Shavonne Meyer	Nova Scotia Department of Natural Resources	Meeting	Discussed turtles/ amphibians, moose, environmental management plan scoping and micro siting with respect to wetlands			

Date	Person Contacted	Department / Agency	Method of Communication	Content
		Federal		
November 14, 2012	Adin Switzer, AEC Liaison Officer	Government of Canada, National Defence	Email	No interference with DND radar and airport facilities
September 18, 2012	Mario Lavoie, Spectrum Engineering Technician	Government of Canada, Department of National Defence	Email	No interference with radio communications
September 18, 2012	Carolyn Rennie, National Radar Program	Environment Canada, Meteorological Service of Canada	Email	No severe interference with meteorological radar systems
September 18, 2012	Martin Gregoire	Canadian Coast Guard	Email	No interference with radar
Appendix M:

**Consultant CV** 



# Christopher M. Milley, M.Sc., MMM Senior Environmental Consultant, Dartmouth, NS

## **Professional Summary**

Chris Milley is a resource manager with over 25 years of experience working in cross cultural environments. Mr. Milley has managed resource and environmental management projects in the Caribbean, Central America and with the First Nations in Atlantic Canada. Mr. Milley has liaised actively with regional and national First Nations organizations, international agencies and organisations, such as the Assembly of First Nations, the UNPFII, UN FAO and UNESCO's Intergovernmental Oceanographic Commission, and co-ordinated co-operative support for international development assistance projects. He has been a delegate at the UN Economic and Social Council's Permanent Forum on Indigenous Issues

Mr. Milley specializes in working with Indigenous communities in the design, and implementation of species inventories and community-based resource management activities that promote sustainable social and economic development. Mr. Milley teaches Fisheries Management, and special courses on Indigenous Resource Management in the Faculty of Graduate Studies at Dalhousie University.

## **Relevant Experience**

#### Environmental Project Management

Mr. Milley brings to this project an intimate familiarity of the local environmental issues of communities in Nova Scotia with a specific

emphasis of the relationships between tradition, culture and local environment. Chris has a dept of knowledge and experience working with projects that have a potential impact on local and First Nation communities, particularly in identification of traditional resource use practices, harvesting areas and mapping traditional knowledge. Chris has worked with a number of resource development and management projects and organizations, including: the Eskasoni Fish and Wildlife Commission, the Mi'kmaq Fish and Wildlife Commission, where he served as Executive Director and the Atlantic Policy Congress as a fishery policy analyst, the Acadia Band in SW Nova Scotia as Director of their Fisheries Program, and with the Mi'kmaq Confederacy of PEI as Director of Integrated Resource Management.

## **Relevant Projects**

#### Traditional Knowledge Study

Designed, implemented and managed a Traditional Ecological Knowledge Study for the Sable Offshore Energy Inc. Natural Gas Liquids (NGL) Pipeline Corridor (Goldboro to Point Tupper).

#### **Fishermen and Scientist Research Society Conference**

Coordinated the development and incorporation of the Fishermen and Scientist Research Society, a communityoriented research group involved in fishery research. Also organized an inaugural conference of the FSRS

#### **Coastal Communities Network Workshop**

Organized and facilitated a Coastal Communities Network workshop on Community-based Co-management. Also presented an overview of fisheries co-management concepts and principles to conference participants from municipal governments, fishery organization and ENGOs.

#### Years with AMEC: 3 Years Experience: >27

#### **Education**

Dalhousie University, 1995 (Masters of Marine Management)

Dalhousie University, 1983 (Master of Science (Oceanography))

Mount Allison University, 1979 (Bachelor of Science)

#### Training

Negotiation Skills, Conflict Management Group, Cambridge, MA

Meeting Facilitation, Saint Mary's University, 2002

Introduction to MapInfo Professional, Baseline Business Geographics, 1998

Middle Management Orientation Program, Public Service Commission, Ottawa, 1990

Project Management by Activity, Bureau of Management Consultants, Supply and Services Canada, Georgetown, Guyana, 1990

Resource Systems and Economic Development, Institute for Resource and Environmental Studies, Dalhousie University, 1985



#### Research on traditional management systems

Collaborated in the design and managed First Nation inputs to a collaborative research project with St. FX. This project, Social Research for Sustainable Fisheries, involved inter-community research on customary decision-making systems.

#### Coastal Traditional Resources Mapping Program – Bras D'or Lakes, Eskasoni First Nation

Managed and implemented a community-based coastal mapping program with the Eskasoni First Nation for the Bras D'or Lakes region of Cape Breton. This project involved organizing field data collection activities, designing information presentations systems (including GIS), and conducting community workshops throughout the Bras D'or Lakes region.

#### **First Nations Renewable Energy Development**

Assisted the Mi'kmaq First Nations on Prince Edward Island in the review and development of an alternative energy strategy that build upon available wind technology and ethanol production.

#### Teaching materials and Course delivery - Integrated Coastal Zone Management: A community perspective

Prepared a text and teaching modules for a short course on Integrated Coastal Zone Management for community organizations in Spain and delivered the course during a spring semester of the University of Las Palmas de Gran Canaria, Spain

#### **Training Needs Assessment**

Managed a study to assess the training needs and job/task analysis of the Lennox Island and Abegweit First Nations' fisheries as part of an ongoing DFO funded initiative to determine the long-term and short term training needs that can be effectively addressed through an at-sea mentoring program.

## Fisheries Management Program, Prince Edward Island First Nations

Designed and managed a Federal government funded program to enhance the institutional and administrative fisheries management capacity within the PEI First Nations

## Study on Environmental Contaminants in the Food Fishery

Designed and managed a small project undertaken with the support of Health Canada to examine the presence of common environmental contaminants, including heavy metals, in the food fishery resources commonly consumed in First Nations Communities in PEI

## **Davis MacIntyre & Associates**

## **Contact Details**

109 John Stewart Drive Dartmouth, Nova Scotia Canada, B2W 4J7 Tel: 902.402.4441 Fax: 902.444.2854 E-mail: <u>darch@eastlink.ca</u> www.davismacintyre.com

## **Company Details**

Davis MacIntyre & Associates Limited was established in 2009 and previously operated as Davis Archaeological Consultants Limited. We are leaders in the cultural resource management discipline in the Atlantic Region. Our staff has over 50 years of combined experience in the field of archaeology. We provide comprehensive professional services in undertaking archaeological and historical cultural resource assessments for government, public, and private industry. We are committed to excellence and pride ourselves on offering our clients value-added services to meet modern environmental and development standards.

(Source: <a href="http://www.davismacintyre.com/">http://www.davismacintyre.com/</a>)