APPENDIX H

WATER QUALITY MODEL REPORT

TECHNICAL MEMORANDUM

Golder Associates Ltd. 2390 Argentia Road Mississauga, ON, Canada L5N 5Z7

Telephone: 905-567-4444 Fax Access: 905-567-6561

то:	Peter Carter (Atlantic Gold)	DATE:	October 29, 2007
FROM:	Mike Gunsinger & Ken DeVos	JOB NO:	06-1118-041C (7000/7600)
CC:	Irwin Wislesky (Golder)		
RE:	WATER QUALITY MODELING TO TO THE DOWNGRADIENT WATER PROJECT, NOVA SCOTIA	ASSESS GE	OCHEMICAL CHANGES OUQUOY GOLD

1.0 INTRODUCTION

Atlantic Gold (Atlantic) has retained Golder Associates Ltd. (Golder) to evaluate tailings management and mine waste geochemistry for the Touquoy Gold Project. In addition to the mine waste geochemistry, a water quality model was developed to estimate the concentrations of various constituents in the tailings management pond. Using the results of the site water quality model, a mixing model was developed to estimate the water quality of the downstream water bodies, including Scraggy Lake, Fish River and Lake Charlotte. The purpose of the model is to evaluate changes to the water quality in the downstream receivers after a long period of mine effluent discharge from the polishing pond. Flow rates were calculated for the various site areas and were coupled with water quality data to simulate the total concentrations of constituents in the receiver water bodies. The purpose of this technical memorandum is to provide preliminary water quality estimates for the water in Scraggy Lake, Fish River and Lake Charlotte.

2.0 DESCRIPTION OF WATER QUALITY MODEL

A mass-balance mixing cell model was developed to estimate the water quality in Scraggy Lake, Fish River and Lake Charlotte. The model consists of a number of site-specific components, consisting of both natural components (e.g., precipitation) and mine-site components (e.g., effluent discharge), that are linked together to form a series of mixing cells. Each mixing cell has two or more sources of mass load that are combined to determine a "mixed" or combined water quality. The model simulates a twelve month period, whereby it utilizes average monthly flow and calculates mass loading rates to determine total concentrations at mixing points in the modeled system. Model conditions are varied to simulate the total concentrations that would occur under extended periods of 'normal' flow, high flow and low flow conditions.

OFFICES ACROSS NORTH AMERICA, SOUTH AMERICA, EUROPE, AFRICA, ASIA AND AUSTRALIA

Peter Carter		October 29, 2007
Atlantic Gold	- 2 -	06-1118-041C (7000/7600)

2.1 Mixing Cell Model

A mixing cell model is a useful tool to define discrete chemical mass loads from sub-basins, subcomponents and facilities in order to conservatively estimate mixed concentrations downstream of the source. The chemical mass load is the mass of a constituent per unit time transported by a quantity of water. The concentrations within a mixing cell, such as a lake, from two flow components can be derived as follows:

$$C_{3} = \frac{(C_{1} \times Q_{1}) + (C_{2} \times Q_{2})}{(Q_{1} + Q_{2})}$$
(1)

- $C_1 = Concentration from Component 1$
- $Q_1 =$ Flow from Component 1
- $C_2 =$ Concentration from Component 2
- $Q_2 =$ Flow from Component 2
- C₃ = Blended Concentration from Mixing Components 1 and 2

2.2 Water Balance Inputs

Average monthly flow rates were derived from a baseline site water balance completed by Conestoga-Rovers and Associates (CRA, 2007). Although the average monthly flow rates cannot be used to evaluate transient or short-term events, such as storm flows, they are useful in establishing flow rates that are representative of typical site conditions. The results of the water quality simulations are therefore useful in qualitatively assessing water quality issues related to waste management, such as treatment criteria or proposed discharge limits.

The site water balance, as completed by CRA, considers the areas of the various subwatersheds that are flowing into each of the model components. The site water balance also incorporates the contributions from direct precipitation to the water bodies and water losses through evaporation, along with contributions from specific subwatersheds. The subwatersheds used to determine the flows entering and leaving each mixing cell are summarized as follows (CRA, 2007):

- Scraggy Lake Subwatersheds IEL-5G, IEL-5H, IEL-5J, IEL-5K, IEL-5L and IEL-5M.
- Fish River Subwatersheds IEL-5D, IEL-5E, IEL-5F, IEL-5N, IEL-5P, IEL-5Q, IEL-5R, IEL-5S, IEL-5T, IEL-5U, IEL-5V and IEL-5W.
- Lake Charlotte Subwatersheds IEL-5C, IEL-5X, IEL-5Y, IEL-5Z and IEL-5AA.

Peter Carter		October 29, 2007
Atlantic Gold	- 3 -	06-1118-041C (7000/7600)

The average flow rates that were used in the model are presented in Table 1. Under operating conditions the flows will slightly change as a consequence of the additional inflow from the mine site. The flow rate from the mine site is referred to as the mine effluent discharge. Thus, the outflow from Scraggy Lake, Fish River and Lake Charlotte were re-calculated to include the inflow of mine water to the system. Descriptions of the flow rates under operating conditions, along with assumptions associated with the water balance inputs, are summarized as follows:

- Mine Effluent Discharge mine water will have a set monthly average discharge rate for eight months of the year under 'normal', 'high' and 'low' flow conditions (Flow No. 1), as determined by the site water balance study (Golder, 2007). From December to March, the tailings management pond and the polishing pond will store water, and thus the site will not discharge mine water to Scraggy Lake during these months.
- Scraggy Lake Subwatershed Net Flow flow from all the Scraggy Lake subwatersheds. This flow rate was assumed to equal the flow rate at the Scraggy Lake outlet under baseline conditions (Flow BL 1).
- 3. Scraggy Lake Outflow total flow that is entering Fish River from Scraggy Lake. This flow rate was calculated by adding the net flow rate from the Scraggy Lake Subwatersheds (Flow No. 2) to the Mine Effluent Discharge (Flow No. 1).
- 4. Fish River Subwatershed Net Flow flow from all the Fish River subwatersheds. This flow was calculated by determining the difference between the baseline outflow from Fish River (Flow BL 2) and the baseline outflow from Scraggy Lake (Flow BL 1).
- 5. Fish River Outflow total flow that is entering Lake Charlotte from Fish River. This flow was calculated by adding the outflow from Scraggy Lake (Flow No. 3) to the net flow from the Fish River Subwatershed (Flow No. 4).
- 6. Lake Charlotte Subwatershed Net Flows flow from all the Lake Charlotte subwatersheds. This flow was calculated by determining the difference between the baseline outflow from Lake Charlotte (Flow BL 3) and the baseline outflow from Fish River (Flow BL 2).
- Lake Charlotte Outflow total flow that is leaving Lake Charlotte at the southern outlet of the lake. This flow was calculated by adding the outflows from Fish River (Flow No. 5) to the net flows from the Lake Charlotte Subwatershed (Flow No. 6).

High flow rates and low flow rates were determined based on the water balance completed for the mine area catchments. The percentage difference between the average cases and the high and low flow rate cases for the mine discharge was used to pro-rate the other flows (i.e., the flows for the Scraggy Lake, Fish River, and Lake Charlotte subwatersheds) for the high and low flow scenarios. The high and low flow rate scenarios were completed as part of a general evaluation of the potential long-term changes to water quality that could result from a prolonged dry or wet period.

Peter Carter		October 29, 2007
Atlantic Gold	- 4 -	06-1118-041C (7000/7600)

2.3 Flow Logic

For the purposes of modeling the downgradient water bodies at the Touquoy site, the model is simplified into three main mixing zones. The three main mixing zones are as follows:

- Mix 1 Scraggy Lake
- Mix 2 Fish River, and
- Mix 3 Lake Charlotte.

Each of these mixing zones have inflows with an assigned or calculated flow rate and water quality. The concentrations within each mixing cell are subsequently calculated to determine the final water quality in Lake Charlotte. The flow logic for the model is summarized by mixing zone as follows:

- Mix 1 Mine Effluent Discharge is mixed with the Scraggy Lake Subwatershed Net Flow to produce the Scraggy Lake Outflow (Flow No. 1 + Flow No. 2 = Flow No. 3).
- Mix 2 Scraggy Lake Outflow (Mix 1) is mixed with the Fish River Subwatershed Net Flow to produce the Fish River Outflow (Flow No. 3 + Flow No. 4 = Flow No. 5).
- Mix 3 Fish River Outflow (Mix 2) is mixed with the Lake Charlotte Subwatershed Net Flow to produce the Lake Charlotte Outflow (Flow No. 5 + Flow No. 6 = Flow No. 7).

2.4 Water Chemistry Inputs

Water qualities for each model component used in the simulations are presented in Table 2. The water quality model was developed to determine the concentrations of the following parameters: aluminum, ammonia, antimony, arsenic, cadmium, calcium, chloride, chromium, cobalt, copper, cyanide, iron, lead, magnesium, manganese, nickel, nitrate, phosphorous, potassium, selenium, silver, sodium, sulphate, uranium and zinc.

Table 2 summarizes the baseline water qualities and the calculated model inputs. Several assumptions were necessary in order to assign flows and water qualities to various site components. The assumptions required as part of the modeling process are summarized as follows:

• Bench scale tests to assess the effectiveness of aging and ferric iron treatment were completed by SGS Lakefield and are described in SGS (2007). In the memo written by SGS (2007), it was recommended to Atlantic that the water chemistry data reported for the detoxified solution after treatment should be used in the water quality model to represent the polishing pond water quality. The water quality of the detoxified solution after treatment was therefore assumed to be representative of the water in the polishing pond.

pond. Golder Associates

Peter Carter		October 29, 2007
Atlantic Gold	- 5 -	06-1118-041C (7000/7600)

- The 2007 baseline water quality of Scraggy Lake, collected from four locations throughout the lake, was used to calculate an average water quality for the lake. The four locations are as follows: SL-SW-1, SL-SW-2, SL-SW-3 and SL-SW-4. The average concentrations from the four locations were assumed to be representative of the water quality of the flows from the Scraggy Lake Subwatersheds.
- The Fish River Subwatershed water quality was calculated from the baseline load contribution from the Fish River Subwatershed. The load from the Fish River Subwatershed was assumed to equal the load difference between the Scraggy Lake outlet (SL-SW-3) and the Fish River outlet (LC-SW-2). The load is then divided by the flow from the Fish River Subwatershed to attain concentrations in mg/L (Table 2).
- The 2007 baseline water quality of Weeks Lake, collected at the point where Weeks Lake discharges into Ship Harbour (LC-SW-1), was assumed to be representative of the water quality of the Lake Charlotte Subwatersheds.
- Water qualities of the various subwatersheds within each mixing zone are assumed to be equal. The three main mixing zones each have a defined water quality (Table 2).
- Concentrations of parameters that were below detection were assumed to be present at concentrations that are half of the detection limit.

Finally, it is important to note that water quality calculations for these simulations do not take into consideration geochemical or biological processes that may be controlling concentrations in solution (i.e., biodegradation, precipitation and adsorption reactions). These calculations, therefore, assume that the transport of constituents is conservative.

2.5 Nitrate and Ammonia from Residual Explosives

Site explosive use is a principal source of nitrate and ammonia. The loading of nitrate and ammonia from the dissolution of residual explosives is included into the model and calculated differently than the other parameters. Due to differences in underground blasting rates, different assumptions were used to calculate underground ammonia and nitrate loading rates. The mass loading of nitrate and ammonia is dependent on the usage rate of explosives. The assumptions associated with the underground nitrate and ammonia loading calculations from the residual explosives are summarized as follows:

- ANFO explosives are used for blasting and consist of 94% NH₄NO₃ and 6% fuel oil.
- Explosives use rate is assumed to be 0.7 kilograms of explosives per cubic meter (kg/m³) of blasted rock.
- Bedrock density is assumed to be 2.6 g/cm³.
- Complete dissolution of residual (undetonated) explosives is estimated to be 5% of ariginal empount (INCO 100% Formuth et al. 1005)

original amount (INCO, 1998; Forsyth et al., 1995).

Peter Carter		October 29, 2007
Atlantic Gold	- 6 -	06-1118-041C (7000/7600)

It is assumed that all ammonia and nitrate will be dissolved by the mine runoff and reports directly to the tailings pond. It is further assumed that the treatment process does not remove significant masses of ammonia and nitrate.

3.0 WATER QUALITY OF DOWNGRADIENT WATER BODIES

The results of the water quality mixing model are presented as annual average concentrations in Table 3. Appendices A, B and C contain the raw results of the load and mixing cell calculations. In Table 3, the simulated concentrations are compared to Federal Canadian Metal Mining Effluent Regulations (MMER, 2002) and to Canadian Water Quality Guidelines for the Protection of Aquatic Life (CCME, 2002). The comparisons to CCME guidelines provide insights regarding parameters that may be of environmental concern, and also serves as a standard to gauge the magnitude of concentrations that are present in the water bodies that are located downgradient of the site.

The simulation results suggest that the mass load contribution from the mine water is the major source of load for some constituents (i.e., arsenic). Generally, the concentrations of most constituents are the highest in Scraggy Lake, and decrease as the water moves down through Fish River and into Lake Charlotte. Because the concentrations are lower in the subwatersheds, the concentrations become diluted as the proportion of flow from the subwatersheds increases with increasing distance down gradient. However, it is important to note that the degree to which the concentrations decrease is non-linear, since the mass load contributions from the various subwatersheds do influence the results.

3.1 Influence of Flow Conditions

Three different scenarios were simulated to assess the affect of variable flow conditions: 1) normal flow, 2) high flow and 3) low flow (Appendices A, B and C). Since the mass load contributions from the various subwatersheds do influence the results, the influence of high flow and low flow conditions on the observed parameter concentrations is not linear. In the case of most parameters, the flow conditions do not result in significant changes to the overall water quality. Because the flow from the various areas proportionately increases or decreases, the mixing ratios between the site components will be similar. In other cases (e.g., concentrations governed by mine water discharges that are independent of flows, such as nitrate and ammonia), concentrations are typically lower under high flow conditions due to the additional amount of water mixed with the mass load of these parameters. Under low flow conditions, the converse is true and concentrations in the receiving waters increase.

The specific details of the simulation results for each mixing zone under average or 'normal' conditions are summarized in the following sections.

Peter Carter		October 29, 2007
Atlantic Gold	- 7 -	06-1118-041C (7000/7600)

3.2 Scraggy Lake

The concentrations of most constituents within Scraggy Lake are greater than the concentrations in Fish River and Lake Charlotte. Baseline concentrations of aluminum in Scraggy Lake, Fish River and Lake Charlotte, and baseline concentrations of cadmium in Scraggy Lake are greater than the CCME guidelines. Thus, this comparison implies that the mine water is a minor contributor of mass load of aluminum and cadmium to the Scraggy Lake – Fish River – Lake Charlotte flow system.

The modeling results under normal flow conditions for Scraggy Lake, as compared to CCME guidelines, are summarized as follows:

- Annual average concentrations of total arsenic (0.0082 mg/L) in Scraggy Lake are greater than the CCME guideline (0.005 mg/L; CCME, 2002). Monthly average concentrations of total arsenic range from 0.001 mg/L to 0.036 mg/L over the entire twelve month period, but are expected to exceed the CCME guideline from April to November if arsenic is discharged at a concentration of 0.17 mg/L.
- Annual average concentrations of total aluminum (0.18 mg/L) are greater than the CCME guideline (0.1 mg/L or 0.005 mg/L depending on lake conditions). Monthly average concentrations of total aluminum (0.16–0.19 mg/L) are greater than the CCME guideline over the entire twelve month period due to the influence of the baseline water quality.
- Annual average concentrations of total cadmium (0.000019 mg/L) are marginal greater than the CCME guideline (0.000017 mg/L). Monthly average concentrations of total cadmium are expected to marginally exceed the CCME guideline from October to June of the following year (0.000018-0.000020 mg/L).
- Annual average concentrations of total copper (0.0095 mg/L) are greater than the CCME guideline (0.002 mg/L). Monthly average concentrations of total copper are expected to exceed the CCME guideline from April to November (0.009–0.04 mg/L).
- Annual average concentrations of total iron (0.41 mg/L) are greater than the CCME guideline (0.3 mg/L). Monthly average concentrations of total iron only exceed the CCME guideline from April to November (0.4-1.1 mg/L).
- Annual average concentration of total ammonia is 0.23 mg/L and is below the CCME guideline. Monthly average concentrations of total ammonia range from 0.025 mg/L to 0.63 mg/L.
- Annual average concentration of total nitrate is 0.25 mg/L. Monthly average concentrations of nitrate range from 0.05 mg/L to 0.7 mg/L.

3.3 Fish River

The water quality model results indicate that the concentrations of some parameters in Fish River will increase as a result of mine water being released into Scraggy Lake. The modeling results for Fish River under normal flow conditions, as compared to CCME guidelines, are summarized as follows:

Peter Carter		October 29, 2007
Atlantic Gold	- 8 -	06-1118-041C (7000/7600)

- Annual average concentrations of total arsenic (0.0058 mg/L) are greater than the CCME guideline (0.005 mg/L). Monthly average concentrations of total arsenic are expected to exceed the CCME guideline from April to November (0.006-0.01 mg/L).
- Annual average concentrations of total aluminum (0.17 mg/L) are greater than CCME guidelines (0.1 mg/L or 0.005 mg/L depending on lake conditions). Monthly average concentrations of total aluminum (0.17–0.18 mg/L) are greater than the CCME guideline over the entire twelve month period due to the influence of the baseline water quality.
- Annual average concentrations of total cadmium (0.000007 mg/L) and monthly average concentrations (0.0000069-0.0000073 mg/L) in Fish River are below the CCME guideline (0.000017 mg/L).
- Annual average concentrations of total copper (0.0032 mg/L) are expected to be greater than the CCME guideline (0.002 mg/L). The monthly average concentrations of total copper from April to November (0.003-0.01 mg/L) marginally exceed the CCME guideline.
- Annual average concentrations of total iron (0.27 mg/L) are expected to be below the CCME guideline (0.3 mg/L). However, the monthly average concentrations of total iron from June to September (0.34–0.49 mg/L) marginally exceed the CCME guideline
- Annual average concentrations (0.079 mg/L) and monthly average concentrations (0.025-0.20 mg/L) of total ammonia are expected to be below the CCME guideline in Fish River.
- Annual average concentrations (0.18 mg/L) and monthly average concentrations (0.13-0.31 mg/L) of nitrate are expected to be near or below the average baseline water quality for Fish River, and thus no change in concentration of nitrate is expected in Fish River.

Overall, there is a decrease in concentrations, as compared to Scraggy Lake, as a result of dilution from mixing of the water from the Fish River Subwatersheds with the outflow from Scraggy Lake. This dilution process, however, is not sufficient to reduce arsenic, copper or iron to below CCME guidelines. Other parameters, such as aluminum, that are near or exceed CCME guidelines in Fish River reflect the baseline inflows from which the various subwatersheds contribute to the overall flow into Lake Charlotte.

3.4 Lake Charlotte

The mass load from the mine effluent will be mixed within Scraggy Lake, and then it will get transported to Lake Charlotte via Fish River. The water quality model results indicate that the concentrations of some parameters in Lake Charlotte will increase as a result of mine water being released into Scraggy Lake. As with the Fish River mixing zone, overall concentrations of these parameters within Lake Charlotte decrease relative to the upstream values due to mixing. Again, similar to Fish River, the dilution that occurs as a result of the mixing processes is not sufficient to decrease concentrations of arsenic or copper to below CCME guidelines.

The modeling results for Lake Charlotte under normal flow conditions, as compared to CCME guidelines, are summarized as follows:

Peter Carter		October 29, 2007
Atlantic Gold	- 9 -	06-1118-041C (7000/7600)

- At a treated mine effluent discharge concentration of 0.17 mg/L of total arsenic, annual average concentrations of arsenic (0.0051 mg/L) in Lake Charlotte are marginally greater than the CCME guideline (0.005 mg/L). Monthly average concentrations of total arsenic are expected to exceed the CCME guideline from April to November (0.005-0.01 mg/L).
- Annual average concentrations of total aluminum (0.17 mg/L) in Lake Charlotte are greater than CCME guidelines (0.1 mg/L or 0.005 mg/L depending on lake conditions). Monthly average concentrations of total aluminum are greater than the CCME guideline over the entire twelve month period due to the influence of the baseline water quality.
- Annual average concentrations of total cadmium (0.0000077 mg/L) in Lake Charlotte are below the CCME guideline (0.000017 mg/L).
- Annual average concentrations of total copper (0.0023 mg/L) are expected to be greater than the CCME guideline (0.002 mg/L). The monthly average concentrations of total copper from April to November (0.002-0.009 mg/L) marginally exceed the CCME guideline.
- Annual average concentrations of total iron (0.24 mg/L) are expected to be below the CCME guideline (0.3 mg/L). The monthly average concentrations of total iron from July to September (0.33–0.38 mg/L) marginally exceed the CCME guideline
- Annual average concentrations (0.057 mg/L) and monthly average concentrations (0.02-0.1 mg/L) of total ammonia are expected to be below the CCME guideline in Lake Charlotte.
- Annual average concentrations of nitrate (0.16 mg/L) are estimated to be marginally greater than the average baseline water quality in Lake Charlotte (0.1 mg/L). Monthly average concentrations of nitrate range from 0.1 to 0.2 mg/L. Septic systems from cottages are known to be a source of nutrients, including nitrate, to adjacent surface water bodies. Based on the observed increases in the baseline concentrations of nitrate between the upstream (0.05 mg/L, Scraggy Lake) and downstream sampling locations (0.1 mg/L, Lake Charlotte), the influence that cottages have on concentrations of nitrate in Lake Charlotte is likely significant, and will likely reflect seasonal variations in cottage usage. The influence that cottages have on the water quality of Lake Charlotte is likely greater in the south end of Lake Charlotte where the lakeshore is more greatly populated. Changes to the concentrations of nitrate due to mining operations, therefore, are not expected to be greater than those from the cottages present on the lake.

3.5 Total Concentrations versus Dissolved Concentrations

Because the measured total concentrations includes masses associated with the suspended solids and not only metals in the aqueous phase, total concentrations are higher than dissolved concentrations. The geochemical form of the metals is important with respect to the availability of the constituents. To assess the differences in the simulated concentrations in the downgradient water bodies, a simulation under normal flow conditions was conducted using the dissolved concentration in the detoxified mine effluent after treatment.

The key differences in the simulation results when using dissolved concentrations rather than

total concentrations are as follows:

 Annual average concentrations of dissolved arsenic are below the CCME guidelines in Scraggy Lake (0.0012 mg/L), Fish River (0.004 mg/L) and Lake Charlotte (0.004 mg/L).

Peter Carter	•	October 29, 2007
Atlantic Gold	- 10 -	06-1118-041C (7000/7600)

- Annual average concentrations of dissolved iron are below the CCME guideline in Scraggy Lake (0.23 mg/L), Fish River (0.22 mg/L) and Lake Charlotte (0.22 mg/L).
- Annual average concentrations of copper (0.0016 mg/L) are below the CCME guideline in Lake Charlotte. However, the monthly average concentrations of copper (0.002-0.004 mg/L) are expected to exceed the guideline in Lake Charlotte from June to September. The annual average concentrations still expected to exceed the CCME guideline in Scraggy Lake and Fish River, with concentrations of 0.0047 mg/L and 0.0020 mg/L, respectively.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the input data and simulation results considered as part of this water quality modeling exercise, some key conclusions are as follows:

- At a treated mine effluent discharge concentration of 0.17 mg/L of total arsenic, annual average concentrations of total arsenic are expected to be greater than the CCME guideline in Scraggy Lake, Fish River and Lake Charlotte.
- At a treated mine effluent discharge concentration of 0.20 mg/L of total copper, the concentrations of total copper are expected to be greater than the CCME guideline in Scraggy Lake, Fish River and Lake Charlotte.
- Annual average concentrations of total aluminum are expected to be greater than the CCME guideline in Scraggy Lake, Fish River and Lake Charlotte. However, the simulated concentrations of total aluminum in Scraggy Lake, Fish River and Lake Charlotte are equal to baseline concentrations from each of these water bodies (0.2 mg/L).
- Annual average concentrations of total cadmium are expected to be greater than the CCME guideline in Scraggy Lake. However, dilution of the mass load of total cadmium by the subwatershed flows is sufficient to lower these concentrations to below CCME guidelines in Fish River and Lake Charlotte.
- Comparing the simulation results using dissolved concentrations rather than total concentrations suggests that the dissolved concentrations of some metals, in particular arsenic, copper and iron, are significantly lower as compared to the total concentrations. Whether the total concentrations or dissolved concentrations are more representative of the concentrations of metals under actual field conditions will have significant affects on the mobility and bioavailability.

Based on the results and conclusions, the following is recommended:

- Treatment of arsenic should reduce concentrations to values that will not cause an increase of overall water quality in Lake Charlotte to values elevated relative to CCME guidelines. However, to maintain concentrations at or below baseline levels, the mine effluent will need to achieve a concentration of 0.02 mg/L or lower. Contingency for treatment of arsenic will be required if primary treatment needs to be enhanced.
- An additional water quality sampling program in water bodies located on the mining property (i.e., Square Lake) and downstream of the mine site (i.e., Scraggy Lake Fish

River – Lake Charlotte flow system) should be conducted to refine the water quality estimates, or in support of a detailed mixing model.

Peter Carter		October 29, 2007
Atlantic Gold	- 11 -	06-1118-041C (7000/7600)

- Monitoring programs should consider the distribution and loading of nitrate during various seasons to assess the impact onto Lake Charlotte from cottage occupancy. Thus, it is recommended that additional monitoring points be sampled and distributed in such a way as to gauge the nitrate loading and potential source(s) along the south-western shoreline in Lake Charlotte.
- If concentrations of ammonia and nitrate are observed to be greater than estimated using the current mixing model, an explosive use/reduction plan should be prepared to reduce the load of total nitrate and ammonia in mine waters. An explosive reduction plan would include, for example, a management strategy to use explosives efficiently and minimize the masses of explosive residues and waste.
- Because the model does not consider changes in chemistry based on attenuation processes, the role of geochemical and biological processes in attenuating metals and other contaminants should be investigated with the intention to better estimate changes to the downstream receiver water bodies.
- The model should be updated regularly as process and treatment data becomes more refined.

Based on the overall modeling results, with the exception of arsenic, it is expected that the discharge of mine water into Scraggy Lake, with subsequent flows to the Fish River and Lake Charlotte watersheds, will only have a minor influence on the overall water quality in Lake Charlotte.

MRG/KJD/IW/dh

Attachments:	
Table 1	Average Monthly Flow Rates for the Mine Effluent and the Water Bodies
	Downgradient of the Mine Site, Touquoy Gold Project
Table 2	Baseline Water Qualities from Monitoring Stations and Water Quality
	Inputs, Touquoy Gold Project
Table 3	Comparison of Water Quality Model Inputs and Simulation Results to
	Guideline Values, Touquoy Gold Project
Appendix A	Average Monthly Loading Rates and Mixing Cell Calculation for Normal
	Flow Conditions
Appendix B	Average Monthly Loading Rates and Mixing Cell Calculation for High Flow Conditions
Appendix C	Average Monthly Loading Rates and Mixing Cell Calculation for Low Flow
	Conditions
Appendix D	Average Monthly Loading Rates and Mixing Cell Calculation for Normal
	Flow Conditions Using Dissolved Concentrations

Peter Carter		October 29, 2007
Atlantic Gold	- 12 -	06-1118-041C (7000/7600)

REFERENCES

CCME [Canadian Council of Ministers of the Environment], 2002. Canadian Water Quality Guidelines for the Protection of Aquatic Life: Summary Tables. Updated 2002. In: Canadian Environmental Quality Guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg, MB.

CRA [Conestoga-Rovers and Associates], 2007. Letter Re: Touquoy Gold Project – Water Quality Modeling. Reference No. 820933-D. Dated June 1, 2007.

Golder [Golder Associates Ltd.], 2007. Technical memorandum on the Water Balance Study Project No. 06-1118-041C. Dated August 28, 2007.

MMER [Metal Mining Effluent Regulations], 2002. Metals Mining Effluent Regulations. Canada Gazette Part II, Vol. 136, No. 13. SOR/DORS/2002-222.

October 2007

06-1118-041C (7000/7600)

TABLE 1 AVERAGE MONTHLY FLOW RATES FOR THE MINE EFFLUENT AND THE WATER BODIES DOWNGRADIENT FROM THE MINE SITE TOUQUOY GOLD PROJECT

	Flow Component	44			Ave	rage M	onthly	Flow F	lates (I	n /s) /	たい			S- UTT
Flow No.	Description	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Noy	Dec	Source .
Baseline	Conditions			,	A CONTRACTOR OF CONTRACTOR OFONTO OFO	The second secon		· · · · · · · · · · · · · · · · · · ·		T. C. MILLING				and the second
BL 1	Scraggy Lake Outflow	1.43	1.47	2.06	2.15	1.37	0.79	0.46	0.51	0.33	0.76	1.43	1.68	CRA (2007) (10)
BL 2	Fish River Outflow	5.59	5.74	8.06	8.39	5.35	3.09	1.82	2.00	1.31	2.97	5.60	6.58	CRA (2007) (10)
BL 3	Lake Charlotte Outflow	9.59	9.85	13.84	14.40	9.18	5.30	3.12	3.43	2.24	5.11	9.61	11.29	CRA (2007) (10)
Operatin	g Conditions													
Scenario	1 - Normal Flow													
No. 1	Mine Effluent Discharge ⁽²⁾	0.00	0.00	0.00	0.09	0.09	0.09	0.09	0.09	0.09	0.039	0.07	0.00	Golder (2007) (11)
No. 2	Scraggy Lake Subwatershed Net Flow ⁽³⁾	1.43	1.47	2.06	2.15	1.37	0.79	0.46	0.51	0.33	0.76	1,43	1.68	CRA (2007) (10)
No. 3	Scraggy Lake Outflow ⁽⁴⁾	1.43	1.47	2.06	2.24	1.46	0.88	0.55	0.60	0.42	0.80	1.50	1.68	Calculated ⁽⁴⁾
No. 4	Fish River Subwatershed Net Flow ⁽⁵⁾	4.16	4.27	6.00	6.24	3.98	2.30	1.36	1.49	0.98	2.21	4.17	4.90	CRA (2007) (10)
No. 5	Fish River Outflow ⁽⁶⁾	5.59	5.74	8.06	8.48	5,44	3.18	1.91	2.09	1.40	3.01	5.67	6.58	Calculated ⁽⁶⁾
No. 6	Lake Charlotte Subwatershed Net Flow ⁷⁾	4.00	4.11	5.78	6.01	3.83	2.21	1.30	1.43	0.93	2.14	4.01	4.71	CRA (2007) (10)
No. 7	Lake Charlotte Outflow ^(B)	9.59	9.85	13.84	14,49	9.27	5.39	3.21	3.52	2.33	5.15	9,68	11.29	Calculated ⁽⁸⁾
Scenario	2 – High Flow ⁽¹⁾													
No. 1	Mine Effluent Discharge ⁽²⁾	0.00	0.00	0.00	0.15	0.13	0.12	0.12	0.13	0.13	0.07	0.10	0.00	Golder (2007) (11)
No. 2	Scraggy Lake Subwatershed Net Flow ³⁾	1.43	1.47	2.06	3.31	1.98	1.15	0.67	0.74	0.48	1.26	1.94	1.68	Calculated ⁽⁹⁾
No. 3	Scraggy Lake Outflow ⁽⁴⁾	1.43	1.47	2.06	3.45	2.11	1.27	0.79	0.87	0.61	1.32	2.04	1.68	Calculated ⁽⁹⁾
No. 4	Fish River Subwatershed Net Flow ⁽⁵⁾	4.16	4.27	6.00	9.61	5.76	3.34	1.98	2.16	1.42	3.65	5.66	4.90	Calculated ⁽⁹⁾
No. 5	Fish River Outflow ⁽⁶⁾	5.59	5.74	8.06	13.06	7.87	4.61	2.77	3.03	2.03	4.98	7.70	6.58	Calculated ⁽⁹⁾
No. 6	Lake Charlotte Subwatershed Net Flow ^{?)}	4.00	4.11	5.78	9.25	5.55	3.21	1.89	2.07	1.35	3.54	5.44	4.71	Calculated ^(P)
No. 7	Lake Charlotte Outflow ^(#)	9.59	9.85	13. B4	22.31	13.42	7.83	4.67	5.10	3.38	8.51	13.14	11.29	Calculated®
Scenario	3 - Low Flow ⁽¹⁾													
No. 1	Mine Effluent Discharge ⁽²⁾	0.00	0.00	0.00	0.06	0.06	0.06	0.06	0.06	0.06	0.02	0.05	0.00	Golder (2007) (13)
No. 2	Scraggy Lake Subwatershed Net Flow ⁽³⁾	1.43	1.47	2.06	1.26	0.90	0.51	0.30	0.33	0.22	0.35	1.01	1.68	Calculated ^(#)
No. 3	Scraggy Lake Outflow ⁽⁴⁾	1.43	1.47	2.06	1.32	0.95	0.57	0.35	0.39	0.28	0.37	1.06	1.68	Calculated ⁽⁹⁾
No. 4	Fish River Subwatershed Net Flow ⁵⁾	4.16	4.27	6.00	3.67	2.60	1.50	0.88	0.97	0.55	1.02	2.94	4.90	Calculated ⁽⁹⁾
No. 5	Fish River Outflow ⁽⁶⁾	5.59	5.74	8.06	4.99	3.56	2.07	1.24	1.36	0.93	1.38	4.00	6.58	Calculated ⁽⁹⁾
No. 6	Lake Charlotte Subwatershed Net Flow ⁷⁾	4.00	4.11	5.78	3.53	2.51	1.44	0.84	0.93	0.62	0,98	2.83	4.71	Calculated ^(%)
No. 7	Lake Charlotte Outflow ^(a)	9.59	9.85	13,84	8.53	6.06	3.50	2.08	2.29	1.55	2.37	6.83	11.29	Calculated ⁽⁹⁾
Percent	Difference – Mine Effluent Flow													
% Differenc	e b/w Scenario 1 and Scenario 2	0%	0%	0%	54%	45%	45%	46%	45%	45%	65%	36%	0%	Calculated
% Difference	a b/w Scenario 1 and Scenario 3	0%	0%	0%	-41%	-35%	-35%	.35%	-35%	-34%	-54%	-29%	0%	Calculated

Notes; - Monthly average flow rates represent the flow rates during the second year of mining operations and onward.

(1) The high and low flow scenarios represent the range of flow rate conditions that may be present at the site over the life of mine. Changes to the flow rates from the subwatersheds reflect the increased or decreased flow, rate. The subwatershed flow rates for the high and low flow scenarios were calculated by first determining the percent difference in the mine discharge between the high and normal flow and the low and normal flow, and then increasing (high flow scenario) or decreasing (low flow scenario) the flow rate based on the percent difference.

usen increasing (nigh flow scenario) or decreasing (low flow scenario) the flow rate based on the percent difference. (2) Flow No. 1 - Mine Effluent Discharge is based on the site water balance for the mine site. (3) Flow No. 2 - Scraggy Lake Subwatershed Net Flow is the net flow contribution from all the inflows and losses directly affecting Scraggy Lake. (4) Flow No. 3 - Scraggy Lake Subwatershed Net Flow from the Scraggy Lake subwatersheds and the mine effluent discharge – Mine Effluent Discharge (Flow No. 1) + Scraggy Lake Subwatershed Net Flow (Flow No. 2).

(5) Flow No. 4 - Fish River Subwatershed Net Flow is the net flow contribution from all the inflows and losses directly affecting Fish River

(6) Flow No. 5 - Fish River Outflow is the cumulative flow from Fish River subwatersheds and from the Scraggy Lake outflow - Scraggy Lake Outflow (Flow No. 3) + Fish River Subwatershed Net Flow (Flow No. 4)

(7) Flow No. 6 - Lake Charlotte Subwatershed Net Flow is the net flow contribution from all the inflows and losses directly affecting Lake Charlotte.

(8) Flow No. 7 - Lake Charlotte outflow is the cumulative flow from the Lake Charlotte subwatersheds and the Fish River outflow - Fish River Outflow (Flow No. 5) + Lake Charlotte Subwatershed Net Flow (Flow No. 6).

(9) Flows No. 2 to No. 7 for Scenarios 2 and 3 are prorated based on the percent difference between the mine effluent flows (see note 1) (10) CRA (Conestoga-Rovers and Associates), 2007. Letter Re: Touquoy Gold Project – Water Quality Modeling. Reference No. 820933-D. Dated June 1, 2007. (11) Golder [Golder Associates Ltd.], 2007. Technical memorandum on the Water Balance Study, Touquoy Project. Project No. 08-1118-041C. Dated August 28, 2007.

Golder Associates

02006\1118-041C- As 7000 - WG Mo e 1 - Flowsuits deling\Task 7600\5, 24OCT07

06-1118-041C (7000/7600)

TABLE 2 BASELINE WATER QUALITIES FROM MONITORING STATIONS AND WATER QUALITY MODEL INPUTS TOUQUOY GOLD PROJECT

аў. А			Baselli	ne Water Qualities f	rom Monitoring Sta	tions ⁽¹⁾	Nove (States) (States	dew and the second	er Quality Model In	NUD
ameters 4	Per	SL-SW-1	SL-SW-2	EWS IS	F-MS-TS	LCSW-1	LCSW2	Average Scrapgy Lake Baseline	Fish River Subwatersheds	Lake Chartotte Baseline Water
A. 10			States and a second		のないで、		a the second second	Water Quality 24	Water Quality 94	👔 🖓 Guality 🧖 😳
Ę	шдЛ	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
nia (Total)	mg/L as N	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.025	0.025	0.025
ν	т/вш	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.001	0.001	0.001
	шg/L	<0.002	<0.002	<0.002	<0.002	<0.002	0.004	0.001	0.005	0.004
Ë	убш	<0.000017	0:00002	0.0003	0.00003	0.00003	<0.000017	0.00:002	0.00003	0.00009
E	Jught		1	1	-	-	1	1	1	-
	-rug/r	+	+	4	4	5	4	4	•	4
m	тубш	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.005	0.001	0.001
	mg/L	<0:0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	0.0002	0.0002	0.0002
	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.007	0.001	0 001
0	тдЛ.	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.001	0.001	0 001
	тудт	0.3	0.4	0.2	0.2	0.1	0.2	0.2	0.2	0.2
	ш9/Г	<0:0005	0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.00031	0.00025	0.00025
sium	mg/L	0.4	0.4	0.5	0.4	0.6	0.5	0.4	0.5	0.5
nese	mg/L	0.06	0.06	0.04	0.03	0.03	0.05	0.05	0.05	0.05
	mg/L	<0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	mg/L as N	0.02	0.09	0.02	0.07	0.02	0.1	0.05	0.2	0.1
sholor	JQm	<0.02	0.02	<0.02	0.02	0.02	<0.02	0.02	0.01	0.01
En	ш0/Г	0.3	0.4	0.3	0.3	0.4	0.3	0.3	0.3	0.3
E	μØγ	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.0005	0.0005	0.0005
	T/Gw	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.00005	0.00005	0.00005
	шôуг	3	3	3	3	3	3	3	3	9
te	Tygm	4	4	~2	2	2	2		1	1
ε	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.00005	0.00005	0.00005
	mg/L	0.008	0.009	0.01	0.02	0.008	0.02	0.01	0.02	0.02

볡

6.1 – Values in red and fials; indicates that the value is set at half the detection limit. Concentrations were assumed to be half of the detection limit, if the analysis results were below the detection limit.

Average Scraggy Lake baseline water quality was calculated by averaging the water qualities from the four Scraggy Lake monitoring stations – SL-SW-1, SL-SW-2, SL-SW-3, and SL-SW-4. Fish River subwattershed water quality was calculated by determining the load committudion from the Fish River subwattershed. The load committudion was calculated by using the baseline water quality and average annual flow rates from the Scraggy Lake outlet (SL-SW-3) and Fish River subwattershed water quality was calculated by determining the load committudion from the fish River subwattershed by using the baseline water quality and average annual flow rates from the Scraggy Lake outlet (SL-SW-3) and Fish River outlet (LC-SW-2) (e.g., mgL x L/1000 mL x mLcm³ x 1000000 cm/m³ x m³/nr = mg/n[. The load from the Fish River subwatersheds is then divided by the flow rate from the subwatersheds to determine the concentrations in mg/L [e.g., mg/h x hr/m³ x 1000000 cm/m³ x 1000000 cm³ x 100000 cm³ x 1000000 cm³ x 100000 cm³ x 1000000 cm³ x 10000 cm³ x 10000 cm³ x 100000 cm³ x 100000 cm³ x 100000 cm³ x 100000 cm³ x 10000 cm³ x 10000 cm³ x 10000 cm³ x 100000 cm³ x 1000000 cm³ x 100000 cm³ x 10000000 cm³ x 1000000 cm³ x 1000000 cm³ x 1000

⁵ x cm³/mL x 1000 mL/L = mg/L].

Late Chatothe baseline water quality is assumed to be equal to the water quality measured at the Fish River outlet - LC-SW-2. MMER [Metal Mining Effluent Regulations]. 2002. Metals Mining Effluent Regulations. Canada Gazethe Part II, Vol. 136, No. 13. SOR/DORS/2002-222. CCME [Canadian Council of Ministers of the Environment], 2002. Canadian Vater Quality Gudetines for the Protection of Aquatic Life. Summary Tables. Updated 2002.

CCME guideline value is set at 2.2 for total ammonia at pH 6.5 and 10°C.

There is no CCME guideline for total cyanide. However, the CCME guideline for free cyanide is 0.005 mg/L.

Golder Associates

Adentic Gold Touquey Project/Press 7000 - WO Masseleg/Task 76006 240CT07 Ments WinterMTasks 2 - WO Monta Ab

October 2007

Participant in the second seco	Ammo Antim Arsen Cadm Cadm Choni	Copper Copper Lead Magn Nitrate Phosp	Potas: Seleni Seleni Sodiu Uraniu Zinc	3 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8	

06-1118-041C (7000/7600)

TABLE 3 TABLE 3 COMPARISON OF WATER QUALITY MODEL INPUTS AND SIMULATION RESULTS TO GUIDELINE VALUES FOR NORMAL FLOW CONDITIONS TOUQUOY GOLD PROJECT

		_	_	_	_			_	_	_		_	_				_			_						
ty Guidelines	Canadian Wene Canadian Wene Quality Gutdelines for the Protection of Aquatic Life	0.005 ⁽⁴⁾	2.2 (5)	,	0.005	0.000017	1	-	0.0099		0.002 ⁽⁶⁾	6-	0.3	0.001 ⁽⁸⁾	1	1	0.025 ⁽⁹⁾	(n) 	1	J	0.001	0.0001	ŀ	1	-	0.03
Mater Qualit	Federal Canadian Marai Mining Effluent fr Regulations R	•	I	1	0.5	1			,	T	0.3	-	1	0.2	1	-	9:0	-	1		*	-	-	1	-	0.5
1.12.00	Late Chanodia		0:057	0.0011		0.0000077	2.6	4.1	0.0016	0.0016		0:0039	0.24	0.00027	0.55	0:050	0.0010	0.16	110.0	0.74	0.00050	0.000052	6'9	10	0.0006	0.018
Simulation Results	Fish River Outlet		0.079	0.0011	· · · · ·	0.0000072	3.6	4.2	0.0020	0.0026	1. 145	0.0059	0.27	0.00028	0.59	0.052	0.0011	0.18	0.011	1.1	0.00050	0.000053	10	17	0.00007	0.018
	Scraggy Lake		0.23	0.0014	1		10	4.8	0.0046	10:0094		0.020		0.00037	0.84	0.049	0.0013	0.25	0.015	3.1	0:00050	0.000061	29	60	0.00014	0.013
	Polishing Pond Water Quality ¹⁰	0.040	17	0.011	0.17	<0.000003	215	24	<0.0005	0.22	0.20	0.44	4.5	0.0018	10	0.13	D.0071	0.12	0.010	67	<0.001	0.00032	610	1400	0.0021	0.027
Model Inputs	Lake Charlotte Baseline Water & Quality	0.17	<0.05	<0.002	0.004	<0.000017	1.2	4.0	<0.002	<0.0004	<0.002	<0.002	0.21	<0.0005	0.50	0.048	<0.002	0.13	<0.02	0.30	<0.001	<0.0001	2.9	<2	<0.0001	0.018
Water Quality	Fish River - Baseline Witter Quality -	0.17	<0.05	<0.002	0.005	<0.000017	1.3	4.0	<0.002	×0.0004	<0.002	<0.002	0.22	<0.0005	0.50	0.052	<0 002	0.16	<0.02	0.30	<0.001	<0.0001	2.9	~2	<0.0001	0.020
	Screggy Lafe Baseline Water the Quality #	0.19	<0.05	<0.002	<0.002	0.00002	1.0	4.0	0.005	<0.0004	<0.002	<0.002	0.24	<0 0005	0.43	0.046	<0.002	0.05	0.015	0.33	<0.001	<0.0001	3.0	<2	<0.0001	0.012
	Units	1/6w	mg/L as N	1/đu	шôл.	ш <u>а</u> ,г	mg/L	mg/L	mg/L	лдт	տցու	mg/L	тдт	mg/L	mgA	mg/L	ացչլ	mg/L as N	ացչլ	mg/L	ոցչ	γđμ	ացչլ	ղջա	μĝγ	mg/L
		ε	ia (Total)	y		Ē			Ē			· (Total)			ium	ese			prous	m	Ę					

iii

Concentration greater than the CCME guideline.

001 - Values in red indicate that the value is below the detection limit. Concentrations were assumed to be half of the detection kinit, if the analysis results were below the detection limit. Polishing Pond water quality was taken from the water chemistry of the mine effluent and aging (SGS, 2007).

MMER [Netal Mining Effluent Regulations]. 2002. Metals Mining Effluent Regulations. Canada Gazette Part II, Vol. 136, No. 13. SCR/DORS/2002-222. CCME [Canadian Council of Ministers of the Environment], 2002. Canadian Water Quakty Guidelines for the Protection of Aquatic Life: Summary Tables. Updated 2002.

Aurrinum gudeline = 0.005 mg/L # PH -46.5, [Ca²] -4 mg/L and DOC <2 mg/L; aluminum gudeline = 0.1 mg/L, if pH 26.5, [Ca²] 24 mg/L and DOC 22 mg/L. Total Ammonia gudeline = 1.37 mg/L at pH 8.0, T = 10°C; ammonia gudeline = 2.20 mg/L at PH 6.5, T = 10°C. Copper guidline = 0.002 mg/L, if [CaCO₃] = 0-120 mg/L; copper guideline = 0.003 mg/L, if [CaCO₃] = 120-180mg/L; and copper guideline = 0.004 mg/L, if [CaCO₃] >180 mg/L. There is no CCME guideline for total cyanide. However, the CCME guideline for free cyanide is 0.005 mg/L.

Lead guideline = 0.001 mgL, if (CaCO,) = 0–60 mgL, lead guideline = 0.002 mgL, if (CaCO,] = 60–120 mgL, lead guideline + 0.004 mgL, leaCO,] = 120–180 mgL, lead guideline = 0.007 mgL, if (CaCO,] > 180 mgL. Nickel guideline = 0.025 mgL, if (CaCO,] = 0–60 mgL, inkel guideline = 0.15 mgL, if (CaCO,] = 120–180 mgL; nickel guideline = 0.15 mgL, if (CaCO,] > 180 mgL.

(10) Nitrate guideline - there is no specific guideline value, but concentrations that stimulate weed growth should be avoided.

Golder Associates

October 2007

|--|

dents: Ooki Terquoy Project/Phase 7000 - WC Modeling/Task 76006 240CT07 Meric Verson/Tacle 3 - Sm Results - Treates ris

APPENDIX A

AVERAGE MONTHLY LOADING RATES AND MIXING CELL CALULATIONS FOR NORMAL FLOW CONDITIONS

October, 2007

07-1118-0007 (041C)

06-1118-041C (7000/7600)

TABLE A1 AVERAGE MONTHLY LODDING RATES FOR THE MINE EFFLUENT DISCHARGE

Paramonon International Mine Filtuent Discrites Rate (m/s) Jan Fab Number (mode) More (m/s) Jan Fab Ap Ap </th
Mine Effluent Ofscharge Rate (m ¹ /s) 0 0 0 045E-02 3.71E-02 3.71E-02
Ag 0.003 0 0 0 3/2E-02 3/3E+00 3/4E+00 3/4E+00 <t< th=""></t<>
AI 0.04 0 0 0 3.78E+00 3.48E+00
As 0.2 0.2 0 161E+01 1.48E+0 Ca 215 0 0 0 0 2.05E+04 1.48E+0 Ca 82.00002 0 0 0 0 1.42E-04 1.31E-04 Ci 24 0 0 0 0 2.05E+04 1.31E-04 Ci 24 0 0 0 0 1.31E-04 1.31E-04 Ci 24 0 0 0 0 2.05E+04 1.31E-04 Ci 0.2 0 0 0 0 2.35E+04 1.86E+04 Ci 0.2 0 0 0 0 1.55E+02 3.88E+03 Ci 0.0 0 0 0 0 1.55E+02 3.88E+03 5.86E+04 Mg 10 0 0 0 0 1.55E+02 3.88E+03 5.86E+04 Mg 100 0 0 0 0
Ca 215 0 0 0 2 035 0 1 235 1<
Cd 24 0 0 1.42E-04 1.31E-0 C1 24 0 0 0 0 236E+03 2.09E+03
C(1 24 0 0 2.27F+03 2.06E+01 1.99E+00 2.06E+01 1.99E+01 1.75E+03 2.06E+01 1.75E+03 2.06E+01 1.75E+03 2.06E+01 1.75E+03 2.06E+01 1.75E+03 2.06E+01 1.75E+03 2.06E+01 1.75E+03 2.18E+01 1.75E+03 2.18E+01 1.75E+03 5.82E+03 5.31E+03 5.58E+03 5.58E+03 5.31E+03 5.58E+03
Co 0.2
Cr Normalization 0 0 236E-02 2.18E-02
Cu 0.2 0 0 1,30E+01 1,75E+0 Fe 4 0 0 0 1,30E+02 388E-02 358E-02 388E-02 358E-02 388E-02 358E-02 35
Fe 4 0 0 12E+02 38E+0 55E+0 55E+0 55E+0 53E+0
K 67 0 0 6 31E+03 5.82E+0 Mg 10 0 0 0 9.4E+02 8.97E+0 Mn 0.1 0 0 0 115E+0 1.582E+0 1.15E+0 Mn 610 0 0 0 0 1.15E+0 1.51E+0 1.51E+0 1.51E+0 1.51E+0 1.51E+0 1.51E+0 1.51E+0 1.51E+0 1.51E+0 2.58E+0 1.15E+0 2.58E+0 1.51E+0 2.58E+0 1.24E+03 2.58E+0 1.52E+0 1.52E+0 1.52E+0 1.52E+0 1.52E+0 1.52E+0 1.52E+0 1.52E+0 1.52E+0 1.62E+0 1.62E+0 1.52E+0 1.62E+0 1.62E+0 1.52E+0 1.62E+0
Mg 10 0 0 0 974E+02 8.97E+0 8.97E+0 8.97E+0 15E+0 1.15E+0 1.1
Min 0.1 0.1 0 1.25E+01 1.15E+01 Na 610 0 0 0 1.25E+01 1.15E+01 Ni 610 0 0 0 0 5.77E+04 5.31E+0 Ni -1 ^M 0 0 0 0 1.25E+01 1.15E+03 2.68E+03 2.68E+01 6.18E+03 2.68E+03 1.52E+0 6.18E+03 2.68E+03 1.52E+03 6.18E+03 2.58E+03 1.52E+03 9.45E+01 1.52E+03 9.45E+01 1.52E+03 9.45E+01 1.52E+03 9.45E+01 1.52E+03 9.45E+03 8.78E+03 8.78E+03 9.45E+03
Na 610 0 0 5.77E+04 5.31E+0 5.32E+0 5.32E+0 5.32E+0 5.32E+0 5.32E+0 5.32E+0 5.32E+0
NH44NH3 -I ^H 0 0 1 245-403 2.585-40 2.585-40 2.586-40 3.586-40 3.586-40 3.586-40 3.526-40 3.526-40 3.456-40 3.566-40 3.566-40 3.566-40 3.526-40 3.566-40
Ni 0.007 0 0 0 6.71E-01 6.18E-01 6.18E-01 6.18E-01 6.18E-01 1.52E-01 6.18E-01 1.52E-01 6.18E-01 1.52E-01 8.71E-01 9.45E-01 8.71E-01 8.72E-01 8.72E-01 8.72E-01 8.72E-01 8.72E-01 <th< th=""></th<>
N03 - ^R 0 0 0 1.24E+03 2.68E+03 2.68E+03 2.68E+03 2.68E+03 2.68E+03 1.52E+03 1.52E+03 1.52E+03 1.52E+03 1.52E+03 1.52E+03 1.52E+03 1.52E+03 2.68E+03 1.52E+03 2.68E+03 1.52E+03 9.46E+03 2.68E+03 9.46E+03 9.46E+03 9.46E+03 8.78E+03 9.46E+03 9.46E+03 <t< th=""></t<>
P 0.002 0 0 0 156-01 1.25-01 P 0.01 0 0 0 0 1665-01 1.25-01 Sb 0.01 0 0 0 0 9456-01 1.276-00 Sb 0.01 0 0 0 0 9456-01 8.716-00 Sb 0.01 0 0 0 0 9456-01 8.716-00 Sb 0.01 0 0 0 1.025-00 9466-0 Sc 4.366-07 0.01 0 0 1.025-00 9466-0 Sold 1.400 0 0 0 1.325-05 4.356-07 1.226-00 Sold 1.400 0 0 0 0 1.226-00 1.356-05 1.356-05 U 0 0 0 0 0 2.316-01 1.356-05
P 0.01 0 0 0 9.45E-01 8.11E-0 Sb 0.01 0 0 0 0 9.45E-01 8.11E-0 Sb 0.01 0 0 0 1.02E+00 9.46E-01 8.11E-0 Se 0.01 0 0 0 0 4.02E+02 9.45E-01 8.11E-0 Se 0.01 0 0 0 0 4.05E+02 4.35E-02
Sb 0.01 0 0 0 1.02E+00 9.40E-0 Se 0.01 0 0 0 1.02E+00 9.40E-0 Se 0.0065 0 0 0 1.72E+00 9.40E-0 Sol4 1.400 0 0 0 1.22E+00 1.42E+02 1.22E+02 U 0.002 0 0 0 0 1.22E+05 1.22E+05
So Vol V
SO4 1000 0 0 0 132E-05 135E-05 135E-05 <t< th=""></t<>
U 0.002 0 0 0 2016-01 1.855-0
Zh 0.03 0 0 0 2.35E+00 2.35E+00 2.35E+00
CN { 0.4] 0] 0 { 0.16 = 0.1] 3.83E+0

Golder Associates

L1114.041C. Allmeis Galat Tougury Project/Phase 7000 - WD Mosemylitiest 76006 2405C107 Memo Venontopoeolo A - Nemel Flow vis

8
ē
₫
2
ň

06-1118-041C (7000/7600)

TABLE A2 AVERAGE MONTHLY LOADING RATES FOR SCRAGGY LAKE SCENARIO 1 - NORMAL FLOW

		ě.	1.68E+00	8.40E-02	3.15E+02	1.68E+00	1 68F±03	2 20E 02	6 775 LOG	9 96E 04	0.000-00		2 055 102	5.46E402	7 146 102	7 705 404		2001-100		7 005 101	1.98E+U1	0.205-01	2.52E+01	1.68E+00	8.40E-U1	1.68E+03	8.40E-02	2.06E+01		
		NON	1.43E+00	7.15E-02	2.68E+02	1.43E+00	1 435+03	2 81E_00	5 70E 403	2 DEE 04	2.00E-UI	1 120 100	3 365 403	3.30ETU2	E OBE TOS	2 CEL TOT	1.050-101	2 Eac +04	3.30E+UI	6 70F .04	D./3E+01	4.4/E-01	2.15E+01	1.43E+00	1.155-01	1.43E+03	7.15E-02	1.76E+01		
and the second secon		Oct	7.60E-01	3.80E-02	1.42E+02	7.60E-01	7 ROF +07	1 40F-02	3 045 403		3 REC TOO	7 805-04	1 706-103	2 47F+02	3 236402	3 485 101	0.40E+01	1 005-004	7 605-01	0.005-01	0.01E+U1	2.30E-01	7.14E+01	7.60E-01	3.80E-01	7.60E+02	3.80E-02	9.33E+00		
		des.	3.30E-01	1.65E-02	6.18E+01	3.30E-01	3 30F+02	R 4RF_03	1 375+03	E ENE JU	1 585 100	3 205-01	7 765 401	1 07E+02	1 405 403	1 515101		8 25E 100	3 205-01	3.30C-01	1.01 = 101		4.45E+00	3.3UE-01	10-309-1	3.30E+02	1.65E-02	4.05E+00		
	isou	Aug	5.10E-01	2.55E-02	9.55E+01	5.10E-01	5 10F+02		2 DAF 403	1025.01	0 45E 100	5 105-01	1.20E-01	1.66F+02	2 17F+03	2.11LT02	1 575 103	1.025103	5 105-01	0.1001-01	1 505 01	7.055.00	7 10E+00	5.10E-01	2.000-001	5.10E+02	2.55E-02	6.26E+00		
			4.60E-01	2.30E-02	8.61E+01	4.60E-01	4.60F+02	9 MRF-03	1 R4F+03	0 20E-02	2 21E TUC	4 R0F_01	1 085402	1.50E+02	1 06F +07	2 11E 401	1 375 403	1.05 101	4 FOF-01	2 105-01	1 445-04	6 COL 100	0.50E+00	4.60E-01		4.60E+02	2.30E-02	5.65E+00		
		- UNC	7.90E-01	3.95E-02	1.48E+02	7.90E-01	7.90E+02	1.55E-02	3 16F+03	1 585-01	3 795+00	7 90F-01	1 REF+02	2.57E+02	3 36F+02	3.625-01	2.02E-103	1 QRE-L01	7 905-01	2 76E 401	2.13E-01	1 405-01	7.001.04	7.80E-01	2 OUE TO	7.90E+02	3.95E-02	9.70E+00		
	1000 Contraction	May .	1.37E+00	6.85E-02	2.57E+02	1.37E+00	1.37E+03	2 69F-02	5 48F+03	2 74E-01	6 SRF+00	1 376+00	3 226+02	4.45E+02	5 82E+02	6 28F +01	4 ORE 403	3 435401	1 37F+00	6515401	A 285-01	2 065 404	2.0004-01	6 BEE 01	1 27E-01	1.3/E+03	6.85E-02	1.68E+01	e detection limit	
		5	2.15E+00	1.08E-01	4.03E+02	2.15E+00	2.15E+03	4 22E-02	8 60F+03	4 30F-01	1 03F+01	2 156+00	5 066+02	6.99E+02	9 14E+02	9 85E+01	6 40F 403	5 386+01	2.15F+00	1 075403	6 72E-04	2 226401	3.456.00	1 005-00	- UOLTO	Z.15E+U3	1.086-01	2.64E+01	e equal to haif th	
		Markey	2.06E+00	1.03E-01	3.86E+02	2.06E+00	2.06E+03	4.04E-02	8 24F+03	4 12F-01	9 89F+00	2 06F+00	4 B5F+02	6.70E+02	8 76E+02	9 44F+01	6 13F+03	5 15F+01	2 06E+00	9 796 +01	6.44F-01	3.005-01	2,030,401	1 035100	2 065 103	2.00E+03	1.03E-01	2.53E+01	q q peumsse - 1	
		Feb	1.47E+00	7.35E-02	2.75E+02	1.47E+00	1.47E+03	2.88E-02	5.88E+03	2 94F-01	7 06F+00	1 47E+00	3.466+02	4.7BE+02	6 25E+02	6 74E+01	4 37F+03	3 68F+01	1.47E+00	6 08F+01	4 59F-01	2 24E 401	1 475 400	7 266-01	1 475-403	1.4/E+U3 7 36E 00	1.355-UZ	1.80E+01	the detection limi	
			1.43E+00	7.15E-02	2.68E+02	1.43E+00	1.43E+03	2.81E-02	5.72E+03	2 86F-01	6.86F+00	1.43E+00	3.36E+02	4.65E+02	6.08E+02	6.55E+01	4 26F+03	3 58F+01	1.43E+00	6 79F+01	4 47F-01	2 15F +01	425-00	7 155-01	1 435403	7 465 00	1.15E-02	1.76E+01	ntrations below	
	Scraggy Lake Baseline	「「たきない」とないで、	ow Rate (m ³ /s)	0.00005	0.2	0.001	-	0.00002	4	0.0002	0.005	0.001	0.2	0.3	0.4	0.05	E	18 ar an a an this and	0.001 35.1	0.05	Contraction of the little with the second se								- Indicates measured conce	
	Parameter		Subwatershed Net F	Ag	ই	As	Ca	Cd	5	3	Ċ	5	e E	×	DW	W	eN	NH4+NH3	X	NO3	Ph	2	45	6	SOA	504	5,	55	1000 1000	

) Version/Appendix A - Normal Flow Kie

~
0
0
ы
6
Σ
ດ
ŠV.

TABLE A3 AVERAGE MONTHLY LOADING RATES FOR FISH RIVER SCENARIO 1 - NORMAL FLOW TOUQUOY GOLD PROJECT

	bed .	4.90E+00	2.45E-01	8.38E+02	2.45E+01	6.38E+03	1.47E-02	1.96E+04	9.80E-01	4.90E+00	4.90E+00	1.09E+03	1.47E+03	2.45E+03	2.57E+02	1.44E+04	1.23E+02	4.90E+00	7.89E+02	1.23E+00	4.90E+01	4.90E+00	2.45E+00	4.90E+03	2.45E-01	9.63E+01	4.90E+0C	
	Nov	4.17E+00	2.09E-01	7.13E+02	2.09E+01	5.43E+03	1.25E-02	1.67E+04	8.34E-01	4.17E+00	4.17E+00	9.25E+02	1.25E+03	2.09E+03	2.19E+02	1.22E+04	1.04E+02	4.17E+00	6.72E+02	1.04E+00	4,17E+01	4.17E+00	2.09E+00	4.17E+03	2.09E-01	8.19E+01	4.17E+0C	
	5 oct	2.21E+00	1.11E-01	3.78E+02	1.11E+01	2.88E+03	6.63E-03	8.84E+03	4.42E-01	2.21E+00	2.21E+00	4.90E+02	6.63E+02	1.11E+03	1.16E+02	6.48E+03	5.53E+01	2.21E+00	3.56E+02	5.53E-01	2.21E+01	2.21E+00	1.11E+00	2.21E+03	1.11E-01	4.34E+01	2.21E+0C	
	des 👘	9.80E-01	4.90E-02	1.68E+02	4.90E+00	1.28E+03	2.94E-03	3.92E+03	1.96E-01	9.80E-01	9.80E-01	2.17E+02	2.94E+02	4.90E+02	5.14E+01	2.88E+03	2.45E+01	9.80E-01	1.58E+02	2.45E-01	9.80E+00	9.80E-01	4.90E-01	9.80E+02	4.90E-02	1 93E+01	9.80E-01	
(s/ðu)	Biny	1.49E+00	7.45E-02	2.55E+02	7.45E+00	1.94E+03	4.47E-03	5.96E+03	2.98E-01	1.49E+00	1.49E+00	3.31E+02	4.47E+02	7.45E+02	7.81E+01	4.37E+03	3.73E+01	1.49E+00	2.40E+02	3.73E-01	1.49E+01	1.49E+00	7.45E-01	1.49E+03	7.45E-02	2.93E+01	1.49E+0C	
Dading Rates	nr 🕄	1.36E+00	6.80E-02	2.33E+02	6.80E+00	1.77E+03	4.08E-03	5.44E+03	2.72E-01	1.36E+00	1.36E+00	3.02E+02	4.08E+02	6.80E+02	7.13E+01	3.99E+03	3.40E+01	1.36E+00	2.19E+02	3.40E-01	1.36E+01	1.36E+00	6.80E-01	1.36E+03	6.80E-02	2.67E+01	1.36E+0C	
age Monthly L		2.30E+00	1.15E-01	3.93E+02	1.15E+01	3.00E+03	6.90E-03	9.20E+03	4.60E-01	2.30E+00	2.30E+00	5.10E+02	6.90E+02	1.15E+03	1.21E+02	6.75E+03	5.75E+01	2.30E+00	3.70E+02	5.75E-01	2.30E+01	2.30E+00	1.15E+00	2.30E+03	1.15E-01	4.52E+01	2.30E+00	
	Ach .	3.98E+00	1.99E-01	6.81E+02	1.99E+01	5.19E+03	1.19E-02	1.59E+04	7.96E-01	3.98E+00	3.98E+00	8.83E+02	1.19E+03	1.99E+03	2.09E+02	1.17E+04	9.95E+01	3.98E+00	6.41E+02	9.95E-01	3.98E+01	3.98E+00	1.99E+00	3.98E+03	1.99E-01	7.82E+01	3.98E+00	
	Apr -	6.24E+00	3.12E-01	1.07E+03	3.12E+01	8.13E+03	1.87E-02	2.50E+04	1.25E+00	6.24E+00	6.24E+00	1.38E+03	1.87E+03	3.12E+03	3.27E+02	1.83E+04	1.56E+02	6.24E+00	1.00E+03	1.56E+00	6.24E+01	6.24E+00	3.12E+00	6.24E+03	3.12E-01	1.23E+02	6.24E+0C	
		6.00E+00	3.00E-01	1.03E+03	3.00E+01	7.82E+03	1.80E-02	2.40E+04	1.20E+00	6.00E+00	6.00E+00	1.33E+03	1.80E+03	3.00E+03	3.15E+02	1.76E+04	1.50E+02	6.00E+00	9.66E+02	1.50E+00	6.00E+01	6.00E+00	3.00E+00	6.00E+03	3.00E-01	1.18E+02	6.00E+00	
	Feb	4.27E+00	2.14E-01	7.30E+02	2.14E+01	5.56E+03	1.28E-02	1.71E+04	8.54E-01	4.27E+00	4.27E+00	9.47E+02	1.28E+03	2.14E+03	2.24E+02	1.25E+04	1.07E+02	4.27E+00	6.88E+02	1.07E+00	4.27E+01	4.27E+00	2.14E+00	4.27E+03	2.14E-01	8.39E+01	4.27E+00	
	an Jan	4.16E+00	2.08E-01	7,11E+02	2.08E+01	5.42E+03	1.25E-02	1.66E+04	9.32E-01	4.16E+00	4.16E+00	9.23E+02	1.25E+03	2.08E+03	2.18E+02	1.22E+04	1.04E+02	4.16E+00	6.70E+02	1.04E+00	4.16E+01	4.16E+00	2.08E+00	4.16E+03	2.08E-01	8.17E+01	4.16E+00	
Fish River Beseline	Water Quality	low Rate (m ³ /s)	·** 0.00005	0.2	0.005	-	0.00003	4	0.0002 12 20	0.001		0.2	0.3	0.5	0.05	3		100.0 State	0.2	0.0003		0.001	0.000 C		0.0005	0.02		
		Subwatershed Net F	BA	P	As	Ca	3	ō	8	Ċ	S	Fe	×	Mg	Mn	Ra	NH4+NH3	Ň	NO3	qd	4	Sb	Se	S04	n	Z	CN	Note:

00-1116-0610. Apartic Gold Touquey Proparityheee 7000 - WG ModernyTeet 18006 2400010 Merrin VerlanVegendie A - Normal Flow sis

N Verene 2005

1 of 1

29/10/2007

TABLE A4 AVERAGE MONTHLY LOADING RATES FOR LAKE CHARLOTTE SCENARIO 1 - NORMAL FLOW TOUQUOY GOLD PROJECT

あると	Lake Charlotte					Aven	ge Monthly L	oading Rates (r	no/s)			10.22	
mount.	Cuality .	Ą	9	Mar	Apr	May	щ) Juc		Sep	* oct	Nov	
Subwatershed Net Fi	(ow Rate (m ³ /s)	4.00E+00	4.11E+00	5.78E+00	6.01E+00	3.83E+00	2.21E+00	1.30E+00	1.43E+00	9.30E-01	2.14E+00	4.01E+00	4,71E+00
βų	0.00005	2.00E-01	2.06E-01	2.89E-01	3.01E-01	1.92E-01	1.11E-01	6.50E-02	7.15E-02	4.65E-02	1.07E-01	2.01E-01	2.36E-01
A	0.2	6.80E+02	6.99E+02	9.83E+02	1.02E+03	6.51E+02	3.76E+02	2.21E+02	2.43E+02	1.58E+02	3.64E+02	6.82E+02	8.01E+02
As	0.004	1.64E+01	1.69E+01	2.37E+01	2.46E+01	1.57E+01	9.06E+00	5.33E+00	5.86E+00	3.81E+00	8.77E+00	1.64E+01	1.93E+01
Ca	-	4.80E+03	4,93E+03	6.94E+03	7.21E+03	4.60E+03	2.65E+03	1.56E+03	1.72E+03	1.12E+03	2.57E+03	4.81E+03	5.65E+03
cq	6000000	3.40E-02	3.49E-02	4.91E-02	5.11E-02	3.26E-02	1.88E-02	1.11E-02	1.22E-02	7.91E-03	1.82E-02	3.41E-02	4.00E-02
J	4	1.60E+04	1.64E+04	2.31E+04	2.40E+04	1.53E+04	8.84E+03	5.20E+03	5.72E+03	3.72E+03	8.56E+03	1.60E+04	1.88E+04
ട	0.0002	8.00E-01	8.22E-01	1.16E+00	1.20E+00	7.66E-01	4.42E-01	2.60E-01	2.86E-01	1.86E-01	4.28E-01	8.02E-01	9.42E-01
ა	0.001	4.00E+00	4.11E+00	5.78E+00	6.01E+00	3.83E+00	2.21E+00	1.30E+00	1.43E+00	9.30E-01	2.14E+00	4.01E+00	4.71E+00
c	24	4.00E+00	4.11E+00	5.78E+00	6.01E+00	3.83E+00	2.21E+00	1.30E+00	1.43E+00	9.30E-01	2.14E+00	4.01E+00	4.71E+00
Fe	0.2	8.20E+02	8.43E+02	1.18E+03	1.23E+03	7.85E+02	4.53E+02	2.67E+02	2.93E+02	1.91E+02	4.39E+02	8.22E+02	9.66E+02
×	0.3	1.20E+03	1.23E+03	1.73E+03	1.80E+03	1.15E+03	6.63E+02	3.90E+02	4.29E+02	2.79E+02	6.42E+02	1.20E+03	1.41E+03
BW	0.5	2 00E+03	2.06E+03	2.89E+03	3.01E+03	1.92E+03	1.11E+03	6.50E+02	7.15E+02	4.65E+02	\$.07E+03	2.01E+03	2.36E+03
Mn	0.05	1.92E+02	1.97E+02	2.77E+02	2.88E+02	1.84E+02	1.06E+02	6.24E+01	6.86E+01	4.46E+01	1.03E+02	1.92E+02	2.26E+02
Na	3	1.16E+04	1.19E+04	1.68E+04	1.74E+04	1.11E+04	6.41E+03	3.77E+03	4.15E+03	2.70E+03	6.21E+03	1.16E+04	1.37E+04
NH4+NH3	0.03 44 44 44	1.00E+02	1.03E+02	1.45E+02	1.50E+02	9.58E+01	5.53E+01	3.25E+01	3.58E+01	2.33E+01	5.35E+01	1.00E+02	1.18E+02
Ň	1990 0.001 C 1942	4.00E+00	4.11E+00	5.78E+00	6.01E+00	3.83E+00	2.21E+00	1.30E+00	1.43E+00	9.30E-01	2.14E+00	4.01E+00	4.71E+00
NO3	0.1	5.00E+02	5.14E+02	7.23E+02	7.51E+02	4.79E+02	2.76E+02	1.63E+02	1.79E+02	1.16E+02	2.68E+02	5.01E+02	5.89E+02
Pb	0.0003	1.00E+00	1.03E+00	1.45E+00	1.50E+00	9.58E-01	5.53E-01	3.25E-01	3.58E-01	2.33E-01	5.35E-01	1.00E+00	1.18E+00
Ч.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	4.00E+01	4.11E+01	5.78E+01	6.01E+01	3.83E+01	2.21E+01	1.30E+01	1.43E+01	9.30E+00	2.14E+01	4.01E+01	4.71E+01
Sb	1. S. W. O. 001.	4.00E+00	4.11E+00	5.78E+00	6.01E+00	3.83E+00	2.21E+00	1.30E+00	1.43E+00	9.30E-01	2.14E+00	4.01E+00	4.71E+00
Se	20002 · · · · · · · · · · · · · · · · ·	2.00E+00	2.06E+00	2.89E+00	3.01E+00	1.92E+00	1.11E+00	6.50E-01	7.15E-01	4.65E-01	1.07E+00	2.01E+00	2.36E+00
S04		4.00E+03	4.11E+03	5.78E+03	6.01E+03	3.83E+03	2.21E+03	1.30E+03	1.43E+03	9.30E+02	2.14E+03	4.01E+03	4.71E+03
n	0.0005	2.00E-01	2.06E-01	2.89E-01	3.01E-01	1.92E-01	1.11E-01	6.50E-02	7.15E-02	4.65E-02	1.07E-01	2.01E-01	2.36E-01
Zn	0.02	7.24E+01	7.44E+01	1.06E+02	1.09E+02	6.93E+01	4.00E+01	2.35E+01	2.59E+01	1.68E+01	3.87E+01	7.26E+01	8.53E+01
CN	0.001	4.00E+00	4.11E+00	5.78E+00	6.01E+00	3.83E+0C	2.21E+00	1.30E+0C	1.43E+0C	9.30E-01	2.14E+0C	4.01E+0C	4.71E+0C

Golder Associates

o VersonAppendix A - Normal Flow (16

PO NOONING TEAN 75005 240CTD7 MANNED

1

0071-------N

2
9
0
2
\geq
~
-
σ
Ñ

TABLE A5 CALCULATION RESULTS FOR MIX 1 SCENARIO 1 - NORMAL FLOW

06-1118-041C (7000/7600)

						W + L XIM	ater Qual	ity in Scr	aggy Lak	8	調査を			N.
		ar ar	Feb	Ne.	AP	Ann			aug	Sep	8	Nov	Dec S	Conce
Cumulative Flow Rate	m ³ /5	1.4E+00	1.5E+00	2.1E+00	2.2E+00	1.5E+00	8.8E-01	5.5E-01	6.0E-01	4,2E-01	8.0E-01	1.5E+00	1.7E+00	1.31
BY	mg/L	5.0E-05	5.0E-05	5.0E-05	6.1E-05	6.6E-05	7.6E-05	9.2E-05	8.9E-05	ALC: NO OF	6.3E-05	6.3E-05	5.0E-05	6.1
P	mg/L	1013E-01	COLOCION DE	CHINE-OFF	* 1.8E-01 %	ALL DEPOSITE OF	#10-31-18-48	CHE SECONAR	W TREDA	AND SOLUTION OF		101816-0138	言語の正の正規語	
As	mg/L	1.0E-03	1.0E-03	1.0E-03	1.1.8.4E-03/6	2011月1日-0230	2018 BE-02	602.8E-02	10-2 6E-020	PERSON SECON	COLUMN ST	数6.2E-03	1.0E-03	3
Ca	mg/L	1.0E+00	1.0E+00	1.0E+00	1.0E+01	1.4E+01	2.2E+01	3.5E+01	3.2E+01	4.6E+01	1.2E+01	1.1E+01	1.0E+00	1.0
Cd	mg/L	102.0E.05	12.0E-05/5	ALCOLOG M	SOL JOS N	**1.9E-06 P	Cond BE-06	1.7E-05	1.7E-05	1.6E-05		10 × 01	SUST SUST	
CI	mg/L	4.0E+00	4.0E+00	4.0E+00	4.8E+00	5.2E+00	6.0E+00	7.1E+00	6.9E+00	8.2E+00	5.0E+00	5.0E+00	4.0E+00	4.8E
Co	mg/L	2.0E-04	2.0E-04	2.0E-04	9.3E-03	1.3E-02	2.1E-02	3.4E-D2	3.2E-02	4.6E-02	1.1E-02	1.1E-02	2.0E-04	9.4
c	mg/L	4.8E-03	4.8E-03	4.8E-03	4.6E-03	4.5E-03	4.4E-03	4.1E-03	4.1E-03	3.8E-03	4.6E-03	4.6E-03	4.8E-03	4.6
Cu	тgЛ	1.06-03	1.0E-03	1.0E-03	- 9.4E-03	141.3E-02 1	级之1E-023	2013 2E-02	900-02 3	1964.3E-02 33	に記録が	Section 20	1.0E-03	En Silver
Fe	mg/L	2.4E-01	2.4E-01	2.4E-01	- 4.1E-01-5	#04.9E-01	49-8-5E-012	368.0E-01.08	8.5E-01	A DETOCH		EN ME DUT	2.4E-01	- 1 - 1 - 1
×	mg/L	3.3E-01	3.3E-01	3.3E-01	3.1E+00	4.3E+00	6.8E+00	1.1E+01	1.0E+01	1.4E+01	3.6E+00	3.6E+00	3.3E-01	3.1E
Mg	mg/L	4.3E-01	4.3E-01	4.3E-01	8.4E-01	1.0E+00	1.4E+00	2.0E+00	1.9E+00	2.5E+00	9.1E-01	9.1E-01	4.3E-01	8.4E
Mn	mg/L	4.6E-02	4.6E-02	4.6E-02	4.9E-02	5.1E-02	5.4E-02	5.9E-02	5.8E-02	6.4E-02	5.0E-02	5.0E-02	4.6E-02	4,9E
Na	mg/L	3.0E+00	3.0E+00	3.0E+00	2.9E+01	3.9E+01	6.2E+01	9.8E+01	9.1E+01	1.3E+02	3.3E+01	3.3E+01	3.0E+00	2.9E
NH4+NH3	mg/L	2.5E-02	2.5E-02	2.5E-02	5.7E-01	2.0E-01	3.0E-01	4.9E-01	4.4E-01	6.3E-01	3.9E-01	2.4E-01	2.5E-02	2.3E
z	mg/L	1.0E-03	1.0E-03	1.0E-03	1.3E-03	1.4E-03	1.6E-03	2.0E-03	1.9E-03	2.3E-03	1.3E-03	1.3E-03	1.0E-03	1.3E
NO3	mg/L	4.8E-02	4.8E-02	4.8E-02	6.0E-01	2.2E-01	3.2E-01	5.0E-01	4.6E-01	6.5E-01	4.1E-01	2.6E-01	4.8E-02	2.5E
qd	- J/Gu	3.1E-04	3.1E-04	3.1E-04	3.7E-04	4.0E-04	4.5E-04	5.4E-04	5.2E-04	6.1E-04	3.8E-04	3.8E-04	3.1E-04	3.7E
٩	mg/L	1.5E-02	1.5E-02	1.5E-02	1.5E-02	1.5E-02	1.5E-02	1.4E-02	1.4E-02	1.4E-02	1.5E-02	1.5E-02	1.5E-02	1.5E
Sb	mg/L	1.0E-03	1.0E-03	1.0E-03	1.4E-03	1.6E-03	2.0E-03	2.5E-03	2.4E-03	3.1E-03	1.5E-03	1.5E-03	1.0E-03	1,4E
Se	mg/L	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E
S04	mg/L	1.0E+00	1.0E+00	1.0E+00	6.0E+01	8.5E+01	1.4E+02	2.2E+02	2.0E+02	2.9E+02	7.0E+01	6.9E+01	1.0E+00	6.0E
D	mg/L	5.0E-05	5.0E-05	5.0E-05	1.4E-04	1.7E-04	2.5E-04	3.8E-04	3.5E-04	4.9E-04	1.5E-04	1.5E-04	5.0E-05	1.4E
Zn	mg/L	1.2E-02	1.2E-02	1.2E-02	1.3E-02	1.3E-02	1.4E-02	1.5E-02	1.4E-02	1.5E-02	1.3E-02	1.3E-02	1.2E-02	1.3E
CN (Total)	mg/L	1.0E-03	1.0E-03	1.0E-03	1.9E-02	2.7E-02	4.4E-02	7.0E-02	6.5E-02	9.3E-02	2.3E-02	2.2E-02	1.0E-03	2.0E

. .

Golder Associates

gtTaek 76005. 240CT07 Memo VersonVispende A - Normal Flow ste

New York

~
0
0
2
6
Ξ.
6
Ň

TABLE A6 CALCULATION RESULTS FOR MIX 2 SCENARIO 1 - NORMAL FLOW

Mix 2 = Mix 1 + Fis	h River Sub	watersheds	Load											
						Mix 2 - 1	Water Qu	ality in Fi	sh River					Annal
Parametter	and the second se	Ser .	Fab	No. Company	Apr	(and	and the	Inc's .	Aug	Sep	g	Nov	Dec	Concentratio
umulative Flow Rate	m ³ /s	5.6E+00	5.7E+00	8.1E+00	8.5E+00	5.4E+00	3.2E+00	1.9E+00	2.1E+00	1.4E+00	3.0E+00	5.7E+00	6.6E+00	4.8E+00
Ag	mg/L	5.0E-05	5.0E-05	5.0E-05	5.3E-05	5.4E-05	5.7E-05	6.2E-05	6.1E-05	6.7E-05	5.4E-05	5.3E-05	5.0E-05	5.3E-05
A	mg/L	11.8EW	12日本の12日本	SH18E-01数	「私力をのいた」	S STREET, STRE	ALL REDUCE	新聞加手の1 48	いると言語	72.01	APPLICATION OF	1720		10-124
As	mg/L	4.0E-03	4.0E-03	4.0E-03	10 COE 03 20	100 C - 03 24	DI: 8.5E-03 3M	20151-1-1-1-2		MALLE OZ-B	6.1E OS		4.0E-03	
Ca	mg/L	1.2E+00	1.2E+00	1.2E+00	3.6E+00	4.6E+00	7.0E+00	1.1E+01	1.0E+01	1.5E+01	4.0E+00	4.0E+00	1.2E+00	3.6E+00
Cd	mg/L	7.3E-06	7.3E-06	7.2E-06	7.2E-06	7.2E-06	7.1E-06	6.9E-06	7.0E-06	6.8E-06	7.2E-06	7.2E-06	7.2E-06	7.2E-06
ö	mg/L	4.0E+00	4.0E+00	4.0E+00	4.2E+00	4.3E+00	4.5E+00	4.9E+00	4.8E+00	5.3E+00	4.3E+00	4.3E+00	4.0E+00	4.2E+00
S	mg/L	2.0E-04	2.0E-04	2.0E-04	2.6E-03	3.7E-03	6.1E-03	9.9E-03	9.2E-03	1.4E-02	3.0E-03	3.0E-03	2.0E-04	2.6E-03
ප	mg/L	2.0E-03	2.0E-03	2.0E-03	2.0E-03	1.9E-03	1.9E-03	1.9E-03	1.9E-03	1.95-03	1.9E-03	1.9E-03	2.0E-03	2.0E-03
Cr	mg/L	1.0E-03	1.0E-03	1.0E-03	3.2E-03	ANDE-03 PM	16.4E-03	NOE-02	100-3E-03 1	10-30 M	¥ 3.6E-05	all set as	1.0E-03	326'03
Fe	mg/L	2.3E-01	2.3E-01	2.3E-01	2.7E-01	2.9E-01	10-34E-01 34	ALC: OF ALC	BRUDE-DAN	新10-30 M	2.8E-01	2.8E-01	2.3E-01	2.7E-01
×	mg/L	3.1E-01	3.1E-01	3.1E-01	1.0E+00	1.4E+00	2.1E+00	3.3E+00	3.1E+00	4.5E+00	1.2E+00	1.2E+00	3.1E-01	1.1E+00
Mg	mg/L	4.8E-01	4.8E-01	4.8E-01	5.9E-01	6.4E-01	7.5E-01	9.2E-01	8.9E-01	1.1E+00	6.1E-01	6.1E-01	4.8E-01	5.9E-01
Mn	mg/L	5.1E-02	5.1E-02	5.1E-02	5.2E-02	5.2E-02	5.3E-02	5.4E-02	5.4E-02	5.6E-02	5.2E-02	5.2E-02	5.1E-02	5.2E-02
Na	mg/L	2.9E+00	2.9E+00	2.9E+00	9.7E+00	1.3E+01	1.9E+01	3.0E+01	2.8E+01	4.1E+01	1.1E+01	1.1E+01	2.9E+00	9.7E+00
NH4+NH3	mg/L	2.5E-02	2.5E-02	2.5E-02	1.7E-01	7.2E-02	1.0E-01	1.6E-01	1.4E-01	2.0E-01	1.2E-01	8.1E-02	2.5E-02	7.9E-02
z	mg/L	1.0E-03	1.0E-03	1.0E-03	1.1E-03	1.1E-03	1.2E-03	1.3E-03	1.3E-03	1.4E-03	1.1E-03	1.1E-03	1.0E-03	1,1E-03
NO3	mg/L	1.3E-01	1.3E-01	1.3E-01	2.8E-01	1.8E-01	2.1E-01	2.6E-01	2.5E-01	3.1E-01	2.3E-01	1.9E-01	1.3E-01	1.8E-01
PD	mg/L	2.7E-04	2.7E-04	2.7E-04	2.8E-04	2.9E-04	3.1E-04	3.3E-04	3.3E-04	3.6E-04	2.9E-04	2.9E-04	2.7E-04	2.85-04
Ч	mg/L	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02
Sb	mg/L	1.0E-03	1.0E-03	1.0E-03	1.1E-03	1.2E-03	1.3E-03	1.4E-03	1.4E-03	1.6E-03	1.1E-03	1.1E-03	1.0E-03	1 1E-03
Se	mg/L	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04
S04	mg/L	1.0E+00	1.0E+00	1.0E+00	1.7E+01	2.3E+01	3.9E+01	6.4E+01	5.9E+01	8.8E+01	1.9E+01	1.9E+01	1.0E+00	1.7E+01
Ð	шgЛ	5.0E-05	5.0E-05	5.0E-05	7.3E-05	8.3E-05	1.1E-04	1.4E-04	1.4E-04	1.8E-04	7.7E-05	7.7E-05	5.0E-05	7.3E-05
Zn	mg/L	1.BE-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02
CN (Total)	"om	1 0F-03	1 DF-03	1 0F-03	5 95-03	8 0F-03	1 3F-02	2 1E-02	1 1 9F-02	2 RF-07	6 7F-03	6 7F-03	1 OF-03	5.9E-03

· •

Golder Associates

1116-041C: Adardes Gold Tousuey Project/Private 2000 - WD Mataning/Lack 78005-240CT07 Neiro Variant/Agenda A - Norval Plaw da

N-LARING

2
2
뭐
5
0
5
S.
2

TABLE A7 CALCULATION RESULTS FOR MIX 3 SCENARIO 1 - NORMAL FLOW

06-1118-041C (7000/7600)

Parameter Untils Jan Feb Mat Mataletic m's 36E-00 36E-00 14E Aq mgul 50E-05 50E-05 50E Aq mgul 50E-05 50E-05 50E As mgul 40E 37E-00 12E As mgul 12E+00 12E 78E Ca mgul 12E+00 12E 78E Ma mgul 12E+00 12E 78E Ca mgul 12E+00 12E 20E Mg mgul 12E+00 12E 20E	Mar Apr 145-01 1.45-01 05-05 5.25-05 05-03 55.25-05 05-03 55.25-05 05-00 2.55.50 05-00 2.5			at a Lake		で見たい。	White a state of the second	1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 -	Carlow Providence	in the second
Mail Hit Construction Mail Folo Folo Mail Hit Construction Mail Hit Cons Mail Hit Cons M	Mar Apr A=v01 1.4E+v01 A=v01 1.4E+v01 DE-05 5.2E-05 VE-03 75.7E-05 DE-03 75.7E-06 DE-04 1.1E+v00	Mav				なの方法に調整。				
umultitive Flow Rate m/s 9.65 +00 3.916 +00 1.44 Ag mg/L 5.0E -05 5.0E -05 5.0E Ai mg/L 5.0E -05 5.0E -05 5.0E As mg/L 1.2E+00 1.2E+00 1.2E As mg/L 1.2E+00 1.2E+00 1.2E Cd mg/L 1.2E+00 1.2E+00 1.2E Cd mg/L 1.2E+00 1.2E+00 1.2E Cd mg/L 1.2E+00 1.2E 7.8E Cd mg/L 1.2E+00 1.2E 7.8E Cd mg/L 2.0E-04 2.0E 3.0E Cr mg/L 1.0E-03 1.0E 3.0E C mg/L 1.0E-03 1.0E 3.0E 1.0E Ma mg/L 2.2E-01 2.2E 2.0E 3.0E Ma mg/L 2.2E-01 2.2E 3.0E 3.0E Ma mg/L 2.2E-02 2.5E 2.0E	IE-01 I.4E-01 0E-05 5.2E-05 EE01 7.4E-01 0E-03 865.4E 0E-03 865.4E 0E-03 865.4E 0E-04 7.7E-05 0E-05 4.1E+00		Sub-		Aug	Sep	8	Nov	Dec	oncen
Ag mg/L 5.0E-05 5.0E-05 5.0E Ai mg/L 5.0E-05 5.0E-05 5.0E As mg/L 1.2E+00 1.4E 4.0E Cd mg/L 1.2E+00 1.2E+00 1.2E Cd mg/L 7.8E-06 7.8E-06 7.8E Cd mg/L 7.8E-06 7.8E-06 7.8E Cd mg/L 7.8E-06 7.8E 7.8E Cr mg/L 2.0E-04 2.0E 7.8E C mg/L 1.6E-03 1.0E 3.0E 1.6E Mg mg/L 2.8E-01 3.0E-01 3.0E 1.6E Mg mg/L 2.8E-01 2.2E 2.0E 1.0E Mg mg/L 2.8E-01 2.2E 2.0E 1.0E	0E-05 5.2E-05 7E-01 751/7E-01 0E-03 751/E-001 2E+00 2.6E+00 2E+00 2.6E+00 0E+00 4.1E+00	9.3E+00	5.4E+00	3.2E+00	3.5E+00	2.3E+00	5.1E+00	9.7E+00	1.1E+01	8.1E-
Al mg/l Mg/l Mg/l/FE/01 Mg/l/FE/01 <th< th=""><td>TE-01 TE-01 0E-03 05.16.03 2E+00 2.6E+00 BE-06 7.7E-06 0E+00 4.1E+00</td><td>5.3E-05</td><td>5.4E-05</td><td>5.7E-05</td><td>5.7E-05</td><td>6.0E-05</td><td>5.2E-05</td><td>5.2E-05</td><td>5.0E-05</td><td>5.2E-</td></th<>	TE-01 TE-01 0E-03 05.16.03 2E+00 2.6E+00 BE-06 7.7E-06 0E+00 4.1E+00	5.3E-05	5.4E-05	5.7E-05	5.7E-05	6.0E-05	5.2E-05	5.2E-05	5.0E-05	5.2E-
As mg/L 4.0E-03 4.0E-03 4.0E-03 4.0E Ca mg/L 1.2E+00 1.2E+00 1.2E Cl mg/L 1.8E-05 1.8E+06 1.2E Cl mg/L 1.8E-06 1.2E+00 1.2E Cl mg/L 1.8E-06 4.0E+00 4.0E Co mg/L 1.6E-03 1.6E 2.0E Cr mg/L 1.6E-03 1.6E 2.0E Cr mg/L 1.6E-03 1.6E 2.0E K mg/L 1.6E-03 1.6E 2.0E Mg mg/L 2.2E-01 2.0E 2.0E Ma mg/L 2.2E-01 2.2E 2.0E Ma mg/L 2.2E+01 2.2E 2.0E Ma mg/L 2.2E+01 2.2E 2.0E Ma mg/L 2.2E+01 2.2E 2.0E Ma mg/L 2.2E+02 2.2E 2.0E Ni mg/L	0E-03 355 1E-03 2E-00 2.6E+00 BE-06 7.7E-06 0E+00 4.1E+00	110日110日	10:31-12	217E-01 38	記念は意識	TO EVER	C STATE		THE REPORT OF	27. N
Ca mg/L 1.2E+00 1.2E+00 1.2E Cd mg/L 7.8E-06 7.8E-06 7.8E Cl mg/L 7.8E-06 7.8E 6 7.8E Cl mg/L 2.0E-04 2.0E-04 2.0E 7.8E Cr mg/L 2.0E-04 2.0E-04 2.0E 2.0E Cr mg/L 1.0E-03 1.0E 3 1.0E Cu mg/L 1.0E-03 1.0E 3 1.0E K mg/L 1.0E-03 1.0E 3 2.0E Mg mg/L 1.0E-03 1.0E 3 2.0E Mg 0.0E-01 3.0E-01 3.0E-01 3 3 3 2 3 Mn mg/L 5.0E-02 3.0E-01 3 2 3 </th <td>2E+00 2.6E+00 BE-06 7.7E-06 DE+00 4.1E+00</td> <td>高。 第6、6E-03 至</td> <td>「「「「「」」」の「「」</td> <td>10 SE-03</td> <td>10 8 1 E - 03 1</td> <td>ENDED?</td> <td>「「「「「」」の「「」</td> <td></td> <td>4.0E-03</td> <td>- Sale</td>	2E+00 2.6E+00 BE-06 7.7E-06 DE+00 4.1E+00	高。 第6、6E-03 至	「「「「「」」」の「「」	10 SE-03	10 8 1 E - 03 1	ENDED?	「「「「「」」の「「」		4.0E-03	- Sale
Cd mg/L 7.8E-06 7.8E-06 7.8E Cl mg/L 4.0E+00 4.0E+00 4.0E Co mg/L 1.0E+00 4.0E 3.0E Cr mg/L 1.0E+03 1.0E 3.0E Cr mg/L 1.0E+03 1.0E 3.0E Cr mg/L 1.0E+03 1.0E 3.0E K mg/L 3.0E-01 3.0E 3.0E Mg mg/L 3.0E-01 3.0E 3.0E Ma mg/L 2.2E-01 2.2E 5.0E Ma mg/L 2.0E+01 3.0E 3.0E Ma mg/L 2.0E+01 3.0E 3.0E Ma mg/L 2.0E+01 3.0E 3.0E Ni mg/L 2.0E+01 2.5E 3.0E Ni mg/L 2.0E+02 2.0E 2.5E Ni mg/L 1.0E-03 1.0E 3.0E Ni mg/L 1.0E+03 1	BE-06 7.7E-06 DE+00 4.1E+00	3.2E+00	4.6E+00	6.9E+00	6.5E+00	9.2E+00	2.8E+00	2.8E+00	1.2E+00	2.6E+I
Cl mg/L 4.0E+00 4.0E+00 4.0E Co mg/L 2.0E-04 2.0E 2.0E Cr mg/L 2.0E-04 2.0E 3.0E Cr mg/L 1.0E-03 1.0E 3.0E Cu mg/L 1.0E-03 1.0E 3.0E K mg/L 3.0E-01 3.2E 3.0E Mg mg/L 2.2E-01 2.2E 3.0E Ma mg/L 2.0E-01 3.0E 3.0E Ma mg/L 2.9E-01 3.0E 3.0E Ma mg/L 2.9E-01 3.0E 3.0E Ma mg/L 2.9E-01 3.0E 3.0E Ma mg/L 2.9E-02 2.9E 3.0E Ni mg/L 2.9E-02 2.9E 3.0E Ni mg/L 2.9E-02 2.9E 3.0E Ni mg/L 2.9E 2.9E 3.0E Ni mg/L 2.9E 3.0E	0E+00 4.1E+00	7.7E-06	7.7E-06	7.6E-06	7.6E-06	7.5E-06	7.7E-06	7.7E-06	7.8E-06	7.7E-0
Co mg/L 2.0E-04 2.0E Cr mg/L 1.6E-03 1.6E-03 1.6E Cu mg/L 1.6E-03 1.6E 1.6E Cu mg/L 1.6E-03 1.6E 1.6E 1.6E K mg/L 1.6E-03 1.6E 1.0E		4.2E+00	4.3E+00	4.5E+00	4.5E+00	4.8E+00	4.2E+00	4.2E+00	4.0E+00	4,1E+0
Cr mg/L 1.6E-03 1.6E-03 1.6E 1.0E	DE-04 1.6E-03	2.2E-03	3.7E-03	6.0E-03	5.5E-03	8.3E-03	1.9E-03	1.8E-03	2.0E-04	1.6E.0
Cu mg/L 1.0E-03 1.0E-03 1.0E Fe mg/L 2.2E-01 2.2E 2.2E K mg/L 2.0E-01 3.0E-01 3.0E Mn mg/L 3.0E-01 3.0E 3.0E Mn mg/L 5.0E-02 5.0E 2.9E Mn mg/L 2.5E+00 2.9E+00 2.9E NHAH mg/L 2.5E+00 2.9E+00 2.9E Ni mg/L 1.0E-03 1.0E 3.0E NO3 mg/L 1.0E-03 1.0E 1.0E NO3 mg/L 1.3E-01 1.3E 1.0E P mg/L 1.6E-03 1.0E 1.0E P mg/L 1.6E-03 1.0E 1.0E 3.0E P mg/L 1.6E-03 1.0E-03 1.0E 3.0E P mg/L 1.6E-03 1.0E-03 1.0E 3.0E P mg/L 1.6E-03 1.0E-03 1.0E-03 1.0E	6E-03 1.6E-03	1.6E-03	1.5E-03	1.5E-03	1.5E-03	1.5E-03	1.6E-03	1.6E-03	1.6E-03	1.6E-00
Fe mg/L 2.2E-01 2.2E 2.2E K mg/L 3.0E-01 3.0E 3.0E Mg mg/L 3.0E-01 3.0E 3.0E Mn mg/L 3.0E-01 3.0E 3.0E Mn mg/L 5.0E-02 5.0E 5.0E Nn mg/L 2.5E-02 2.9E+00 2.9E+0	0E-03 422.3E-03	副 (11-03 M)	214.2E-03.2	. 6.3E.03 **	20-36-95 W	WEST-DOLLAR	S SS S	1235-DU	1.0E-03	AP FIN
K mg/L 3.0E-01 3.0E-01 3.0E Mg mg/L 4.9E-01 4.9E 4.9E Mn mg/L 5.9E+00 5.9E 5.9E Na mg/L 5.9E+00 2.9E 5.9E Ni mg/L 2.9E+00 2.9E 2.9E Ni mg/L 2.9E+02 2.9E 2.9E Ni mg/L 1.0E 1.0E 1.0E NO3 mg/L 1.0E-03 1.0E 1.0E Po mg/L 1.6E-04 2.6E 2.6E 2.6E NO3 mg/L 1.6E-04 2.6E 2.6E 2.6E 3.6E Po mg/L 1.6E 2.6E 3.1E 2.6E 3.6E 3.6E 3.6E Po mg/L 1.6E 3.6E 3.6E 3.6E 3.6E 3.6E 3.6E Po mg/L 1.6E 3.16E 3.16E 3.16E 3.6E 3.6E 3.6E 3.6E 3.6E<	2E-01 2.4E-01	2.6E-01	2.8E-01	3.3E-01	A DE SZE-OL	ALC: SECONDARY	2.5E-01	2.5E-01	2.2E-01	2.4E-01
Mg mg/L 4.8E-01 4.9E-01 4.9E 4.9E Mn mg/L 5.0E-02 5.0E 2.9E NH4NH3 mg/L 2.9E+00 2.9E 2.9E Ni mg/L 2.9E+00 2.9E 2.9E Ni mg/L 2.9E+00 2.9E 2.9E Ni mg/L 1.0E 1.0E 1.0E NO3 mg/L 1.3E 1.0E 1.3E P mg/L 1.6E-04 1.3E 1.6E P mg/L 1.6E-03 1.1E-02 1.0E Sh mg/L 1.0E-03 1.0E-03 1.0E	DE-01 7.4E-01	9.3E-01	1.4E+00	2.1E+00	1.9E+00	2.8E+00	8.1E-01	8.1E-01	3.0E-01	7.4E-01
Mn mg/L 5.0E-02 5.0E-02 5.0E Na mg/L 2.9E+00 2.9E+00 2.9E NH4-NH3 mg/L 2.9E+00 2.9E 2.9E Ni mg/L 2.9E+00 2.9E 2.9E Ni mg/L 2.5E-02 2.9E 2.9E Ni mg/L 1.0E-03 1.0E 1.0E NO3 mg/L 1.0E-03 1.0E 1.0E P mg/L 1.1E-02 1.1E-02 1.1E 2.0E Sb mg/L 1.0E-03 1.0E-03 1.0E 3.0E	9E-01 5.5E-01	5.8E-01	6.5E-01	7.5E-01	7.3E-01	8.6E-01	5.6E-01	5.6E-01	4.9E-01	5.5E-01
Na mg/L 2.9E+00 2.9E+00 2.9E NH41NH3 mg/L 2.5E-02 2.5E-02 2.5E Ni mg/L 1.0E-03 1.0E 1.0E NO3 mg/L 1.0E-03 1.0E 1.0E Pb mg/L 1.5E-04 2.5E-02 2.5E Pb mg/L 1.0E-03 1.0E 1.3E Pb mg/L 2.6E-04 2.6E-04 2.6E Pb mg/L 1.6E-02 1.1E-02 1.1E 2.16E Pb mg/L 1.0E-03 1.0E-03 1.0E 3.16E	0E-02 5.0E-02	5.0E-02	5.1E-02	5.2E-02	5.2E-02	5.3E-02	5.0E-02	5.0E-02	5.0E-02	5.0E-02
NH4+NH3 mg/L 2.5E-02 2.5E-02 2.5E Ni mg/L 1.0E-03 1.0E 1.0 NO3 mg/L 1.6E-01 1.3E 1.3E NO3 mg/L 1.5E-01 1.3E 1.3E Pb mg/L 2.5E-04 2.6E-04 2.6E-04 2.6E P mg/L 1.6E-03 1.1E-02 1.1E 1.1E P mg/L 1.6E-03 1.1E-02 1.1E-02 1.1E-02 1.1E-02 1.0E Sb mg/L 1.0E-03 1.0E-03 1.0E-03 1.0E 1.0E	9E+00 6.9E+00	8.6E+00	1.3E+01	1.9E+01	1.8E+01	2.6E+01	7.6E+00	7.5E+00	2.9E+00	6.9E+0(
Ni mg/L 1.0E-03 1.0E-03 1.0E NO3 mg/L 1.3E-01 1.3E-01 1.3E Pb mg/L 1.4E-04 2.6E-04 2.6E P mg/L 1.1E-03 1.1E-02 1.6E P mg/L 1.1E-03 1.1E-02 1.1E-02 1.0E Sb mg/L 1.0E-03	5E-02 1.1E-01	5.3E-02	7.0E-02	1.0E-01	9.6E-02	1.3E-01	8.1E-02	5.8E-02	2.5E-02	5.7E-02
NO3 mg/L 1.3E-01 1.3E-01 1.3E Pb mg/L 2.6E-04 2.6E 2.6E P mg/L 1.1E-02 1.1E 02 Sb mg/L 1.0E-03 1.0E-03 1.0E	DE-03 1.0E-03	1.1E-03	1,1E-03	1.2E-03	1.1E-03	1.2E-03	1.0E-03	1.0E-03	1.0E-03	1.0E-03
Pb mg/L 2.6E-04 2.6E 04 2.6E P mg/L 1.1E-02 1.1E-02 1.1E	3E-01 2.1E-01	1.6E-01	1.7E-01	2.0E-01	2.0E-01	2.3E-01	1.8E-01	1.6E-01	1.3E-01	1.6E-01
P mg/L 1.1E-02 1.1E-02 1.1E Sb mg/L 1.0E-03 1.0E-03 1.0E	6E-04 2.7E-04	2.7E-04	2.8E-04	3.0E-04	3.0E-04	3.2E-04	2.7E-04	2.7E-04	2.6E-04	2.7E-04
Sb mg/L 1.0E-03 1.0E-03 1.0E-	1E-02 1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02
	DE-03 1.1E-03	1.1E-03	1.2E-03	1.3E-03	1.2E-03	1.4E-03	1.1E-03	1.1E-03	1.0E-03	1.1E-03
Se mg/L 5.0E-04 5.0E-04 5.0E-	DE-04 5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04
SO4 mg/L 1.0E+00 1.0E+00 1.0E+	DE+00 1.0E+01	1.4E+01	2.3E+01	3.8E+01	3.5E+01	5.4E+01	1.2E+01	1.2E+01	1.0E+00	1.0E+0
U mg/L 5.0E-05 5.0E-05 5.0E	DE-05 6.4E-05	7.0E-05	8.3E-05	1.1E-04	1.0E-04	1.3E-04	6.6E-05	6.6E-05	5.0E-05	6.4E-05
Zn mark 1.8E-02 1.8E-02 1.8E	BE-02 1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02
CN (Total) mo/l 1.0E-03 1.0E-03 1.0E	0E-03 3.9E-03	5.1E-03	8.0E-03	1.3E-02	1.2E-02	1.7E-02	4.4E-03	4.3E-03	1.0E-03	3.9E-03

g.
ž
6
5
8

APPENDIX B

AVERAGE MONTHLY LOADING RATES AND MIXING CELL CALULATIONS FOR HIGH FLOW CONDITIONS

October, 2007

..

07-1118-0007 (041C)

06-1118-041C (7000/7600)

TABLE B1 AVERAGE MONTHLY LOADING RATES FOR THE MINE EFFLUENT DISCHARGE SCENARIO 2 - HIGH FLOW TOUQUOY GOLD PROJECT

	Mine Effluent					Avera	age Monthly L	oading Rates (ng's)				*
	Water Quality ¹⁰	an the second	Feb	Mar	Apr 13	May	ier mer	IN.	STORY ST	Coo Co	Det 1	Nov	Dec
t Discharg	ge Rate (m³/s)	Q	0	0	1.45E-01	1.26E-01	1.25E-01	1.25E-01	1.25E-01	1.27E-01	0.065095607	0.099285817	0
	0.0003	0	0	0	4.66E-02	4.04E-02	3.99E-02	3.99E-02	4.01E-02	4.06E-02	2.08E-02	3.18E-02	0
	0.04	0	0	0	5.82E+00	5.04E+00	4.99E+00	4.98E+00	5.01E+00	5.07E+00	2.60E+00	3.97E+00	0
	0.2	0	0	0	2.47E+01	2.14E+01	2.12E+01	2.12E+01	2.13E+01	2.15E+01	1.11E+01	1.69E+01	0
~	215	0	0	0	3.13E+04	2.71E+04	2.68E+04	2.68E+04	2.70E+04	2.72E+04	1.40E+04	2.13E+04	0
	0.00002	0	0	0	2.18E-04	1.89E-04	1.87E-04	1.87E-04	1.88E-04	1.90E-04	9.76E-05	1.49E-04	0
	24	0	0	0	3.49E+03	3.03E+03	2.99E+03	2.99E+03	3.01E+03	3.04E+03	1.56E+03	2.38E+03	0
	0.2	0	0	0	3.16E+01	2.74E+01	2.71E+01	2.70E+01	2.72E+01	2.75E+01	1.41E+01	2.15E+01	0
~	0.0003	0	0	0	3.64E-02	3.15E-02	3.12E-02	3.12E-02	3.13E-02	3.17E-02	1.63E-02	2.48E-02	0
	0.2	0	0	0	2.92E+D1	2.53E+01	2.51E+01	2.50E+01	2.52E+01	2.55E+01	1.31E+01	2.00E+01	0
	4	0	0	0	6.49E+02	5.62E+02	5.56E+02	5.56E+02	5.59E+02	5.65E+02	2.90E+02	4.43E+02	0
	67	0	0	0	9.72E+03	8.42E+03	8.33E+03	8.32E+03	8.37E+03	8.47E+03	4.35E+03	6.63E+03	0
	ę	0	0	0	1.50E+03	1.30E+03	1.28E+03	1.28E+03	1.29E+03	1.31E+03	6.70E+02	1.02E+03	o
	0.1	0	0	0	1.92E+01	1.66E+01	1.65E+01	1.64E+01	1.65E+01	1.67E+01	8.59E+00	1.31E+01	o
	610	0	0	0	8.88E+04	7.69E+04	7.61E+04	7.60E+04	7.65E+04	7.73E+04	3.97E+04	6.06E+04	0
5	- {2}	0	0	0	1.24E+03	2.58E+02	2.46E+02	2.54E+02	2.52E+02	2.54E+02	2.90E+02	3.19E+02	0
	0.007	0	0	0	1.03E+00	8.95E-01	8.86E-01	8.85E-01	8.90E-01	9.00E-01	4.62E-01	7.05E-01	0
	- (2)	0	0	0	1.24E+03	2.58E+02	2.46E+02	2.54E+02	2.52E+02	2.54E+02	2.90E+02	3.19E+02	0
	0.002	0	0	0	2.55E-01	2.21E-01	2.18E-01	2.18E-01	2.19E-01	2.22E-01	1.14E-01	1.74E-01	0
	0.01	٥	0	0	1.45E+00	1.26E+00	1.25E+00	1.25E+00	1.25E+00	1.27E+00	6.51E-01	9.93E-01	0
	0.01	0	0	0	1.57E+00	1.36E+00	1.35E+00	1.35E+00	1.35E+00	1.37E+00	7.03E-01	1.07E+00	Ģ
1	······································	0	0	0	7.27E-02	6.31E-02	6.24E-02	6.23E-02	6.27E-02	6.34E-02	3.25E-02	4.96E-02	0
	1400	٥	0	0	2.04E+05	1.77E+05	1.75E+05	1.74E+05	1.76E+05	1.77E+05	9.11E+04	1.39E+05	0
	0.002	0	٥	0	3.10E-01	2.69E-01	2.66E-01	2.65E-01	2.67E-01	2.70E-01	1.39E-01	2.11E-01	0
	0.03	0	0	0	3.93E+00	3.40E+00	3.37E+00	3.36E+00	3.38E+00	3.42E+00	1.76E+00	2.68E+00	0
-	P V	c		-	0 400-04	5 55C104	TOT LOT	E AOF OA	501.01	C COL YON			

ites: Concentrations are laken from water checking below the detection limit - assumed to be equal to haif the detection limit. Concentrations are laken from water chemisty after treatment as outlined in a chaft memo by SGS (2007).) Total ammonia and nitrate are input into the model as loads.

Golder Associates

240CT07 Merrid Version/uppendie B. - High Flow sh

VTeek 75005

V-MON-N

~
0
ο.
Ð.
õ
Ξ
ອ
Ń.

0/200	5		9) (C)	
29/1				

TABLE B2 AVERAGE MONTHLY LOADING RATES FOR SCRAGGY LAKE SCENARIO 2 - HIGH FLOW TOUQUOY GOLD PROJECT

	Screenvillate Resolute					Avera	ge Monthly Lo	ading Rates ((s/Bu		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
Parameter	Water Cuality	Jan .	Feb	Har	Å	Ary Ven	un,	and the	Aug	Sep	et oct	Nov	Dec
owatershed Net F	flow Rate (m ³ /s)	1.43E+00	1.47E+00	2.06E+00	3.31E+00	1.98E+00	1.15Ë+00	6.69E-01	7,40E-01	4.79E-01	1.26E+00	1.94E+00	1.68E+00
Ag	0.00005	7.15E-02	7.35E-02	1.03E-01	1.65E-01	9.92E-02	5.74E-02	3.35E-02	3.70E-02	2.39E-02	6.28E-02	9.70E-02	8.40E-02
A	0.2	2.68E+02	2.75E+02	3.86E+02	6.20E+02	3.72E+02	2.15E+02	1.25E+02	1.39E+02	8.96E+01	2.35E+02	3.63E+02	3.15E+02
As	· · · · · · · · · · · · · · · · · · ·	1.43E+00	1.47E+00	2.06E+00	3.31E+00	1.98E+00	1.15E+00	6.69E-01	7.40E-01	4.79E-01	1.26E+00	1.94E+00	1.68E+00
Ca	-	1.43E+03	1.47E+03	2.06E+03	3.31E+03	1.98E+03	1.15E+03	6.69E+02	7.40E+02	4.79E+02	1.26E+03	1.94E+03	1.68E+03
8	0.00002	2.81E-02	2.88E-02	4.04E-02	6.49E-02	3.89E-02	2.25E-02	1.31E-02	1.45E-02	9.39E-03	2.47E-02	3.81E-02	3.30E-02
ō	4	5.72E+03	5.88E+03	8.24E+03	1.32E+04	7.94E+03	4.59E+03	2.68E+03	2.96E+03	1.91E+03	5.03E+03	7.76E+03	6.72E+03
ප	0.0002	2.86E-01	2.94E-01	4.12E-01	6.62E-01	3.97E-01	2.30E-01	1.34E-01	1.48E-01	9.57E-02	2.51E-01	3.88E-01	3.36E-01
ວັ	0.005	6.86E+00	7.06E+00	9.89E+00	1.59E+01	9.52E+00	5.51E+00	3.21E+00	3.55E+00	2.30E+00	6.03E+00	9.31E+00	8.06E+00
CL	0.001 M	1.43E+00	1.47E+00	2.06E+00	3.31E+00	1.98E+00	1.15E+00	6.69E-01	7,40E-01	4.79E-01	1.26E+00	1.94E+00	1.68E+00
Fe	0.2	3.36E+02	3.46E+02	4.85E+02	7.79E+02	4.67E+02	2.70E+02	1.57E+02	1.74E+02	1.13E+02	2.96E+02	4.56E+02	3.95E+02
¥	0.3	4.65E+02	4.78E+02	6.70E+02	1.08E+03	6.45E+02	3.73E+02	2.18E+02	2.41E+02	1.56E+02	4.08E+02	6.30E+02	5.46E+02
Mg	0.4	6.08E+02	6.25E+02	8.76E+02	1.41E+03	8.43E+02	4.88E+02	2.85E+02	3.15E+02	2.03E+02	5.34E+02	8.24E+02	7.14E+02
Mn	0.05	6.55E+01	6.74E+01	9.44E+01	1.52E+02	9.09E+01	5.26E+01	3.07E+01	3.39E+01	2.19E+01	5.76E+01	8.89E+01	7.70E+01
Ra	9	4.25E+03	4.37E+03	6.13E+03	9.85E+03	5.90E+03	3.42E+03	1.99E+03	2.20E+03	1.42E+03	3.74E+03	5.77E+03	5.00E+03
NH4+NH3	0.03	3.58E+01	3.68E+01	5.15E+01	8.27E+01	4.96E+01	2.87E+01	1.67E+01	1.85E+01	1.20E+01	3.14E+01	4.85E+01	4.20E+01
ÿ	0.001 W	1.43E+00	1.47E+00	2.06E+00	3.31E+00	1.98E+00	1.15E+00	6.69E-01	7.40E-01	4.79E-01	1.26E+00	1.94E+00	1.68E+00
NO3	0.05	6.79E+01	6.98E+01	9.79E+01	1.57E+02	9.43E+01	5.45E+01	3.18E+01	3.52E+01	2.27E+01	5.97E+01	9.21E+01	7.98E+01
Pp	0.0003	4.47E-01	4.59E-01	6.44E-01	1.03E+00	6.20E-01	3.59E-01	2.09E-01	2.31E-01	1.50E-01	3.93E-01	6.06E-01	5.25E-01
4	0.02	2.15E+01	2.21E+01	3.09E+01	4.96E+01	2.98E+01	1.72E+01	1.00E+01	1.11E+01	7.18E+00	1.89E+01	2.91E+01	2.52E+01
Sb	1	1.43E+00	1.47E+00	2.06E+00	3.31E+00	1.98E+00	1.15E+00	6.69E-01	7.40E-01	4.79E-01	1.26E+00	1.94E+00	1.68E+00
Se	0.0005	7.15E-01	7.35E-01	1.03E+00	1.65E+00	9.92E-01	5.74E-01	3.35E-01	3.70E-01	2.39E-01	6.28E-01	9.70E-01	8.40E-01
SQ4	へを決め、 二、 一、 に、 や、 <th>1.43E+03</th> <th>1.47E+03</th> <th>2.06E+03</th> <th>3.31E+03</th> <th>1.98E+03</th> <th>1.15E+03</th> <th>6.69E+02</th> <th>7.40E+02</th> <th>4.79E+02</th> <th>1.26E+03</th> <th>1.94E+03</th> <th>1.68E+03</th>	1.43E+03	1.47E+03	2.06E+03	3.31E+03	1.98E+03	1.15E+03	6.69E+02	7.40E+02	4.79E+02	1.26E+03	1.94E+03	1.68E+03
n	0.00005	7.15E-02	7.35E-02	1.03E-01	1.65E-01	9.92E-02	5.74E-02	3.35E-02	3.70E-02	2.39E-02	6.28E-02	9.70E-02	8.40E-02
ฎ	0.01	1.76E+01	1.80E+01	2.53E+01	4.06E+01	2.44E+01	1.41E+01	8.22E+00	9.08E+00	5.88E+00	1.54E+01	2.38E+01	2.06E+01
CN	C 0.001	1.43E+00	1.47E+00	2.06E+00	3.31E+00	1.98E+00	1.15E+0C	6.69E-01	7.40E-01	4.79E-01	1.26E+0C	1.94E+0C	1.68E+0C

te:

Golder Associates

nde B. High Flow de

1 7800/5 24/0CT07 Memory

Ω.
9
<u>و</u>
б
Ξ
σ
2

Su									Not	
			_					 _		

TABLE B3 AVERAGE MONTHLY LOADING RATES FOR FISH RIVER SCENARIO 2 - HIGH FLOW TOUQUOY GOLD PROJECT

	South States	Nov	5.66E+00	9.67E+02	2.83E+01	7.37E+03	1.70E-02	2.26E+04	5.66E+00	5.66E+00	1 25E+03	1.70E+03	2.83E+U3 2.97E+02	1.66E+04	1.41E+02	5.66E+00	9.11E+02	1.41E+00	5.556E+U1	2.83E+00	5.66E+03	2.83E-01	5.66E+02	
		gi oct	3.65E+00 1 83E-01	6.25E+02	1.83E+01	4.76E+03	1.10E-02	1.46E+04 7.31E.01	3.65E+00	3.65E+00	8.11E+02	1.10E+03	1.83E+U3 1 92E+02	1.07E+04	9.14E+01	3.65E+00	5.89E+02	9.14E-01	3.655E+01	1.83E+00	3.65E+03	1.83E-01	7.18E+01 3.65E+0C	
		des 👘	1.42E+00 7.11E.00	2.43E+02	7.11E+00	1.85E+03	4.26E-03	5.69E+03	1.42E+00	1.42E+00	3.15E+02	4.26E+02	7.11E+UZ	4.17E+03	3.55E+01	1.42E+00	2.29E+02	3.55E-01	1.42E+01	7.11E-01	1.42E+03	7.11E-02	2.79E+01 1.42E+0C	
	mg/s) -	T OnV	2.16E+00	3.70E+02	1.08E+01	2.82E+03	6.49E-03	8.65E+03	2.16E+00	2.16E+00	4.80E+02	6.49E+02	1.08E+03	6.34E+03	5.41E+01	2.16E+00	3.48E+02	5.41E-01	2.16E+01	1.08E+00	2.16E+03	1.08E-01	4.25E+01 2.16E+0C	
	oading Rates (inc	1.98E+00	3.39E+02	9.90E+00	2.58E+03	5.94E-03	7.92E+03	1 98E+00	1.98E+00	4.39E+02	5.94E+02	9.90E+02	5.81E+03	4 95E+01	1.98E+00	3.19E+02	4.95E-01	1.98E+01	9.90E-01	1.98E+03	9.90E-02	3.89E+01 1.98E+0C	
DUECT	rage Monthly L	U.S.	3.34E+00	5.72E+02	1.67E+01	4.35E+03	1.00E-02	1.34E+04	3.34F+00	3.34E+00	7.41E+02	1.00E+03	1.6/E+03 1.74E+03	9.81E+03	8.36E+01	3.34E+00	5.38E+02	8.36E-01	3.34E+01	3.34E+00	3.34E+03	1.67E-01	6.57E+01 3.34E+00	
OY GOLD PRC	Ave.	May	5.76E+00	9.86E+02	2.88E+01	7.51E+03	1.73E-02	2.31E+04	5 76F +00	5.76E+00	1.28E+03	1.73E+03	2.88E+03	3.02E +02	1.44E+02	5.76E+00	9.28E+02	1.44E+00	5.76E+01	2.88E+00	5.76E+03	2.88E-01	1.13E+02 5.76E+00	the detection lim
TOUQU		Apr	9.61E+00	1.64E+03	4.80E+01	1.25E+04	2.88E-02	3.84E+04	1.32E+00	9.61E+00	2.13E+03	2.88E+03	4.80E+03	2.82E+04	2.40E+02	9.61E+00	1.55E+03	2.40E+00	9.61E+01	9.91E+00	9.61E+03	4.80E-01	1.89E+02 9.61E+00	be equal to haif
			6.00E+00	3.00E-01	3.00E+01	7.82E+03	1.80E-02	2.40E+04	6 00F+00	6.00E+00	1.33E+03	1.80E+03	3.00E+03	1 76E+04	1.50E+02	6.00E+00	9.66E+02	1.50E+00	6.00E+01	3.00E+00	6.00E+03	3.00E-01	1,18E+02 6.00E+00	provide the second seco
		Feb	4.27E+00	7.30E+02	2 14E+01	5.56E+03	1.28E-02	1.71E+04	8.54E-U1 4.77E+00	4.27E+00	9.47E+02	1.28E+03	2.14E+03	1 256+04	1.07E+02	4.27E+00	6.88E+02	1.07E+00	4.27E+01	2.14E+00	4.27E+03	2.14E-01	8.39E+01 4.27E+00	w the detection in
		uer 🦂	4,16E+00	7.11E+02	2.08E+01	5.42E+03	1.25E-02	1.66E+04	4 16E±01	4.16E+00	9.23E+02	1.25E+03	2.08E+03	2.18E+UZ	1.04E+02	4.16E+00	6.70E+02	1.04E+00	4.16E+01	4.16E+00	4.16E+03	2.08E-01	8,17E+01	beto
	Fish River Baseline	Water Cuality	low Rate (m ³ /s)	0.2	0.005	-	0.00003	4	· · · · · · · · · · · · · · · · · · ·	0.001	0.2	0.3	0.5	c0.0	ZIN 0.03 W	0.001	0.2	0.0003	0.01 State	0.001		0.00005	0.02	- indicates measured oo
		Paramotor	Subwatershed Net F	Ag	As	Ca	Sd	ō	88	5 8	Fe	×	БW	MN	NH4+NH3	ž	NO3	đ	- ;	SD	S04	n	ZU	900 100 100

TABLE B4 AVERAGE MONTHLY LOADING RATES FOR LAKE CHARLOTTE SCENARIO 2 - HIGH FLOW TOUQUOY GOLD PROJECT

Daramoter	Baseline Water		部での親国にあ	「日本の理論」をいた。	A TAY IN THE WAY AND THE WAY A	A ST SANTAN AND AND AND AND AND AND AND AND AND A	and the state of the				CONTRACTOR NOT AND	「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	「「「「「「「「「「「」」」」
	Quality		3		ł	May	5.5	nu -	Apur	Sep		Nov.	Dec
watershed Net	Flow Rate (m ³ /s)	4.00E+00	4,11E+00	5.78E+00	9.25E+00	5.55E+00	3.21E+00	1.89E+00	2.07E+00	1.35E+00	3.54E+00	5.44E+00	4.71E+00
ВЯ	0.00005 Martin	2.00E-01	2.06E-01	2.89E-01	4.63E-01	2.77E-01	1.61E-01	9.46E-02	1.04E-01	6.75E-02	1.77E-01	2.72E-01	2.36E-01
R	0.2	6.80E+02	6.99E+02	9.83E+02	1.57E+03	9.43E+02	5.46E+02	3.22E+02	3.53E+02	2.29E+02	6.02E+02	9.25E+02	8.01E+02
As	0.004	1.64E+01	1.69E+01	2.37E+01	3.79E+01	2.27E+01	1.32E+01	7.76E+00	8.51E+00	5.53E+00	1.45E+01	2.23E+01	1.93E+01
Ca	-	4.80E+03	4.93E+03	6.94E+03	1.11E+04	6.66E+03	3.85E+03	2.27E+03	2.49E+03	1.62E+03	4.25E+03	6.53E+03	5.65E+03
छ	600000'0	3.40E-02	3.49E-02	4.91E-02	7.86E-02	4.72E-02	2.73E-02	1.61E-02	1.76E-02	1.15E-02	3.01E-02	4.62E-02	4.00E-02
ō	4	1.60E+04	1.64E+04	2.31E+04	3.70E+04	2.22E+04	1.2BE+04	7.57E+03	8.30E+03	5.40E+03	1.42E+04	2.18E+04	1.88E+04
c	0.0002	8.00E-01	8.22E-01	1.16E+00	1.85E+00	1.11E+00	6.42E-01	3.78E-01	4.15E-01	2.70E-01	7.08E-01	1.09E+00	9.42E-01
c	0.001 F	4.00E+00	4.11E+00	5.78E+00	9.25E+00	5.55E+00	3.21E+00	1.89E+00	2.07E+00	1.35E+00	3.54E+00	5.44E+00	4.71E+00
CL	0.001	4.00E+00	4.11E+00	5.78E+00	9.25E+00	5.55E+00	3.21E+00	1.89E+00	2.07E+00	1.35E+00	3.54E+00	5,44E+00	4.71E+00
Fe	0.2	8.20E+02	8.43E+02	1.18E+03	1.90E+03	1.14E+03	6.58E+02	3.88E+02	4.25E+02	2.77E+02	7.25E+02	1.12E+03	9.66E+02
¥	0.3	1.20E+03	1.23E+03	1.73E+03	2.78E+03	1.66E+03	9.63E+02	5.68£+02	6.22E+02	4.05E+02	1.06E+03	1.63E+03	1.41E+03
Mg	0.5	2.00E+03	2.06E+03	2.89E+03	4.63E+03	2.77E+03	1.61E+03	9.46E+02	1.04E+03	6.75E+02	1.77E+03	2.72E+03	2.36E+03
Mn	0.05	1.92E+02	1.97E+02	2.77E+02	4.44E+02	2.66E+02	1.54E+02	9.08E+01	9.96E+01	6.48E+01	1.70E+02	2.61E+02	2.26E+02
Na	3	1.16E+04	1.19E+04	1.68E+04	2.68E+04	1.61E+04	9.31E+03	5.49E+03	6.02E+03	3.91E+03	1.03E+04	1.58E+04	1.37E+04
NH4+NH3	2.2. A. 1. 0. 03 10 10 10	1.00E+02	1.03E+02	1.45E+02	2.31E+02	1.39E+02	8.03E+01	4.73E+01	5.19E+01	3.37E+01	8.85E+01	1.36E+02	1.18E+02
ž	0.001	4.00E+00	4,11E+00	5.78E+00	9.25E+00	5.55E+00	3.21E+00	1.89E+00	2.07E+00	1.35E+00	3.54E+00	5.44E+00	4.71E+00
NO3	前のことの記録すの人に一個な記録す	5.00E+02	5.14E+02	7.23E+02	1.16E+03	6.93E+02	4.01E+02	2.36E+02	2.59E+02	1.69E+02	4.42E+02	6.80E+02	5.89E+02
Ъ	0.0003	1.00E+00	1.03E+00	1.45E+00	2.31E+00	1.39E+00	8.03E-01	4.73E-01	5.19E-01	3.37E-01	8.85E-01	1.36E+00	1.18E+00
۵	0.01	4.00E+01	4.11E+01	5.78E+01	9.25E+01	5.55E+01	3.21E+01	1.89E+01	2.07E+01	1 35E+01	3.54E+01	5.44E+01	4.71E+01
Sb	0.001 C	4.00E+00	4.11E+00	5.78E+00	9.25E+00	5.55E+00	3.21E+00	1.89E+00	2.07E+00	1.35E+00	3.54E+00	5.44E+00	4.71E+00
Se	0.0005	2.00E+00	2.06E+00	2.89E+00	4.63E+00	2.77E+00	1.61E+00	9.46E-01	1.04E+00	6.75E-01	1.77E+00	2.72E+00	2.36E+00
S04		4.00E+03	4,11E+03	5.78E+03	9.25E+03	5.55E+03	3.21E+03	1.89E+03	2.07E+03	1.35E+03	3.54E+03	5.44E+03	4.71E+03
n	N. 2010 0.00005 0 0.000	2.00E-01	2.06E-01	2.89E-01	4.63E-01	2.77E-01	1.61E-01	9.46E-02	1.04E-01	6.75E-02	1.77E-01	2.72E-01	2.36E-01
Zn	0.02	7.24E+01	7.44E+01	1.05E+02	1.67E+02	1.00E+02	5.81E+01	3.42E+01	3.76E+01	2.44E+01	6.41E+01	9.85E+01	8.53E+01
CN		4.00E+00	4,11E+00	5.78E+00	9.25E+00	5.55E+00	3.21E+00	1.89E+0C	2.07E+0C	1.35E+0C	3.54E+0C	5.44E+0C	4.71E+0C

WQ Monteurg/Teau 70006 240CT07 Nemo Vescon/spends B - High Flow sh

N.Vehicle

4 of 7

29/10/2007

TABLE B5

06-1118-041C (7000/7600)

Ix 1 = Mine Effluent Load + Scraggy Lake Subwatersheds Load Paramotic Units Lan Feb Mar Mar Ag mg/L 1.6 1.6 0.16 0.16 Ag mg/L 1.0 0.0 3.6 0.16 Ag mg/L 1.0 0.0 4.0 0.0 Ca mg/L 1.0 4.0 0.0 4.0 Ca mg/L 1.0 4.0 0.0 4.0 Ca mg/L 1.0 4.0 0.0 4.0 Ca mg/L 2.0 2.0 2.6 0.0 Ca mg/L 2.0 2.0 2.4 0.0 Ca mg/L 2.0 2.6 0.0 3.6 Ca mg/L 2.0 2.6 0.0 3.6 Ca mg/L 2.6 0.0 3.6 0.0 Ca mg/L 2.6 2.6 <th>d 3.55-00 3.55-00 6.55-00 6.55-00 6.55-00 6.55-00 6.55-00 6.55-00 8.15-00</th> <th>lix 1 - Wa 2.15+00 6.65-05 6.65-05 7.1185-07 7.1145-07 1.145-07 1.15-02 1.35-02 4.15-02 1.35-02</th> <th>ater Quali Jun 1.3E+00 7.6E-05 2.2E+01</th> <th>ty in Scr</th> <th>0007 Lake 8.76-01 8.96-05 8.96-05 8.96-05 3.26+01 3.26+01 1.76-05</th> <th>Martin - Alfa</th> <th></th> <th>116-03 116-03 116-04 116-04 116-05 116-05 116-05 116-05 116-05 116-05 116-05</th> <th></th>	d 3.55-00 3.55-00 6.55-00 6.55-00 6.55-00 6.55-00 6.55-00 6.55-00 8.15-00	lix 1 - Wa 2.15+00 6.65-05 6.65-05 7.1185-07 7.1145-07 1.145-07 1.15-02 1.35-02 4.15-02 1.35-02	ater Quali Jun 1.3E+00 7.6E-05 2.2E+01	ty in Scr	0007 Lake 8.76-01 8.96-05 8.96-05 8.96-05 3.26+01 3.26+01 1.76-05	Martin - Alfa		116-03 116-03 116-04 116-04 116-05 116-05 116-05 116-05 116-05 116-05 116-05	
Parameter Units Jan Fea A A Anilititie Flow Rate m's 1.46±00 1.55:00 2.45±00 3.45 Al mg/L 5.06=05 5.06=05 5.06=05 5.06=05 6.11 Al mg/L 5.06=05 5.06=05 5.06=05 5.06=05 6.11 Al mg/L 1.06=03 1.06=03 1.06=03 1.06=03 4.66 Al mg/L 1.06=03 1.06=03 1.06=03 4.66 0 0 0 0	M 3.5E-00 6.1E-05 6.1E-05 6.1E-05 6.1E-05 6.1E-05 6.1E-05 7.5E-00 4.8E-00 4.8E-00 3.1E-00 3.1E-00 4.8E-01	IX1-Wa Wy 21500 665-05 665-05 111-02 111-02 525-00 525-00 135-02 135-02	ater Qualit Jun 1:2E+00 7.6E-05 7.6E-05 7.6E-05 7.8E-05 2.2E+01	ty in Scra	172 Control Co	Andrew Contraction of the second	Surger States	2.0E+00 2.0E+00 5.2.0E+00 5.2.0E+00 1.1.E+01 1.1.E+01 5.0E+00 4.6E+03	and the second se
Multitive Flow Rate main Feat Main Feat Main Main </th <th>Apr 3.55 +00 3.55 +00 6.15 -00 6.15 -00 4.65 -00 4.65 -00 9.35 -00 3.15 -00 8.45 -00 8.45 -00 8.45 -01 4.95 -00 2.95 +01 2.95 +01</th> <th>2.15-00 2.15-00 6.65-05 6.65-05 1.65-05 1.45-01 1.35-02 1.35-02 1.55-0</th> <th>Jun. 1.3E+00 7.6E-05 7.12E-01 2.2E-01 2.2E-01</th> <th></th> <th>Aug 8.7E-01 8.9E-05 10E-05 10E-05 3.2E-05 3.2E-05</th> <th></th> <th>Stranger Stranger</th> <th>Nor 2.05-05 6.35-05 6.35-05 1.15-01 1.15-01 1.15-02 1.15-02 1.15-02 4.65-03</th> <th>Dec</th>	Apr 3.55 +00 3.55 +00 6.15 -00 6.15 -00 4.65 -00 4.65 -00 9.35 -00 3.15 -00 8.45 -00 8.45 -00 8.45 -01 4.95 -00 2.95 +01 2.95 +01	2.15-00 2.15-00 6.65-05 6.65-05 1.65-05 1.45-01 1.35-02 1.35-02 1.55-0	Jun. 1.3E+00 7.6E-05 7.12E-01 2.2E-01 2.2E-01		Aug 8.7E-01 8.9E-05 10E-05 10E-05 3.2E-05 3.2E-05		Stranger Stranger	Nor 2.05-05 6.35-05 6.35-05 1.15-01 1.15-01 1.15-02 1.15-02 1.15-02 4.65-03	Dec
mulative Flow Rate m*s 1.4E+00 1.5E+00 2.1E+00 2.1E+00 3.61 Aq mg/L 5.0E-05 5.0E-05 5.0E-05 5.1E 5.1E Ai mg/L 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.0E 5.0E-05 5.1E+00 5.1E Ai mg/L 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.0E 3.0E Cd mg/L 1.0E+00 4.0E+00 4.0E+00 4.0E+00 4.0E 3.4E Cl mg/L 1.0E+00 1.0E+00 1.0E+00 1.0E 3.3E 4.0E 3.3E Cl mg/L 1.0E+03 1.0E+03 1.0E+03 4.0E+01 3.4E C mg/L 1.0E+03 1.0E+03 1.0E+03 4.0E+02 3.4E MA mg/L 3.1E+04 3.1E+04 3.1E+04 3.1E 4.4E+02 4.4E+02 4.4E+02 4.4E+02 4.4E+02 4.4E+02 4.4E+02 4.4E+02 4.4E+03 1.0E+03 1.	3.55.90 6.616-05 6.616-05 6.616-07 9.616-07 1.06-07 1.06-07 9.86-03 9.86-03 9.86-03 9.86-07 9.86-01 9.86-01 9.86-01 9.86-01 9.86-01 2.96-01 2.96-01	2.1E+00 6.6E-05 6.6E-05 7.11E-01 1.4E-01 5.2E+00 5.2E+00 1.5E-02 4.5E-02	1.3E+00 7.6E-05 7.5E-05 7.5E-01 7.5E-01 2.2E+01 2.2E+01		8.7E-01 8.9E-05 1.7E-05 2.5E-07 3.2E+01 1.7E-05	Sep.	in oct	2.0E+00 6.3E-05 6.3E-05 1.1E=01 1.1E-01 1.1E-02 1.1E-02 1.1E-02	LINE STREET, AND ADDRESS OF
Ag mg/L 5.0E-05 5.0E-05 5.0E-05 5.1E Al mg/L 1.0E-03 1.0E-03 1.0E-03 1.0E As mg/L 1.0E-03 1.0E-03 1.0E-03 1.0E Cd mg/L 1.0E-03 1.0E-03 1.0E-03 1.0E Cd mg/L 1.0E-03 1.0E-03 1.0E-03 1.0E Cd mg/L 4.0E+00 4.0E+00 4.0E+00 4.0E Ci mg/L 4.0E+03 4.0E+03 4.0E+03 4.0E Ci mg/L 4.0E+03 4.0E+03 4.0E+03 4.0E Ci mg/L 1.0E-03 1.0E-03 4.0E+03 4.0E Ci mg/L 1.0E-03 1.0E-03 4.0E+03 4.0E Mg mg/L 1.0E-03 1.0E-03 1.0E-03 4.0E Mg mg/L 3.1E 3.0E+00 3.0E+00 2.0E 4.0B Mg mg/L 3.0E+02 2.0E+03 3.0E	6.1E-05 6.1E-05 6.12-05 6.12-05 1.0E+01 7.0E+00 8.4E-01 8.4E-01 8.4E-01 8.4E-01 8.4E-01 8.4E-01 2.9E+01 2.9E+01	66E-05 19E-01 14E-01 1.4E-01 5.20 4.5E-03 4.5E-03 4.5E-03	7.6E-05 71.7E-01 6.31.8E-02 2.2E+01 2.2E+01	7.9E-01	8.9E-05 17.E01 12.6E01 3.2E+01 17.E-05	6.1E-01	1.3E+00	6.3E-05 6.3E-05 1.1E+01 1.1E+01 5.0E+00 1.1E-02 1.1E-02 4.6E-03	1.7E+00
Al Mg/l 1.06-03 1.06-03 1.06-03 1.06-03 1.06-03 1.06-03 1.06 0.06 0.06 Cd mg/l 1.16-00 1.06+00 1.06+00 1.06 0 1.06 Cd mg/l 1.16+00 1.06+00 1.06+00 1.06+00 1.06 0 0 Cd mg/l 4.06+00 4.06+00 4.06+00 4.06 0	616001 1.05400 1.05400 486400 9.35400 9.36400 3.15400 8.41500 9.315400 8.400 8.400 8.400 2.95400	1.15 - 02 - 02 - 02 - 02 - 02 - 02 - 02 - 0	2.2E+01 2.2E+01 2.2E+01	9.2E-05	3.2E+01 1 7E-05		6.3E-05	1.1E-01 5.0E+00 1.1E-02 1.1E-02 4.6E-03	5.0E-05
Ca mg/L L (16+00 L (16+00 L (16+00 L (16+00 L (16+00 L (16+00 L (10+00 L (10+00 <thl (10+00<="" th=""> L (10+00 <thl (10+00<="" th=""> L (10+00 <thl (10+00<="" th=""> <</thl></thl></thl></thl></thl></thl></thl></thl></thl></thl></thl></thl></thl></thl></thl></thl></thl></thl>	1.0E+01 4.0E+05 4.8E+00 9.3E-03 9.4E-03 4.4E-03 1.E+00 8.4E-01 8.4E-01 4.9E-01 2.9E+01 2.9E+01	1.4E+01 1.4E+01 5.2E+00 1.3E-02 4.5E-03	2.2E+01		3.2E+01 1 7E-05	50105-0112 505 (65-07) (1	None of the other	1.1E+01 5.0E+00 1.1E-02 4.6E-03	
Cd mg/L A.06-00 A.06+00 A.06+00 A.06+00 A.06+00 A.06+00 A.06 A.06 Cr mg/L 2.06-04 2.06-04 2.06-04 2.06-04 9.33 4.66 0.3 4.66	ABE+00 ABE+00 4 8E+00 4 8E+00 4 8E ±03 4 8E ±03 4 8E ±03 3 8 3 8 4 4 5 01 3 1 5 ±00 3 1 5 ±00 4 9 5 ±01 4 9 5 ±01 2 5 € ±01	5.2E+00 5.2E+00 1.3E-02 4.5E-03	AND 36-05	3 5F+01	1 7E-05	4 6F+01	1 2F+01	5.0E+00 1.1E-02 4.6E-03	
CI mg/L 4.0E+00 4.0E+00 4.0E+00 4.0E Co mg/L 2.0E-04 2.0E-04 2.0E-04 9.31 Cr mg/L 1.0E-03 4.8E-03 4.8E-03 4.8E-03 4.8E Cu mg/L 1.4E-03 4.8E-03 4.8E-03 4.8E-03 4.8E Cu mg/L 1.10 2.0E-04 2.8E-01 3.8E-01 3.8E Ma mg/L 3.8E-01	4 8E+60 8.3E-03 8.3E-03 4.6E-03 8.4EE-03 8.4E-00 8.4E-00 4.9E-02 2.9E+01	5.2E+00 1.3E-02 4.5E-03		1.7E-05		1.6E-05		5.0E+00 1.1E-02 4.6E-03	N 20 205
Co mg/L 2.0E-04 2.0E-04 2.0E-04 9.31 Cr mg/L 4.8E-03 4.8E-03 4.8E-03 4.8E-03 4.8E Cu mg/L 1.6E-03 1.8E-03 4.8E-03 4.8E-03 4.8E K mg/L 1.6E-03 1.6E-03 1.6E-03 4.8E 4.6E M mg/L 1.6E-03 1.6E-03 3.6E-01 3.8E 3.1E M mg/L 3.3E-01 3.3E-01 3.3E 3.1E 3.46 M mg/L 3.3E-01 3.3E-01 3.3E 3.1E 3.46 M mg/L 3.3E-01 3.3E-01 3.1E 3.46 3.1E M mg/L 3.6E+02 3.0E+00 <	9.3E-03 4.6E-03 2.92 4E.03 3.1E+00 8.4E-01 4.9E-02 2.9E+01	1.3E-02 4.5E-03	6.0E+00	7.1E+00	6.9E+00	8.2E+00	5.0E+00	1.1E-02 4.6E-03	4.0E+00
Cr mg/L 48E-03 48E-03 48E-03 46E-03 46E-02	4.6E-03	4.5E-03	2.1E-02	3.4E-02	3.2E-02	4.6E-02	1.1E-02	4.6E-03	2.0E-04
Cu mg/L 1.0E-03 1.0E-0	3.1E+00 8.4E-01 3.1E+00 8.4E-01 4.9E-02 2.9E+01	EN 35-02 2	4.4E-03	4.1E-03	4.1E-03	3.8E-03	4.6E-03		4.8E-03
Fe mg/L 2.4€-01 2.4€-01 2.4€-01 2.4€-01 2.4€-01 3.4€-01 3.4€-01 3.4€-01 3.4€-01 3.4€-01 3.4€-01 3.4€-01 3.4€-01 3.4€-01 3.4€-01 3.4€-01 3.4E-01 3.4E-02 3.4E-0	3.1E+00 3.1E+00 8.4E-01 4.9E-02 2.9E+01	The second secon	#2.1E-02	#13.2E ² 02	10 JO 10	107 E-02 W	2010 E-028	「二日の一日の一日の一日の一日の一日の一日の一日の一日の一日の一日の一日の一日の一日	1.0E-03
K mg/L 33E-01 33E-01 33E-01 33E Mg mg/L 4.3E-01 3.3E-01 3.4E 01 3.4E Ma mg/L 4.3E-01 4.3E-01 3.4E-01 3.4E 01 3.4E Ma mg/L 4.3E-01 3.0E+00 3.0E+00 2.9E 4.9E 0.2 3.0E 4.9E 0.2 3.0E 4.00 2.9E 4.00 2.9E 4.00 3.16 4.9E 0.2 4.0E 0.0 2.9E 4.0E 0.7 3.16 4.0E 3.16 4.0E 3.16 4.0E 3.16 4.0E 4.0E<	3.1E+00 8.4E-01 4.9E-02 2.9E+01	ALSE-OT V	容 6.5E-01補	9.0E-01-4	¥8.5E-01茶	100 IE400 **	· · · · · · · · · · · · · · · · · · ·	A NO STOR	2.4E-01
Mg mg/L 4.3E-01 4.3E-01 4.3E-01 8.4 Mn mg/L 4.5E-02 4.5E-02 4.5E-02 4.9E-00 24.9 Mn mg/L 3.6E+00 3.0E+00 3.0E+00 2.9E 3.9 NHA+NH3 mg/L 2.5E-02 2.5E-02 2.5E-02 3.0E+00 2.98 NH mg/L 1.0E-03 1.0E-03 1.0E-03 1.3E 3.06 3.05 3.06 NO3 mg/L 1.0E-03 1.0E-03 1.0E-03 1.3E 4.02 3.0E 4.03 3.15 4.03 3.15 4.03 3.16 3.16 3.17 3.16 3.16 3.16 3.16 3.17 3.16 </th <td>8.4E-01 4.9E-02 2.9E+01</td> <td>4.3E+00</td> <td>6.8E+00</td> <td>1.1E+01</td> <td>1.0E+01</td> <td>1.4E+01</td> <td>3.6E+00</td> <td>3.6E+00</td> <td>3.3E-01</td>	8.4E-01 4.9E-02 2.9E+01	4.3E+00	6.8E+00	1.1E+01	1.0E+01	1.4E+01	3.6E+00	3.6E+00	3.3E-01
Mn mg/L 4.6E-02 4.6E-02 4.6E-02 4.9E Na mg/L 3.0E+00 3.0E+00 3.0E+00 2.9E NH4+NH3 mg/L 2.5E-02 2.5E-02 3.0E+00 3.0E+00 3.0E Ni mg/L 2.5E-02 2.5E-02 3.0E 3.0E 3.0E NO mg/L 1.6E-03 1.0E-03 1.0E-03 1.0E 3.13 P mg/L 3.1E-04 3.1E-04 3.1E-04 3.7E 4.3E 3.7E P mg/L 1.0E-03 1.0E-03 1.0E-03 1.0E 3.7E Se mg/L 1.0E-03 1.0E-03 1.0E-03 1.0E 3.7E Se mg/L 1.0E-03 1.0E-03 1.0E-03 1.4E Se mg/L 1.0E-03 1.0E-03 1.0E-03 1.4E Se mg/L 5.0E-04 5.0E-04 5.0E-04 5.0E 5.0E	4.9E-02 2.9E+01	1.0E+00	1.4E+00	2.0E+00	1.9E+00	2.5E+00	9.1E-01	9.1E-01	4.3E-01
Na mg/L 3.0E+00 3.0E+00 3.0E+00 2.9E NH4+NH3 mg/L 2.5E-02 2.5E-02 2.5E-02 3.8E Ni mg/L 1.0E-03 1.0E-03 1.0E-03 1.3E N03 mg/L 4.8E-02 2.5E-02 3.8E 3.8E N03 mg/L 1.0E-03 1.0E-03 1.3E 4.8E 2.4E P mg/L 3.1E 3.1	2.9E+01	5.1E-02	5.4E-02	5.9E-02	5.8E-02	6.4E-02	5.0E-02	5.0E-02	4.6E-02
NH4+NH3 mg/L 2.5E-02 2.5E-02 2.5E-02 3.8E Ni mg/L 1.0E-03 1.0E-03 1.0E-03 1.3E 1.3 1.4 <td< th=""><td></td><td>3.9E+01</td><td>6.2E+01</td><td>9.8E+01</td><td>9.1E+01</td><td>1.3E+02</td><td>3.3E+01</td><td>3.3E+01</td><td>3.0E+00</td></td<>		3.9E+01	6.2E+01	9.8E+01	9.1E+01	1.3E+02	3.3E+01	3.3E+01	3.0E+00
Ni mg/L 1.0E-03 1.0E-03 1.0E-03 1.3E N03 mg/L 4.8E-02 4.8E-02 4.8E-02 4.8E 4.0 Pb mg/L 3.1E-04 3.1E-04 3.1E-04 3.1E 3.1E P mg/L 1.5E-02 1.5E-02 1.5E-02 1.5E-02 1.5E 1.5E P mg/L 1.5E-02 1.5E-02 1.5E-02 1.5E-02 1.5E	3.8E-01	1.5E-01	2.2E-01	3.4E-01	3.1E-01	4.4E-01	2.4E-01	1.8E-01	2.5E-02
N03 mg/L 4.8E-02 4.8E-02 4.0E-02 4.0E Pb mg/L 3.1E-04 3.1E-04 3.1E-04 3.7E P mg/L 1.5E-02 1.5E-02 1.5E-04 3.7E P mg/L 1.5E-02 1.5E-02 1.5E 0.2 1.6E Sb mg/L 1.0E-03 1.0E-03 1.0E-03 1.4E Se mg/L 1.0E-03 1.0E-03 1.4E 0.5 1.4E Se mg/L 1.0E-03 1.0E-03 1.0E-03 1.4E 0.5 1.4E 0.5 0.6E-04 5.0E-04	1.3E-03	1.4E-03	1.6E-03	2.0E-03	1.9E-03	2.3E-03	1.3E-03	1.3E-03	1.0E-03
Pb mg/L 3.1E-04 3.1E-04 3.1E-04 3.7E P mg/L 1.5E-02 1.5E-02 1.5E-02 1.5E-02 1.5E Sb mg/L 1.0E-03 1.0E-03 1.0E-03 1.0E-03 1.46 Se mg/L 5.0E-04 5.0E-04 5.0E-04 5.0E 5.0E So mg/L 5.0E-04 5.0E-04 5.0E-04 5.0E 5.0E	4.0E-01	1.7E-01	2.4E-01	3.6E-01	3.3E-01	4.6E-01	2.6E-01	2.0E-01	4.8E-02
P mg/L 1.5E-02 1.5E-02 1.5E-02 1.5E 1.5E Sb mg/L 1.0E-03 1.0E-03 1.0E-03 1.0E-03 1.4E Se mg/L 5.0E-04 5.0E-04 5.0E-04 5.0E 5.0E So mg/L 5.0E-04 5.0E-04 5.0E 5.0E 5.0E	3.7E-04	4.0E-04	4.5E-04	5.4E-04	5.2E-04	6.1E-04	3.8E-04	3.8E-04	3.1E-04
Sb mg/L 1.0E-03 1.0E-03 1.0E-03 1.4E Se mg/L 5.0E-04 5.0E-04 5.0E-04 5.0E	1.5E-02	1.5E-02	1.5E-02	1.4E-02	1.4E-02	1.4E-02	1.5E-02	1.5E-02	
Se mg/L 5.0E-04 5.0E-04 5.0E-04 5.0E SOM	1.4E-03	1.6E-03	2.0E-03	2.5E-03	2.4E-03	3.1E-03	1.5E-03	1.5E-03	1.5E-02
	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04		1.5E-02 1.0E-03
304 IIIU IIIU IIIU IIIU IIIU IIIU IIIU	6.0E+01	0 5E 101		CUT DO C				5.0E-04	1.5E-02 1.0E-03 5.0E-04
U mg/L 5.0E-05 5.0E-05 5.0E-05 1.4E	1.4E-04	0.05701	1.4E+02	2.25702	2.0E+02	2.9E+02	7.0E+01	5.0E-04 6.9E+01	1.5E-02 5.0E-03 1.0E+00
Zn mg/t 1.2E-02 1.2E-02 1.2E-02 1.3E		1.7E-04	1.4E+02 2.5E-04	3.86-04	2.0E+02 3.5E-04	2.9E+02 4.9E-04	7.0E+01 1.5E-04	5.0E-04 6.9E+01 1.5E-04	1.5E-02 1.0E-03 5.0E-04 1.0E+00 5.0E-05
CN (Total) mo/L 1 0E-03 1 0E-03 1 9E	1.3E-02	1.7E-04 1.3E-02	1.4E+02 2.5E-04 1.4E-02	3.8E-04 1.5E-02	2.0E+02 3.5E-04 1.4E-02	2.9E+02 4.9E-04 1.5E-02	7.0E+01 1.5E-04 1.3E-02	5.0E-04 6.9E+01 1.5E-04 1.3E-02	1.5E-02 1.0E-03 5.0E-04 1.0E+00 5.0E-05 1.2E-02
	1.3E-02	1.76-04 1.76-04 1.36-02	1.4E+02 2.5E-04 1.4E-02	3.8E-04 1.5E-02 7.0E 03	2.0E+02 3.5E-04 1.4E-02 6.5E 00	2.9E+02 4.9E-04 1.5E-02	7.0E+01 1.5E-04 1.3E-02	5.0E-04 6.9E-01 1.5E-04 1.3E-02	1.0E-02 5.0E-03 5.0E-04 1.0E-05 5.0E-05 1.2E-05

opende B - High Flow sh

						Mix 2 -	Water Qu	ality in Fi	sh River					Annual
	が小学校	us),	Ð	Har Nar	Apr	Ven St		n,	Aug	Sep	8	Nov	å	Concentration
ulative Flow Rate	m³/s	5.6E+00	5.7E+00	8.1E+00	1.3E+01	7.9E+00	4.6E+00	2.8E+00	3.0E+00	2.0E+00	5.0E+00	7.7E+00	6.6Ë+00	6.0E+00
Ag	mg/L	5.0E-05	5.0E-05	5.0E+05	5.3E-05	5.4E-05	5.7E-05	6.2E-05	6.1E-05	6.7E-05	5.4E-05	5.3E-05	5.0E-05	5.4E-05
A	mg/L	1.8E-01	AND SEAL OF	1.8E.01	10-31-1 W	が通じためと読る	の主が言い	5 10 ETE 01	「「「」」「「」」	资化7E-01 美				
As	тgл	4.0E-03	4.0E-03	4.0E-03	#15.8E103	2616.6E-103-001	100,5E,03	100 A C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	100 HE 102 M	5×4.45:02:34	A CONTRACTOR	20 S S S S S	4.0E-03	
Ca	mg/L	1.2E+00	1.2E+00	1.2E+00	3.6E+00	4.6E+00	7.0E+00	1.1E+01	1.0E+01	1.5E+01	4.0E+00	4.0E+00	1.2E+00	4.0E+00
g	J/Bm	7.35-06	7.3E-06	7.2E-06	7.2E-06	7.2E-06	7.1E-06	6.9E-06	7.0E-06	6.8E-06	7.2E-06	7.2E-06	7 2E-06	7.2E-06
J	шgЛ	4.0E+00	4.0E+00	4.0E+00	4.2E+00	4.3E+00	4.5E+00	4.9E+00	4.8E+00	5.3E+00	4.3E+00	4.3E+00	4.0E+00	4.3E+00
ვ	тg/L	2.0E-04	2.0E-04	2.0E-04	2.6E-03	3.7E-03	6.1E-03	9.9E-03	9.2E-03	1.4E-02	3.0E-03	3.0E-03	2.0E-04	3.0E-03
cr	mg/L	2.0E-03	2.0E-03	2.0E-03	2.0E-03	1.9E-03	1.9E-03	1.9E-03	1.9E-03	1 9E-03	1.9E-00	1.9E-03	2.0E-03	1.9E-03
Cu	mg/L	1.0E-03	1.0E-03	1.0E-03	43.2E-03.9	104 ZE-03 3	3.6.4E-05	CE DE DZ	X 8 3E 03 36	MANE OZ	× 3.6E40X		1.0E-03	ALC: NO. OF ALC: NO.
Fe	mg/L	2.3E-01	2.3E-01	2.3E-01	2.7E-01	2.9E-01	24E-01	MAR ZEAN	4.0E-01/21	Red Bender	2.8E-01	2.8E-01	2.3E-01	2 8E-01
×	mg/L	3.1E-01	3.1E-01	3.1E-01	1.0E+00	1.4E+00	2.1E+00	3.3E+00	3.1E+00	4.5E+00	1.2E+00	1.2E+00	3.1E-01	1.2E+00
Mg	mg/L	4.8E-01	4.8E-01	4.8E-01	5.9E-01	6.4E-01	7.5E-01	9.2E-01	8.9E-01	1.1E+00	6.1E-01	6.1E-01	4.8E-01	6.1E-01
Mn	л9/Г	5.1E-02	5.1E-02	5.1E-02	5.2E-02	5.2E-02	5.3E-02	5.4E-02	5.4E-02	5.6E-02	5.2E-02	5.2E-02	5.1E-02	5.2E-02
Na	-T/Bm	2.9E+00	2.9E+00	2.9E+00	9.7E+00	1.3E+01	1.9E+01	3.0E+01	2.8E+01	4.1E+01	1.1E+01	1.1E+01	2.9E+00	1.1E+01
NH4+NH3	щдЛ	2.5E-02	2.5E-02	2.5E-02	1.2E-01	5.7E-02	7.8E-02	1.2E-01	1.1E-01	1.5E-01	8.3E-02	6.6E-02	2.5E-02	6.8E-02
z	mg/L	1.0E-03	1.0E-03	1.0E-03	1.1E-03	1.1E-03	1.2E-03	1.3E-03	1.3E-03	1.4E-03	1.1E-03	1.1E-03	1.0E-03	1.1E-03
N03	mg/L	1.3E-01	1.3E-01	1.3E-01	2.3E-01	1.6E-01	1.8E-01	2.2E-01	2.1E-01	2.5E-01	1.9E-01	1.7E-01	1.3E-01	1.7E-01
Pb	mg/L	2.7E-04	2.7E-04	2.7E-04	2.8E-04	2.9E-04	3.1E-04	3.3E-04	3.3E-04	3.6E-04	2.96-04	2.9E-04	2.7E-04	2.9E-04
۹.	mg/L	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02
ß	mg/L	1.0E-03	1.0E-03	1.0E-03	1.1E-03	1.2E-03	1.3E-03	1.4E-03	1.4E-03	1.6E-03	1.1E-03	1.1E-03	1.0E-03	1.1E-03
Se	mg/L	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04
S04	mg/L	1.0E+00	1.0E+00	1.0E+00	1.7E+01	2.3E+01	3.9E+01	6.4E+01	5.9E+01	8.8E+01	1.9E+01	1.9E+01	1.0E+00	1.9E+01
∍	шgЛ	5.0E-05	5.0E-05	5.0E-05	7.3E-05	8.3E-05	1.1E-04	1.4E-04	1.4E-04	1.8E-04	7.7E-05	7.7E-05	5.0E-05	7.7E-05
ភ	mg/L	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.BE-02
CN (Total)	mg/L	1.0E-03	1.0E-03	1.0E-03	5.9E-03	8.0E-03	1.3E-02	2.1E-02	1.9E-02	2.8E-02	6.7E-03	6.7E-03	1.0E-03	6.7E-03

...

Golder Associates

WG Matiempilises 76006 240CT07 Memo Verennivepende B - High Flow de

Protection 2000 Country! Atomic Con 0110-0110

NUCCESSION N

1	
0	
ō	
£N	
6	
÷	
6	
Ň	

TABLE B7 CALCULATION RESULTS FOR MIX 3 SCENARIO 2 - HIGH FLOW

06-1118-041C (7000/7600)

						fix 3 - We	tter Quali	ly in Lake	Charlott	e () ;				Annal
		Jan	Føb	Mar	. Abra	E dual in	Lap	No. No.	Aug	ŝ	- Oct	- N N	Dec	Concentratio
Cumulative Flow Rate	m ³ /5	9.6E+00	9.9E+0D	1.4E+01	2.2E+01	1.3E+01	7.8E+00	4.7E+00	5.1E+00	3.4E+00	8.5E+00	1.3E+01	1.1E+01	1.0E+01
БА	mg/L	5.0E-05	5.0E-05	5.0E-05	5.2E-05	5.3E-05	5.4E-05	5.7E-05	5.7E-05	6.0E-05	5.2E-05	5.2E-05	5.0E-05	5.2E-05
AI	mg/L		建設 7E-05.00		語をしてい	建1.7E-01 重	MILLE OF MA	。 [1] 王内二	100-34 (A)			2 P 2		State Internet
As	mg/L	4.0E-03	4.0E-03	4.0E-03	18.5.1E 1034	246.6E-03-22	10:00-3/2 (M	Best Second me	3818.1E-03	ME1.06-102	S. The State of the	Sector 1	4.0E-03	SUSTERNA SUST
Ca	mg/L	1.2E+00	1.2E+00	1.2E+00	2.6E+00	3.2E+00	4.6E+00	6.9E+00	6.5E+00	9.2E+00	2.8E+00	2.8E+00	1.2E+00	2.8E+00
B	∏ mg/L	7.8E-06	7.8E-06	7.8E-06	7.7E-06	7.7E-06	7.7E-06	7.6E-06	7.6E-06	7.5E-06	7.7E-06	7.7E-06	7.8E-06	7.7E-06
ō	mg/L	4.0E+00	4.0E+00	4.0E+00	4.1E+00	4.2E+00	4.3E+00	4.5E+00	4.5E+00	4.8E+00	4.2E+00	4.2E+00	4.0E+00	4.2E+00
ප	mg/L	2.0E-04	2.0E-04	2.0E-04	1.6E-03	2.2E-03	3.7E-03	6.0E-03	5.5E-03	8.3E-03	1.9E-03	1.85-03	2.0E-04	1.9E-03
ъ	mg/L	1.6E-03	1.6E-03	1.6E-03	1.6E-03	1.6E-03	1.5E-03	1.5E-03	1.5E-03	1.5E-03	1.6E-03	1.6E-03	1.6E-03	1.6E-03
CL	mg/L	1.0E-03	1.0E-03	1.0E-03	122.3E.33 %	#2.9E-03 %	14 2E-03 at	# 6.3E-03	18 CC 20 18	AP DISE OUT	225E 00	42.6F-UA	1.0E-03	Conservation of the second sec
Fe	mg/L	2.2E-01	2.2E-01	2.2E-01	2.4E-01	2.6E-01	2.8E-01	\$10-3C-2	14-3.2E-M	200 BE UT	2.5E-01	2.5E-01	2.2E-01	2.5E-01
¥	mg/L	3.0E-01	3.0E-01	3.0E-01	7.4E-01	9.3E-01	1.4E+00	2.1E+00	1.9E+00	2.8E+00	8.1E-01	8.1E-01	3.0E-01	8.1E-01
ВW	mg/L	4.9E-01	4.9E-01	4.9E-01	5.5E-01	5.8E-01	6.5E-01	7.5E-01	7.3E-01	8.6E-01	5.6E-01	5.6E-01	4.9E-01	5.6E-01
Mn	mg/L	5.0E-02	5.0E-02	5.0E-02	5.0E-02	5.0E-02	5.1E-02	5.2E-02	5.2E-02	5.3E-02	5.0E-02	5.0E-02	5.0E-02	5.0E-02
Na	mg/L	2.9E+00	2.9E+00	2.9E+00	6.9E+00	8.6E+00	1.3E+01	1.9E+01	1.8E+01	2.6E+01	7.6E+00	7.5E+00	2.9E+00	7.6E+00
NH4+NH3	mg/L	2.5E-02	2.5E-02	2.5E-02	B.0E-02	4.4E-02	5.6E-02	7.9E-02	7.4E-02	9.9E-02	5.9E-02	4.9E-02	2.5E-02	5.0E-02
ž	mg/L	1.0E-03	1.0E-03	1.0E-03	1.0E-03	1.1E-03	1.1E-03	1.2E-03	1.1E-03	1.2E-03	1.0E-03	1.0E-03	1.0E-03	1.0E-03
NO3	mg/L	13E-01	1.3E-01	1.3E-01	1.8E-01	1.5E-01	1.6E-01	1.8E-01	1.8E-01	2.0E-01	1.6E-01	1.5E-01	1.3E-01	1.5E-01
4	mg/L	2.6E-04	2.6E-04	2.6E-04	2.7E-04	2.7E-04	2.8E-04	3.0E-04	3.0E-04	3.2E-04	2.7E-04	2.7E-04	2.6E-04	2.7E-04
٩	mg/L	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02
Sb	mg/L	1.0E-03	1.0E-03	1.0E-03	1.1E-03	1.1E-03	1.2E-03	1.3E-03	1.2E-03	1.4E-03	1.1E-03	1.1E-03	1.0E-03	1.1E-03
Se	mg/L	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04
S04	mg/L	1.0E+00	1.0E+00	1.0E+00	1.0E+01	1.4E+01	2.3E+01	3.8E+01	3.5E+01	5.4E+01	1.2E+01	1.2E+01	1.0E+00	1.2E+01
D	mg/L	5.0E-05	5.0E-05	5.0E-05	6.4E-05	7.0E-05	8.3E-05	1.1E-04	1.0E-04	1.3E-04	6.6E-05	6.6E-05	5.0E-05	6.6E-05
Zn	mg/L	1 8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02
CN (Total)	mg/L	1.0E-03	1.0E-03	1.0E-03	3.9E-03	5.1E-03	8.0E-03	1.3E-02	1.2E-02	1.7E-02	4.4E-03	4.3E-03	1.06-03	4.3E-03

Golder Associates

WD Moseing/Teak 75006, 24/0CT07 Memo Verson/Appendix B - High Flow xis

8

N VARM

6
ର
8
5
8

APPENDIX C

AVERAGE MONTHLY LOADING RATES AND MIXING CELL CALULATIONS FOR LOW FLOW CONDITIONS

October, 2007

07-1118-0007 (041C)

06-1118-041C (7000/7600)

TABLE C1 AVERAGE MONTHLY LOADING RATES FOR THE MINE EFFLUENT DISCHARGE SCENARIO 3 - LOW FLOW

Parameter	line Effluent	A CONTRACTOR OF A					ge Monthly L	oading Rates (ing's)				
	atter Cuality (1)	Jan 199	166	And Not	Aor	Ven .	S. Unit		Aug	dag	oet e	Non	Same
en Effuent Discharoe Ra	te (m ³ /s)	0	0	0	5.56E-02	5.70E-02	5.59E-02	5.56E-02	5.64E-02	5.81E-02	0.018103307	0.05164620	-
Aa	0.0003	0	0	0	1.78E-02	1.82E-02	1.79E-02	1.78E-02	1.80E-02	1.86E-02	5.79E-03	1.65E-02	
A	0.04	0	0	0	2.22E+00	2.28E+00	2.23E+00	2.22E+00	2.25E+00	2.32E+00	7.24E-01	2.07E+00	
As	0.2	0	0	0	9.45E+00	9.69E+00	9.50E+00	9.45E+00	9.58E+00	9.87E+00	3.08E+00	8.78E+00	
Ca	215	0	0	0	1.20E+04	1.22E+04	1.20E+04	1,19E+04	1.21E+04	1.25E+04	3.89E+03	1.11E+04	
Cd	0.00002	0	0	0	8.34E-05	8.55E-05	8.38E-05	8.34E-05	8.45E-05	8.71E-05	2.72E-05	7.75E-05	
0	24	0	0	0	1.33E+03	1.37E+03	1.34E+03	1.33E+03	1.35E+03	1.39E+03	4.34E+02	1.24E+03	
5 0	0.2	0	0	0	1.21E+01	1.24E+01	1.21E+01	1.21E+01	1.22E+01	1.26E+01	3.93E+00	1.12E+01	
·····································	0.0003	0	0	0	1.39E-02	1.42E-02	1.40E-02	1.39E-02	1.41E-02	1.45E-02	4.53E-03	1.29E-02	
CL	0.2	0	0	0	1.12E+01	1.15E+01	1.12E+01	1.12E+01	1.13E+01	1.17E+01	3.64E+00	1.04E+01	
E	4	0	0	0	2.48E+02	2.54E+02	2.49E+02	2.48E+02	2.51E+02	2.59E+02	8.07E+01	2.30E+02	
×	67	0	0	0	3.71E+03	3.81E+03	3.73E+03	3.71E+03	3.76E+03	3.88E+03	1.21E+03	3.45E+03	\square
Ma	9	0	0	0	5.73E+02	5.87E+02	5.75E+02	5.72E+02	5.80E+02	5.98E+02	1.86E+02	5.32E+02	
Mn	0.1	0	0	0	7.34E+00	7.52E+00	7.37E+00	7.34E+00	7.44E+00	7.67E+00	2.39E+00	6.82E+00	\square
Na	610	0	0	ç	3.39E+04	3.48E+04	3,41E+04	3.39E+04	3.44E+04	3.54E+04	1.10E+04	3.15E+04	
NH4+NH3		0	0	0	1.24E+03	2.58E+02	2.46E+02	2.54E+02	2.52E+02	2.54E+02	2.90E+02	3.19E+02	
īz	0.007	0	0	0	3.95E-01	4.05E-01	3.97E-01	3.95E-01	4.00E-01	4.12E-01	1.29E-01	3.67E-01	
NO3	(z) -	0	0	0	1.24E+03	2.58E+02	2.46E+02	2.54E+02	2.52E+02	2.54E+02	2.90E+02	3.19E+02	
Pp	0.002	0	0	0	9.73E-02	9.97E-02	9.77E-02	9.72E-02	9.86E-02	1.02E-01	3.17E-02	9.04E-02	-
٩	0.01	0	0	0	5.56E-01	5.70E-01	5.59E-01	5.56E-01	5.64E-01	5.81E-01	1.81E-01	5.16E-01	
ß	0.01	0	0	0	6.00E-01	6.15E-01	6.03E-01	6.00E-01	6.09E-01	6.27E-01	1.96E-01	5.58E-01	
Se	0.0005	0	0	0	2.78E-02	2.85E-02	2.79E-02	2.78E-02	2.82E-02	2.90E-02	9.05E-03	2.58E-02	
S04	1400	0	0	0	7.78E+04	7.986+04	7.82E+04	7.78E+04	7.89E+04	8.13E+04	2.53E+04	7.23E+04	
IT IT	0.002	0	0	0	1.18E-01	1.21E-01	1.19E-01	1.18E-01	1.20E-01	1.24E-01	3.86E-02	1.10E-01	
Zn	0.03	0	0	0	1.50E+00	1.54E+00	1.51E+00	1.50E+00	1.52E+00	1.57E+00	4.89E-01	1.39E+00	
5			0	0	2.45E+01	2.51E+01	2.46E+01	2.45E+01	2,48E+01	2.56E+01	7.97E+0C	2.27E+01	1

Golder Associates

11118.041C. Marels Good Tourway Prov.044aas 7000 - WO Moderson and Red 2400107 Merris Verson Appendix C - Low Flow 24

1 of 7

29/10/2007

TABLE C2 AVERAGE MONTHLY LOADING RATES FOR SCRAGGY LAKE SCENARIO 3 - LOW FLOW TOUQUOY GOLD PROJECT

						Aver	age Monthly L	xeding Rates Ir	ngis)		でいたない	A. S. S.	and a state
Paramoter	Water Dustity				「日本のない」というない		Fragment Sources, and the Barthe of American Sources			() · · · · ·		Call Control	11.48.4
		Jan t	Feb	· Nat	Apr	Aay .	Jun	and the second	Aug	Sep 3	Oet 🐰	Nov	Dec
pwatershed Net F	Flow Rate (m ³ /s)	1.43E+00	1.47E+00	2.06E+00	1.26E+00	8.96E-01	5.14E-01	2.99E-01	3.33E-01	2.19E-01	3.49E-01	1.01E+00	1.68E+00
Ag	0.00005	7.15E-02	7.35E-02	1.03E-01	6.32E-02	4.48E-02	2.57E-02	1.49E-02	1.66E-02	1.10E-02	1.75E-02	5.05E-02	8.40E-02
A	0.2	2.68E+02	2.75E+02	3.86E+02	2.37E+02	1.68E+02	9.63E+01	5.59E+01	6.23E+01	4.11E+01	6.54E+01	1.89E+02	3.15E+02
As	0.001	1.43E+00	1.47E+00	2.06E+00	1.26E+00	8.96E-01	5.14E-01	2.99E-01	3.33E-01	2.19E-01	3.49E-01	1.01E+00	1.68E+00
Са	+	1.43E+03	1.47E+03	2.06E+03	1.26E+03	8.96E+02	5.14E+02	2.99E+02	3.33E+02	2.19E+02	3.49£+02	1.01E+03	1.68E+03
Cd	0.00002	2.81E-02	2.88E-02	4.04E-02	2.48E-02	1.76E-02	1.01E-02	5.86E-03	6.53E-03	4.30E-03	6.86E-03	1.98E-02	3.30E-02
ū	4	5.72E+03	5.88E+03	8.24E+03	5.06E+03	3.59E+03	2.06E+03	1.19E+03	1.33E+03	8.77E+02	1.40E+03	4.04E+03	6.72E+03
Co	0.0002	2.86E-01	2.94E-01	4.12E-01	2.53E-01	1.79E-01	1.03E-01	5.97E-02	6.65E-02	4.39E-02	6.99E-02	2.02E-01	3.36E-01
cr	0.005	6.86E+00	7.06E+00	9.89E+00	6.07E+00	4.30E+00	2.47E+00	1.43E+00	1.60E+00	1.05E+00	1.68E+00	4.84E+00	8.06E+00
Сп	0.001	1.43E+00	1.47E+00	2.06E+00	1.26E+00	8.96E-01	5.14E-01	2.99E-01	3.33E-01	2.19E-01	3.49E-01	1.01E+00	1.68E+00
Fe	0.2	3.36E+02	3.46E+02	4.85E+02	2.97E+02	2.11E+02	1.21E+02	7.02E+01	7.83E+01	5.16E+01	8.22E+01	2.37E+02	3.95E+02
×	0.3	4.65E+02	4.78E+02	6.70E+02	4.11E+02	2.91E+02	1.67E+02	9.70E+01	1.08E+02	7.13E+01	1.14E+02	3.28E+02	5.46E+02
Mg	0.4	6.08E+02	6.25E+02	8.76E+02	5.37E+02	3.81E+02	2.18E+02	1.27E+02	1.41E+02	9.32E+01	1.49E+02	4.29E+02	7.14E+02
Mn	0.05	6.55E+01	6.74E+01	9.44E+01	5.79E+01	4.11E+01	2.36E+01	1.37E+01	1.52E+01	1.01E+01	1.60E+01	4.62E+01	7.70E+01
Na	3	4.25E+03	4.37E+03	6.13E+03	3.76E+03	2.67E+03	1.53E+03	8.88E+02	9.90E+02	6.53E+02	1.04E+03	3.00E+03	5.00E+03
NH4+NH3	0.03	3.58E+01	3.68E+01	5.15E+01	3.16E+01	2.24E+01	1.29E+01	7.46E+00	8.32E+00	5.48E+00	8.74E+00	2.52E+01	4.20E+01
Ni	0.001	1.43E+00	1.47E+00	2.06E+00	1.26E+00	8.96E-01	5.14E-01	2.99E-01	3.33E-01	2.19E-01	3.49E-01	1.01E+00	1.68E+00
NO3	0.05	6.79E+01	6.98E+01	9.79E+01	6.01E+01	4.26E+01	2.44E+01	1.42E+01	1.58E+01	1.04E+01	1.66E+01	4.79E+01	7.98E+01
PP	10.0003 10.0003	4.47E-01	4.59E-01	6.44E-01	3.95E-01	2.80E-01	1.61E-01	9.33E-02	1.04E-01	6.85E-02	1.09E-01	3.15E-01	5.25E-01
۵.	0.02	2.15E+01	2.21E+01	3.09E+01	1.90E+01	1.34E+01	7.71E+00	4.48E+00	4.99E+00	3.29E+00	5.24E+00	1.51E+01	2.52E+01
Sb		1.43E+00	1.47E+00	2.06E+00	1.26E+00	8.96E-01	5.14E-01	2.99E-01	3.33E-01	2.19E-01	3.49E-01	1.01E+00	1.68E+00
Se	(語)、2葉*0.0005葉に、244	7.15E-01	7.35E-01	1.03E+00	6.32E-01	4.48E-01	2.57E-01	1.49E-01	1.66E-01	1.10E-01	1.75E-01	5.05E-01	8.40E-01
S04		1.43E+03	1.47E+03	2.06E+03	1.26E+03	8.96E+02	5.14E+02	2.99E+02	3.33E+02	2.19E+02	3.49E+02	1.01E+03	1.68E+03
Þ	0.0005	7.15E-02	7.35E-02	1.03E-01	6.32E-02	4.48E-02	2.57E-02	1.49E-02	1.66E-02	1.10E-02	1.75E-02	5.05E-02	8.40E-02
Zu	0.01	1.76E+01	1.80E+01	2.53E+01	1.55E+01	1.10E+01	6.31E+00	3.66E+00	4.08E+00	2.69E+00	4.29E+00	1.24E+01	2.06E+01
CN	0.001	1.43E+00	1.47E+00	2.06E+0C	1.26E+00	8.96E-01	5.14E-01	2.99E-01	3.33E-01	2.19E-01	3.49E-01	1.01E+0C	1.68E+0C

· ·

XUMPAN N

~
0
0
2
Ó
5
σ,
2

Se					

TABLE C3 AVERAGE MONTHLY LOADING RATES FOR FISH RIVER SCENARIO 3 - LOW FLOW TOUQUOY GOLD PROJECT

金融に満ちた	Fish River Baseline					Avera	ge Monthly Lo	ading Rates (n	lsou				
	Water Cuality	- Lai	Feb			Nen	- Internet	1 m	Aug	as in	* Oct >	Jon -	8
ubwatershed Net Flow	v Rate (m ³ /s)	4.16E+00	4.27E+00	6.00E+00	3.67E+00	2.60E+00	1.50E+00	8.83E-01	9.72E-01	6.51E-01	1.02E+00	2.94E+00	4.90E+00
Ag	0.00006	2.08E-01	2.14E-01	3.00E-01	1.84E-01	1.30E-01	7.48E-02	4.41E-02	4.86E-02	3.26E-02	5.08E-02	1.47E-01	2.45E-01
A	0.2	7.11E+02	7.30E+02	1.03E+03	6.28E+02	4.45E+02	2.56E+02	1.51E+02	1.66E+02	1.11E+02	1.74E+02	5.03E+02	B.38E+02
As	0.005	2.08E+01	2.14E+01	3.00E+01	1.84E+01	1.30E+01	7.48E+00	4,41E+00	4.86E+00	3.26E+00	5.08E+00	1.47E+01	2.45E+01
Ca	-	5.42E+03	5.56E+03	7.82E+03	4.78E+03	3.39E+03	1.95E+03	1.15E+03	1.27E+03	8.49E+02	1.32E+03	3.83E+03	6.38E+03
3	0.00003	1.25E-02	1.28E-02	1.80E-02	1.10E-02	7.81E-03	4.49E-03	2.65E-03	2.92E-03	1.95E-03	3.05E-03	8.83E-03	1.47E-02
CI	4	1.66E+04	1.71E+04	2.40E+04	1.47E+04	1.04E+04	5.99E+03	3.53E+03	3.89E+03	2.61E+03	4.07E+03	1,18E+04	1.96E+04
8		8.32E-01	8.54E-01	1.20E+00	7.34E-01	5.21E-01	2.99E-01	1.77E-01	1.94E-01	1.30E-01	2.03E-01	5.88E-01	9.B0E-01
ç	0.001	4.16E+00	4.27E+00	6.00E+00	3.67E+00	2.60E+00	1.50E+00	8.83E-01	9.72E-01	6.51E-01	1.02E+00	2.94E+00	4.90E+00
J	100.0	4.16E+00	4.27E+00	6.00E+00	3.67E+00	2.60E+00	1.50E+00	8.83E-01	9.72E-01	6.51E-01	1.02E+00	2.94E+00	4.90E+00
Fe	0.2	9.23E+02	9.47E+02	1.33E+03	8.14E+02	5.78E+02	3.32E+02	1.96E+02	2.16E+02	1.44E+02	2.25E+02	6.53E+02	1.09E+03
×	0.3	1.25E+03	1.28E+03	1.80E+03	1.10E+03	7.81E+02	4.49E+02	2.65E+02	2.92E+02	1.95E+02	3.05E+02	8.83E+02	1 47E+03
Mg	0.5	2.08E+03	2.14E+03	3.00E+03	1.84E+03	1.30E+03	7.48E+02	4.41E+02	4.86E+02	3.26E+02	5.08E+02	1.47E+03	2 45E+03
Wn	0.05	2.18E+02	2.24E+02	3.15E+02	1.92E+02	1.37E+02	7.85E+01	4.63E+01	5.10E+01	3.42E+01	5.33E+01	1.54E+02	2.57E+02
Na		1.22E+04	1.25E+04	1.76E+04	1.08E+04	7.64E+03	4.39E+03	2.59E+03	2.85E+03	1.91E+03	2.98E+03	8.63E+03	1.44E+04
NH4+NH3	0.03	1.04E+02	1.07E+02	1.50E+02	9.18E+01	6.51E+01	3.74E+01	2.21E+01	2.43E+01	1.63E+01	2.54E+01	7.36E+01	1.23E+02
ž	20.001 ····	4.16E+00	4.27E+00	6.00E+00	3.67E+00	2.60E+00	1.50E+00	8.83E-01	9.72E-01	6.51E-01	1.02E+00	2.94E+00	4.90E+00
NO3	0.2	6.70E+02	6.88E+02	9.66E+02	5.91E+02	4.19E+02	2.41E+02	1.42E+02	1.57E+02	1.05E+02	1.64E+02	4.74E+02	7.89E+02
	E0000	1.04E+00	1.07E+00	1.50E+00	9.18E-01	6.51E-01	3.74E-01	2.21E-01	2.43E-01	1.63E-01	2.54E-01	7.36E-01	1.23E+00
đ	10.0 × 2 × 2	4.16E+01	4.27E+01	6.00E+01	3.67E+01	2.60E+01	1.50E+01	8.83E+00	9.72E+00	6.51E+00	1.02E+01	2.94E+01	4 90E+01
Sb	0.001	4.16E+00	4.27E+00	6.00E+00	3.67E+00	2.60E+00	1.50E+00	8.83E-01	9.72E-01	6.51E-01	1.02E+00	2.94E+00	4 90E+00
Se	0.0006 W	2.08E+00	2.14E+00	3.D0E+00	1.84E+00	1.30E+00	7.48E-01	4.41E-01	4.86E-01	3.26E-01	5.08E-01	1.47E+00	2.45E+00
S04	ないでは、「「「ないな」」であった。	4,16E+03	4.27E+03	6.00E+03	3.67E+03	2.60E+03	1.50E+03	8.83E+02	9.72E+02	6.51E+02	1.02E+03	2.94E+03	4.90E+03
	0.00005 Martin	2.08E-01	2.14E-01	3.00E-01	1.84E-01	1.30E-01	7.48E-02	4.41E-02	4.86E-02	3.26E-02	5.08E-02	1.47E-01	2.45E-01
ъ	0.02	8.17E+01	8.39E+01	1.18E+02	7.21E+01	5.12E+01	2.94E+01	1.73E+01	1.91E+01	1.28E+01	2.00E+01	5.78E+01	9,63E+01
CN	······································	4.16E+0C	4.27E+0C	6.00E+0C	3.67E+00	2.60E+00	1.50E+00	8.83E-01	9.72E-01	6.51E-01	1.02E+0C	2.94E+0C	4.90E+0C

Golder Associates

V V COM

29/10/2007
TABLE C4 AVERAGE MONTHLY LOADING RATES FOR LAKE CHARLOTTE SCENARIO 3 - LOW FLOW TOUQUOY GOLD PROJECT

	Charlotte					Avera	ige Monthly Lt	bading Rates (r	(5,6 u	教育会		語を見て	
Parameter	Baselihe Water	Jan	2		Antore	Arn S	n,	, II	Aug	Sap	Od .	Nov.	2
pwatershed Net B	Flow Rate {m ³ /s)	4.00E+00	4.11E+00	5.78E+00	3.53E+00	2.51E+00	1.44E+00	8.44E-01	9.33E-01	6.18E-01	9.84E-01	2.83E+00	4.71E+D0
ВA	S 2 300000 S	2.00E-01	2.06E-01	2.89E-01	1.77E-01	1.25E-01	7.19E-02	4.22E-02	4.66E-02	3.09E-02	4.92E-02	1.41E-01	2.36E-01
A	0.2	6.80E+02	6.99E+02	9.83E+02	6.01E+02	4.26E+02	2.44E+02	1.43E+02	1.59E+02	1.05E+02	1.67E+02	4.81E+02	8.01E+02
As	0.004	1.64E+01	1.69E+01	2.37E+01	1.45E+01	1.03E+01	5.90E+00	3.46E+00	3.82E+00	2.53E+00	4.03E+00	1.16E+01	1.93E+01
Ca	•	4.80E+03	4.93E+03	6.94E+03	4.24E+03	3.01E+03	1.73E+03	1.04E+03	1.12E+03	7.42E+02	1.18E+03	3.40E+03	5.65E+03
8	600000	3.40E-02	3.49E-02	4.91E-02	3.00E-02	2.13E-02	1.22E-02	7.17E-03	7.93E-03	5.25E-03	8.36E-03	2.41E-02	4.00E-02
σ	4	1.60E+04	1.64E+04	2.31E+04	1.41E+04	1.00E+04	5.75E+03	3.37E+03	3.73E+03	2.47E+03	3.94E+03	1.13E+04	1.88E+04
රී	0.0002	8.00E-01	8.22E-01	1.16E+00	7.07E-01	5.01E-01	2.88E-01	1.69E-01	1.87E-01	1.24E-01	1.97E-01	5.66E-01	9.42E-01
ర	AND 0.001	4.00E+00	4.11E+00	5.78E+00	3.53E+00	2.51E+00	1,44E+00	8.44E-01	9.33E-01	6.18E-01	9.84E-01	2.83E+00	4.71E+00
3	ALC: 0.001	4.00E+00	4.11E+00	5.78E+00	3.53E+00	2.51E+00	1.44E+00	8.44E-01	9.33E-01	6.18E-01	9.84E-01	2.83E+00	4.71E+00
Fe	0.2	8.20E+02	8.43E+02	1.18E+03	7.25E+02	5.14E+02	2.95E+02	1.73E+02	1.91E+02	1.27E+02	2.02E+02	5.80E+02	9.66E+02
¥	0.3	1.20E+03	1.23E+03	1.73E+03	1.06E+03	7.52E+02	4.31E+02	2.53E+02	2.80E+02	1.85E+02	2.95E+02	8.49E+02	1.41E+03
βM	0.5	2.00E+03	2.06E+03	2.89E+03	1.77E+03	1.25E+03	7.19E+02	4.22E+02	4.66E+02	3.09E+02	4.92E+02	1.41E+03	2.36E+03
Ч	0.05	1.92E+02	1.97E+02	2.77E+02	1.70E+02	1.20E+02	6.90E+01	4.05E+01	4.48E+01	2.97E+01	4.72E+01	1.36E+02	2.26E+02
Ra	3	1.16E+04	1,19E+04	1.68E+04	1.03E+04	7.27E+03	4.17E+03	2.45E+03	2.71E+03	1.79E+03	2.85E+03	8.21E+03	1.37E+04
NH4+NH3	[18] · · · · · · · · · · · · · · · · · · ·	1.00E+02	1.03E+02	1.45E+02	8.84E+01	6.27E+01	3.60E+01	2.11E+01	2.33E+01	1.55E+01	2.46E+01	7.07E+01	1.18E+02
Ņ	0.001	4.00E+00	4.11E+00	5.78E+00	3.53E+00	2.51E+00	1.44E+00	8.44E-01	9.33E-01	6.18E-01	9.84E-01	2.83E+00	4.71E+00
NO3	1	5.00E+02	5.14E+02	7.23E+02	4.42E+02	3.13E+02	1.80E+02	1.05E+02	1.17E+02	7.73E+01	1.23E+02	3.54E+02	5.89E+02
Pb	0.0003	1.00E+00	1.03E+00	1.45E+00	8.84E-01	6.27E-01	3.60E-01	2.11E-01	2.33E-01	1.55E-01	2.46E-01	7.07E-01	1.18E+00
ط	1000 A. 1997	4.00E+01	4.11E+01	5.78E+01	3.53E+01	2.51E+01	1.44E+01	8.44E+00	9.33E+00	6.18E+00	9.84E+00	2.83E+01	4.71E+01
Sb	9. 20 0.001 · 19 · 1	4.00E+00	4.11E+00	5.78E+00	3.53E+00	2.51E+00	1.44E+00	8.44E-01	9.33E-01	6.18E-01	9.84E-01	2.83E+00	4.71E+00
Se	144 0.0005 J	2.00E+00	2.06E+00	2.89E+00	1.77E+00	1.25E+00	7.19E-01	4.22E-01	4.66E-01	3.09E-01	4.92E-01	1.41E+00	2.36E+00
SO4	「「「「「「」」、「「」」、「「」」、「「」」、「」、「」、「」、「」、「」、「	4.00E+03	4.11E+03	5.78E+03	3.53E+03	2.51E+03	1.44E+03	8.44E+02	9.33E+02	6.18E+02	9.84E+02	2.83E+03	4.71E+03
n	122 Pro 0.00005 1 1 1	2.00E-01	2.06E-01	2.89E-01	1.77E-01	1.25E-01	7.19E-02	4.22E-02	4.66E-02	3.09E-02	4.92E-02	1.41E-01	2.36E-01
Z	0.02	7.24E+01	7.44E+01	1.06E+02	6.40E+01	4.54E+01	2.60E+01	1.53E+01	1.69E+01	1.12E+01	1.78E+01	5.12E+01	8.53E+01
S	0.001	4.00E+0C	4.11E+00	5.78E+0C	3.53E+00	2.51E+0C	1.44E+00	8.44E-01	9.33E-01	6.18E-01	9.84E-01	2.83E+0C	4.71E+0C

- WO ModelingTask 76005 240CT07 Memo Version/Appendix C - Low Flow 1%

1115-041C- Attentic Gold Touquey PropeoPhese 7000

DOD/WAPWON

4 of 7

SI SI			2

TABLE C5 CALCULATION RESULTS FOR MIX 1 SCENARIO 3 - LOW FLOW

Mit Mate	Matrix Matrix<	Parameter (Units Parameter (Units Cumulative Elow Rate M/s Ag Mg/ As Mg/		And Antoine								X	www.www.ucci	A new a standing of the second	
Marrier <t< th=""><th>Matrix Target Target<</th><th>Cumulative Flow Rate m/s Cumulative Flow Rate m/s Al mg/ As mg/</th><th></th><th></th><th></th><th></th><th>dix 1 - Wi</th><th>ater Quali</th><th>ty in Scra</th><th>ggy Lake</th><th></th><th></th><th></th><th></th><th>Annel</th></t<>	Matrix Target Target<	Cumulative Flow Rate m/s Cumulative Flow Rate m/s Al mg/ As mg/					dix 1 - Wi	ater Quali	ty in Scra	ggy Lake					Annel
Outmaintyre friow factor Michael Michae	Outmative Flow False off 1 4 ± 00 1 ± ± 00 1 \pm ± 00 1 ± ± 00 1 \pm ± 00	Cumulative Flow Rate m ³ /s Ag mg/L As mg/L As mg/L		Feb 3	-93	Apr	May	me		Aug	Sep	, oct	Nov	ě	Concentratio
Ap MpU SGE-G6 SGE-G7	Na Mart M	Ag mg/L Ag mg/L Ag mg/L	1.4E+00	1.5E+00	2.1E+00	1.3E+00	9.5E-01	5.7E-01	3.5E-01	3.9E-01	2.8E-01	3.7E-01	1.1E+00	1.7E+00	9.9E-01
Ai mpt	Nim mich	Ai mg/L As mg/L	\$ 5.0E-05	5.0E-05	5.0E-05	6.1E-05	6.6E-05	7.6E-05	9.2E-05	8.9E-05	WARE DAM	6.3E-05	6.3E-05	5.0E-05	5.9E-05
As moli 10E-03	As Mupt 10E-03	As mg/L	20-36-04	20 30 30 Store	「 」 し 。 当 の に の に 。 。 。 、 。 、 。 、 。 、 。 、 。 、 。 、 。 、 。 、 。 、 。 、 。 、 、 、 、 、 、 、 、 、 、 、 、 、	1.8E-01 %	3(13E-01 就	14.7E-01	10-39 NG	ALC: NE-OF	Elise of the	10/30°		ICEU.	
Ca mgL 10E-00	Ca mpl. 1 (16:00 1 (16		1.0E-03	1.0E-03	1.0E-03	20 BE DO 20	THE OZ W	Q. 1.8E-02 39	18 2.8E-02 - 10	20502	20 GE-02	Sure No.	N. 5740	1.0E-03	
Cd mgL Accesses Exerction State one Accesses Acce	Cd mpl Speciely Specie		1.0E+00	1.0E+00	1.0E+00	1.0E+01	1.4E+01	2.2E+01	3.5E+01	3.2E+01	4.6E+01	1.2E+01	1.1E+01	1.0E+00	8.3E+00
CI mgL 406+00 406+00 406+00 406+00 406+00 506+00 760	Cl mpL 166-40 166-40 266-40 266-40 266-40 166-40 376-40 Ca mpL 2064 306-40 386-40 386-40 386-40 386-40 386-40 366-	Cd mg/L	ALC DE DE	00 - 00 - 00 - 00 - 00	412.0E-06 E	· 1.0E206 法	24/9E-05 %		1.7E-05	1.7E-05	1.6E-05		C HOLEGUE	NOT OF	
Co mg/L 206-04	Co mpl 206:04	CI I mor	4.0E+00	4.0E+00	4.0E+00	4.8E+00	5.2E+00	6.0E+00	7.1E+00	6.9E+00	8.2E+00	5.0E+00	5.0E+00	4.0E+00	4.7E+00
Cr mg/L 486-03 486-03 466-03 446-03 416-03 416-03 466-03 366-00 356-00 356-00 356-01 256 466-03 366-00 356-01	Cr mgL 4.8E.03	Co Co Mart	2.0E-04	2.0E-04	2.0E-04	9.3E-03	1.3E-02	2.1E-02	3.4E-02	3.2E-02	4.6E-02	1.1E-02	1.1E-02	2.0E-04	7.6E-03
Cu mg/L 10E-03	UL mg/L 10E-03	Cr mg/L	4.8E-03	4.8E-03	4.8E-03	4.6E-03	4.5E-03	4.4E-03	4.1E-03	4.1E-03	3.8E-03	4.6E-03	4.6E-03	4.8E-03	4.6E-03
Fe mg/L 2.4E-01 2.4E-01 2.4E-01 2.4E-01 3.3E-01 3.2E-02 3.4E-01 3.2E-02 3.4E-01 3.2E-01 3.2E-0	Fo mgr. 2.4E-01 2.4E-01 3.2E-01 3.2E-0	Cu mg/L	1.06-03	1.0E-03	1.0E-03	8,4E-03	2013E-02-55	221E-02151	ELS.2E-02284	STOE OZ	RAJE-02	DE E-02	第11日-02-28	1.0E-03	(v) = V
K mg/l 33E-01 34E-01	K mg/l 33E-01	Fe Fe mg/L	2.4E-01	2.4E-01	2.4E-01	-4.1E-01	第10-36.7%	A B.SE-UNAR	059.0E-0120	NO SECOND		AND OF		2.4E-01	1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
Mg mg/L 43E-01 33E+00 31E-01 31E-01 33E+01 33E+01 33E+01 33E+01 33E+01 33E+01 33E+01 33E+01 33E+01 32E+02 24E+02 24E+02 24E+02 54E+02 54E+02 54E+02 53E+01 33E+01 33E+01 32E+01 32E+01 32E+01 32E+01 32E+02 24E+02	Mg mg/l 43E-01 54E-02	K mg/L	3.3E-01	3.3E-01	3.3E-01	3.1E+00	4.3E+00	6.8E+00	1.1E+01	1.DE+01	1.4E+01	3.6E+00	3.6E+00	3.3E-01	2.6E+00
Mn mgt 46£-02 46£-02 46£-02 46£-02 46£-02 46£-02 46£-02 46£-02 46£-02 46£-02 46£-02 46£-02 46£-02 46£-02 46£-02 50£-02 46£-02 2.46 46£-02 2.46 46£-02 2.46 <td>Mn mgt 46E-02 32E-01 32E-01</td> <td>Mg Mg Mg/L</td> <td>4.3E-01</td> <td>4.3E-01</td> <td>4.3E-01</td> <td>8.4E-01</td> <td>1.0E+00</td> <td>1.4E+00</td> <td>2.0E+00</td> <td>1.9E+00</td> <td>2.5E+00</td> <td>9.1E-01</td> <td>9.1E-01</td> <td>4.3E-01</td> <td>7.6E-01</td>	Mn mgt 46E-02 32E-01	Mg Mg Mg/L	4.3E-01	4.3E-01	4.3E-01	8.4E-01	1.0E+00	1.4E+00	2.0E+00	1.9E+00	2.5E+00	9.1E-01	9.1E-01	4.3E-01	7.6E-01
Na mgL 30E+00 30E+00 30E+00 30E+00 30E+00 30E+00 30E+01 38E+01 33E+01 33E+01 33E+01 33E+01 33E+01 33E+01 33E+01 33E+01 30E+00	Na mgL 30E+00 30E+00 30E+00 30E+00 30E+01 38E+01 54E+01 94E+01 15E+02 33E+01 30E+01 33E+01 30E+00 30E+00 24E+01 24E+01 54E+01	Mn mg/L	4.6E-02	4.6E-02	4.6E-02	4.9E-02	5.1E-02	5.4E-02	5.9E-02	5.8E-02	6.4E-02	5.0E-02	5.0E-02	4.6E-02	4.9E-02
NH4-NH3 mg/L 25E-02 25E-02 25E-01 29E-01 29E-01 29E-01 29E-01 29E-01 29E-01 29E-01 25E-02 25E-02 25E-02 25E-02 25E-02 25E-02 201 NI mg/L 10E-03 10E-03 10E-03 10E-03 10E-03 12E-04 31E-01 35E-01 35E-01 35E-01 32E-01 31E-03 12E-03 31E-03 13E-03 13E-03 13E-03 13E-03 31E-04 <t< th=""><td>NH4-NH3 mgL 25E-02 22E-03 12E-03 13E-01 32E-01 32E-01 22E-03 12E-03 13E-03 12E-03 12E-03 12E-03 13E-03 13E-03 13E-03 13E-03 31E-03 31E-03</td></t<> <td>Na mg/L</td> <td>3.0E+00</td> <td>3.0E+00</td> <td>3.0E+00</td> <td>2.9E+01</td> <td>3.9E+01</td> <td>6.2E+01</td> <td>9.8E+01</td> <td>9.1E+01</td> <td>1.3E+02</td> <td>3.3E+01</td> <td>3.3E+01</td> <td>3.0E+00</td> <td>2.4E+01</td>	NH4-NH3 mgL 25E-02 22E-03 12E-03 13E-01 32E-01 32E-01 22E-03 12E-03 13E-03 12E-03 12E-03 12E-03 13E-03 13E-03 13E-03 13E-03 31E-03	Na mg/L	3.0E+00	3.0E+00	3.0E+00	2.9E+01	3.9E+01	6.2E+01	9.8E+01	9.1E+01	1.3E+02	3.3E+01	3.3E+01	3.0E+00	2.4E+01
Ni mg/L 10E-03 10E-03 10E-03 13E-03 10E-03 12E-03 31E-04	Ni mg/L 10e-03	NH4+NH3 mg/L	2.5E-02	2.5E-02	2.5E-02	9.6E-01	2.9E-01	4.5E-01	7,4E-01	6.7E-01	9.3E-01	8.1E-01	3.2E-01	2.5E-02	2.8E-01
NO3 mgL 48E-02 48E-02 48E-02 38E-01 31E-01 31E-01 31E-01 31E-01 33E-01 48E-02 31E-04 31E-02 31E-02 31E-02 31E-04	NO3 mgL 48E-02	Ni mg/L	1.0E-03	1.0E-03	1.0E-03	1.3E-03	1.4E-03	1.6E-03	2.0E-03	1.9E-03	2.3E-03	1.3E-03	1.3E-03	1.0E-03	1.2E-03
Pb mg/L 31E-04	Pb mg/L 31E-04 31E-02 13E-02	NO3 NO3	4.8E-02	4.8E-02	4.8E-02	9.8E-01	3.1E-01	4.7E-01	7.6E-01	6.95-01	9.5E-01	8.3E-01	3.5E-01	4.8E-02	3.1E-01
P mg/L 156-02 136-02	P mg/L 1,5E-02 1,5E-03 1,3E-03	Pb Pb	3.1E-04	3.1E-04	3.1E-04	3.7E-04	4.0E-04	4.5E-04	5.4E-04	5.2E-04	6.1E-04	3.8E-04	3.8E-04	3.1E-04	3.6E-04
Sb mg/L 1.0E-03 1.0E-03 1.0E-03 1.4E-03 1.4E-03 1.4E-03 1.4E-03 1.4E-03 1.4E-03 1.6E-03 1.5E-03 1.5E-03 1.5E-03 1.5E-03 1.5E-03 1.5E-03 1.0E-03 1.0E<03	Sb mg/L 1.0E-03 1.0E-03 1.0E-03 1.4E-03 1.4E-03 1.4E-03 1.4E-03 1.4E-03 1.4E-03 1.4E-03 1.2E-03 1.5E-03 1.5E-03 1.5E-03 1.5E-03 1.5E-03 1.5E-03 1.5E-03 1.5E-03 1.2E-03 1.0E-03 1.2E-03 1.2E-03 1.2E-03 1.2E-03 1.2E-03 1.2E-03 1.2E-03 1.2E-02 1.2E-02 1.2E-02 1.2E-02 1.2E-03 1.2E-03 1.2E-03 1.2E-03 1.2E-03 1.2E-03 1.2E-02 1.2E-0	Р	1.5E-02	1.5E-02	1.5E-02	1.5E-02	1.5E-02	1.5E-02	1.4E-02	1.4E-02	1.4E-02	1.5E-02	1.5E-02	1.5E-02	1.5E-02
Se mg/L S0E-04	Se mg/L 5.0E-04 5.0E-0	Sb Sb mg/L	1.0E-03	1.0E-03	1.0E-03	1.4E-03	1.6E-03	2.0E-03	2.5E-03	2.4E-03	3.1E-03	1.5E-03	1.5E-03	1.0E-03	1.3E-03
SO4 mg/L 1.0E+00 1.0E+	SO4 mg/L 1.0E+00 4.9E+01 1.0E+00 1.2E+02 1.2E+	Se Se mg/L	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04
U mg/L 5.0E-05 5.0E-05 5.0E-05 5.0E-05 1.4E-04 1.7E-04 2.5E-04 3.8E-04 3.5E-04 4.9E-04 1.5E-04 1.5E-04 5.0E-05 1.28 Zn mg/L 1.2E-02 1.2E-02 1.3E-02 1.3E-02 1.4E-02 1.4E-02 1.4E-02 1.4E-02 1.3E-02 1.3E-02 1.3E-02 1.3E CN (Trial) mod 1.0E-03 1.0E-133 1.0E-133 1.0E-133 1.7E-02 3.7E-02 1.3E-02 1.0E-133 1.6E 1.3E 1.0E-133 1.6E 1.3E	U mg/L 5.0E-05 5.0E-05 5.0E-05 5.0E-05 1.4E-04 1.7E-04 2.5E-04 3.8E-04 3.8E-04 1.5E-04 1.5E-04 5.0E-05 1.2E-02 1.3E-02 1.2E-02 1.3E-02 1.2E-02 1.3E-02	SO4 SO4 mg/L	1.0E+00	1.0E+00	1.0E+00	6.0E+01	8.5E+01	1.4E+02	2.2E+02	2.0E+02	2.9E+02	7.0E+01	6.9E+01	1.0E+00	4.9E+01
Zh mgL 1.2E-02 1.2E-02 1.2E-02 1.3E-02 1.3E-02 1.4E-02 1.6E-02 1.6E-02 1.4E-02 1.4E-02 1.5E-02 1.3E-02 1.3E-02 1.3E-02 1.3E CN (Trivial) mol 1.0E-13 1.0E-13 1.0E-13 1.9E-13 1.9E-47 2.7E-47 2.4E-47 7.0E-07 6.5E-47 9.3E-47 2.2E-42 1.0E-13 1.6E	Zn mg/L 1.2E-02 1.2E-02 1.2E-02 1.2E-02 1.3E-02 1.3E-02 1.4E-02 1.4E-02 1.5E-02 1.5E-02 1.3E-02 1.3E-02 1.3E-02 1.2E-02 1.5E-02 1.5E-0	U [mg/L	5.0E-05	5.0E-05	5.0E-05	1.4E-04	1.7E-04	2.5E-04	3.8E-04	3.5E-04	4.9E-04	1.5E-04	1.5E-04	5.0E-05	1.2E-04
CNTMaN molt 10E-03 10E-03 10E-03 10E-03 10E-03 10E-03 4E-00 70E-02 65E-02 93E-02 23E-02 22E-02 10E-03 16	CN (Totel) mg/L 1.0E-03 1.0E-03 1.0E-03 1.0E-03 1.9E-02 2.7E-02 4.4E-02 7.0E-02 6.5E-02 9.3E-02 2.3E-02 2.2E-02 1.0E-03 1.6E-03 0.6E-02	Zn J mg/L	1.2E-02	1.2E-02	1.2E-02	1.3E-02	1.3E-02	1.4E-02	1.5E-02	1.4E-02	1.5E-02	1.3E-02	1.3E-02	1.2E-02	1.3E-02
	ictes Metrico de la contraction de la CAME ruin delina	CN (Total) mg/L	1.0E-03	1.0E-03	1.0E-03	1.9E-02	2.7E-02	4.4E-02	7.0E-02	6.5E-02	9.3E-02	2.3E-02	2.2E-02	1.0E-03	1.6E-02
		store - indicates	t a value creater t	than the COME on	Malina										

Golder Associates

6-1116-041C. Minne: Gold Tougury Project Phase 7000 - Will Modeling/Task 70006 24000707 Memo Verson/Spender C - Low Flow XR

BOOCHHIDIN N

~
Ò.
ο.
Ω.
6
Ξ.
ສ
2

TABLE C6 CALCULATION RESULTS FOR MIX 2 SCENARIO 3 - LOW FLOW

06-1118-041C (7000/7600)

Mix 2 = Mix 1 + Fish I	River Sub	watersheds	Load											
			構築			Mix 2-	Water Qu	ality in Fis	sh River		のないの	15		Annual
		and the	Feb.	W. Hat	.	Ven	in a	P	Nu	đg	Oet 🖉	Nov	Dec	Concentration
Cumulative Flow Rate	m ³ /s	5.6E+00	5.7E+00	8.1E+00	5.0E+00	3.6E+00	2.1E+00	1.2E+00	1.4E+00	9.3E-01	1.4E+00	4.0E+00	6.6E+00	3.8E+00
Ag	mg/L	5.0E-05	5.0E-05	5.0E-05	5.3E-05	5.4E-05	5.7E-05	6.2E-05	6.1E-05	6.7E-05	5.4E-05	5.3E-05	5.0E-05	5.2E-05
A	mg/L	States of the	##1:8E-01	19-38-19	-ALTE-OF	Martine of	·他们下-01-35	あったり	WATER OF AN	調が上の計算	10-21-21		10501	L. 1333
As	mg/L	4.0E-03	4.0E-03	4.0E-03	212:8E-03	386.6E-03 %	AK8.5E-03	2010 E-02 M		調査につい			4.0E-03	100 (Series 100)
Ca	l/gm	1.2E+00	1.2E+00	1.2E+00	3.6E+00	4.6E+00	7.0E+00	1.1E+01	1.0E+01	1.5E+01	4.0E+00	4.0E+00	1.2E+00	3.1E+00
Cd	mg/L	7.3E-06	7.3E-06	7.2E-06	7.2E-06	7.2E-06	7.1E-06	6.9E-06	7.0E-06	6.8E-06	7.2E-06	7.2E-06	7.2E-06	7.2E-06
t	mg/L	4.0E+00	4.0E+00	4.0E+00	4.2E+00	4.3E+00	4.5E+00	4.9E+00	4.8E+00	5.3E+00	4.3E+00	4.3E+00	4.0E+00	4.2E+00
ů	mg/L	2.0E-04	2.0E-04	2.0E-04	2.6E-03	3.7E-03	6.1E-03	9.9E-03	9.2E-03	1.4E-02	3.0E-03	3.0E-03	2.0E-04	2.1E-03
ບັ	mg/L	2.0E-03	2.0E-03	2.0E-03	2.0E-03	1.9E-03	1.9E-03	1.9E-03	1.9E-03	1.9E-03	1.9E-03	1.9E-03	2.0E-03	2.0E-03
Cr	mg/L	1.0E-03	1.0E-03	1.0E-03	3.2E-03	·彩4.2E-03 梁	P16.4E-03 1	141.0E-02	F10.3E.01	是[xe-02]词	表 3.6E-03	143.8E-03	1.0E-03	2012325 (20) (20)
Fe	mg/L	2.3E-01	2.3E-01	2.3E-01	2.7E-01	2.9E-01	第145-94の報	然4.2E-01数	SER. DE OF	10,9E-01,8M	2.8E-01	2.8E-01	2.3E-01	2.6E-01
ĸ	шgЛ	3.1E-01	3.1E-01	3.1E-01	1.0E+00	1.4E+00	2.1E+00	3.3E+00	3.1E+00	4.5E+00	1.2E+00	1.2E+00	3.1E-01	9.0E-01
Mg	mg/L	4.8E-01	4.8E-01	4.8E-01	5.9E-01	6.4E-01	7.5E-01	9.2E-01	8.9E-01	1.1E+00	6.1E-01	6.1E-01	4.8E-01	5.7E-01
Mn	mg/L	5,1E-02	5.1E-02	5.1E-02	5.2E-02	5.2E-02	5.3E-02	5.4E-02	5.4E-02	5.6E-02	5.2E-02	5.2E-02	5.1E-02	5.1E-02
Na	mg/L	2.9E+00	2.9E+00	2.9E+00	9.7E+00	1.3E+01	1.9E+01	3.0E+01	2.8E+01	4.1E+01	1.1E+01	1.1E+01	2.9E+00	8.4E+00
NH4+NH3	тgл	2.5E-02	2.5E-02	2.5E-02	2.7E-01	9.7E-02	1.4E-01	2.3E-01	2.1E-01	3.0E-01	2.3E-01	1.0E-01	2.5E-02	9.3E-02
Ni	mg/L	1.0E-03	1.0E-03	1.0E-03	1.1E-03	1.1E-03	1.2E-03	1.3E-03	1.3E-03	1.4E-03	1.1E-03	1.1E-03	1.0E-03	1.1E-03
NO3	mg/L	1.3E-01	1.3E-01	1.3E-01	3.8E-01	2.0E-01	2.5E-01	3.3E-01	3.1E-01	4.0E-01	3.4E-01	2.1E-01	1.3E-01	2.0E-01
Pb	mg/L	2.7E-04	2.7E-04	2.7E-04	2.8E-04	2.9E-04	3.1E-04	3.3E-04	3.3E-04	3.6E-04	2.9E-04	2.9E-04	2.7E-04	2.8E-04
Р	mg/L	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02
Sb	mg/L	1.0E-03	1.0E-03	1.0E-03	1.1E-03	1.2E-03	1.3E-03	1.4E-03	1.4E-03	1.6E-03	1.1E-03	1.1E-03	1.0E-03	1.1E-03
Se	mg/L	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04
S04	mg/L	1.0E+00	1.0E+00	1.0E+00	1.7E+01	2.3E+01	3.9E+01	6.4E+01	5.9E+01	8.8E+01	1.9E+01	1.9E+01	1.0E+00	1.4E+01
U [mg/L	5.0E-05	5.0E-05	5.0E-05	7.3E-05	8.3E-05	1.1E-04	1.4E-04	1.4E-04	1.8E-04	7.7E-05	7.7E-05	5.0E-05	6.9E-05
Zn	mg/L	1.8E-02	1.8E-02	1.8E-02	1.BE-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.BE-02	1.8E-02	1.8E-02	1.8E-02
CN (Total)	mg/L	1.0E-03	1.0E-03	1.0E-03	5.9E-03	8.0E-03	1.3E-02	2.1E-02	1.9E-02	2.8E-02	6.7E-03	6.7E-03	1.0E-03	4.9E-03
Note:														
	- indicates a v	alue greater than	I the CCME gui	deline.										

Golder Associates

UTITEORIC ABINE Gold Foundy Propertieses 7000 - WO Modeling/Flast 76005 240CT07 Memo Verson/Appendix C - Law Figurite

I Museever

6 of 7

29/10/2007

06-1118-041C (7000/7600)

TABLE C7 CALCULATION RESULTS FOR MIX 3 SCENARIO 3 - LOW FLOW

a state of the						Aix 3 - Wa	ter Qualit	y in Lake	Charlotte			-#	「「「「「「「「」」」	Annual
Parameter	Units .	Line und	8	- Mar	Ae'	Nay N	, Jun	3	, (Aug	Sep	્લ	Nov	Deck	Concentratio
umulative Flow Rate	m ³ /s	9.6E+00	9.9E+00	1.4E+01	8.5E+00	6.1E+00	3.5E+00	2.1E+00	2.3E+00	1.5E+00	2.4E+00	6.8E+00	1.1E+01	6.5E+00
Aa	ma/L	5.0E-05	5.0E-05	5.0E-05	5.2E-05	5.3E-05	5.4E-05	5.7E-05	5.7E-05	6.0E-05	5.2E-05	5.2E-05	5.0E-05	5.1E-05
A	mg/L	%10-32.K条	「日本の日本の	第一日の	第17年01至	第1,75-01	Non-	数 NE-01	調査にの意	E REST.	E ME OF	No.	Sale of the second	5. N. 2.
As	mg/L	4.0E-03	4.0E-03	4.0E-03	MUENCE OS (B	200 SE-0340	6.7E-03	885E-03	語のゴビの語	王子子 (1)	ISSE(03)		4.0E-03	4.9E-03
Ca	mg/L	1.2E+00	1.2E+00	1.2E+00	2.6E+00	3.2E+00	4.6E+00	6.9E+00	6.5E+00	9.2E+00	2.8E+00	2.8E+00	1.2E+00	2.3E+00
8	mg/L	7.8E-06	7.8E-06	7.8E-06	7.7E-06	7.7E-06	7.7E-06	7.6E-06	7.6E-06	7.5E-06	7.7E-06	7.7E-06	7.8E-06	7.7E-06
ō	mg/L	4.0E+00	4.0E+00	4.0E+00	4.1E+00	4.2E+00	4.3E+00	4.5E+00	4.5E+00	4.8E+00	4.2E+00	4.2E+00	4.0E+00	4.1E+00
3	ma/L	2.0E-04	2.0E-04	2.0E-04	1.6E-03	2.2E-03	3.7E-03	6.0E-03	5.5E-03	8.3E-03	1.9E-03	1.8E-03	2.0E-04	1.3E-03
ъ	mo/L	1.6E-03	1.6E-03	1.6E-03	1.6E-03	1.6E-03	1.5E-03	1.5E-03	1.5E-03	1.5E-03	1.6E-03	1.6E-03	1.6E-03	1.6E-03
Cu	ma/L	1.0E-03	1.0E-03	1.0E-03	112.3E-03 79	12 9E-03	MA 2E-03 %	16.3E-03 W	#6.9E-03		10-35-03	100-202	1.0E-03	10507
Fe	mg/L	2.2E-01	2.2E-01	2.2E-01	2.4E-01	2.6E-01	2.8E-01	第23日の 日間 の	第3.25-01派	203.8E-01	2.5E-01	2.5E-01	2.2E-01	2.4E-01
×	ma/L	3.0E-01	3.0E-01	3.0E-01	7.4E-01	9.3E-01	1.4E+00	2.1E+00	1.9E+00	2.8E+00	8.1E-01	8.1E-01	3.0E-01	6.5E-01
Mg	mg/L	4.9E-01	4.9E-01	4.9E-01	5.5E-01	5.8E-01	6.5E-01	7.5E-01	7.3E-01	8.6E-01	5.6E-01	5.6E-01	4.9E-01	5.4E-01
Wu	mg/L	5.0E-02	5.0E-02	5.0E-02	5.0E-02	5.0E-02	5.1E-02	5.2E-02	5.2E-02	5.3E-02	5.0E-02	5.0E-02	5.0E-02	5.0E-02
Na	mg/L	2.9E+00	2.9E+00	2.9E+00	6.9E+00	8.6E+00	1.3E+01	1.9E+01	1.8E+01	2.6E+01	7.6E+00	7.5E+00	2.9E+00	6.1E+00
NH4+NH3	mg/L	2.5E-02	2.5E-02	2.5E-02	1.7E-01	6.7E-02	9.5E-02	1.5E-01	1.3E-01	1.9E-01	1.5E-01	7.2E-02	2.5E-02	6.5E-02
z	шg/г	1.0E-03	1.0E-03	1.0E-03	1.0E-03	1.1E-03	1.1E-03	1.2E-03	1.1E-03	1.2E-03	1.0E-03	1.0E-03	1.0E-03	1.0E-03
NO3	malt	1.3E-01	1.3E-01	1.3E-01	2.7E-01	1.7E-01	2.0E-01	2.5E-01	2.4E-01	2.9E-01	2.5E-01	1.7E-01	1.3E-01	1.7E-01
9	mg/L	2.6E-04	2.6E-04	2.6E-04	2.7E-04	2.7E-04	2.8E-04	3.0E-04	3.0E-04	3.2E-04	2.7E-04	2.7E-04	2.6E-04	2.7E-04
4	mg/L	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02
Sb	mg/L	1.0E-03	1.0E-03	1.0E-03	1.1E-03	1.1E-03	1.2E-03	1.3E-03	1.2E-03	1.4E-03	1.1E-03	1.1E-03	1.0E-03	1.1E-03
Se	mg/L	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04
SO4	Mg/L	1.0E+00	1.0E+00	1.0E+00	1.0E+01	1.4E+01	2.3E+01	3.8E+01	3.5E+01	5.4E+01	1.2E+01	1.2E+01	1.0E+00	8.3E+00
0	mg/L	5.0E-05	5.0E-05	5.0E-05	6.4E-05	7.0E-05	8.3E-05	1.1E-04	1.0E-04	1.3E-04	6.6E-05	6.6E-05	5.0E-05	6.1E-05
ź	mg/L	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.86-02	1.8E-02	1.8E-02
CN (Total)	mo/L	1.0E-03	1.0E-03	1.0E-03	3.9E-03	5.1E-03	8.0E-03	1.3E-02	1.2E-02	1.7E-02	4.4E-03	4.3E-03	1.0E-03	3.3E-03

Golder Associates

Low Flow 24

N'MONWOOD

29/10/2007

APPENDIX D

AVERAGE MONTHLY LOADING RATES AND MIXING CELL CALCULATION FOR NORMAL FLOW CONDITIONS USING DISSOLVED CONCENTRATIONS

October, 2007

07-1118-0007 (041C)

Golder Associates

06-1118-041C (7000/7600)

TABLE D1 AVERAGE MONTHLY LOADING RATES FOR THE MINE EFFLUENT DISCHARGE SCENARIO 4 - NORMAL FLOW, DISSOLVED CONCENTRATIONS TOUQUOY GOLD PROJECT

			_	_	_	_	_	_	_				_														
	Dec	0	0	0	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Shovi,	7.32E-02	2.34E-03	3.66E-01	4.39E-01	1.49E+04	1.10E-04	1.76E+03	1.57E+01	1.83E-02	6.46E+00	1.46E+00	4.63E+03	6.77E+02	9.15E+00	4.64E+04	3.19E+02	4.54E-01	3.19E+02	2.71E-02	3.66E-01	5.86E-01	3.66E-02	1.02E+05	1.17E-01	1.32E+00	3.22E+01
	y Oct 📩	3.94E-02	1.26E-03	1.97E-01	2.36E-01	8.03E+03	5.90E-05	9.45E+02	8.42E+00	9.84E-03	3.48E+00	7.87E-01	2.49E+03	3.64E+02	4.92E+00	2.50E+04	2.90E+02	2.44E-01	2.90E+02	1.46E-02	1.97E-01	3.15E-01	1.97E-02	5.51E+04	6.30E-02	7.09E-01	1.73E+01
	Sep	8.74E-02	2.80E-03	4.37E-01	5.24E-01	1.78E+04	1.31E-04	2.10E+03	1.87E+01	2.18E-02	7.71E+00	1.75E+00	5.52E+03	8.08E+02	1.09E+01	5.54E+04	2.54E+02	5.42E-01	2.54E+02	3.23E-02	4.37E-01	6.99E-01	4.37E-02	1.22E+05	1.40E-01	1.57E+00	3.84E+01
18 0 18)	Aug	8.64E-02	2.76E-03	4.32E-01	5.18E-01	1.76E+04	1.30E-04	2.07E+03	1.85E+01	2.16E-02	7.63E+00	1.73E+00	5.46E+03	7.99E+02	1.08E+01	5.48E+04	2.52E+02	5.36E-01	2.52E+02	3.20E-02	4.32E-01	6.91E-01	4.32E-02	1.21E+05	1.38E-01	1.56E+00	3.80E+01
ading Rates (m	Pro-	8.56E-02	2.74E-03	4.28E-01	5.14E-01	1.75E+04	1.28E-04	2.06E+03	1.83E+01	2.14E-02	7.56E+00	1.71E+00	5.41E+03	7.92E+02	1.07E+01	5.43E+04	2.54E+02	5.31E-01	2.54E+02	3.17E-02	4.28E-01	6.85E-01	4.28E-02	1.20E+05	1.37E-01	1.54E+00	3.77E+01
ge Monthly Lo	ų	8.58E-02	2.75E-03	4.29E-01	5.15E-01	1.75E+04	1.29E-04	2.06£+03	1.84E+01	2.15E-02	7.58E+00	1.72E+00	5.42E+03	7.94E+02	1.07E+01	5.44E+04	2.46E+02	5.32E-01	2.46E+02	3.18E-02	4.29E-01	6.87E-01	4.29E-02	1.20E+05	1.37E-01	1.55E+00	3.78E+01
Avera	Ray	8.71E-02	2.79E-03	4.35E-01	5.22E-01	1.78E+04	1.31E-04	2.09E+03	1.86E+01	2.18E-02	7.69E+00	1.74E+00	5.50E+03	8.05E+02	1.09E+01	5.52E+04	2.58E+02	5.40E-01	2.58E+02	3.22E-02	4.35E-01	6.97E-01	4.35E-02	1.22E+05	1.39E-01	1.57E+00	3.83E+01
諸なないという	Apr	9.45E-02	3.02E-03	4.73E-01	5.67E-01	1.93E+04	1.42E-04	2.27E+03	2:02E+01	2.36E-02	8.35E+00	1.89E+00	5.97E+03	8.74E+02	1.18E+01	5.99E+04	1.24E+03	5.86E-01	1.24E+03	3.50E-02	4.73E-01	7.56E-01	4.73E-02	1.32E+05	1.51E-01	1.70E+00	4.16E+01
	in the second	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Feb	đ	0	0	0	0	0	•	0	0	0	0	0	٥	0	0	0	0	٥	0	0	0	0	0	0	0	0
	Jan	0	0	0	0	0	Q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mine Emuent	Water Cuality ¹¹¹	e Rate {m ³ /s}	0.00003	0.005	0.006	204	0.00002	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0.2	0.0003	0.09	0.02	63	6	0.1	634	(z) -	0.006	£	0.0004	······································	0.008	0.0005	1400	0.002	0.02	1. S. 1. O. A. S. A.
	Parameter	e Effluent Discharg	PA	A	As	Ca	S	с С	S	స స	C	Fe	×	Mg	Ч	Na	NH4+NH3	ž	NO3	æ	d	Sb	Se	S04)	ہم ا	CN

Golder Associates

Vependex D - Normell Flow - Dimolved sta

WE MODERATINE TROOM 240CTU Men

882

1 of 7

5	
20	
õ	
23	

************************************	1
P P P P P P P P P P P P P P	4 (manual) 1460, 14600, 1460, 1460, 1460, 1460, 1460, 1460,
	endory v

TABLE D2 AVERAGE MONTHLY LOADING RATES FOR SCRAGGY LAKE SCENARIO 4 - NORMAL FLOW, DISOLVED CONCENTRATIONS TOUQUOY GOLD PROJECT

	Scraggy Lake Baseline					Aver	ege Monthly Lc	ading Rates (r	ng/s)	「「「「「「」」			
	Wates Quality	X	Feb	ra II	Apr	, CH	unr	Ju	Aug	age .	64 Ot	Nov	000
Subwatershed Net Flo	pw Rate {m ³ /s}	1.43E+00	1.47E+00	2.06E+00	2.15E+00	1.37E+00	7.90E-01	4.60E-01	5.10E-01	3.30E-01	7.60E-01	1.43E+00	1.68E+
Ag	S.C. 0.0005	7.15E-02	7.35E-02	1.03E-01	1.08E-01	6.85E-02	3.95E-02	2.30E-02	2.55E-02	1.65E-02	3.80E-02	7.15E-02	8.40E-0
A	0.2	2.68E+02	2.75E+02	3.86E+02	4.03E+02	2.57E+02	1.48E+02	8.61E+01	9.55E+01	6.18E+01	1.42E+02	2.68E+02	3.15E+(
As	1	1.43E+00	1.47E+00	2.06E+00	2.15E+00	1.37E+00	7.90E-01	4.60E-01	5.10E-01	3.30E-01	7.60E-01	1.43E+00	1.68E+(
Ca	-	1.43E+03	1,47E+03	2.06E+03	2.15E+03	1.37E+03	7.90E+02	4.60E+02	5.10E+02	3.30E+02	7.60E+02	1.43E+03	1.68E+(
PS	0.00002	2.81E-02	2.88E-02	4.04E-02	4.22E-02	2.69E-02	1.55E-02	9.03E-03	1.00E-02	6.48E-03	1.49E-02	2.81E-02	3.30E-0
G	4	5.72E+03	5.88E+03	8.24E+03	8.60E+03	5.48E+03	3.16E+03	1.84E+03	2.04E+03	1.32E+03	3.04E+03	5.72E+03	6.72E+(
ප	0.0002	2.B6E-01	2.94E-01	4.12E-01	4.30E-01	2.74E-01	1.58E-01	9.20E-02	1.02E-01	6.60E-02	1.52E-01	2.86E-01	3.36E-0
ъ	0.005	6.B6E+00	7,06E+00	9.89E+00	1.03E+01	6.58E+00	3.79E+00	2.21E+00	2.45E+00	1.58E+00	3.65E+00	6.86E+00	8.06E+C
C		1.43E+00	1.47E+00	2.06E+00	2.15E+00	1.37E+00	7.90E-01	4.60E-01	5.10E-01	3.30E-01	7.60E-01	1.43E+00	1.68E+(
Fe	0.2	3.36E+02	3.46E+02	4.85E+02	5.06E+02	3.22E+02	1.86E+02	1.08E+02	1.20E+02	7.76E+01	1.79E+02	3.36E+02	3.95E+(
¥	0.3	4.65E+02	4.78E+02	6.70E+02	6.99E+02	4.45E+02	2.57E+02	1.50E+02	1.66E+02	1.07E+02	2.47E+02	4.65E+02	5.46E+(
ВW	0.4	6.08E+02	6.25E+02	8.76E+02	9.14E+02	5.82E+02	3.36E+02	1.96E+02	2.17E+02	1.40E+02	3.23E+02	6.08E+02	7.14E+(
Mn	0.05	6.55E+01	6.74E+01	9.44E+01	9.85E+01	6.28E+01	3.62E+01	2.11E+01	2.34E+01	1.51E+01	3.48E+01	6.55E+01	7.70E+C
Na	3	4.25E+03	4.37E+03	6.13E+03	6.40E+03	4.08E+03	2.35E+03	1.37E+03	1.52E+03	9.82E+02	2.26E+03	4.25E+03	5.00E+0
NH4+NH3	0.03	3.58E+01	3.68E+01	5.15E+01	5.38E+01	3.43E+01	1.98E+01	1.15E+01	1.28E+01	8.25E+00	1.90E+01	3.58E+01	4.20E+0
N	10.001 ····	1.43E+00	1.47E+00	2.06E+00	2.15E+00	1.37E+00	7.90E-01	4.60E-01	5.10E-01	3.30E-01	7.60E-01	1.43E+00	1.68E+0
NO3	0.05	6.79E+01	6.98E+01	9,79E+01	1.02E+02	6.51E+01	3.75E+01	2.19E+01	2.42E+01	1.57E+01	3.61E+01	6.79E+01	7.98E+0
Pb	1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	4.47E-01	4.59E-01	6.44E-01	6.72E-01	4.28E-01	2.47E-01	1.44E-01	1.59E-01	1.03E-01	2.38E-01	4.47E-01	5.25E-0
٩	0.02	2.15E+01	2.21E+01	3.09E+01	3.23E+01	2.06E+01	1.19E+01	6.90E+00	7.65E+00	4.95E+00	1.14E+01	2.15E+01	2.52E+(
Sb	0.001	1.43E+00	1.47E+00	2.06E+00	2.15E+00	1.37E+00	7.90E-01	4.60E-01	5.10E-01	3.30E-01	7.60E-01	1.43E+00	1.68E+(
Se	0000 V	7.15E-01	7.35E-01	1.03E+00	1.08E+00	6.85E-01	3.95E-01	2.30E-01	2.55E-01	1.65E-01	3.80E-01	7.15E-01	8.40E-C
SO4		1.43E+03	1.47E+03	2.06E+03	2.15E+03	1.37E+03	7.90E+02	4.60E+02	5.10E+02	3.30E+02	7.60E+02	1.43E+03	1.68E+C
D	0.00005	7.15E-02	7.35E-02	1.03E-01	1.08E-01	6.85E-02	3.95E-02	2.30E-02	2.55E-02	1.65E-02	3.80E-02	7.15E-02	8.40E-0
Γ	0.01	1.76E+01	1.80E+01	2.53E+01	2.64E+01	1.68E+01	9.70E+00	5.65E+00	6.26E+00	4.05E+00	9.33E+00	1.76E+01	2.06E+0
CN	0.001	1.43E+0C	1.47E+00	2.06E+00	2.15E+00	1.37E+00	7.90E-01	4.60E-01	5.10E-01	3.30E-01	7.60E-01	1.43E+0C	1.68E+C

Golder Associates

18-041C

~
0
×
2
£1
8
0
5
ā
~
29/

TABLE D3 AVERAGE MONTHLY LOADING RATES FOR FISH RIVER SCENARIO 4 - NORMAL FLOW, DISSOLVED CONCENTRATIONS TOUQUOY GOLD PROJECT

	ish River Baseline	A STATE OF A	「日本」を設備すると		and the second sec			THE PLAN AND A PLAN AND AND AND AND AND AND AND AND AND A	and the second s	The second	ALC: NO.	AND A CONTRACTOR OF A CONTRACT	and the second se
	Water Quality	. Jan .	Cer in		APP	May	unr		BIN	8	81	NON	Dec
Subwatershed Net Flow F	Rate (m³/s)	4.16E+00	4.27E+00	6.00E+00	6.24E+00	3.98E+00	2.30E+00	1.36E+00	1.49E+00	9.80E-01	2.21E+00	4.17E+00	4.90E+00
Ag	0.00005	2.08E-01	2.14E-01	3.00E-01	3.12E-01	1.99E-01	1.15E-01	6.80E-02	7.45E-02	4.90E-02	1.11E-01	2.09E-01	2.45E-01
A	0.2	7.11E+02	7.30E+02	1.03E+03	1.07E+03	6.81E+02	3.93E+02	2.33E+02	2.55E+02	1.68E+02	3.78E+02	7.13E+02	8.38E+02
As	0.005	2.08E+01	2.14E+01	3.00E+01	3.12E+01	1.99E+01	1.15E+01	6.80E+00	7.45E+00	4.90E+00	1.11E+01	2.09E+01	2.45E+01
Ca	-	5.42E+03	5.56E+03	7.82E+03	8.13E+03	5.19E+03	3.00E+03	1 77E+03	1.94E+03	1.28E+03	2.88E+03	5.43E+03	6.38E+03
Cd	0.000003	1.25E-02	1.28E-02	1.80E-02	1.87E-02	1.19E-02	6.90E-03	4.08E-03	4.47E-03	2.94E-03	6.63E-03	1.25E-02	1.47E-02
ō	4	1.66E+04	1.71E+04	2.40E+04	2.50E+04	1.59E+04	9.20E+03	5.44E+03	5.96E+03	3.92E+03	8.84E+03	1.67E+04	1.96E+04
S	0.0002 No.000	8.32E-01	8.54E-01	1.20E+00	1.25E+00	7.96E-01	4.60E-01	2.72E-01	2.98E-01	1.96E-01	4 42E-01	8.34E-01	9.80E-01
J	0.001	4,16E+00	4.27E+00	6.00E+00	6.24E+00	3.98E+00	2.30E+00	1 36E+00	1.49E+00	9.80E-01	2.21E+00	4.17E+00	4.90E+00
Cu	100.001 States	4.16E+00	4.27E+00	6.00E+00	6.24E+00	3.98E+00	2.30E+00	1.36E+00	1.49E+00	9.80E-01	2.21E+00	4.17E+00	4.90E+00
Ee	0.2	9.23E+02	9.47E+02	1.33E+03	1.38E+03	8.83E+02	5.10E+02	3.02E+02	3.31E+02	2.17E+02	4.90E+02	9.25E+02	1.09E+03
×	0.3	1.25E+03	1.28E+03	1.80E+03	1.87E+03	1.19E+03	6.90E+02	4.08E+02	4.47E+02	2.94E+02	6.63E+02	1.25E+03	1.47E+03
Ma	0.5	2.08E+03	2.14E+03	3.00E+03	3.12E+03	1.99E+03	1.15E+03	6.80E+02	7.45E+02	4.90E+02	1.11E+03	2.09E+03	2.45E+03
Mn	0.05	2.18E+02	2.24E+02	3.15E+02	3.27E+02	2.09E+02	1.21E+02	7.13E+01	7.81E+01	5.14E+01	1.16E+02	2.19E+02	2.57E+02
Na		1.22E+04	1.25E+04	1.76E+04	1.83E+04	1.17E+04	6.75E+03	3.99E+03	4.37E+03	2.88E+03	6.48E+03	1.22E+04	1.44E+04
NH4+NH3	法学者的 的"0.03 "了这次被使用	1.04E+02	1.07E+02	1.50E+02	1.56E+02	9.95E+01	5.75E+01	3.40E+01	3.73E+01	2.45E+01	5.53E+01	1.04E+02	1.23E+02
N IZ	(1) 2000 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4.16E+00	4.27E+00	6.00E+00	6.24E+00	3.98E+00	2.30E+00	1.36E+00	1.49E+00	9.80E-01	2.21E+00	4.17E+00	4.90E+00
NO3	0.2	6.70E+02	6.88E+02	9.66E+02	1.00E+03	6.41E+02	3.70E+02	2.19E+02	2.40E+02	1.58E+02	3.56E+02	6.72E+02	7.89E+02
Pb	0.0003	1.04E+00	1.07E+00	1.50E+00	1.56E+00	9.95E-01	5.75E-01	3.40E-01	3.73E-01	2.45E-01	5.53E-01	1.04E+00	1.23E+00
<u>е</u>	· · · · · · · · · · · · · · · · · · ·	4.16E+01	4.27E+01	6.00E+01	6.24E+01	3.98E+01	2.30E+01	1.36E+01	1.49E+01	9.80E+00	2.21E+01	4.17E+01	4.90E+01
Sb Sb	V. 1.7.4 0.001 124 24	4.16E+00	4.27E+00	6.00E+00	6.24E+00	3.98E+00	2.30E+00	1.36E+00	1.49E+00	9.80E-01	2.21E+00	4.17E+00	4.90E+00
Se	1. P. 0.0005 X 1. 1. 1.	2.08E+00	2.14E+00	3.00E+00	3.12E+00	1.99E+00	1.15E+00	6.80E-01	7.45E-01	4.90E-01	1.11E+00	2.09E+00	2.45E+00
S04		4.16E+03	4.27E+03	6.00E+D3	6.24E+03	3.98E+03	2.30E+03	1.36E+03	1.49E+03	9.80E+02	2.21E+03	4.17E+03	4.90E+03
	0.00005	2.08E-01	2.14E-01	3.00E-01	3.12E-01	1.995-01	1.15E-01	6.80E-02	7.45E-02	4.90E-02	1.11E-01	2.09E-01	2.45E-01
Zn	0.02	8.17E+01	8.39E+01	1.18E+02	1.23E+02	7.82E+01	4.52E+01	2.67E+01	2.93E+01	1.93E+01	4.34E+01	8.19E+01	9.63E+01
CN	100.001 to the	4.16E+00	4.27E+00	6.00E+00	6.24E+00	3.98E+00	2.30E+00	1.36E+0C	1.49E+0C	9.80E-01	2.21E+0C	4.17E+0C	4.90E+0C

0011114-0410: //samkr.cau/Towyor/ProyenPhase 2000 - V40 Maniwrylf ski, 70005. 2400510 Memo Verson/Appendix D - Normal Faw - Dimision in

Circles V N

3 of 7

Ò.
ā.
Ñ.
×
¥.
÷-
Ω.
D 3

TABLE D4 AVERAGE MONTHLY LOADING RATES FOR LAKE CHARLOTTE SCENARIO 4 - NORMAL FLOW, DISSOLVED CONCENTRATIONS TOUQUOY GOLD PROJECT

でいた。各次が	Lake Charlotte							の語言がしたというとなっ	ls Ou	ないないない	たいになる 自然回転回転できる		
Parameter	Baseline Water	Clair	Feb	War	APC	May	Jun	Sint .	Aug	Sep	et so	- Non	瀨
Subwatershed Net	Flow Rate (m ³ /s)	4.00E+00	4.11E+00	5.78E+00	6.01E+00	3.83E+00	2.21E+00	1.30E+00	1.43E+00	9.30E-01	2.14E+00	4.01E+00	
Ao	1447 - 0.00005 - 1444	2.00E-01	2.06E-01	2.89E-01	3.01E-01	1.92E-01	1.11E-01	6.50E-02	7.15E-02	4.65E-02	1.07E-01	2.01E-01	
N N	0.2	6.80E+02	6.99E+02	9.83E+02	1.02E+03	6.51E+02	3.76E+02	2.21E+02	2.43E+02	1.58E+02	3.64E+02	6.82E+02	
As	0.004	1.64E+01	1.69E+01	2.37E+01	2.46E+01	1.57E+01	9.06E+00	5.33E+00	5.86E+00	3.81E+00	8.77E+00	1.64E+01	
Ca	-	4.80E+03	4.93E+03	6.94E+03	7.21E+03	4.60E+03	2.65E+03	1.56E+03	1.72E+03	1.12E+03	2.57E+03	4.B1E+03	
3	6000000	3.40E-02	3.49E-02	4.91E-02	5.11E-02	3.26E-02	1.88E-02	1.11E-02	1.22E-02	7.91E-03	1.82E-02	3.41E-02	
CI	4	1.60E+04	1.64E+04	2.31E+04	2.40E+04	1.53E+04	8.84E+03	5.20E+03	5.72E+03	3.72E+03	8.56E+03	1.60E+04	
3	0.0002	8.00E-01	8.22E-01	1.16E+00	1.20E+00	7.66E-01	4.42E-01	2.60E-01	2.86E-01	1.86E-01	4.28E-01	8.02E-01	
ð	0.001 · · · · · · ·	4.00E+00	4,11E+00	5.78E+00	6.01E+00	3.83E+00	2.21E+00	1.30E+00	1.43E+00	9.30E-01	2.14E+00	4.01E+00	
5	0.001	4.00E+00	4.11E+00	5.78E+00	6.01E+00	3.83E+00	2.21E+00	1.30E+00	1.43E+00	9.30E-01	2.14E+00	4.01E+00	
Fe	0.2	8.20E+02	8.43E+02	1.18E+03	1.23E+03	7.85E+02	4.53E+02	2.67E+02	2.93E+02	1.91E+02	4.39E+02	8.22E+02	
×	0.3	1.20E+03	1.23E+03	1.73E+03	1.80E+03	1.15E+03	6.63E+02	3.90E+02	4.29E+02	2.79E+02	6.42E+02	1.20E+03	
Ma	0.5	2.00E+03	2.06E+03	2.89E+03	3.01E+03	1.92E+03	1.11E+03	6.50E+02	7.15E+02	4 65E +02	1.07E+03	2.01E+03	
M	0.05	1.92E+02	1.97E+02	2.77E+02	2.88E+02	1.84E+02	1.06E+02	6.24E+01	6.86E+01	4.46E+01	1.03E+02	1.92E+02	
Ra		1.16E+04	1.19E+04	1.68E+04	1.74E+04	1.11E+04	6.41E+03	3.77E+03	4.15E+03	2.70E+03	6.21E+03	1.16E+04	
NH4+NH3	10.00 million 200	1.00E+02	1.03E+02	1.45E+02	1.50E+02	9.58E+01	5.53E+01	3.25E+01	3.58E+01	2.33E+01	5.35E+01	1.00E+02	
ž	100.001 Maintaine	4.00E+00	4,11E+00	5.78E+00	6.01E+00	3.83E+00	2.21E+00	1.30E+00	1.43E+00	9.30E-01	2.14E+00	4.01E+00	
NO3	0.1	5.00E+02	5.14E+02	7.23E+02	7.51E+02	4.79E+02	2.76E+02	1.63E+02	1.79E+02	1.16E+02	2.68E+02	5.01E+02	
æ	10003 調整が、10003	1.00E+00	1.03E+00	1.45E+00	1.50E+00	9.58E-01	5.53E-01	3.25E-01	3.58E-01	2.33E-01	5.35E-01	1.00E+00	- 1
٩	1.4.5.1.2.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	4.00E+01	4.11E+01	5.78E+01	6.01E+01	3.83E+01	2.21E+01	1.30E+01	1.43E+01	9.30E+00	2.14E+01	4.01E+01	- 1
ß	100.001 Market	4.00E+00	4,11E+00	5.78E+00	6.01E+00	3.83E+00	2.21E+00	1.30E+00	1.43E+00	9.30E-01	2.14E+00	4.01E+00	
Se	0.0005	2.00E+00	2.06E+00	2.89E+00	3.01E+00	1.92E+00	1.11E+00	6.50E-01	7.15E-01	4.65E-01	1.07E+00	2.01E+00	
SO4		4.00E+03	4.11E+03	5.78E+03	6.01E+03	3.83E+03	2.21E+03	1.30E+03	1.43E+03	9.30E+02	2.14E+03	4.01E+03	- 1
	0.00005	2.00E-01	2.06E-01	2.89E-01	3.01E-01	1.92E-01	1.11E-01	6.50E-02	7.15E-02	4.65E-02	1.07E-01	2.01E-01	
νź	0.02	7.24E+01	7.44E+01	1.05E+02	1.09E+02	6.93E+01	4.00E+01	2.35E+01	2.59E+01	1.68E+01	3.87E+01	7.26E+01	
CN	10.001 million	4.00E+00	4.11E+00	5.78E+00	6.01E+00	3.83E+00	2.21E+00	1.30E+0C	1.43E+0C	9.30E-01	2.14E+0C	4.01E+0C	

Golder Associates

- WQ MessangiTask 76005: 240CT07 Memo Varian/Varianda D - Normal Figuri - Drepole ed xis.

1010

N WILLIAM UNDER

4 of 7

7
0
Ω.
Q
Ø,
Ξ
ത
Ñ.

06-1118-041C (7000/7600)

TABLE D5 CALCULATION RESULTS FOR MIX 1 SCENARIO 4 - NORMAL FLOW, DISSOLVED CONCENTRATIONS

ad	
٢	
ŝ	
å	
ers	
Mat	
ą	
ŝ	
ake	
2	
rag	
š	
p	
Š	
ent	
fflu	
ш	
Wine	
1	

The second second									- 1	_													-	Ţ			_
Annua	Concentration	1.3E+00	4.9E-05	Part 1015-05-05-05	1.2E-03	9.6E+00		4.8E+00	9.3E-03	4.6E-03	間の日に記載	2.3E-01	3.0E+00	8.0E-01	4.9E-02	3.0E+01	2.3E-01	1.2E-03	2.5E-01	3.1E-04	1.5E-02	1.3E-03	5.0E-04	6.0E+01	1.2E-04	1.3E-02	2.0E-02
	Dec	1.7E+00	5.0E-05		1.0E-03	1.0E+00		4.0E+00	2.0E-04	4.8E-03	1.0E-03	2.4E-01	3.3E-01	4.3E-01	4.6E-02	3.0E+00	2.5E-02	1.0E-03	4.8E-02	3.1E-04	1.5E-02	1.0E-03	5.0E-04	1.0E+00	5.0E-05	1.2E-02	1.0E-03
	Nov	1.5E+00	4.9E-05		1.2E-03	1.1E+01		5.0E+00	1.1E-02	4.6E-03	ALC: N. STORE	2.2E-01	3.4E+00	8.5E-01	5.0E-02	3.4E+01	2.4E-01	1.3E-03	2.6E-01	3.2E-04	1.5E-02	1.3E-03	5.0E-04	6.9E+01	1.3E-04	1.3E-02	2.2E-02
	- 8	8.0E-01	4,9E-05	11111111111111111111111111111111111111	1.2E-03	1.1E+01		5.0E+00	1.1E-02	4.6E-03	SALE AR	2.2E-01	3.4E+00	8.6E-01	5.0E-02	3.4E+01	3.9E-01	1.3E-03	4.1E-01	3.2E-04	1.5E-02	1.3E-03	5.0E-04	7.0E+01	1.3E-04	1.3E-02	2.3E-02
「「「「「「「」」」	des	4.2E-01	4.6E-05	ALC: US ALC: U	2.0E-03	4.3E+01	1.6E-05	8.2E+00	4.5E-02	3.8E-03	5X19E-02	1.96-01	1.3E+01	2.3E+00	6.2E-02	1.4E+02	6.3E-01	2.1E-03	6.5E-01	3.2E-04	1.3E-02	2.5E-03	5.0E-04	2.9E+02	3.7E-04	1.3E-02	9.3E-02
aggy Lake	Binv	6.0E-01	4.7E-05	10-39.7%	1.7E-03	3.0E+01	1.7E-05	6.9E+00	3.1E-02	4.1E-03	· 446-02 III	2.0E-01	9.4E+00	1.7E+00	5.7E-02	9.4E+01	4.4E-01	1.8E-03	4.6E-01	3.2E-04	1.4E-02	2.0E-03	5.0E-04	2.0E+02	2.7E-04	1 3E-02	6.5E-02
ity in Scra	. pr	5.5E-01	4.7E-05		1.8E-03	3.3E+01	1.7E-05	7.1E+00	3.4E-02	4.1E-03	\$\$1.5E-02	2.0E-01	1.0E+01	1.8E+00	5.8E-02	1.0E+02	4.9E-01	1.8E-03	5.0E-01	3.2E-04	1.3E-02	2.1E-03	5.0E-04	2.2E+02	2.96-04	1.3E-02	7.0E-02
ater Quali	ine 🖓	8.8E-01	4.8E-05	第11 7E-010	1.5E-03	2.1E+01	2018E-05-	6.0E+00	2.1E-02	4.4E-03	X 9.6E-03 9	2.1E-01	6.5E+00	1.3E+00	5.4E-02	6.5E+01	3.0E-01	1.5E-03	3.2E-01	3.2E-04	1.4E-02	1.7E-03	5.0E-04	1.4E+02	2.0E-04	1.3E-02	4.4E-02
Wix 1 - W	, Mary	1.5E+00	4.9E-05	**** 8E-01	1.3E-03	1.3E+01	A 10E-05	5.2E+00	1.3E-02	4.5E-03	#98.2E-03	2.2E-01	4.1E+00	9.5E-01	5.1E-02	4.1E+01	2.0E-01	1.3E-03	2.2E-01	3.2E-04	1.4E-02	1.4E-03	5.0E-04	8.5E+01	1.4E-04	1.3E-02	2.7E-02
	Apr	2.2E+00	4.9E-05		1.2E-03	9.5E+00	間の日の間に	4.8E+00	9.2E-03	4.6E-03	語な日本語	2.3E-01	3.0E+00	8.0E-01	4.9E-02	3.0E+01	5.7E-01	1.2E-03	6.0E-01	3,1E-04	1.5E-02	1.3E-03	5.0E-04	6.0E+01	1.2E-04	1.3E-02	1.9E-02
	A PHI S	2.1E+00	5.0E-05	and be on the	1.0E-03	1.0E+00	ALLO DE LOS UN	4.0E+00	2.0E-04	4.8E-03	1.0E-03	2.4E-01	3.3E-01	4.3E-01	4.6E-02	3.0E+00	2.5E-02	1.0E-03	4.8E-02	3.1E-04	1.5E-02	1.0E-03	5.0E-04	1.0E+00	5.0E-05	1.2E-02	1.0E-03
	£	1.5E+00	5.0E-05	14151.8E-0138	1.0E-03	1.0E+00	312.0E-0519	4.0E+00	2.0E-04	4.8E-03	1.0E-03	2.4E-01	3.3E-01	4.3E-01	4.6E-02	3.0E+00	2.5E-02	1.0E-03	4.8E-02	3.1E-04	1.5E-02	1.0E-03	5.0E-04	1.0E+00	5.0E-05	1.2E-02	1.0E-03
	ų	1.4E+00	5.0E-05	CONTROL OF SOL	1.0E-03	1.0E+00	20E-05 2	4.0E+00	2.0E-04	4.8E-03	1.0E-03	2.4E-01	3.3E-01	4.3E-01	4.6E-02	3.0E+00	2.5E-02	1.0E-03	4.8E-02	3.1E-04	1.5E-02	1.0E-03	5.0E-04	1.0E+00	5.0E-05	1.2E-02	1.0E-03
		s/²m	ma/L	malt	mg/L	ma/L	ma/L	mg/L	ma/L	mal	mol	mo/L	maA	MaA	ma/L	ma/L	Jen L	mal	ma/L	mg/L	ma/L	me/L	mg/L	mg/L	mg/L	mg/L	mg/L
	Parameter	umulative Fiow Rate	Ad	A	As	Ca	3	U	3	5	3	fe	×	Ma	Mn	Na	NH4+NH3	z	NO3	8	4	sb	Se	S04	n	24	CN (Total)

ote:

.

Golder Associates

9/10/2007	Mix 1	Note:	
Ň			2

TABLE D6 CALCULATION RESULTS FOR MIX 2 SCENARIO 4 - NORMAL FLOW, DISSOLVED CONCENTRATIONS

Mix 1 + Fish River Subwatersheds	Loa	
Mix 1 + Fish River Subwaterst	neds	
Mix 1 + Fish River Subwa	Iters	
Mix 1 + Fish River S	awdu	
Mix 1 + Fish Riv	/er S	
<u> Mix 1 + Fis</u>	h Riv	
Mix 1	+ Fis	
	Mix 1	

• •

Mix 2 = Mix 1 + Fish	River Subv	watersheds	Load											
1. S.						MX 2	Water Qu	ality in Fi	sh River					Annual
Prendet	Units	an	1 60	Mar	*Aor	Hay	m	pe	Aug	des .	ğ	Not	ð	Average Concentration
Cumulative Flow Rate	m ³ /s	5.6E+00	5.7E+00	8.1E+00	8.5E+00	5.4E+00	3.2E+00	1.96+00	2.1E+00	1.4E+00	3.0E+00	5.7E+00	6.6E+00	4.8E+00
P9	mg/L	5.0E-05	5.0E-05	5.0E-05	5.0E-05	5.0E-05	5.0E-05	4.9E-05	4.9E-05	4.9E-05	5.0E-05	5.0E-05	5.0E-05	5.0E-05
A	mg/L		5431AE-01	ST.8E-01	10-34 May	建立下的中国	2012E-018	通信がためた	同語的語言語	MARINE OF BUILD	110年1月		Million and Million	11.111111
As	mg/L	4.0E-03	4.0E-03	4.0E-03	4.0E-03	4.0E-03	4.0E-03	4.1E-03	4.1E-03	4.1E-03	4.0E-03	4.0E-03	4.0E-03	4.0E-03
Ca	mg/L	1.2E+00	1.2E+00	1.2E+00	3.5E+00	4.5E+00	6.7E+00	1.0E+01	9.6E+00	1.4E+01	3.9E+00	3.8E+00	1.2E+00	3.5E+00
Cd	mg/L	7.3E-06	7.3E-06	7.2E-06	7.2E-06	7.2E-06	7.1E-06	6.9E-06	7.0E-06	6.8E-06	7.2E-06	7.2E-06	7.2E-06	7.2E-06
U	mg/L	4.0E+00	4.0E+00	4.0E+00	4.2E+00	4.3E+00	4.5E+00	4.9E+00	4.8E+00	5.3E+00	4.3E+00	4.3E+00	4.0E+00	4.2E+00
°	mg/L	2.0E-04	2.0E-04	2.0E-04	2.6E-03	3.6E-03	6.0E-03	9.8E-03	9.1E-03	1.4E-02	3.0E-03	3.0E-03	2.0E-04	2.6E-03
ວັ	mg/L	2.0E-03	2.0E-03	2.0E-03	2.0E-03	1.9E-03	1.9E-03	1.9E-03	1.9E-03	1.9E-03	1.9E-03	1.9E-03	2.0E-03	2.0E-03
Cu	mg/L	1.0E-03	1.0E-03	1.0E-03	2.0E-03	#2.4E-03	N. 3.4E-036	SA 9E-03 32	\$1.6E-03 #	「「「「「」」の「」」の「「」」の「」」の「」」の「」」の「」」の「」」の「」	22 E-03	112 (E-03-12)	1.0E-03	2.0E-03
Fe	mg/L	2.3E-01	2.3E-01	2.3E-01	2.2E-01	2.2E-01	2.2E-01	2.2E-01	2.2E-01	2.1E-01	2.2E-01	2.2E-01	2.3E-01	2.2E-01
¥	mg/L	3.1E-01	3.1E-01	3.1E-01	1.0E+00	1.3E+00	2.0E+00	3.1E+00	2.9E+00	4.2E+00	1.1E+00	1.1E+00	3.1E-01	1.0E+00
Mg	mg/L	4.8E-01	4.8E-01	4.8E-01	5.8E-01	6.2E-01	7.2E-01	8.8E-01	8.4E-01	1.0E+00	6.0E-01	5.9E-01	4.8E-01	5.8E-01
Mn	mg/L	5.1E-02	5.1E-02	5.1E-02	5.2E-02	5.2E-02	5.3E-02	5.4E-02	5.4E-02	5.5E-02	5.2E-02	5.2E-02	5.1E-02	5.2E-02
Na	mg/L	2.9E+00	2.9E+00	2.9E+00	1.0E+01	1.3E+01	2.0E+01	3.1E+01	2.9E+01	4.2E+01	1.1E+01	1.1E+01	2.9E+00	1.0€ +01
NH4+NH3	mg/L	2.5E-02	2.5E-02	2.5E-02	1.7E-01	7.2E-02	1.0E-01	1.6E-01	1.4E-01	2.0E-01	1.2E-01	8.1E-02	2.5E-02	7.9E-02
ĨZ	mg/L	1.0E-03	1.0E-03	1.0E-03	1.1E-03	1.1E-03	1.1E-03	1.2E-03	1.2E-03	1.3E-03	1.1E-03	1.1E-03	1.0E-03	1.1E-03
NO3	mg/L	1.3E-01	1.3E-01	1.3E-01	2.8E-01	1.8E-01	2.1E-01	2.6E-01	2.5E-01	3.1E-01	2.3E-01	1.9E-01	1.3E-01	1.8E-01
Pb	mg/L	2.7E-04	2.7E-04	2.7E-04	2.7E-04	2.7E-04	2.7E-04	2.7E-04	2.7E-04	2.7E-04	2.7E-04	2.7E-04	2.7E-04	2.7E-04
Р	mg/L	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02
Sb	mg/L	1.0E-03	1.0E-03	1.0E-03	1.1E-03	1.1E-03	1.2E-03	1.3E-03	1.3E-03	1.4E-03	1.1E-03	1.1E-03	1.0E-03	1.1E-03
Se	mg/L	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04
S04	mg/L	1.0E+00	1.0E+00	1.0E+00	1.7E+01	2.3E+01	3.9E+01	6.4E+01	5.9E+01	8.8E+01	1.96+01	1.9E+01	1.0E+00	1.7E+01
n	тgЛ	5.0E-05	5.0E-05	5.0E-05	6.7E-05	7.5E-05	9.2E-05	1.2E-04	1.1E-04	1.5E-04	7.0E-05	7.0E-05	5.0E-05	6.7E-05
Zn	աց/Լ	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02
CN (Total)	mg/L	1.0E-03	1.0E-03	1.0E-03	5.9E-03	8.0E-03	1.3E-02	2.1E-02	1.9E-02	2.8E-02	6.7E-03	6.7E+03	1.0E-03	5.9E-03
Note:	- indicates a vi	alue greater than	the CCME guid	deline.										

Golder Associates

1000

N.Manufacture

29/10/2007

TABLE D7 CALCULATION RESULTS FOR MIX 3 SCENARIO 4 - NORMAL FLOW, DISSOLVED CONCENTRATIONS

06-1118-041C (7000/7600)

					N (2015)	lix 3- W.	ater Quali	ty In Lake	Charlott	9				Annual
Annual Contract	8 /	ų	5.5 78		Apr	May	5	Inr	Aug U	Sep	Set 1	Nov	Dec	Concentration
imulative Flow Rate	tm ³ /S	9.6E+00	9.9E+00	1.4E+01	1.4E+01	9.3E+00	5.4E+00	3.2E+00	3.5E+00	2.3E+00	5.1E+00	9.7E+00	1.1E+01	8.1E+00
Ag	убш	5.0E-05	5.0E-05	5.0E-05	5.0E-05	5.0E-05	5.0E-05	5.0E-05	5.0E-05	4.9E-05	5.0E-05	5.0E-05	5.0E-05	5.0E-05
R	mg/L	4x1.7E-01-2	and reading	WEATERNIAN	A DIVE-OT A	AN. TEOLO	ALL TE-OI	10111日の10	当时10日代13 5	1.7E-01	-10EU	CARASTIC	f. Lizil	·
As	mg/L	4.0E-03	4.0E-03	4.0E-03	4.0E-03	4.0E-03	4.1E-03	4.1E-03	4.1E-03	4.1E-03	4.0E-03	4.0E-03	4.0E-03	4.0E-03
Ca	mg/L	1.2E+00	1.2E+00	1.2E+00	2.5E+00	3.1E+00	4.4E+00	6.6E+00	6.2E+00	8.8E+00	2.8E+00	2.7E+00	1.2E+00	2.5E+00
8	աց/լ	7.8E-06	7.8E-06	7.86-06	7.7E-06	7.7E-06	7.7E-06	7.6E-06	7.6E-06	7.5E-06	7.7E-06	7.7E-06	7.8E-06	7.7E-06
5	ng/L	4.0E+00	4.0E+00	4.0E+00	4.1E+00	4.2E+00	4.3E+00	4.5E+00	4.5E+00	4.8E+00	4.2E+00	4.2E+00	4.0E+00	4.1E+00
3	mg/L	2.0E-04	2.0E-04	2.0E-04	1.6E-03	2.2E-03	3.6E-03	5.9E-03	5.5E-03	8.2E-03	1.85-03	1.8E-03	2.0E-04	1.6E-03
c	աց/լ	1.6E-03	1.6E-03	1.6E-03	1.6E-03	1.6E-03	1.5E-03	1.5E-03	1.5E-03	1.5E-03	1.6E-03	1.6E-03	1.6E-03	1.6E-03
Cu	ացչ	1.06-03	1.0E-03	1.0E-03	1.6E-03	1.8E-03	1 2.4E-03	100 3 C 03 20	SCAE DO S	1. 4.3E-03 %	1.7E-03	1.7E-03	1.0E-03	1.6E-03
Fe	, ngh	2.2E-01	2.2E-01	2.2E-01	2.2E-01	2.1E-01	2.1E-01	2.1E-01	2.1E-01	2.1E-01	2.2E-01	2.2E-01	2.2E-01	2.2E-01
×	трл	3.0E-01	3.0E-01	3.0E-01	7.1E-01	8.9E-01	1.3E+00	2.0E+00	1.8E+00	2.7E+00	7.8E-01	7.8E-01	3.0E-01	7.2E-01
Mg	J/6w	4.9E-01	4.9E-01	4.9E-01	5.5E-01	5.7E-01	6.3E-01	7.2E-01	7.0E-01	8.2E-01	5.6E-01	5.6E-01	4.9E-01	5.5E-01
Mn	η η	5.0E-02	5.0E-02	5.0E-02	5.0E-02	5.0E-02	5.1E-02	5.2E-02	5.1E-02	5.2E-02	5.0E-02	5.0E-02	5.0E-02	5.0E-02
BN	ացև	2.9E+00	2.9E+00	2.9E+00	7.0E+00	8.9E+00	1.3E+01	2.0E+01	1.8E+01	2.7E+01	7.8E+00	7.7E+00	2.9E+00	7.1E+00
NH4+NH3	тви	2.5E-02	2.5E-02	2.5E-02	1.1E-01	5.3E-02	7.0E-02	1.0E-01	9.6E-02	1.3E-01	8.1E-02	5.8E-02	2.5E-02	5.7E-02
ž	лg ш	1.0E-03	1.0E-03	1.0E-03	1.0E-03	1.0E-03	1.1E-03	1.1E-03	1.1E-03	1.2E-03	1.0E-03	1.0E-03	1.0E-03	1.0E-03
NO3	ц Ш С	1.3E-01	1.3E-01	1.3E-01	2.1E-01	1.6E-01	1.7E-01	2.0E-01	2.0E-01	2.3E-01	1.8E-01	1.6E-01	1.3E-01	1.6E-01
£	mg/L	2.6E-04	2.6E-04	2.6E-04	2.6E-04	2.6E-04	2.6E-04	2.6E-04	2.6E-04	2.6E-04	2.6E-04	2.6E-04	2.6E-04	2.6E-04
۹.	mg/L	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02	1.1E-02
£	mg/L	1.0E-03	1.0E-03	1.0E-03	1.0E-03	1.1E-03	1.1E-03	1.2E-03	1.2E-03	1.3E-03	1.1E-03	1.1E-03	1.0E-03	1.0E-03
S	ացև	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04	5.0E-04
S04	ղծա	1.0E+00	1.0E+00	1.0E+00	1.0E+01	1,4E+01	2.3E+01	3.8E+01	3.5E+01	5.4E+01	1.2E+01	1.2E+01	1.0E+00	1.0E+01
D	ղցո	5.0E-05	5.0E-05	5.0E-05	6.0E-05	6.5E-05	7.5E-05	9.1E-05	8.8E-05	1.1E-04	6.2E-05	6.2E-05	5.0E-05	6.0E-05
ភ	ոցե	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02	1.BE-02	1.8E-02	1.8E-02	1.8E-02	1.8E-02
CN (Total)	mg/L	1.0E-03	1.0E-03	1.0E-03	3.9E-03	5.1E-03	8.0E-03	1.3E-02	1.2E-02	1.7E-02	4.4E-03	4.3E-03	1.0E-03	3.9E-03

08-1118-0410. Allunes Geld Torquey Preset/Prass 7000 - WD Modeling/Lasa 70005. 240/CT07 Memo Vergen/Appendix D - Namel Flow - Dimeshed its

N Manufaction N

7 of 7

29/10/2007

APPENDIX I

SUPPLEMENTAL EARD INFORMATION

SUPPLEMENTAL BIOPHYSICAL SURVEYS

A number of field surveys could not be included in the March 2007 EARD submission due to seasonal constraints. These surveys were:

- Spring botany survey of site;
- Spring wetland surveys and peat measurement and characterization;
- Breeding bird survey;
- Herpetile survey of ponds;
- Botany surveys of the existing logging road to be upgraded.

These surveys were conducted in the spring and summer of 2007 and results are provided in the following sections. A 2007 ACCDC request and a 2007 NSM Environmental Screening for the Focus Report Study Area were also conducted, and are provided at the end of this section.

Additional Botany Surveys

Additional botany surveys on the adjusted Project site were conducted on June 13 and 14 2007, both south and north of Mooseland Road. These were conducted concurrently with wetland, bird, mammal and herpetile surveys. Botanist Dr. Bill Freedman of Dalhousie University assisted with some of these surveys. No rare species of flora were detected.

See the EARD for a further description of rare plant species in the vicinity of the Project site.

Spring Wetland Surveys and Peat Measurement

As promised in section 10.0 of the EA, spring wetland surveys were conducted in June 2007. Wetlands on the Project site which will be affected by the Project are depicted on Figure 1. No rare species of flora or fauna were detected in any of the 5 wetlands to be affected. Peat depth and humification levels were also measured for each bog, and are summarized in the following sections.

Peat in Wetland 1 was determined based on visual examination and the presence of live *Sphagnum* mosses to be sphagnum peat. Peat thickness was measured at 15 locations in this wetland, at 0 m (surface sample), 0.75 m (mid-depth sample) and 1.5 m or at bottom (deep sample). Average peat thickness was 1.27 m. The peat layer (with live *Sphagnum* layer included) ranged from 0.33 m to over 4.57 m in thickness. The von Post scale of peat humification ranks peat according to the level of decomposition, with H1 being undecomposed *Sphagnum* and H10 being fully decomposed, amorphous material. Humification of peat at the surface (just under the layer of live *Sphagnum*) ranged from H2 to H6, with most samples being H4 or H5. Mid-depth samples (0.45 to 2.25 m) ranged from H4 to H8, with H6 being average. Deep samples were all in the H8 to H10 range.

⁸²⁰⁹³³⁽REP004)GIS-WA010 March 9, 2007

Peat in Wetland 2 was determined based on visual examination and the presence of a dense surface layer of live *Sphagnum* moss to be sphagnum peat. Peat thickness was measured at six locations in this wetland. The peat layer (with live *Sphagnum* layer included) averaged 1.27 m in depth, and ranged from 0.28 m to 1.98 m. Humification of peat at the surface (just under the layer of live *Sphagnum*) was mostly in the H2 to H4 range of the von Post scale; however one sample was rated as H8. Mid-depth samples ranged from H4 to H8, with H6 being average. Deep samples were all in the H8 to H10 range.

Peat in Wetland 3 was determined based on visual examination, and the presence of live *Sphagnum* mosses to be sphagnum peat. Peat thickness was measured at five locations in this wetland. The peat layer (with live *Sphagnum* layer included) averaged 1.92 m in depth, and ranged from 1.52 to 2.29 m. Humification of peat at the surface (just under the layer of live *Sphagnum*) was mostly in the H2 to H5 range; however one sample was rated as H7. Mid-depth samples ranged from H6 to H8. Deep samples were in the H8 to H10 range, with one exception (H6).

Peat in Wetland 4 was determined based on visual examination and the presence of live *Sphagnum* mosses to be sphagnum peat. Peat thickness was measured at two locations in this tiny wetland. The peat layer (with live *Sphagnum* layer included) was found to be 0.53 and 0.89 m in depth, respectively. Humification of peat at the surface (just under the layer of live *Sphagnum*) was found to be H3 and H5, while deep samples were ranked as H8 and H10.

Complete wetland evaluation reports are provided at the end of this section.

Breeding Bird Survey on Project Site

A breeding bird survey was undertaken in June 2007 to provide a baseline on bird density and diversity on the project site and to identify potential species-at-risk. The area surveyed in 2007 included only the revised project footprint area and excluded the area already surveyed in 2005 for the EARD. Surveys were conducted at 10 listening posts (5min point counts) at representative locations within major habitat types (Table 1, Figure 2). Birds were identified by an experienced birder based on song and visual observations and followed the Environment Canada protocol. A total of 89 birds representing 31 species were recorded during the breeding bird survey of the 2007. A list of bird data recorded at each survey point in 2007 is provided in Table 2. Potential nesting habitat for species identified covered a full range of nesting types from typical tree and shrub nesting species to cavity and ground nesters. The earliest typical nesting period is identified as April (although Common Ravens, *Corvus corax*, may nest in March), while the latest is in September (American Robin, Turdus migratorius). During the 2007 surveys, the most abundant species' were the Dark-eyed Junco (*Junco hyemalis*, 11.2%) and Magnolia Warbler (*Dendroica magnolia*, 10.1%). All species detected during 2007 surveys were presumed to be attempting to breed in the revised Project area as suitable habitat was available. The Canada Warbler (*Wilsonia canadensis*) was the only bird species detected during 2007 surveys listed as sensitive to anthropogenic disturbance (yellow-listed). None of the bird species recorded during the 2007 breeding bird survey are considered to be rare in Nova Scotia. Sixteen additional bird species were detected during herpetile, wetland and rare plant surveys in 2007 (Table 3) including three species listed as sensitive to anthropogenic disturbance (yellow-listed); the Common Loon (*Gavia imner*), Common Nighthawk (*Chordeiles minor*) and Barn Swallow (*Hirunda rustica*).

Station No.	Plot Description	Dominant Tree/Shrub Vegetation	Other Observations	UTM Location (NAD 83 ZONE 20T)
PC1	Bog Wetland	Black Spruce, Bog Laurel, Lambskill, Labrador Tea, Leatherleaf	Variable cloudiness, light wind, generally quiet	506320 4980441
PC2	Moist sphagnum mixed forest	Black Spruce (live and dead), Red Maple, False Holly	Overcast, mild wind, generally quiet	506260 4980889
PC3	Upland mixed forest, mixed age	Red Maple, Yellow Birch, Balsam Fir, Trembling Aspen, White Birch	Variable cloudiness, light wind, generally quiet	506175 4980170
PC4	Ecotonal edge between mixed forest and old clearcut, mixed age	Balsam Fir, Red Maple, White Birch, Yellow Birch, Red Spruce	Overcast, mild wind, generally quiet	506185 4981255
PC5	Ecotonal edge of mixed shrub/tree bog and softwood forest	Red Spruce, Balsam Fir, Black Spruce, Larch, Labrador Tea, Lambskill	Overcast, generally quiet	506174 4980821
PC6	Ecotonal edge between recent and old clearcut areas	Red Maple, Speckled Alder, Red Spruce, Wild Raisin, Willow sp.	Overcast, light wind, generally quiet	505333 4982156
PC7	Ecotonal edge between mixed forest and clearcut	Red Maple, Balsam Fir, Yellow Birch, Speckled Alder, Willow sp.		505720 4981250
PC8	Mixed forest, mixed age	Red Maple, Red Spruce, Balsam Fir Speckled Alder, Wild Raisin, Canada Holly	Overcast, light wind, generally quiet	505900 4981915
PC9	Ecotonal edge of mixed forest and softwood forest, mixed age	White Spruce, Balsam Fir, Red Maple, Yellow Birch	Overcast, light wind, generally quiet	505024 4982318
PC10	Hardwood forest, mixed age	Yellow Birch, Red Maple, White Birc Sugar Maple, Balsam Fir	Overcast, mild wind, generally quiet	504710 4982115

TABLE 1: DESCRIPTION OF POINT COUNT STATIONS FOR THE BREEDING BIRD SURVEYON THE TOUQUOY GOLD PROJECT SITE IN JUNE 2007

See the EARD for a further description of rare bird species in the vicinity of the Project site.

Point Count Station NSDNR **Common Name** Scientific Name **Preferred Nesting Habitat Nesting Period** Status PC3 PC5 PC6 PC1 PC2 PC4 Broad-winged Hawk *Buteo platypterus* Green Deciduous and mixed forests May-August 1 Downy Woodpecker Picoides pubescens Green Deciduous and mixed forests Early April-early July Hairy Woodpecker Picoides villosus Deciduous and mixed forests Late March-late June 1 Green Colaptes auratus Northern Flicker Green Deciduous and mixed forests Late April-late July 1 Empidonax Damp boreal/coniferous forest, wet Yellow-bellied Flycatcher 1 1 1 Green Mid June-early August flaviventris areas with sphagnum-moss Birch forests/alder and willow thickets, Empidonax alnorum Alder Flycatcher Green Mid June-mid August 1 1 near wetlands Blue-headed Vireo Vireo salitarius Mixed forests Late May-Late July Green 1 1 1 Red-eved Vireo Vireo olivaceus Deciduous and mixed forests Early June-early August 1 Green Blue Jay *Cyanocitta cristata* Deciduous and mixed forests Early May-mid July Green Corvus Deciduous and mixed forests, near American Crow April-July Green brachyrhynchos edges Corvus corax Deciduous and mixed forests, cliffs March-June Common Raven Green Black-capped Chickadee Poecile atricapillus Green Deciduous and mixed forests Early May-mid Aug Troglodytes Coniferous and mixed forests, brush Winter Wren Green Mid May-late June troglodytes piles Ruby-crowned Kinglet Regulus calendula Mid May- early July 2 Green Coniferous forests 1 Swainson's Thrush *Catharus ustulatus* Green Deciduous and mixed forests Late May-late July 1 Catharus guttatus Hermit Thrush May-late August Green Coniferous and mixed forests 1 Turdus migratorius American Robin Deciduous and mixed forests Late April-early September Green Magnolia Warbler Dendroica magnolia Moist spruce/fir forests Early June-late July 3 2 Green 1 Yellow-rumpted Warbler Dendroica coronata Green Coniferous and mixed forests Early May-Early July Black-throated Green Dendroica virens Green Coniferous and mixed forests Early June-mid July 1 1 1 Warbler Blackburnian Warbler Dendroica fusca Mid May-mid July Green Coniferous and mixed forests 1 1 2 Palm Warbler Muskeg bogs, clearing Mid May-late July 2 1 Dendroica palmarum Green Spruce/fir forests, clearings, forest Bay-breasted Warbler Dendroica castanea Green June-July 1 edges Deciduous and mixed forests, damp Black-and-white Warbler Mniotilta varia Early June-mid July Green 1 woodlands Ovenbird Mature deciduous/spruce forests May-June Seiurus aurocapillus Green 1 *Geothlypis trichas* Swamp edges, brushy/shrub areas Common Yellowthroat Green Late May-late June 1 1 Moist mature forests, dense woodlands Canada Warbler Wilsonia canadensis Yellow Early June-late July 1 near streams or swamps Woodland edges, brushy thickets, Song Sparrow Melospiza melodia May-August 1 Green cattail marshes Northern bogs, wet brushy meadows, Lincoln's Sparrow Melospiza lincolnii Green Late May-early July 1 brambles White-throated Sparrow Zonotrichia albicollis Coniferous and mixed forests Mid May-late July Green 2 2 2 2 Dark-eyed Junco Junco hyemalis Coniferous and mixed forests Early May-late August 4 Green Total Number of Species 7 5 5 9 8 6 Total Number of Individuals 10 6 10 7 8 12

TABLE 2: BIRD SPECIES DETECTED DURING THE BREEDING BIRD SURVEY ON THE TOUQUOY GOLD PROJECT SITE IN JUNE 2007

n				Number of
PC7	PC8	PC9	PC10	Individuals
				1
		1		1
				1
				1
				3
				2
		1		4
	1		1	3
1			1	2
			1	1
2				2
	1	1		2
		2		2
1				4
			1	2
			1	2
		1		1
2			1	9
		1		1
1		2	1	7
				2
				5
				1
		1	2	4
1	1		3	6
	1			3
				1
				1
				1
				4
1		1		10
7	4	8	9	31
9	4	10	12	89

TABLE 3: ADDITIONAL BIRD SPECIES DETECTED DURING WETLAND, HERPETILE, AND BOTANY
SURVEYS IN 2007

Common Name	Scientific Name	NSDNR Status	Preferred Nesting Habitat	Nesting Period
			Freshwater lakes with undisturbed	Late May-late
Common Loon	Gavia immer	Yellow	islands	July
	Zenaida		Woodlands, open lands with scattered	Early April-mid
Mourning Dove	macroura	Green	trees	September
	Chordeiles		Open woodlands, forests, meadows,	Mid May-early
Common Nighthawk	minor	Yellow	clearings	August
	Dryocopus		Mature deciduous and coniferous	Early April-early
Pileated Woodpecker	pileatus	Green	forests	July
	Hirunda			
Barn Swallow	rustica	Yellow	Human structures, cliffs	Late May-July
	Tachycineta		Wetlands, wooded habitat near water,	
Tree Swallow	bicolor	Green	abundant dead trees	Late May-July
	Poecile		Coniferous forests of spruce, balsam fir	Early May-mid
Boreal Chickadee	hudsonica	Yellow	and pine	August
Golden-crowned	Regulus			Early May-mid
Kinglet	satrapa	Green	Coniferous forests, spruce woodlands	July
	Sturnus			
European Starling	vulgais	Green	Deciduous forests, urban areas	Late April-July
	Bombycilla			Mid June-early
Cedar Waxwing	cedrorum	Green	Open woodlands, secondary vegetation	September
	Parula		Humid coniferous forests or mixed	Late May-early
Northern Parula	americana	Green	woods near water	August
	Melospiza			Late May-mid
Swamp Sparrow	geogiana	Green	Wetlands	July
Red-winged	Agelaius			
Blackbird	phoeniceus	Green	Wetlands	May-July
	Quiscalus		Woodlands, groves along rivers,	
Common Grackle	quiscula	Green	swamps	Late April-July
	Carpodacus			Early June-mid
Purple Finch	purpureus	Green	Open woodlands, conifer forests	August
	Carduelis		Woodland edges, orchards, riparian	Late June-mid
American Goldfinch	tristis	Green	areas	September

Herpetile Survey

On May 15 2007, a herpetile survey of the seven small ponds present on the proposed Touquoy Gold Project site was conducted. As requested by DNR, the focus of this survey was to determine if these ponds presented suitable habitat for salamander or turtle species. A brief description of the herpetile fauna observed in each pond is provided in the following paragraphs.

The largest pond (Pond 1) existing on the site is the water-filled pit from a bulk ore sample excavated in the late 1980s (Figure 2). This pit is quite deep (< 10 m) and is filled with very clear water. As the sides of this pit are quite steep, there is no emergent vegetation around the perimeter, with the exception of a small area on the north side where the water has flooded a low-

lying area. Tadpoles, likely of green frogs (*Rana clamitans*), were present in this small pool. Adult green frogs were observed around the margins of the shallow area. There is no suitable habitat for turtles or salamanders in this pit.

Two small ponds within the Provincial Park were also surveyed (Ponds 2 and 3, Figure 2). These ponds, each less than 15 m long by 10 m wide, appear to be small water-filled historical mine excavations. These were found to contain breeding green frogs, as well as yellow-spotted salamander (*Ambystoma maculatum*) egg masses. Northern Spring Peepers are also likely breeding in these ponds. An effort to locate red-backed salamanders (*Plethodon cinereus*) under logs and stones around these pools was unsuccessful. These shallow ponds (likely < 1m) would not be considered suitable habitat for any species of turtle.

Three small ponds west of Moose River Road were also surveyed (Ponds 4, 5 and 6, Figure 2). These ponds are all also artifacts of historical mining activities. These ponds were generally steepsided and rocky, with water approximately 1 m deep. All three ponds, the largest of which was approximately 30 x 8 m, were found to contain adult green frogs and yellow-spotted salamander egg masses.. None of these ponds were considered to be suitable habitat for any turtle species, nor were they likely productive salamander breeding habitat, due to the presence of bullfrogs. None of these ponds provided suitable turtle habitat.

A large pond (Pond 7, Figure 2), situated between a residential building and the Moose River Road, was approximately 60 m long and 15 m wide, with a small treed island present at one end. This pond had some patchy broad-leaved cattails (*Typha latifolia*) around the perimeter, and at this time of year the water level had risen over a grassy area to the north, creating a shallow grassy flooded area which merged with the Mooseland Road ditch. An adult bullfrog (*Rana catesbiaena*) was observed in this area, and several large tadpoles were also observed, likely bullfrog or green frog tadpoles. Yellow-spotted salamander egg masses were observed around the margins of this pond. This pond was also found to be home to 20 or so goldfish (*Cassarius auratus*), which were observed in the warmer shallow grassy area. The source of these fish appeared to be a neglected preformed plastic fish pond which was situated in the adjacent yard and which appeared to have overflowed into the pond. These voracious fish would have a detrimental effect on the amphibian fauna, particularly larval stages, inhabiting this pond. This pond might provide some habitat for Eastern painted turtles (*Chrysemys picta picta*); however it would be poor quality habitat due to the rocky nature of the pond. No turtles were observed.

An additional pond (Pond 8, Figure 2), located on a property across the road from the entrance to the Provincial Park, was approximately 15 by 15 m in size, and was likely over 1 m deep. This pond was ringed by alders (*Alnus incana*) around half the perimeter and had a large patch of cattails on the other side. This pond was likely anthropogenic. It was found to contain adult and larval bullfrogs. A single yellow-spotted salamander egg mass was also detected. This pond might provide very limited habitat for painted turtles, however, none were observed. This Pond is actually outside of the Project footprint, and so will not be disturbed.

In summary, most of the ponds were found to be suitable breeding habitat for larger frog species and possibly for yellow-spotted salamanders and northern spring peepers. The possibility of any turtle species using these ponds is very low. No rare or sensitive herpetiles, nor habitat for such species, was observed.

Vegetation Survey of Logging Road to Upgrade

As discussed on page 71 of the Touquoy Gold Project EARD, an upgrading of an existing logging road around the western perimeter of the site, west of Moose River Gold Mines, will be required to maintain existing public access to those areas west of Moose River Gold Mines and south of the mine site. The existing logging road begins on Moose River Road and extends west though a recently clear-cut area. It then passes through harvested areas in various stages of regrowth, which are dominated by balsam fir (*Abies balsamea*). The proposed road then crosses a tributary of Moose River flowing from Long Lake, and extends southward to join the dirt road just past the bridge over Moose River itself.

Botanical surveys of this old logging road were conducted in June and August of 2007 by CRA ecologists Beth Cameron and Jeff Balsdon. No listed plant species were detected during either the early – or late-season botanical surveys. Construction of this road will not have a significant impact on forest habitat in the area, as much of the route has already been clear-cut or currently exists as old logging road.

Binomial	Common Name	S-Rank	DNR Status	Nearest Observation
Hemidactylium scutatum	Four-toed Salamander	S3	Green	41Km +/-10
Anas acuta	Northern Pintail	S2B	Green	40Km +/-5
Aythya marila	Greater Scaup	S3N	Green	54Km +/-5
Bucephala clangula	Common Goldeneye	S2B,S4N	Green	33Km +/-5
Bucephala islandica	Barrow's Goldeneye - Eastern population	S1N	Yellow	84Km +/-0.1
Mergus serrator	Red-breasted Merganser	S3B	Green	25Km +/-5
Accipiter gentilis	Northern Goshawk	S3B	Yellow	24Km +/-1
Falco peregrinus anatum	American Peregrine Falcon	S1B	Red	92Km +/-50.1
Rallus limicola	Virginia Rail	S2B	Green	40Km +/-5
Gallinula chloropus	Common Moorhen	S1B	Green	86Km +/-5
Fulica americana	American Coot	S2B	Green	82Km +/-1
Pluvialis dominica	American Golden- Plover	S3S4M	Green	40Km +/-0
Charadrius semipalmatus	Semipalmated Plover	S2B,S5M	Green	84Km +/-1
Charadrius melodus	Piping Plover	S1B	Red	28Km +/-0.5
Tringa melanoleuca	Greater Yellowlegs	S2B,S5M	Green	19Km +/-5
Tringa solitaria	Solitary Sandpiper	S1B	Green	41Km +/-0
Numenius phaeopus	Whimbrel	S3M	Green	35Km +/-0
Limosa haemastica	Hudsonian Godwit	S2S3M	Undetermined	50Km +/-0
Calidris canutus	Red Knot	S3M	Yellow	35Km +/-0
Calidris minutilla	Least Sandpiper	S1B,S5M	Green	60Km +/-1
Calidris bairdii	Baird's Sandpiper	S2M	Green	46Km +/-0
Calidris maritima	Purple Sandpiper	S2N	Yellow	46Km +/-0
Phalaropus lobatus	Red-necked Phalarope	S3S4M	Green	53Km +/-0
Larus ridibundus	Black-headed Gull	S3N	Green	28Km +/-5
Sterna dougallii	Roseate Tern	S1B	Red	30Km +/-0.1
Sterna hirundo	Common Tern	S3B	Yellow	19Km +/-0.1
Sterna paradisaea	Arctic Tern	S3B	Yellow	19Km +/-0.1
Alca torda	Razorbill	S1B,SZN	Yellow	52Km +/-1
Cepphus grylle	Black Guillemot	S3	Green	46Km +/-1
Coccyzus erythropthalmus	Black-billed Cuckoo	S3B	Green	54Km +/-1
Caprimulgus vociferus	Whip-Poor-Will	S1?B	Green	23Km +/-1
Sayornis phoebe	Eastern Phoebe	S2S3B	Green	44Km +/-5
Myiarchus crinitus	Great Crested Flycatcher	S2S3B	Green	47Km +/-5
Eremophila alpestris	Horned Lark	S2B,S4N	Green	46Km +/-1
Sialia sialis	Eastern Bluebird	S2S3B	Yellow	29Km +/-1
Hylocichla mustelina	Wood Thrush	S2B	Green	66Km +/-5
Mimus polyglottos	Northern Mockingbird	S3B	Green	50Km +/-1
Toxostoma rufum	Brown Thrasher	S1?B	Green	65Km +/-5
Vireo philadelphicus	Philadelphia Vireo	S1?B	Green	28Km +/-5

Binomial	Common Name	S-Rank	DNR Status	Nearest Observation
Piranga olivacea	Scarlet Tanager	S2B	Green	29Km +/-1
Passerina cyanea	Indigo Bunting	S2S3B	Green	67Km +/-1
Pooecetes gramineus	Vesper Sparrow	S2S3B	Yellow	66Km +/-5
Passerculus	"Ipswich" Savannah	C1D	Vallary	$0.01/m \pm 1$
sandwichensis princeps	Sparrow	510	Tellow	92KIII +/ -1
Ammodramus nelsoni	Nelson's Sharp-tailed Sparrow	S3B	Green	25Km +/-5
Dolichonyx oryzivorus	Bobolink	S3B	Yellow	16Km +/-1
Euphagus carolinus	Rusty Blackbird	S3B	Yellow	16Km +/-5
Icterus galbula	Baltimore Oriole	S3B	Green	40Km +/-5
Loxia curvirostra	Red Crossbill	S3S4	Undetermined	25Km +/-5
Salmo salar	Atlantic Salmon	S2	Red	10Km +/-50.1
Sorex dispar	Long-tailed Shrew	S1	Red	82Km +/-10
Pipistrellus subflavus	Eastern Pipistrelle	S1?	Yellow	58Km +/-1
Lasiurus cinereus	Hoary Bat	S2?	Yellow	35Km +/-10
Alces alces americanus	Mainland Moose	S1	Red	18Km +/-10
Dermochelys coriacea	Leatherback Turtle	S1S2N	None available	96Km +/-5
Glyptemys insculpta	Wood Turtle	S3	Yellow	12Km +/-10
Thorybes pylades	Northern Cloudywing	S2	Yellow	70Km +/-1
Erynnis juvenalis	Juvenal's Duskywing	S2S3	Green	57Km +/-1
Hesperia comma	Common Branded Skipper	S3	Green	52Km +/-1
Hesperia comma laurentina	Laurentian Skipper	S3		22Km +/-1
Amblyscirtes hegon	Pepper and Salt Skipper	S2	Green	48Km +/-1
Amblyscirtes vialis	Common Roadside- Skipper	S2	Green	53Km +/-1
Pieris oleracea	Mustard White	S2	Undetermined	51Km +/-1
Feniseca tarquinius	Harvester	S3S4	Green	39Km +/-1
Lycaena hyllus	Bronze Copper	S1	Green	53Km +/-1
Lycaena dospassosi	Salt Marsh Copper	S2		89Km +/-0
Satyrium acadicum	Acadian Hairstreak	S1	Undetermined	80Km +/-1
Satyrium calanus	Banded Hairstreak	S2	Undetermined	65Km +/-1
Satyrium liparops	Striped Hairstreak	S3	Undetermined	57Km +/-1
Callophrys polios	Hoary Elfin	S3S4	None available	53Km +/-1
Callophrys henrici	Henry's Elfin	S2	None available	58Km +/-1
Callophrys niphon	Eastern Pine Elfin	S2	None available	57Km +/-1
Callophrys lanoraieensis	Bog Elfin	S1S2	None available	55Km +/-1
Plebejus saepiolus	Greenish Blue	S1	Green	67Km +/-1
Speyeria aphrodite	Aphrodite Fritillary	S3S4	Green	51Km +/-1
Boloria chariclea	Arctic Fritillary	S2	Yellow	66Km +/-1
Euphydryas phaeton	Baltimore Checkerspot	S3	Green	50Km +/-1
Polygonia interrogationis	Question Mark	S3B	Green	51Km +/-1

Binomial	Common Name	S-Rank	DNR Status	Nearest Observation
Polygonia comma	Eastern Comma	S2	Yellow	65Km +/-1
Polygonia satyrus	Satyr Comma	S1	Yellow	68Km +/-1
Polygonia faunus	Green Comma	S3	Green	51Km +/-1
Polygonia gracilis	Hoary Comma	S1	Yellow	51Km +/-1
Polygonia progne	Gray Comma	S3S4	Green	42Km +/-10
Nymphalis vaualbum	Compton Tortoiseshell	S1S2	Green	51Km +/-1
Aglais milberti	Milbert's Tortoiseshell	S2	None available	50Km +/-1
Enodia anthedon	Northern Pearly-Eye	S3	Green	58Km +/-1
Oeneis jutta	Jutta Arctic	S1	Red	75Km +/-1
Danaus plexippus	Monarch Butterfly	S2B	Yellow	51Km +/-1
Cordulegaster diastatops	Delta-Spotted Spiketail	S3	Green	52Km +/-1
Cordulegaster maculata	Twin-Spotted Spiketail	S3	Green	42Km +/-1
Dromogomphus spinosus	Black-Shouldered Spinyleg	S2	Green	26Km +/-0.1
Gomphus ventricosus	Skillet Clubtail	S1	Red	48Km +/-0.1
Gomphus borealis	Beaverpond Clubtail	S2	Green	41Km +/-0.1
Gomphus descriptus	Harpoon Clubtail	S2	Yellow	97Km +/-0.1
Gomphus exilis	Lancet Clubtail	S3	Green	29Km +/-1
Gomphus spicatus	Dusky Clubtail	S2	Green	30Km +/-10
Gomphus adelphus	Moustached Clubtail	S2	Green	46Km +/-1
Hagenius brevistylus	Dragonhunter	S3	Green	23Km +/-0.1
Lanthus parvulus	Northern Pygmy Clubtail	S2	Yellow	88Km +/-1
Stylogomphus albistylus	Least Clubtail	S3	Green	37Km +/-1
Ophiogomphus aspersus	Brook Snaketail	S1	Red	88Km +/-0.1
Ophiogomphus carolus	Riffle Snaketail	S3	Green	37Km +/-1
Ophiogomphus mainensis	Maine Snaketail	S1	Red	90Km +/-0.1
Öphiogomphus rupinsulensis	Rusty Snaketail	S1	Red	48Km +/-0.1
Aeshna canadensis	Canada Darner	S3	Green	39Km +/-0.1
Aeshna clepsydra	Mottled Darner	S2	Green	43Km +/-1
Aeshna constricta	Lance-Tipped Darner	S2	Undetermined	45Km +/-0.1
Aeshna eremita	Lake Darner	S3	Green	14Km +/-1
Aeshna sitchensis	Zigzag Darner	S2	Green	74Km +/-1
Aeshna subarctica	Subarctic Darner	S3	Green	45Km +/-1
Aeshna tuberculifera	Black-Tipped Darner	S3	Green	20Km +/-1
Aeshna verticalis	Green-Striped Darner	S2	Green	42Km +/-0.1
Anax junius	Common Green Darner	S3	Green	39Km +/-0.1
Basiaeschna janata	Springtime Darner	S3	Green	40Km +/-1
Boyeria grafiana	Ocellated Darner	S2	Undetermined	52Km +/-1
Boyeria vinosa	Fawn Darner	S3	Green	26Km +/-1
Gomphaeschna furcillata	Harlequin Darner	S1	Yellow	62Km +/-1
Didymops transversa	Stream Cruiser	S3	Green	41Km +/-0.1

Binomial	Common Name	S-Rank	DNR Status	Nearest Observation
Macromia illinoiensis	Illinois River Cruiser	S3	Green	23Km +/-0.1
Cordulia shurtleffii	American Emerald	S3	Green	42Km +/-0.1
Dorocordulia lepida	Petite Emerald	S3	Green	40Km +/-0.1
Dorocordulia libera	Racket-Tailed Emerald	S2	Green	45Km +/-0.1
Epitheca princeps	Prince Baskettail	S2	Yellow	57Km +/-0.5
Epitheca canis	Beaverpond Baskettail	S3	Green	16Km +/-1
Epitheca cynosura	Common Baskettail	S3	Undetermined	30Km +/-10
Epitheca spinigera	Spiny Baskettail	S3	Green	51Km +/-1
Helocordulia uhleri	Uhler's Sundragon	S3	Green	40Km +/-0.1
Somatochlora cingulata	Lake Emerald	S2	Green	41Km +/-0.1
Somatochlora elongata	Ski-Tailed Emerald	S3	Green	38Km +/-1
Somatochlora forcipata	Forcipate Emerald	S2	Undetermined	65Km +/-1
Somatochlora franklini	Delicate Emerald	S1	Undetermined	75Km +/-0.1
Somatochlora incurvata	Incurvate Emerald	S3	Green	25Km +/-1
Somatochlora minor	Ocellated Emerald	S2	Green	40Km +/-0.1
Somatochlora tenebrosa	Clamp-Tipped Emerald	S2	Yellow	74Km +/-0.1
Somatochlora walshii	Brush-Tipped Emerald	S3	Green	42Km +/-1
Williamsonia fletcheri	Ebony Boghaunter	S1	Red	96Km +/-0.1
Celithemis elisa	Calico Pennant	S2	Green	33Km +/-1
Celithemis martha	Martha's Pennant	S2	Green	43Km +/-1
Leucorrhinia frigida	Frosted Whiteface	S3	Green	40Km +/-1
Leucorrhinia glacialis	Crimson-Ringed Whiteface	S3	Green	52Km +/-1
Leucorrhinia hudsonica	Hudsonian Whiteface	S3	Green	40Km +/-0.1
Leucorrhinia intacta	Dot-Tailed Whiteface	S3	Green	14Km +/-1
Leucorrhinia proxima	Red-Waisted Whiteface	S3	Green	14Km +/-1
Libellula incesta	Slaty Skimmer	S3	Green	43Km +/-1
Libellula luctuosa	Widow Skimmer	SH		75Km +/-0.1
Libellula pulchella	Twelve-Spotted Skimmer	S2	Green	39Km +/-0.1
Ladona exusta	White Corporal	S3		29Km +/-1
Plathemis lydia (Syn. Libellula lydia)	Common Whitetail	S3	Green	40Km +/-0.1
Libellula julia	Chalk-Fronted Corporal	S3	Green	45Km +/-0.1
Nannothemis bella	Elfin Skimmer	S2	Green	72Km +/-1
Sympetrum costiferum	Saffron-Winged Meadowhawk	S3	Green	26Km +/-0.1
Sympetrum danae	Black Meadowhawk	S2	Green	97Km +/-1
Sympetrum obtrusum	White-Faced Meadowhawk	S3	Green	37Km +/-5
Sympetrum rubicundulum	Ruby Meadowhawk	S2	Undetermined	43Km +/-1

Binomial	Common Name	S-Rank	DNR Status	Nearest Observation
Sympetrum semicinctum	Band-Winged Meadowhawk	S3	Green	26Km +/-0.1
Sympetrum vicinum	Yellow-Legged Meadowhawk	S3	Green	30Km +/-10
Calopteryx aequabilis	River Jewelwing	S3	Green	23Km +/-0.1
Calopteryx amata	Superb Jewelwing	S3	Green	26Km +/-1
Lestes dryas	Emerald Spreadwing	S3	Green	39Km +/-0.1
Lestes forcipatus	Sweetflag Spreadwing	S2	Undetermined	39Km +/-1
Lestes congener	Spotted Spreadwing	S3	Green	23Km +/-0.1
Lestes eurinus	Amber-Winged Spreadwing	S2	Undetermined	40Km +/-0.1
Lestes rectangularis	Slender Spreadwing	S3	Green	30Km +/-10
Lestes unguiculatus	Lyre-Tipped Spreadwing	S2	Green	53Km +/-1
Lestes vigilax	Swamp Spreadwing	S2	Undetermined	30Km +/-10
Argia fumipennis violacea	Variable Dancer	S3	Green	30Km +/-10
Argia moesta	Powdered Dancer	S3	Green	37Km +/-1
Coenagrion resolutum	Taiga Bluet	S1	Red	57Km +/-0.5
Enallagma boreale	Boreal Bluet	S3	Green	40Km +/-1
Enallagma carunculatum	Tule Bluet	S1	Undetermined	75Km +/-0.1
Enallagma cyathigerum vernale	Springtime Bluet	S2	Undetermined	39Km +/-0.1
Enallagma minusculum	Little Bluet	S2	Yellow	30Km +/-10
Enallagma aspersum	Azure Bluet	S2	Green	35Km +/-0.1
Enallagma civile	Familiar Bluet	S3	Green	40Km +/-0.1
Enallagma ebrium	Marsh Bluet	S3	Green	40Km +/-0.1
Enallagma exsulans	Stream Bluet	S2	Green	34Km +/-1
Enallagma hageni	Hagen's Bluet	S3	Green	30Km +/-10
Enallagma signatum	Orange Bluet	S1	Undetermined	67Km +/-0.1
Ischnura posita	Fragile Forktail	S3	Green	39Km +/-1
Nehalennia irene	Sedge Sprite	S3	Green	32Km +/-1
Nehalennia gracilis	Sphagnum Sprite	S2	Undetermined	74Km +/-0.1
Amphiagrion saucium	Eastern Red Damsel	S2	Green	53Km +/-1
Chromagrion conditum	Aurora Damsel	S3	Green	41Km +/-0.1
Stylurus scudderi	Zebra Clubtail	S1	Undetermined	46Km +/-1
Alasmidonta undulata	Triangle Floater	S2S3	Yellow	20Km +/-0.1
Alasmidonta varicosa	Brook Floater	S1S2	Yellow	37Km +/-0.1
Lampsilis radiata	Eastern Lampmussel	S2	Green	27Km +/-0.1
Desmatodon obtusifolius	a Moss	S1	None available	52Km +/-1
Erioderma pedicellatum	Boreal Felt Lichen	S1S2	Red	10Km +/-0
Conioselinum chinense	Hemlock Parsley	S2S3	Yellow	62Km +/-5
Osmorhiza longistylis	Smoother Sweet- Cicely	S2	Yellow	56Km +/-0
Sanicula odorata	Black Snake-Root	S1	Red	55Km +/-10
Zizia aurea	Common Alexanders	S1S2	Yellow	18Km +/-1

Binomial	Common Name	S-Rank	DNR Status	Nearest Observation
Panax trifolius	Dwarf Ginseng	S3	Green	47Km +/-1
Asclepias incarnata	Swamp Milkweed	S3	Green	14Km +/-10
Asclepias incarnata ssp. pulchra	Swamp Milkweed	S2S3	Green	19Km +/-1
Antennaria parlinii	a Pussytoes	S1	Red	63Km +/-10
Bidens connata	Purple-Stem Swamp Beggar-Ticks	S3?	Yellow	66Km +/-0.5
Erigeron hyssopifolius	Daisy Fleabane	S2S3	Yellow	56Km +/-0.5
Erigeron philadelphicus	Philadelphia Fleabane	S2	Yellow	17Km +/ <i>-</i> 1
Euthamia galetorum	Narrow-Leaf Fragrant Golden-Rod	S3S4	Green	16Km +/-10
Euthamia caroliniana	Grass-Leaved Goldenrod	S3	Yellow	24Km +/-5
Hieracium kalmii	Kalm's Hawkweed	S2?	Undetermined	71Km +/-1
Hieracium kalmii var. fasciculatum	Kalm's Hawkweed	S1?	Undetermined	61Km +/-5
Hieracium kalmii var. kalmii	Kalm's Hawkweed	S2?	Undetermined	65Km +/-5
Hieracium robinsonii	Robinson's Hawkweed	S2	Yellow	50Km +/-1
Hieracium umbellatum	Umbellate Hawkweed	S2?	Undetermined	52Km +/-5
Lactuca hirsuta var. sanguinea	Hairy Wild Lettuce	S2	Yellow	40Km +/-10
Megalodonta beckii	Beck Water-Marigold	S3	Yellow	28Km +/-0.5
Rudbeckia laciniata	Cut-Leaved Coneflower	S2S3	Yellow	51Km +/-0
Rudbeckia laciniata var. gaspereauensis	Cut-Leaved Coneflower	S2S3	Yellow	46Km +/-10
Packera paupercula	Balsam Groundsel	S3	Green	55Km +/-1
Senecio pseudoarnica	Seabeach Groundsel	S2	Yellow	39Km +/-10
Solidago hispida	Hairy Goldenrod	S1?	Red	38Km +/-10
Solidago simplex var. randii	Mountain Goldenrod	SH	Blue	73Km +/-1
Symphyotrichum boreale	Boreal American-Aster	S2?	Yellow	54Km +/-10
Symphyotrichum undulatum	Wavy-leaf American- Aster	S2	Yellow	66Km +/ <i>-</i> 10
Symphyotrichum ciliolatum	Lindley's Aster	S2S3	Yellow	19Km +/-5
Impatiens pallida	Pale Jewel-Weed	S2	Yellow	91Km +/-10
Caulophyllum thalictroides	Blue Cohosh	S2	Red	43Km +/-10
Cynoglossum virginianum var. boreale	Northern Wild Comfrey	S1	Red	89Km +/-1
Arabis drummondii	Drummond Rockcress	S2	Yellow	81Km +/-1
Cardamine parviflora var. arenicola	Small-Flower Bitter- Cress	S2	Yellow	95Km +/-50.1

Binomial	Common Name	S-Rank	DNR Status	Nearest Observation
Cochlearia tridactylites	Limestone Scurvy- grass	S1	Red	64Km +/-1
Campanula aparinoides	Marsh Bellflower	S3?	Yellow	56Km +/-0
Lobelia spicata	Pale-Spiked Lobelia	S1S2SE	Red	68Km +/-10
Minuartia groenlandica	Mountain Sandwort	S2	Yellow	26Km +/-10
Stellaria humifusa	Creeping Sandwort	S2	Yellow	18Km +/-0.1
Stellaria longifolia	Longleaf Stitchwort	S3	Yellow	19Km +/-0.1
Atriplex acadiensis	Maritime Saltbush	S1?	Undetermined	84Km +/-10
Atriplex franktonii	Frankton's Saltbush	S3S4	Yellow	92Km +/-1
Chenopodium rubrum	Coast-Blite Goosefoot	S1?	Red	77Km +/-10
Suaeda calceoliformis	American Sea-Blite	S2S3	Green	62Km +/-10
Helianthemum canadense	Canada Frostweed	S1	Red	78Km +/-1
Hudsonia ericoides	Golden-Heather	S2	Yellow	62Km +/-10
Hudsonia tomentosa	Sand-Heather	S1	Red	80Km +/-10
Clethra alnifolia	Coast Pepper-Bush	S1S2	Yellow	63Km +/-0.1
Hypericum dissimulatum	Disguised St. John's- Wort	S2S3	Yellow	60Km +/-0.5
Hypericum majus	Larger Canadian St. John's Wort	S1	Red	62Km +/-10
Triosteum aurantiacum	Coffee Tinker's-Weed	S2	Yellow	49Km +/-10
Crassula aquatica	Water Pigmy-Weed	S2	Yellow	96Km +/-0.1
Cuscuta cephalanthi	Button-Bush Dodder	S1	Red	76Km +/-1
Shepherdia canadensis	Canada Buffalo-Berry	S2	Yellow	81Km +/-10
Empetrum eamesii	Rock Crowberry	S2S3	Yellow	62Km +/-10
Empetrum eamesii ssp. atropurpureum	Purple Crowberry	S2S3	Yellow	69Km +/-0.5
Empetrum eamesii ssp. eamesii	Purple Crowberry	S2S3	Yellow	69Km +/-0.5
Vaccinium boreale	Northern Blueberry	S2	Red	65Km +/-1
Vaccinium caespitosum	Dwarf Blueberry	S2	Yellow	47Km +/-1
Vaccinium uliginosum	Alpine Blueberry	S2	Yellow	69Km +/-10
Desmodium canadense	Showy Tick-Trefoil	S1	Red	50Km +/-0.1
Desmodium glutinosum	Large Tick-Trefoil	S2	Red	81Km +/-0
Bartonia virginica	Yellow Screwstem	S3	Green	51Km +/-10
Halenia deflexa	Spurred Gentian	S2S3	Yellow	75Km +/-1
Ribes americanum	Wild Black Currant	S1SE	Undetermined	52Km +/-5
Myriophyllum farwellii	Farwell's Water-Milfoil	S2	Yellow	28Km +/-0.1
Myriophyllum verticillatum	Whorled Water-Milfoil	S2	Yellow	72Km +/-10
Proserpinaca palustris var. crebra	Marsh Mermaid-Weed	S3S4	Green	19Km +/-5
Proserpinaca pectinata	Comb-Leaved Mermaid-Weed	S3	Green	32Km +/-1
Hedeoma pulegioides	American Pennyroyal	S2S3	Yellow	6Km +/-5
Teucrium canadense	American Germander	S2S3	Yellow	41Km +/-5

Binomial	Common Name	S-Rank	DNR Status	Nearest Observation
Floerkea proserpinacoides	False Mermaid-Weed	S2S3	Yellow	49Km +/-10
Utricularia gibba	Humped Bladderwort	S2	Yellow	22Km +/-10
Utricularia radiata	Small Swollen Bladderwort	S3	Green	98Km +/-1
Fraxinus nigra	Black Ash	S3	Yellow	55Km +/-1
Fraxinus pennsylvanica	Green Ash	S1	Red	73Km +/-0.5
Epilobium coloratum	Purple-Leaf Willow- Herb	S2?	Yellow	69Km +/-0.1
Oenothera fruticosa ssp. glauca	Shrubby Sundrops	S2SE	Undetermined	54Km +/-10
Sanguinaria canadensis	Bloodroot	S3S4	Green	56Km +/-0
Polygala polygama	Racemed Milkwort	S1SE	Undetermined	65Km +/-1
Polygala sanguinea	Field Milkwort	S2S3	Yellow	28Km +/-5
Polygonum arifolium	Halberd-Leaf Tearthumb	S2	Yellow	97Km +/-0.1
Polygonum buxiforme	Small's Knotweed	S2S3SE	Undetermined	54Km +/-10
Polygonum pensylvanicum	Pennsylvania Smartweed	S3	Green	38Km +/-1
Polygonum scandens	Climbing False- Buckwheat	S2	Yellow	54Km +/-10
Rumex salicifolius var. mexicanus	Willow Dock	S2	Yellow	89Km +/-1
Plantago rugelii	Black-Seed Plantain	S1SE	Undetermined	54Km +/-10
Montia fontana	Fountain Miner's- Lettuce	S1	Red	66Km +/-1
Lysimachia thyrsiflora	Water Loosestrife	S3S4	Green	50Km +/-1
Primula mistassinica	Bird's-Eye Primrose	S2	Yellow	27Km +/-1
Pyrola asarifolia	Pink Wintergreen	S3	Green	26Km +/-50.1
Anemone canadensis	Canada Anemone	S2	Yellow	81Km +/-10
Anemone quinquefolia	Wood Anemone	S2	Yellow	28Km +/-0.1
Anemone virginiana	Virginia Anemone	S1S2	Yellow	54Km +/-10
Anemone virginiana var. alba	River Anemone	S1S2	Yellow	50Km +/-0.1
Anemone virginiana var. virginiana	River Anemone	S2	Yellow	46Km +/-10
Caltha palustris	Marsh Marigold	S2	Yellow	83Km +/-0.1
Hepatica nobilis var. obtusa	Round-Leaved Liverleaf	S1	Red	24Km +/-0.1
Ranunculus flammula var. flammula	Greater Creeping Spearwort	S2	Green	49Km +/-10
Ranunculus gmelinii	Small Yellow Water- Crowfoot	S3?	Green	56Km +/-0.5
Ranunculus pensylvanicus	Bristly Crowfoot	S1	Red	92Km +/-0
Ranunculus sceleratus	Cursed Crowfoot	S1S2	Red	61Km +/-0.5

Binomial	Common Name	S-Rank	DNR Status	Nearest Observation
Rhamnus alnifolia	Alderleaf Buckthorn	S3	Yellow	36Km +/-1
Agrimonia gryposepala	Tall Hairy Groovebur	S3?		56Km +/-0
Crataegus robinsonii	A Hawthorn	S1?	Undetermined	52Km +/-5
Crataegus submollis	A Hawthorn	S1?	Undetermined	51Km +/-10
Galium boreale	Northern Bedstraw	S2	Red	90Km +/-1
Salix pedicellaris	Bog Willow	S2	Yellow	16Km +/-0.1
Salix petiolaris	Meadow Willow	S3	Green	26Km +/-0
Salix sericea	Silky Willow	S2	Yellow	51Km +/-1
Geocaulon lividum	Northern Comandra	S2S3	Yellow	35Km +/-0.1
Tiarella cordifolia	Heart-Leaved Foam- Flower	S2	Yellow	23Km +/-5
Gratiola neglecta	Clammy Hedge- Hyssop	S1	Yellow	32Km +/-0.1
Limosella australis	Mudwort	S2S3	Yellow	23Km +/-5
Lindernia dubia	Yellow-Seed False- Pimpernel	S3S4	Green	62Km +/-0
Dirca palustris	Eastern Leatherwood	S1	Red	43Km +/-1
Laportea canadensis	Wood Nettle	S3	Yellow	33Km +/-0.1
Pilea pumila	Canada Clearweed	S1	Red	40Km +/-0
Verbena hastata	Blue Vervain	S3	Green	40Km +/-0
Viola canadensis	Canada Violet	S1	Blue	49Km +/-10
Viola nephrophylla	Northern Bog Violet	S2	Yellow	18Km +/-1
Viola sagittata var. ovata	Arrow-Leaved Violet	S3S4	Green	85Km +/-0
Thuja occidentalis	Northern White Cedar	S1S2	Red	57Km +/-1
Alisma gramineum	Narrow-Leaf Water- Plantain	S1SE	Undetermined	70Km +/-5
Carex adusta	Crowded Sedge	S2S3	Yellow	32Km +/-10
Carex bebbii	Bebb's Sedge	S1S2	Red	87Km +/-5
Carex bromoides	Brome-Like Sedge	S3	Green	26Km +/-0.1
Carex castanea	Chestnut-Colored Sedge	S2	Red	82Km +/-0
Carex comosa	Bristly Sedge	S2	Yellow	61Km +/ <i>-</i> 0.1
Carex eburnea	Ebony Sedge	S3	Yellow	53Km +/-0.1
Carex foenea	Dry-Spike Sedge	S3?	Green	55Km +/-0
Carex garberi	Elk Sedge	S1	Red	50Km +/-0
Carex haydenii	Cloud Sedge	S1	Red	53Km +/-1
Carex hirtifolia	Pubescent Sedge	S2S3	Yellow	40Km +/-10
Carex houghtoniana	A Sedge	S2?	Yellow	38Km +/-5
Carex hystericina	Porcupine Sedge	S1S2	Red	93Km +/-1
Carex pellita	Woolly Sedge	S1	Red	14Km +/-10
Carex livida var. radicaulis	Livid Sedge	S1	Red	96Km +/-10
Carex lupulina	Hop Sedge	S3	G	26Km +/-0
Carex peckii	White-Tinged Sedge	S2?	Red	56Km +/-0.1
Carex pensylvanica	Pennsylvania Sedge	S1S2	Undetermined	49Km +/-0.1

Binomial	Common Name	S-Rank	DNR Status	Nearest Observation
Carex plantaginea	Plantain-Leaved Sedge	S1	Red	52Km +/-0.1
Carex rosea	Rosy Sedge	S3	Green	51Km +/-0.5
Carex tenera	Slender Sedge	S1S2	Yellow	62Km +/-5
Carex tuckermanii	Tuckerman Sedge	S1	Red	70Km +/-0.1
Eleocharis nitida	Slender Spike-Rush	S3	Green	70Km +/-5
Eleocharis olivacea	Capitate Spikerush	S2	Yellow	95Km +/-0.1
Eleocharis ovata	Ovate Spikerush	S2?	Yellow	66Km +/-0.5
Eriophorum gracile	Slender Cotton-Grass	S2	Yellow	47Km +/-10
Scirpus pedicellatus	Stalked Bulrush	S1	Undetermined	40Km +/-1
Vallisneria americana	Eel-Grass	S2	Red	26Km +/-10
Iris prismatica	Slender Blue Flag	S1	Red	77Km +/-10
Sisyrinchium angustifolium	Pointed Blue-Eyed- Grass	S3S4	Green	65Km +/ <i>-</i> 0
Juncus greenei	Greene's Rush	S1S2	Red	65Km +/-10
Juncus marginatus	Grassleaf Rush	S2S3	Yellow	81Km +/-10
Juncus nodosus	Knotted Rush	S3S4	Green	62Km +/-0
Juncus subcaudatus	Woods-Rush	S3	Undetermined	14Km +/-10
Juncus dudleyi	Dudley's Rush	S2?	Yellow	51Km +/-1
Luzula parviflora	Small-Flowered Wood-Rush	S3	Green	90Km +/-0
Allium schoenoprasum var. sibiricum	Wild Chives	S2	Undetermined	54Km +/-10
Allium tricoccum	Small White Leek	S1	Red	56Km +/-0.1
Lilium canadense	Canada Lily	S2S3	Yellow	43Km +/-10
Trillium erectum	Ill-Scent Trillium	S3	Green	53Km +/-0.1
Najas gracillima	Thread-Like Naiad	S1S2	Undetermined	79Km +/-0.1
Coeloglossum viride var. virescens	Long-Bract Green Orchis	S2	Red	83Km +/-0.1
Corallorhiza trifida	Early Coralroot	S3	Green	50Km +/-0.5
Cypripedium arietinum	Ram's-Head Lady's- Slipper	S1	Red	84Km +/-5
Cypripedium parviflorum	Small Yellow Lady's- Slipper	S2S3	Yellow	79Km +/-5
Cypripedium parviflorum var. pubescens	Large Yellow Lady's- Slipper	S2	Yellow	63Km +/-10
Cypripedium parviflorum var. makasin	Small Yellow Lady's- Slipper	S2	Yellow	89Km +/-5
Cypripedium reginae	Showy Lady's-Slipper	S2	Red	17Km +/-5
Goodyera pubescens	Downy Rattlesnake- Plantain	S1	Red	35Km +/-1
Goodyera tesselata	Checkered Rattlesnake-Plantain	S3	Green	46Km +/-1
Liparis loeselii	Loesel's Twayblade	S3S4	Green	52Km +/-5
Listera australis	Southern Twayblade	S1	Red	50Km +/-0.1
Listera convallarioides	Broad-Leaved	S3	Green	83Km +/-0.1

Binomial	Common Name	S-Rank	DNR Status	Nearest Observation
	Twayblade			
Platanthera flava	Southern Rein-Orchid	S2	Yellow	55Km +/-10
Platanthera flava var. herbiola	Pale Green Orchid	S1S2	Yellow	81Km +/-0
Platanthera grandiflora	Large Purple-Fringe Orchis	S3	Green	38Km +/-1
Platanthera hookeri	Hooker Orchis	S3	Green	89Km +/-1
Platanthera orbiculata	Large Roundleaf Orchid	S3	Yellow	54Km +/-10
Platanthera macrophylla	Large Round-Leaved Orchid	S2	Green	61Km +/-1
Spiranthes lucida	Shining Ladies'- Tresses	S2	Red	41Km +/-0.1
Spiranthes ochroleuca	Yellow Nodding Ladies'-Tresses	S2	Yellow	69Km +/-1
Spiranthes romanzoffiana	Hooded Ladies'- Tresses	S3S4	Green	51Km +/-5
Alopecurus aequalis	Short-Awn Foxtail	S2S3	Yellow	47Km +/-5
Dichanthelium acuminatum var. lindheimeri	Panic Grass	S1?	Green	70Km +/-0.1
Dichanthelium clandestinum	Deer-Tongue Witchgrass	S3	Yellow	34Km +/-0
Dichanthelium linearifolium	Slim-Leaf Witchgrass	S2?	Yellow	67Km +/-10
Elymus wiegandii	Wiegand's Wild Rye	S1	Red	56Km +/-0
Elymus hystrix var. bigeloviana	Bottlebrush Grass	S1	Red	55Km +/-1
Festuca subverticillata	Nodding Fescue	S1S2	Red	60Km +/-5
Milium effusum var. cisatlanticum	Tall Millet-Grass	S3	Green	56Km +/-0.5
Piptatherum canadense	Canada Mountain- Ricegrass	S2	Yellow	44Km +/-1
Panicum philadelphicum	Philadelphia Panic Grass	S2S3SE	Yellow	81Km +/-0
Poa glauca	White Bluegrass	S2S3	Yellow	81Km +/-1
Sphenopholis intermedia	Slender Wedge Grass	S3S4	Yellow	41Km +/-0
Trisetum spicatum	Narrow False Oats	S3	Green	62Km +/-0
Potamogeton confervoides	Algae-Like Pondweed	S3S4	Green	32Km +/-1
Potamogeton friesii	Fries' Pondweed	S2	Undetermined	50Km +/-1
Potamogeton nodosus	Longleaf Pondweed	S1	Undetermined	73Km +/-5
Potamogeton obtusifolius	Blunt-Leaf Pondweed	S2	Yellow	74Km +/-10
Potamogeton praelongus	White-Stem Pondweed	S3?	Undetermined	56Km +/-1
Potamogeton pulcher	Spotted Pondweed	S1	Undetermined	17Km +/-5
Potamogeton richardsonii	Redhead Grass	S3?	Undetermined	76Km +/-1

Binomial	Common Name	S-Rank	DNR Status	Nearest Observation
Potamogeton zosteriformis	Flatstem Pondweed	S2S3	Yellow	11Km +/-10
Sparganium fluctuans	Floating Bur-Reed	S3?	Undetermined	63Km +/-0.5
Sparganium natans	Small Bur-Reed	S3	Green	19Km +/-1
Adiantum pedatum	Northern Maidenhair- Fern	S1	Red	53Km +/-1
Cryptogramma stelleri	Fragile Rockbrake	S1	Red	92Km +/-0
Asplenium trichomanes- ramosum	Green Spleenwort	S2	Yellow	89Km +/-10
Cystopteris bulbifera	Bulblet Fern	S3S4	Green	41Km +/-0.1
Cystopteris tenuis	A Bladderfern	S3?	Green	50Km +/-0
Dryopteris fragrans var. remotiuscula	Fragrant Fern	S2	Yellow	58Km +/-10
Polystichum braunii	Braun's Holly-Fern	S3S4	Green	70Km +/-1
Equisetum pratense	Meadow Horsetail	S2	Yellow	41Km +/-0
Equisetum scirpoides	Dwarf Scouring Rush	S3S4	Green	47Km +/-0
Equisetum variegatum	Variegated Horsetail	S3	Green	46Km +/-0.1
Isoetes acadiensis	Acadian Quillwort	S3	Yellow	79Km +/-1
Isoetes lacustris	Lake Quillwort	S3?	Green	72Km +/-0.5
Isoetes prototypus	Prototype Quillwort	S2	Red	85Km +/-0.1
Lycopodium complanatum	Trailing Clubmoss	S3?	Green	79Km +/-0
Lycopodium sabinifolium	Ground-Fir	S3?	Green	62Km +/-0.1
Lycopodium sitchense	Alaskan Clubmoss	S3?	Green	56Km +/-5
Lycopodium hickeyi	Hickey's Clubmoss	S2?	Green	53Km +/-1
Huperzia selago	Fir Clubmoss	S1S3	Undetermined	60Km +/-5
Lycopodiella appressa	Southern Bog Clubmoss	S3	Green	19Km +/-1
Botrychium dissectum	Cutleaf Grape-Fern	S3	Green	53Km +/-1
Botrychium lanceolatum var. angustisegmentum	Lance-Leaf Grape-Fern	S2	Yellow	70Km +/-1
Botrychium lunaria	Moonwort Grape-Fern	S1	Red	50Km +/-5
Botrychium simplex	Least Grape-Fern	S2S3	Yellow	36Km +/-0.1
Ophioglossum pusillum	Adder's Tongue	S2S3	Yellow	47Km +/-10
Polypodium appalachianum	Appalachian Polypody	S3?	Undetermined	47Km +/-0
Schizaea pusilla	Curly-Grass Fern	S3	Green	37Km +/-1

Rec'd. CRA

DCT 0 2 2007 1747 Summer Street Halifax, Nova Scotia

B3H 3A6

820933-1

www.gov.ns.ca

In Reply Please Quote Our File Number:

September 28, 2007

Heritage Division

Beth Cameron Conestoga-Rovers & Associates 31 Gloster Court Dartmouth, NS B3B 1X9

Dear Ms. Cameron:

RE: Environmental Screening 07-0928b Touquoy Gold Mine

Further to your request of September 28, 2007, staff of the Heritage Division have reviewed their files for reference to the presence of heritage resources in the study area. Please be aware that our information is not comprehensive, in that it is incomplete and of varying degrees of accuracy with respect to the precise location and condition of heritage resources.

It should be noted that the amount and degree of disturbance from previous developments could have a significant role in establishing the presence, absence or condition of heritage resources in this area. Also, because the map included both terrestrial and aquatic environs, both were addressed in this response.

Natural Heritage

The staff of the Nova Scotia Museum Collections Unit (Natural History) have reviewed their records and make the following observations:

Botany

Staff have reviewed the museum records for the area provided and offer the following list of species-at-risk that could be impacted by development at this site. The presence or absence of the following species should be determined prior to site disturbance and recorded in the site report. any field assessment should be conducted when the species can be positively identified.

Anemone quinquefolia Yellow Arenaria groenlandica (Minuartia g.) Yellow Betula michauxii Yellow Bidens connata Yellow Botrychium lunaria Red Botrychium simplex Yellow Carex hirtifolia Yellow Caulophyllum thalictroides Red Cypripedium reginae Red Dirca palustris Red Beth Cameron September 28, 2007 Page 2

Eleocharis olivacea Yellow Elymus wiegandii Red Empetrum eamesii Yellow Epilobium strictum Yellow Eriophorum gracile Yellow Euthamia caroliniana Yellow Fraxinus nigra Yellow Geocaulon lividum Yellow Hepatica americana Red Hudsonia ericoides Yellow Hypericum majus Red Juncus greenei Red Lilium canadense Yellow Listera australis Red Megalodonta beckii Yellow Ophioglossum pusillum Yellow Polygala sanguinea Yellow Potamogeton zosteriformis Yellow Rhamnus alnifolia Yellow Rudbeckia laciniata Yellow Salix candida Red Salix sericea Yellow Senecio pseudoarnica Yellow Spiranthes ochroleuca Yellow Stellaria longifolia Yellow Tiarella cordifolia Yellow Triosteum aurantiacum Yellow Utricularia gibba Yellow Viola nephophylla Yellow Zizia aurea Yellow

The colour rank refers to the designation assigned under the NS Department of Natural Resources status review process.

I have attached an invoice for the staff time spent reviewing our records and compiling this response. If you have any questions, please contact me at 424-6475.

If you have any questions, please let me know.

Sincerely,

Robert Ogilvie Manager, Special Places

Enclosure
WETLAND 1 REPORT

Wetland Delineation

Wetland 1 encompasses 3.57 ha and consists of low shrub bog and treed bog centered on 4980678 N, 506067 E. Its geographical boundaries are listed in Table 1. See Figure 1 for the location of this wetland on the Project site.

Table 1. Geographical Boundaries of Wetland 1 (NAD 83)			
Boundary	Northing	Easting	
North	4980819 N	506051 E	
South	4980611 N	506044 E	
East	4980829 N	505956 E	
West	4980585 N	506044 E	

During the field surveys on September 13, 2006 and June 13, 2007, all species of plant, bird, mammal, reptile and amphibian detected within the wetland were recorded. Evidence of wildlife species such as sightings, vocalizations, tracks, faeces, skeletal remains, and characteristic bite marks or dens was recorded.

Ecological Characterization

Plants

Wetland 1 is predominately a low shrub bog. It is characterized by a low layer of ericaceous shrubs (< 1m) consisting of leatherleaf (*Chamaedaphne calyculata*), lambkill (*Kalmia angustifolia*), pale laurel (*K. polifolia*), Labrador tea (*Ledum groenlandicum*), and rhodora (*Rhododendron canadense*) are also present. Ground vegetation consists of low-growing ericaceous plants such as small cranberry (*Vaccinium oxycoccos*) and black crowberry (*Empterum nigrum*), as well as sphagnum (*Sphagnum* spp.), goldthread (*Coptis trifolia*), and bog goldenrod (*Solidago uliginosa*), with a considerable patch of northern pitcher plant (*Sarracenia purpurea*) located in the northeast corner of the wetland.

At the eastern edge of the wetland, the low shrub bog grades into treed bog. This area is dominated by black spruce (*Picea mariana*), with scattered larch (*Larix laracina*) and immature red maple (*Acer rubrum*). The shrub layer consists of lambkill, possum-haw viburnum (*Viburnum nudum*), and rhodora. Ground vegetation consists of sphagnum, small cranberry and goldthread.

The Atlantic Canada Conservation Data Centre (ACCDC) database consists of records of uncommon to rare plant and animal species from the 1850s to the present. A review in 2007 for information or rare plants within 100 km of the project site yielded a list of five plants with habitat requirements similar to habitat present in the wetland. These are listed in Table 2. In addition, an environmental screening of all natural heritage resources in the area (within an approximate 10 km radius of the site) was compiled by the Nova Scotia Museum (NSM) in 2004, encompassing all their data from 1847 to 2004. As the Museum is a government department, not all of it its species records are available to the non-governmental ACCDC database. Thus the NSM screening generated a list of seven additional species known from the general area or from similar habitats. Of these, two species had potential to occur in habitats present in Wetland 1 (Table 2). None of the species listed by the ACCDC or the NSM are listed as rare or endangered under the Nova Scotia Endangered Species Act (NSESA) or Committee on the Status of Endangered Wildlife in Canada/*Species at Risk Act* (COSEWIC/SARA).

Table 2. Phenology and Habitat Preferences of Rare Vascular Plants Reported within 100 km (ACCDC search) or 10 km (NSM screening) of Wetland 1					
Species	Common Name	NSDNR Status	Bloom Period	Preferred Habitat	Record Source
Coeloglossum viride	Long-bract green orchis	Yellow	May- August	Boggy spots, damp mature (sugar maple) woods, fir or floodplain forest	ACCDC
Listera australis	Southern twayblade	Red	June	Sphagnum bog	ACCDC
Plotanthera flava	Southern rein orchid	Yellow	May- August	Sandy gravelly beach, wet peat, lake edge, bog	ACCDC
Salix pedicellaris	Bog willow	Yellow	Late May- Early June	Sphagnous lakeshores, acid bogs	ACCDC
Utricularia gibba	Humped bladderwort	Yellow	Late June- Sept	Shallow lake edge, small pool, pond in peaty area	ACCDC
Betula michauxii	Michaux's dwarf birch	Yellow	June and July	Peat and sphagnous bogs	NSM
Viola nephrophylla	Northern bog violet	Yellow	May to July	Cool mossy bogs, borders of streams, and damp woods	NSM

None of these plants were observed in the wetland on the survey on September 13, 2006.

Birds

During the field surveys for Wetland 1 on September 13 2006 and June 13 2007, no bird species were observed within the wetland. A breeding bird survey conducted in the area encompassing the wetland was conducted in June 2007. One yellow-listed species, Canada Warbler (*Wilsonia canadensis*), was detected during this survey. Three other yellow-listed species were detected during other field surveys in the area encompassing the wetland. These were Common Loon (*Gavia immer*), Common Nighthawk (*Chordeiles minor*), and Barn Swallow (*Hirundo rustica*). These birds were observed or heard in the vicinity of the wetland, not in it. Canada warblers nest in cool wooded areas, while Common loons nest on lakeshores. Common Nighthawks breed in a wide variety of habitats, including urban areas, as do Barn Swallows, which tend to nest around buildings or under bridges. None of these species would be expected to utilize habitats present in this wetland. Removal of this wetland will not have a significant effect on the Provincial populations of any of these species.

A desktop review of bird species known to breed in the area where the wetland is located was conducted using the Atlas of Breeding Birds of the Maritime Provinces (Erskine 1990). A list of the status of each breeding bird species recorded from the 10 x 10 km atlas square containing Wetland 1 is provided in Table 3.

Table 3. Breeding Status of Birds Listed in the Atlas Square in					
Which Wetland 1 is Located					
Common Name	Species Name	Breeding Status in Atlas Square			
Common Loon	Gavia immer	Possible			
Canada Goose	Branta canadensis	Probable			
American Black Duck	Anas rubripes	Probable			
Ring-Necked Duck	Aythya collaris	Confirmed			
Common Merganser	Mergus merganser	Confirmed			
Sharp-Shinned Hawk	Accipiter striatus	Possible			
Broad-Winged Hawk	Buteo platypterus	Probable			
American Kestrel	Falco sparverius	Possible			
Common Nighthawk	Chordeiles minor	Confirmed			
Chimney Swift	Chaetura pelagica	Possible			
Belted Kingfisher	Ceryle alcyon	Possible			
Hairy Woodpecker	Picoides villosus	Confirmed			
Northern Flicker	Colaptes auratus	Confirmed			
Pileated Woodpecker	Dryocopus pileatus	Possible			
Olive-sided Flycatcher	Contopus borealis	Possible			
Eastern Wood-pewee	Contopus virens	Possible			
Yellow-bellied Flycatcher	Empidonax flaviventris	Confirmed			
Alder Flycatcher	Empidonax alnorum	Possible			
Least Flycatcher	Empidonax minimus	Probable			
Tree Swallow	Tachycineta bicolor	Confirmed			

Which Wetland 1 is Located					
Common Name	Species Name	Breeding Status in Atlas Square			
Barn Swallow	Hirundo rustica	Confirmed			
Gray Jay	Perisoreus canadensis	Confirmed			
Blue Jay	Cyanocitta cristata	Possible			
American Crow	Corvus brachyrhynchos	Confirmed			
Common Raven	Corvus corax	Possible			
Black-capped Chickadee	Poecile atricapillus	Confirmed			
Boreal Chickadee	Poecile hudsonicus	Confirmed			
Red-breasted Nuthatch	Sitta Canadensis	Confirmed			
Winter Wren	Troglodytes troglodytes	Confirmed			
Golden-crowned Kinglet	Regulus satrapa	Confirmed			
Ruby-crowned Kinglet	Regulus calendula	Confirmed			
Swainson's Thrush	Catharus ustulatus	Confirmed			
Hermit Thrush	Catharus guttatus	Confirmed			
American Robin	Turdus migratorius	Confirmed			
Cedar Waxwing	Bombycilla cedrorum	Probable			
Blue-headed Vireo	Vireo solitarius	Confirmed			
Red-eyed Vireo	Vireo olivaceus	Probable			
Tennessee Warbler	Vermivora peregrine	Possible			
Nashville Warbler	Vermivora ruficappilla	Confirmed			
Northern Parula Warbler	Parula americana	Confirmed			
Chestnut-sided Warbler	Dendroica pensylvanica	Confirmed			
Magnolia Warbler	Dendroica magnolia	Confirmed			
Black-throated Blue Warbler	Dendroica caerulescens	Possible			
Yellow-Rumped Warbler	Dendroica coronata	Confirmed			
Black-throated Green Warbler	Dendroica virens	Confirmed			
Blackburnian Warbler	Dendroica fusca	Confirmed			
Palm Warbler	Dendroica palmarum	Confirmed			
Bay-breasted Warbler	Dendroica castanea	Confirmed			
Black-and-white Warbler	Mniotilta varia	Confirmed			
American Redstart	Setophaga ruticilla	Confirmed			
Ovenbird	Seiurus aurocapillus	Confirmed			
Mourning Warbler	Oporinis philadelphia	Confirmed			
Common Yellowthroat	Geothlypis trichas	Confirmed			
Canada Warbler	Wilsonia canadensis	Confirmed			
Song Sparrow	Melospiza melodia	Confirmed			
Lincoln's Sparrow	Melospiza lincolnii	Confirmed			
Swamp Sparrow	Melospiza georgiana	Confirmed			
White-throated Sparrow	Zonotrichia albicollis	Confirmed			
Dark-eyed Junco	Junco hyemalis	Confirmed			
Red-winged Blackbird	Agelaius phoeniceus	Possible			
Rusty Blackbird	Euphagus carolinus	Confirmed			
Common Grackle	Quiscalus quiscula	Confirmed			
Pine Grosbeak	Pinicola enucleator	Probable			

Table 3. Breeding Status of Birds Listed in the Atlas Square in

Γ

Table 3. Breeding Status of Birds Listed in the Atlas Square in Which Wetland 1 is Located				
Common NameSpecies NameBreeding Status in AtlasSquare				
Purple Finch	Carpodacus purpureus	Possible		
White Winged Crossbill	Loxia leucoptera	Probable		
Pine Siskin	Carduelis pinus	Possible		
American Goldfinch	Carduelis tristis	Possible		
Evening Grosbeak	Coccothraustes vespertinus	Probable		

None of these bird species were observed in Wetland 1 during the field surveys. Wetland 1 is not considered to be critical breeding habits for any of these species.

A review of the ACCDC database of rare species records revealed fourteen at-risk species reported in the region. Three red-listed and eleven yellow-listed bird species were listed within 100 km by the ACCDC search. Each species' habitat preference was determined based on Erksine's 1990 data, and the likelihood of their presence on site was determined based on comparison of known habitat preferences with habitats present in the wetland. A summary of the rare bird species, their provincial status and their habitat preferences is provided in Table 4.

Table 4. Habitat Preferences of Listed Bird Species Reported within 100 km of Wetland 1					
NSDNR Status	Common Name	Binomial	Habitat Preference		
Red	Roseate Tern	Sterna dougallii	Coast		
Red	Peregrine Falcon	Falco peregrinus	Rocky cliffs		
Red	Piping Plover	Charadrius melodus	Sandy Beaches		
Yellow	Common Tern	Sterna hirundo	Coast		
Yellow	Arctic Tern	Sterna paradisea	Coast		
Yellow	Barrow's Goldeneye	Bucephala islandica	Small clear lakes and ponds		
Yellow	Northern Goshawk	Accipiter gentiles	Mature woods		
Yellow	Semipalmated Sandpiper	Calidris pusilla	Beaches, mudflats, shallow estuaries, and inlets.		
Yellow	Eastern Meadowlark	Sturnella magna	Grassy fields, pastures, cultivated areas		
Yellow	Razorbill	Alca torda	Coastal islands		
Yellow	Eastern Bluebird	Sialia sialis	Areas with scattered trees and short ground cover.		
Yellow	Vesper Sparrow	Poecetes gramineus	Areas with short grass or low shrubs		
Yellow	Sharp-tailed Sparrow	Ammodramus caudacutus	Breed in meadows adjacent to salt marshes		
Yellow	Bobolink	Dolichonyx Oryzivorus	Grasslands		

Arctic Terns, Common Terns, and Razorbills are coastal species, and so should not be present in Wetland 1. Sharp-tailed Sparrows breed in meadows adjacent to salt marshes. Vesper Sparrows are characteristic of areas with short grass or low shrubs, such as sandy pastures, blueberry fields, and clearings. Goshawks prefer heavily wooded areas, and prefer to breed in mature mixed wood. Eastern Bluebirds (*Sialis sialis*) nest in clear-cut areas, which are adjacent to the wetland, and in woodpecker cavities. Eastern Meadowlarks and Bobolinks are grassland/meadow species. Semipalmated Sandpipers and Barrow's Goldeneyes inhabit areas near large bodies of water. None of these three red-listed species or the eleven yellow-listed bird species is expected to be present in the Wetland 1 or to use Wetland 1 due to the lack of suitable habitat (Table 4). None of the birds listed in the ACCDC search were observed during the wetland survey and the area is not critical habitat for any of these species. The environmental screening conducted by the NSM found no records of rare or endangered birds on the Project site.

Mammals

Evidence of varying (snowshoe) hare (*Lepas americana*) and white-tailed deer (*Odocoileus virginianus*) was noted in Wetland 1 during the Sept 13 2006 and June 13 2007 wetland surveys.

Four uncommon to rare mammals were listed in the ACCDC 100 km database search. Two species of rare bat, the hoary bat, (*Lasiurus cinereus*), and the eastern pipistrelle (*Pipstrellus subflavus*), were reported within 100 km; however, bats are not expected to make use of any habitat in this wetland. The eastern moose (*Alces alces americana*) is listed as endangered in Nova Scotia and was listed on the ACCDC database search for this area. The low density of moose in the area, and the tiny size of Wetland 1 results in the removal of this wetland having very low potential to affect moose. A Moose Mitigation Plan has been developed for the Touquoy Gold Project.

The fourth rare mammal listed by the ACCDC request is the long-tailed shrew (*Sorex dispar*), which lives only on talus slopes, thus they would be not be expected to occur within this wetland. The environmental screening conducted by the NSM found no records of rare or endangered mammals on the Project site.

Reptiles and Amphibians

No reptiles or amphibians were observed during the wetland survey. The ACCDC request and the environmental screening conducted by the NSM both noted the presence of wood turtles and four-toed salamanders within 100 km of the site. Wood turtles (*Glyptemys insculpta*) are listed as yellow by NSDNR. There is no hibernating or breeding habitat for turtles in this wetland, as they require deep sections of rivers in which to hibernate, and sandy or gravelly

banks for nesting. Four-toed salamanders (*Hemidactylium scutatum*) were previously yellowlisted by NSDNR; however, their status has been recently changed to green, indicating they are not considered to be sensitive or at-risk in Nova Scotia. The dry nature of Wetland 1 in summer makes the possibility of four-toed salamanders breeding in this wetland unlikely. There is no suitable habitat for any rare or endangered reptiles or amphibians in Wetland 1.

Odonates

The ACCDC search reported several rare odonates within a 100 km radius of Wetland 1. Most odonates (dragonflies and damselflies) lay their eggs in bodies of water, where they hatch and develop through several larval stages before emerging from the water and metamorphosing into the adult form. In most species, this larval stage lasts for about one year. The fact that Wetland 1 is a low shrub bog which contains no standing water in late summer indicates that most odonate species would be unable to complete larval development in this bog. As see in Table 5, most rare odonates listed in the ACCDC 100 km search inhabit areas near streams or rivers. Two species present in Nova Scotia, the ebony boghaunter (*Williamsonia fletcheri*) and the harlequin darner (*Gomphhaeschna furcillata*) are known to breed in sphagnum bogs (Table 4).

The ebony boghaunter is red-listed by NSDNR, and was reported once in the ACCDC 100 km search, from a location 95 km away. No ebony boghaunters were observed in Wetland 1 during the survey on September 13, 2004, however, they are an early-flying species (June) and adults would not be expected to be present at this time. The harlequin darner is a yellow-listed species for which there were two records in the ACCDC 100 km list. The closest record was 60 km from Wetland 1. No harlequin darners were observed in Wetland 1 during the survey on September 13, 2004, however, they are also an early-flying species (early June) and adults would not be expected to be present at this time. In addition, the dry nature of Wetland 1 in summer indicates this wetland is not suitable breeding habitat for these species, which require bogs containing standing water. None of these species were detected during wetland surveys in 2007.

Table 5. Rare Odonates Reported Within 100 km of Wetland 1			
Scientific Name	Common Name	Status	Preferred Habitat
Ophiogomphus rupinsulensis	Rusty Snaketail	RED	Large clear flowing streams and rivers
Gomphus ventricosus	Skillet Clubtail	RED	Slow-moving rivers
Coenagrion resolutum	Taiga Bluet	RED	Small ponds with grassy or marshy borders, often shaded
Ophiogomphus mainensis	Twinhorned Snaketail	RED	Streams and small rivers
Williamsonia fletcheri	Ebony Boghaunter	RED	Small pools in sphagnum bogs
Gomphaeschna furcillata	Harlequin Darner	YELLOW	Sphagnum bogs and wooded swamps
Lanthus paroulus	Zorro Clubtail	YELLOW	Mountain streams with muddy substrate

Hydrological Characterization

There is no surface connection between this wetland and any surface watercourses or lakes in the immediate area, based on 1:10,000 topographical mapping, air photography, and field surveys. As a bog, this wetland is not expected to receive surface runoff and thus, its role in surface flow regulation is expected to be minimal. It has no role as a supply for local surface watercourse flow.

Hydrogeological Characterization

This wetland lies in an area with a thin layer of coarse till overlying the bedrock. The bedrock consists of quartzite and slate, and thus is relatively impermeable. The till tends to be coarsegrained and thus the layer is hydrologically conductive. The groundwater level is very shallow (likely < 2m) in this area. General movement of groundwater is from north to south over the project site, mirroring surface water patterns. Bogs are not fed by groundwater discharge. There are no seeps or springs visible.

Peat Characterization

Peat in this wetland was determined based on visual examination, and the presence of live *Sphagnum* mosses to be sphagnum peat. Peat thickness was measured at 15 locations in this wetland at 0 m (surface sample), 0.75 m (mid-depth sample and 1.5 m or the bottom of the peat layer (deep sample). Where peat was less than ~0.5 m thick, a mid-depth measurement was not conducted. The peat layer (with live *Sphagnum* layer included) averaged 1.27 m in depth, and ranged from 0.33 m to over 4.57 m in depth. Average peat thickness was 1.27 m. The van Post scale of peat humification ranks peat according to the level of decomposition, with H1 being undecomposed Sphagnum and H10 being fully decomposed, amorphous material. Humification of peat at the surface (just under the thin surface layer of live *Sphagnum*) ranged from H2 to H6, with most samples being H4 or H5. Mid-depth samples ranged from H4 to H8, with H6 being average. Deep samples were all in the H8 to H10 range.

Reason for the Alteration

The wetland in question will be removed due to the construction of a tailings pond for an adjacent open-pit gold mine being constructed on the site.

Nature of the Proposed Alteration

The wetland will be entirely removed.

Alternatives That Have Been Considered

Alternative positions for the tailings management facility have been considered, however, positions either to the east or west of the proposed location would have significant impacts on Moose River or Fish River with their sensitive fish habitat, and would impact additional wetlands. Moving the tailings management facility north could result in impacts to Square Lake, while moving it south might impact Scraggy Lake, which is considered significant habitat for brook trout, Atlantic salmon, and gaspereau by NSDNR. The project boundary has already been adjusted to avoid the wetland complex located southeast of the Project site, and to avoid impacting Moose River.

Gold mining can be undertaken by either underground or open pit methods. In this particular instance the gold is relatively uniformly distributed, and at relatively low grades, throughout the local rock mass to the extent that large scale, high volume throughput from an open pit is commercially viable. Concentrations of gold of sufficient grade, continuity or predictability in quartz veins or other specific sites at Touquoy to support a commercial underground operation are not present. Commercial underground gold mining at Touquoy is not an option. There are no options for re-positioning of the open pit – the site of concentration of gold is fixed in nature.

Identifiable Impacts to Wetland

Wetland 1 will be entirely removed by the mine project. There are no species at risk or species of conservation concern known to be present in this wetland.

No aquatic habitats or fish species are present, as the wetland is a low shrub bog which is dry during late summer months.

Past Impacts to the Wetland

Possible past impacts to the wetland may have arisen from forestry clear-cutting activities that have occurred in the area, which may have impacted drainage patterns to some extent. Aerial photography of the site dating from 1964, 1974, 1982, 1993, and 2003 was reviewed to provide information on historical forestry activities in the area.

Clearing occurred less than 1 km to the north of Wetland 1 prior to 1992. Extensive clearing, as well as the creation of logging roads, occurred less than 1 km south of the wetland during the period between 1992 and 2003.

Mitigation

The project footprint has been adjusted so as to minimize impacts to wetlands and watercourses in the area. DDV Gold Limited (DDVG) will work with NSDNR to develop the required mitigation measures including wetland compensation at a ratio agreed upon with NSDNR. DDVG is considering various approaches to the wetland compensation issue. The first approach, preferred by NSDNR, is to create wetland habitat within the same watershed as the wetland which is to be altered. DDVG is considering creating wetland habitat onsite once mine operations are completed by ensuring that the flooded quarry pit has sufficiently shallow edges to support a marsh-type wetland. If this is not possible, the proponent will consider a wetland enhancement or creation project outside of the local watershed. Contribution to wetland education and/or protection programs may also be considered.

Summary

In summary, assuming that the proposed mitigation measures are applied, and that existing site drainage conditions are maintained, the Touquoy Gold Project is not likely to have significant effects on wetland functional attributes in the area. Removal of this wetland is not expected to have negative impacts on any rare or endangered species in the area, as known have been found in this wetland.

Evaluation Expertise

Conestoga-Rovers & Associates is a multi-disciplinary engineering, environmental consulting, construction, and information technology (IT) services firm. Since its inception in 1976, CRA has provided practical, innovative, and effective services in the areas of environmental site assessment, impact assessment, environmental remediation, regulatory compliance and permitting, risk assessment, hydrology, solid and hazardous waste management, air quality management, and municipal infrastructure planning and design. We are an established, reputable company with a strong history of solving engineering and environmental challenges in a responsive and cost-efficient manner.

The CRA Family of Companies employs more than 2,600 professional and support staff in over 70 offices located throughout North America, with additional offices in Brazil and England. Our headquarter office is located in Waterloo, Ontario, Canada.

Beth Cameron, B.Sc. M.Sc., is a Terrestrial Ecologist with Conestoga-Rover & Associates' Halifax office. She has significant experience conducting surveys for flora and fauna, as well as wetland surveys, and has worked on federal and provincial environmental screenings involving wetland alterations. She has also completed a Wetland Delineation and Classification course on the US Army Corps of Engineers wetland delineation protocol and has also taken a course on identifying grasses, sedges, and rushes.

Jeffrey Balsdon, B.Sc., M.Sc. (Candidate), is a Terrestrial Ecologist with Conestoga-Rover & Associates' Halifax office. He has considerable experience conducting surveys for flora and

fauna, as well as wetland surveys. He has also completed a course on identifying grasses, sedges, and rushes.

Kristen Nyborg is an Environmental Technologist with Conestoga-Rover & Associates' Halifax office. She holds an Ontario Wetland Evaluation System Certificate, and has significant wetland field experience. She has also completed a Wetland Delineation and Classification course on the US Army Corps of Engineers wetland delineation protocol.

Susan Belford, B.Sc., M.Sc., is a Senior Project Manager with Conestoga-Rovers & Associates' Halifax office. She is very familiar with wetland legislation, having worked on many environmental assessment projects involving provincial and federal regulations and processes.

Dave Strajt, M. Eng., is a Water Resources Engineer/Hydrologist with Conestoga-Rovers & Associates' Halifax office. He is very familiar with surface water processes as they relate to mining process.

Peter Oram, CESA, P.Geo. is a Geologist with Conestoga-Rovers & Associates' Halifax office. He has assisted with ten wetland alteration permits, providing hydrogeological advice. He is very familiar with wetland legislation, having worked on many environmental assessment projects involving provincial and federal legislative processes.

References & Data Sources

Davis, Derek, Sue Brown, 1997. The Natural History of Nova Scotia, Nova Scotia Museum.

Erskine, A.J. 1992. Atlas of Breeding Bird of the Maritime Provinces. Nova Scotia Museum.

Nova Scotia Department of Natural Resources, Nova Scotia General Status Ranks <u>http://www.gov.ns.ca/natr/wildlife/genstatus/ranks.asp</u>

Nova Scotia Department of Natural Resources, Significant Species and Habitats Database. <u>http://www.gov.ns.ca/natr/wildlife/Thp/disclaim.htm</u>

Nova Scotia Department of Natural Resources. Wetlands Database

Zinck, M. 1998. Roland's Flora of Nova Scotia.

WETLAND 2 REPORT

Wetland Delineation

Wetland 2 is a small 0.44 ha wetland complex consisting of treed bog and two areas of low shrub bog. The two areas of low shrub bog are connected by a band of treed bog, as seen in Figure 1. Wetland 2 is centered on 4980867 N, 506474 E and its geographical boundaries are listed in Table 1. See Figure 1 for the location of this wetland on the Project site.

Table 1. Geographical Boundaries of Wetland 2 (NAD 83)			
Boundary	Northing	Easting	
North	4980885 N	506498 E	
South	4980842 N	506492 E	
East	4980878 N	506412 E	
West	4980835 N	506546 E	

During the field surveys on September 14, 2006 and June 13, 2007 all species of plant, bird, mammal, reptile and amphibian detected within the wetland were recorded. Evidence of wildlife species such as sightings, vocalizations, tracks, faeces, skeletal remains, and characteristic bite marks or dens was recorded.

Ecological Characterization

Plants

The treed bog supports a plant community dominated by black spruce, *Picea mariana* and larch, *Larix laracina*, with a few scattered Red maple, *Acer rubrum*. Shrubs consist of possum-haw viburnum (*Viburnum nudum*) and black holly (*Ilex verticillata*), while ground vegetation consists of dwarf dogwood (*Cornus sanadensis*), bristly dewberry (*Rubus hispidus*), and violets (*Viola* spp).

The low shrub bog areas are characterized by a low layer of ericaceous shrubs (< 1m) consisting of leatherleaf (*Chamaedaphne calyculata*), lambkill (*Kalmia angustifolia*), and Labrador tea (*Ledum groenlandicum*), while the ground vegetation consists of sphagnum mosses (*Sphagnum* spp.), reindeer lichens (*Cladonia* spp.), small cranberry (*Vaccinium oxycoccos*), tawny cottongrass (*Eriophorum virginicum*), three-leaved false Solomon's seal (*Smilacina trifolia*), bog goldenrod (*Solidago uliginosa*), and round-leaved sundew (*Drosera rotundifolia*).

The Atlantic Canada Conservation Data Centre (ACCDC) database consist of records of uncommon to rare plant and animal species from the 1850s to the present. A review in 2007 for

information or rare plants within 100 km of the project site yielded a list of five plants with habitat requirements similar to habitat present in the wetland. These are listed in Table 2. In addition, an environmental screening of all natural heritage resources in the area (within an approximate 10 km radius of the site) was compiled by the Nova Scotia Museum (NSM) in 2004, encompassing all their data from 1847 to 2004. As the Museum is a government department, not all of it its species records are available to the non-governmental ACCDC database. Thus the NSM screening generated a list of seven additional species known from the general area or from similar habitats. Of these, two species had potential to occur in habitats present in Wetland 2 (Table 2). None of the species listed by the ACCDC or the NSM are listed as rare or endangered under the *Nova Scotia Endangered Species Act* (NSESA) or Committee On the Status of Endangered Wildlife in Canada/ *Species at Risk Act* (COSEWIC/SARA).

Table 2. Phenology and Habitat Preferences of Rare Vascular Plants Reported Within 100 km (ACCDC search) or 10 km (NSM screening) of Wetland 2					
Species	Common Name	NSDNR Status	Bloom Period	Preferred Habitat	Record Source
Coeloglossum viride	Long-bract green orchis	Yellow	May- August	Boggy spots, damp mature (sugar maple) woods, fir or floodplain forest	ACCDC
Listera australis	Southern twayblade	Red	June	Sphagnum bog	ACCDC
Plotanthera flava	Southern rein orchid	Yellow	May- August	Sandy gravelly beach, wet peat, lake edge, bog	ACCDC
Salix pedicellaris	Bog willow	Yellow	Late May- Early June	Sphagnous lakeshore, acid bog	ACCDC
Utricularia gibba	Humped bladderwort	Yellow	Late June- Sept	Shallow lake edge, small pool, pond in peaty area	ACCDC
Betula michauxii	Michaux's dwarf birch	Yellow	June and July	Peat and sphagnous bogs	NSM
Viola nephrophylla	Northern bog violet	Yellow	May to July	Cool mossy bogs, borders of streams, and damp woods	NSM

None of these plants were observed in the wetland during the surveys on September 14, 2006 and June 13, 2007.

Birds

During the field surveys for Wetland 2 on September 14, 2006 and June 13, 2007, no bird species were observed within the wetland. A breeding bird survey conducted in the area encompassing the wetland was conducted in June 2007. One yellow-listed species, Canada Warbler (*Wilsonia canadensis*), was detected during this survey. Three other yellow-listed species were detected during other field surveys in the area encompassing the wetland. These were Common Loon (*Gavia immer*), Common Nighthawk (*Chordeiles minor*), and Barn Swallow (*Hirundo rustica*). These birds were observed or heard in the vicinity of the wetland, not in it. Canada warblers nest in cool wooded areas, while Common loons nest on lakeshores. Common Nighthawks breed in a wide variety of habitats, including urban areas, as do Barn Swallows, which tend to nest around buildings or under bridges. None of these species would be expected to utilize habitats present in this wetland. Removal of this wetland will not have a significant effect on the Provincial populations of any of these species.

A desktop review of bird species known to breed in the area where the wetland is located was conducted using the Atlas of Breeding Birds of the Maritime Provinces (Erskine 1990). A list of the status of each breeding bird species recorded from the 10 x 10 km atlas square containing Wetland 2 is provided in Table 3.

Table 3. Breeding Status of Birds Listed in the Atlas Square in Which Wetland 2 is Located			
Common Name	Species Name	Breeding Status in Atlas Square	
Common Loon	Gavia immer	Possible	
Canada Goose	Branta canadensis	Probable	
American Black Duck	Anas rubripes	Probable	
Ring-Necked Duck	Aythya collaris	Confirmed	
Common Merganser	Mergus merganser	Confirmed	
Sharp-Shinned Hawk	Accipiter striatus	Possible	
Broad-Winged Hawk	Buteo platypterus	Probable	
American Kestrel	Falco sparverius	Possible	
Common Nighthawk	Chordeiles minor	Confirmed	
Chimney Swift	Chaetura pelagica	Possible	
Belted Kingfisher	Ceryle alcyon	Possible	

Table 3. Breeding Status of Birds Listed in the Atlas Square in Which Wetland 2 is Located				
Common Name	Species Name	Breeding Status in Atlas Square		
Hairy Woodpecker	Picoides villosus	Confirmed		
Northern Flicker	Colaptes auratus	Confirmed		
Pileated Woodpecker	Dryocopus pileatus	Possible		
Olive-sided Flycatcher	Contopus borealis	Possible		
Eastern Wood-pewee	Contopus virens	Possible		
Yellow-bellied Flycatcher	Empidonax flaviventris	Confirmed		
Alder Flycatcher	Empidonax alnorum	Possible		
Least Flycatcher	Empidonax minimus	Probable		
Tree Swallow	Tachycineta bicolor	Confirmed		
Barn Swallow	Hirundo rustica	Confirmed		
Gray Jay	Perisoreus canadensis	Confirmed		
Blue Jay	Cyanocitta cristata	Possible		
American Crow	Corvus brachyrhynchos	Confirmed		
Common Raven	Corvus corax	Possible		
Black-capped Chickadee	Poecile atricapillus	Confirmed		
Boreal Chickadee	Poecile hudsonicus	Confirmed		
Red-breasted Nuthatch	Sitta Canadensis	Confirmed		
Winter Wren	Troglodytes troglodytes	Confirmed		
Golden-crowned Kinglet	Regulus satrapa	Confirmed		
Ruby-crowned Kinglet	Regulus calendula	Confirmed		
Swainson's Thrush	Catharus ustulatus	Confirmed		
Hermit Thrush	Catharus guttatus	Confirmed		
American Robin	Turdus migratorius	Confirmed		
Cedar Waxwing	Bombycilla cedrorum	Probable		
Blue-headed Vireo	Vireo solitarius	Confirmed		
Red-eyed Vireo	Vireo olivaceus	Probable		

Г

Table 3. Breeding Status of Birds Listed in the Atlas Square in Which Wetland 2 is Located				
Common Name	Species Name	Breeding Status in Atlas Square		
Tennessee Warbler	Vermivora peregrine	Possible		
Nashville Warbler	Vermivora ruficappilla	Confirmed		
Northern Parula Warbler	Parula americana	Confirmed		
Chestnut-sided Warbler	Dendroica pensylvanica	Confirmed		
Magnolia Warbler	Dendroica magnolia	Confirmed		
Black-throated Blue Warbler	Dendroica caerulescens	Possible		
Yellow-Rumped Warbler	Dendroica coronata	Confirmed		
Black-throated Green Warbler	Dendroica virens	Confirmed		
Blackburnian Warbler	Dendroica fusca	Confirmed		
Palm Warbler	Dendroica palmarum	Confirmed		
Bay-breasted Warbler	Dendroica castanea	Confirmed		
Black-and-white Warbler	Mniotilta varia	Confirmed		
American Redstart	Setophaga ruticilla	Confirmed		
Ovenbird	Seiurus aurocapillus	Confirmed		
Mourning Warbler	Oporinis philadelphia	Confirmed		
Common Yellowthroat	Geothlypis trichas	Confirmed		
Canada Warbler	Wilsonia canadensis	Confirmed		
Song Sparrow	Melospiza melodia	Confirmed		
Lincoln's Sparrow	Melospiza lincolnii	Confirmed		
Swamp Sparrow	Melospiza georgiana	Confirmed		
White-throated Sparrow	Zonotrichia albicollis	Confirmed		
Dark-eyed Junco	Junco hyemalis	Confirmed		
Red-winged Blackbird	Agelaius phoeniceus	Possible		
Rusty Blackbird	Euphagus carolinus	Confirmed		
Common Grackle	Quiscalus quiscula	Confirmed		
Pine Grosbeak	Pinicola enucleator	Probable		

Γ

Table 3. Breeding Status of Birds Listed in the Atlas Square in Which Wetland 2 is Located					
Common NameSpecies NameBreeding Status in Atlas Square					
Purple Finch	Carpodacus purpureus	Possible			
White Winged Crossbill	Probable				
Pine Siskin	Carduelis pinus	Possible			
American Goldfinch	Carduelis tristis	Possible			
Evening Grosbeak Coccothraustes vespertinus Probable					

None of these bird species were observed in Wetland 2 during the field surveys. Wetland 2 is not considered to be critical breeding habits for any of these species.

A review of the ACCDC database of rare species records revealed fourteen at-risk species reported in the region. Three red-listed and eleven yellow-listed bird species were listed within 100 km by the ACCDC search. Each species' habitat preference was determined based on Erksine's 1990 data, and the likelihood of their presence on site was determined based on comparison of known habitat preferences with habitats present in the wetland. A summary of the rare bird species, their provincial status and their habitat preferences is provided in Table 4.

Table 4. Habitat Preferences of Listed Bird Species Reported Within 100 km of Wetland 2							
NSDNR Status	Common Name Binomial Habitat Preference						
Red	Roseate Tern	Sterna dougallii	Coast				
Red	Peregrine Falcon	Falco peregrinus	Rocky cliffs				
Red	Piping Plover	Charadrius melodus	Sandy Beaches				
Yellow	Common Tern	Sterna hirundo	Coast				
Yellow	Arctic Tern	Sterna paradisea	Coast				
Yellow	Barrow's Goldeneye	Bucephala islandica	Small clear lakes and ponds				
Yellow	Northern Goshawk	Accipiter gentiles	Mature woods				

Table 4. Habitat Preferences of Listed Bird Species Reported					
Within 100 km of Wetland 2					
NSDNR Status	Common Name	Binomial	Habitat Preference		
Yellow	Semipalmated Sandpiper	Calidris pusilla	Beaches, mudflats, shallow estuaries, and inlets.		
Yellow	Eastern Meadowlark	Sturnella magna	Grassy fields, pastures, cultivated areas		
Yellow	Razorbill	Alca torda	Coastal islands		
Yellow	Eastern Bluebird	Sialia sialis	Areas with scattered trees and short ground cover.		
Yellow	Vesper Sparrow	Poecetes gramineus	Areas with short grass or low shrubs		
Vollow	Sharp-tailed	Ammodramus	Breed in meadows adjacent to		
renow	Sparrow	caudacutus	salt marshes		
Yellow	Bobolink	Dolichonyx oryzivorus	Grasslands		

Arctic Terns, Common Terns, and Razorbills are coastal species, and so should not be present in Wetland 2. Sharp-tailed Sparrows breed in meadows adjacent to salt marshes. Vesper Sparrows are characteristic of areas with short grass or low shrubs, such as sandy pastures, blueberry fields, and clearings. Goshawks prefer heavily wooded areas, and prefer to breed in mature mixed woods. Eastern Bluebirds, (*Sialis sialis*) nest in clear-cut areas, which are adjacent to the wetland, and in woodpecker cavities. Eastern Meadowlarks and Bobolinks are grassland/meadow species. Semipalmated Sandpipers and Barrow's Goldeneyes inhabit areas near large bodies of water. None of these three red-listed species or the eleven yellow-listed bird species is expected to be present in Wetland 2 or to use Wetland 2 due to the lack of suitable habitat (Table 4). None of the birds listed in the ACCDC search were observed during the wetland survey and the area is not critical habitat for any of these species The environmental screening conducted by the NSM found no records of rare or endangered birds on the Project site.

Mammals

Evidence of varying (snowshoe) hare (*Lepas americana*) was noted in Wetland 2 during the Sept 14 2006 wetland survey.

Four uncommon to rare mammals were listed in the ACCDC 100 km database search. Two species of rare bat, the hoary bat, (*Lasiurus cinereus*), and the eastern pipistrelle (*Pipstrellus*

subflavus), were reported within 100 km; however, bats are not expected to make use of any habitat in this wetland. The eastern moose (*Alces alces americana*) is listed as endangered in Nova Scotia and was listed on the ACCDC database search for this area. The low density of moose in the area, and the tiny size of Wetland 2 results in the removal of this wetland having very low potential to affect moose. A Moose Mitigation Plan has been developed for the Touquoy Gold Project.

The fourth rare mammal listed by the ACCDC request is the long-tailed shrew (*Sorex dispar*), which lives only on talus slopes, thus they would be not be expected to occur within this wetland. The environmental screening conducted by the NSM found no records of rare or endangered mammals on the Project site.

Reptiles and Amphibians

No reptiles or amphibians were observed during the wetland surveys. The ACCDC request and the environmental screening conducted by the NSM both noted the presence of wood turtles and four-toed salamanders within 100 km of the site. Wood turtles (*Glyptemys insculpta*) are listed as yellow by NSDNR. There is no hibernating or breeding habitat for turtles in this wetland, as they require deep sections of rivers in which to hibernate, and sandy or gravelly banks for nesting. Four-toed salamanders (*Hemidactylium scutatum*) were previously yellow-listed by NSDNR; however, their status has been recently changed to green, indicating they are not considered to be sensitive or at-risk in Nova Scotia. The dry nature of Wetland 2 in summer makes the possibility of four-toed salamanders breeding in this wetland unlikely. There is no suitable habitat for any rare or endangered reptiles or amphibians in Wetland 2.

Odonates

The ACCDC search reported several rare odonates within a 100 km radius of Wetland 2. Most odonates (dragonflies and damselflies) lay their eggs in bodies of water, where they hatch and develop through several larval stages before emerging from the water and metamorphosing into the adult form. In most species, this larval stage lasts for about one year. The fact that Wetland 2 is a low shrub bog/treed bog complex which contains no standing water in late summer indicates that most odonate species would be unable to complete larval development in this bog. As see in Table 5, most rare odonates listed in the ACCDC 100 km search inhabit areas near streams or rivers. Two species present in Nova Scotia, the ebony boghaunter (*Williamsonia fletcheri*) and the harlequin darner (*Gomphhaeschna furcillata*) are known to breed in sphagnum bogs (Table 5).

The ebony boghaunter is red-listed by NSDNR, and was reported once in the ACCDC 100 km search, from a location 95 km away. No ebony boghaunters were observed in Wetland 2 during the survey on September 14, 2004, however, they are an early-flying species (June) and adults would not be expected to be present at this time. The harlequin darner is a yellow-listed species

for which there were two records in the ACCDC 100 km list. The closest record was 60 km from Wetland 2. No harlequin darners were observed in Wetland 2 during the survey on September 14, 2004, however, they are also an early-flying species (early June) and adults would not be expected to be present at this time. In addition, the dry nature of Wetland 2 in summer indicates this wetland is not suitable breeding habitat for these species, which require bogs containing standing water. No at-risk odonates were identified in the wetland during the June 13, 2007 survey.

Table 5. Rare Odonates Reported Within 100 km of Wetland 2					
Scientific Name	Common Name	Status	Preferred Habitat		
Ophiogomphus rupinsulensis	Rusty Snaketail	RED	Large clear flowing streams and rivers		
Gomphus ventricosus	Skillet Clubtail	RED	Slow-moving rivers		
Coenagrion resolutum	Taiga Bluet	RED	Small ponds with grassy or marshy borders, often shaded		
Ophiogomphus mainensis	Twinhorned Snaketail	RED	Streams and small rivers		
Williamsonia fletcheri	Ebony Boghaunter	RED	Small pools in sphagnum bogs		
Gomphaeschna furcillata	Harlequin Darner	YELLOW	Sphagnum bogs and wooded swamps		
Lanthus paroulus	Zorro Clubtail	YELLOW	Mountain streams with muddy substrate		

Hydrological Characterization

There is no surface connection between this wetland and any surface watercourses or lakes in the immediate area, based on 1:10,000 topographical mapping, air photography, and field surveys. As a bog, this wetland is not expected to receive surface runoff and thus its role in surface flow regulation is expected to be minimal. It has no role as a supply for local surface watercourse flow.

Hydrogeological Characterization

This wetland lies in an area with a thin layer of coarse till overlying the bedrock. The bedrock consists of quartzite and slate, and thus is relatively impermeable. The till tends to be coarsegrained and thus the layer is hydrologically conductive. The groundwater level is likely very shallow (< 2m) in this area. General movement of groundwater is from north to south over the project site, mirroring surface water patterns. Bogs are not fed by groundwater discharge. There are no seeps or springs visible.

Peat Characterization

Peat in this wetland was determined based on visual examination and the presence of a dense surface layer of live *Sphagnum* moss to be sphagnum peat. Peat thickness was measured at six locations in this wetland. The peat layer (with live *Sphagnum* layer included) averaged 1.27 m in depth, and ranged from 0.28 m to 1.98 m. Humification of peat at the surface (just under the layer of live *Sphagnum*) was mostly in the H2 to H4 range of the von Post scale, however one sample was rated as H8. Mid-depth samples ranged form H4 to H8, with H6 being average. Deep samples were all in the H8 to H10 range, indicating they were very decomposed.

Reason for the Alteration

The wetland in question will be removed due to the construction of a tailings pond from an adjacent open-pit gold mine being constructed on the site.

Nature of the Proposed Alteration

The wetland will be entirely removed.

Alternatives That Have Been Considered

Alternative positions for the tailings management facilty have been considered, however, positions either to the east or west of the proposed location would have significant impacts on Moose River or Fish River with their sensitive fish habitat, and would impact additional wetlands. Moving the tailings management facilty north could result in impacts to Square Lake, while moving it south might impact Scraggy Lake, which is considered significant habitat for brook trout, Atlantic salmon, and gaspereau by NSDNR. The project boundary has already been adjusted to avoid the wetland complex located southeast of the Project site, and to avoid impacting Moose River.

Gold mining can be undertaken by either underground or open pit methods. In this particular instance the gold is relatively uniformly distributed, and at relatively low grades, throughout the local rock mass to the extent that large scale, high volume throughput from an open pit is commercially viable. Concentrations of gold of sufficient grade, continuity or predictability in quartz veins or other specific sites at Touquoy to support a commercial underground operation are not present. Commercial underground gold mining at Touquoy is not an option. There are no options for re-positioning of the open pit – the site of concentration of gold is fixed in nature.

Identifiable Impacts to Wetland

Wetland 2 will be entirely removed by the mine project. There are no species at risk or species of conservation concern known to be present in this wetland.

No aquatic habitats or fish species are present, as the wetland is a low shrub bog/treed complex without any permanent standing water.

Past Impacts to the Wetland

Possible past impacts to the wetland may have arisen from forestry clear-cutting activities that have occurred in the area, which may have impacted drainage patterns to some extent. Aerial photography of the site dating from 1964, 1974, 1982, 1993, and 2003 was reviewed to provide information on historical forestry activities in the area. Clearing occurred less than 1 km to the north of Wetland 2 prior to 1992. Extensive clearing, as well as the creation of logging roads, occurred less than 1km south of the wetland during the period between 1992 and 2003.

Mitigation

The project footprint has been adjusted so as to minimize impacts to wetlands and watercourses in the area. As per NSDNR regulations, three times the wetland area to be removed must be recreated as compensation. DDV Gold Limited (DDVG) will work with NSDNR to develop the required mitigation measures including wetland compensation. DDVG is considering various approaches to the wetland compensation issue. The first approach, preferred by NSDNR, is to create wetland habitat within the same watershed as the wetland which is to be altered. DDVG is considering creating wetland habitat onsite once mine operations are completed by ensuring that the flooded quarry pit has sufficiently shallow edges to support a marsh-type wetland. If this is not possible, the proponent will consider a wetland enhancement or creation project outside of the local watershed. Contribution to wetland education and/or protection programs may also be considered.

Summary

In summary, assuming that the proposed mitigation measures are applied, and that existing site drainage conditions are maintained, the Touquoy Gold Project is not likely to have significant effects on wetland functional attributes in the area. Removal of this wetland is not expected to have negative impacts on any rare or endangered species in the area, as none have been detected in this wetland.

Evaluation Expertise

Conestoga-Rovers & Associates is a multi-disciplinary engineering, environmental consulting, construction, and information technology (IT) services firm. Since its inception in 1976, CRA has provided practical, innovative, and effective services in the areas of environmental site assessment, impact assessment, environmental remediation, regulatory compliance and permitting, risk assessment, hydrology, solid and hazardous waste management, air quality management, and municipal infrastructure planning and design. We are an established, reputable company with a strong history of solving engineering and environmental challenges in a responsive and cost-efficient manner.

The CRA Family of Companies employs more than 2,600 professional and support staff in over 70 offices located throughout North America, with additional offices in Brazil and England. Our headquarter office is located in Waterloo, Ontario, Canada.

Beth Cameron, B.Sc. M.Sc., is a Terrestrial Ecologist with Conestoga-Rover & Associates' Halifax office. She has significant experience conducting surveys for flora and fauna, as well as wetland surveys, and has worked on federal and provincial environmental screenings involving wetland alterations. She has also completed a Wetland Delineation and Classification course on the US Army Corps of Engineers wetland delineation protocol and has also taken a course on identifying grasses, sedges, and rushes.

Jeffrey Balsdon, B.Sc., M.Sc., is a Terrestrial Ecologist with Conestoga-Rover & Associates' Halifax office. He has considerable experience conducting surveys for flora and fauna, as well as wetland surveys. He has also taken a course on identifying grasses, sedges, and rushes.

Kristen Nyborg is an Environmental Technologist with Conestoga-Rover & Associates' Halifax office. She holds an Ontario Wetland Evaluation System Certificate, and has significant wetland field experience. She has also completed a Wetland Delineation and Classification course on the US Army Corps of Engineers wetland delineation protocol.

Susan Belford, B.Sc., M.Sc., is a Senior Project Manager with Conestoga-Rovers & Associates' Halifax office. She is very familiar with wetland legislation, having worked on many environmental assessment projects involving provincial and federal regulations and processes.

Dave Strajt, M. Eng., is a Water Resources Engineer/Hydrologist with Conestoga-Rovers & Associates' Halifax office. He is very familiar with surface water processes as they relate to mining process.

Peter Oram, CESA, P.Geo. is a Geologist with Conestoga-Rovers & Associates' Halifax office. He has assisted with ten wetland alteration permits, providing hydrogeological advice. He is very familiar with wetland legislation, having worked on many environmental assessment projects involving provincial and federal legislative processes.

References

Davis, Derek, Sue Brown, 1997. The Natural History of Nova Scotia, Nova Scotia Museum.

Erskine, A.J. 1992. Atlas of Breeding Bird of the Maritime Provinces. Nova Scotia Museum.

Nova Scotia Department of Natural Resources, Nova Scotia General Status Ranks <u>http://www.gov.ns.ca/natr/wildlife/genstatus/ranks.asp</u>

Nova Scotia Department of Natural Resources, Significant Species and Habitats Database. <u>http://www.gov.ns.ca/natr/wildlife/Thp/disclaim.htm</u>

Nova Scotia Department of Natural Resources. Wetlands Database

Zinck, M. 1998. Roland's Flora of Nova Scotia.

WETLAND 3 REPORT

Wetland Delineation

Wetland 3 is a very small wetland dominated by low shrub bog. This wetland is 0.09 ha in area and is centred on 4980582 N, 506334 E. See Figure 1 for the location of this wetland on the Project site.

During the field surveys on September 21, 2006 and June 13, 2007, all species of plant, bird, mammal, reptile and amphibian detected within the wetland were recorded. Evidence of wildlife species such as sightings, vocalizations, tracks, faeces, skeletal remains, and characteristic bite marks or dens was recorded.

Ecological Characterization

Plants

Wetland 3 supports a plant community dominated by bog shrubs such as leatherleaf (*Chamaedaphne calyculata*), lambkill (*Kalmia angustifolia*), Labrador tea (*Ledum groendlandicum*), pale laurel (*K. polifolia*), and stunted black spruce (*Picea mariana*). Some possum-haw viburnum (*Viburnum nudum*) is also present around the margins of the bog. A few tree-height black spruce are also present. Ground vegetation consists of reindeer lichens (*Cladonia* spp.), sphagnum mosses (*Sphagnum* spp.) and black crowberry (*Empetrum nigrum*), with some tussock sedge (*Carex stricta*) and goldthread (*Coptis trifolia*) as well.

The Atlantic Canada Conservation Data Centre (ACCDC) database consists of records of uncommon to rare plant and animal species from the 1850s to the present. A review in 2007 for information or rare plants within 100 km of the project site yielded a list of five plants with habitat requirements similar to habitat present in the wetland. These are listed in Table 1. In addition, an environmental screening of all natural heritage resources in the area (within an approximate 10 km radius of the site) was compiled by the Nova Scotia Museum (NSM) in 2004, encompassing all their data from 1847 to 2004. As the Museum is a government department, not all of it its species records are available to the non-governmental ACCDC database. Thus the NSM screening generated a list of seven additional species known from the general area or from similar habitats. Of these, two species had potential to occur in habitats present in Wetland 3 (Table 1). None of the species listed by the ACCDC or the NSM are listed as rare or endangered under the *Nova Scotia Endangered Species Act* (NSESA) or Committee on the Status of Endangered Wildlife in Canada/ *Species at Risk Act* (COSEWIC/SARA).

(ACCDC search) or 10 km (NSM screening) of Wetland 3						
Species	Common Name	NSDNR Status	Bloom Period	Preferred Habitat	Record Source	
Coeloglossum viride	long-bract green orchis	Yellow	May- August	Boggy spots, damp mature (sugar maple) woods, fir or floodplain forest	ACCDC	
Listera australis	southern twayblade	Red	June	Sphagnum bog	ACCDC	
Plotanthera flava	southern rein orchid	Yellow	May- August	Sandy gravelly beach, wet peat, lake edge, bog	ACCDC	
Salix pedicellaris	bog willow	Yellow	Late May- Early June	Sphagnous lakeshore, acid bog	ACCDC	
Utricularia gibba	humped bladderwort	Yellow	Late June- Sept	Shallow lake edge, small pool, pond in peaty area	ACCDC	
Betula michauxii	Michaux's dwarf birch	Yellow	June and July	Peat and sphagnous bogs	NSM	
Viola nephrophylla	northern bog violet	Yellow	May to July	Cool mossy bogs, borders of streams, and damp woods	NSM	

1 11 1 1 1 1 1 TT 1 1 4 D1 -1 1 47.11 . 100 1

None of these plants were observed in the wetland on the surveys on September 21, 2006 and June 13, 2001.

Birds

During the field surveys for Wetland 3 on September 21, 2006 and June 13, 2007, no bird species were observed within the wetland. A breeding bird survey conducted in the area encompassing the wetland was conducted in June 2007. One yellow-listed species, Canada Warbler (Wilsonia canadensis), was detected during this survey. Three other yellow-listed species were detected during other field surveys in the area encompassing the wetland. These were Common Loon (Gavia immer), Common Nighthawk (Chordeiles minor), and Barn Swallow (Hirundo rustica). These birds were observed or heard in the vicinity of the wetland, not in it. Canada warblers nest in cool wooded areas, while Common loons nest on lakeshores. Common Nighthawks breed in a wide variety of habitats, including urban areas, as do Barn Swallows, which tend to nest around buildings or under bridges. None of these species would be expected to utilize habitats present in this wetland. Removal of this wetland will not have a significant effect on the Provincial populations of any of these species.

A desktop review of bird species known to breed in the area where the wetland is located was conducted using the Atlas of Breeding Birds of the Maritime Provinces (Erskine 1990). A list of the status of each breeding bird species recorded from the 10 x 10 km atlas square containing Wetland 3 is provided in Table 2.

Common Name	Species Name	Breeding Status in Atlas Square
Common Loon	Gavia immer	Possible
Canada Goose	Branta Canadensis	Probable
American Black Duck	Anas rubripes	Probable
Ring-Necked Duck	Aythya collaris	Confirmed
Common Merganser	Mergus merganser	Confirmed
Sharp-Shinned Hawk	Accipiter striatus	Possible
Broad-Winged Hawk	Buteo platypterus	Probable
American Kestrel	Falco sparverius	Possible
Common Nighthawk	Chordeiles minor	Confirmed
Chimney Swift	Chaetura pelagica	Possible
Belted Kingfisher	Ceryle alcyon	Possible
Hairy Woodpecker	Picoides villosus	Confirmed
Northern Flicker	Colaptes auratus	Confirmed
Pileated Woodpecker	Dryocopus pileatus	Possible
Olive-sided Flycatcher	Contopus borealis	Possible
Eastern Wood-pewee	Contopus virens	Possible
Yellow-bellied Flycatcher	Empidonax flaviventris	Confirmed
Alder Flycatcher	Empidonax alnorum	Possible
Least Flycatcher	Empidonax minimus	Probable
Tree Swallow	Tachycineta bicolor	Confirmed
Barn Swallow	Hirundo rustica	Confirmed
Gray Jay	Perisoreus canadensis	Confirmed
Blue Jay	Cyanocitta cristata	Possible
American Crow	Corvus brachyrhynchos	Confirmed
Common Raven	Corvus corax	Possible
Black-capped Chickadee	Poecile atricapillus	Confirmed
Boreal Chickadee	Poecile hudsonicus	Confirmed
Red-breasted Nuthatch	Sitta Canadensis	Confirmed
Winter Wren	Troglodytes troglodytes	Confirmed
Golden-crowned Kinglet	Regulus satrapa	Confirmed
Ruby-crowned Kinglet	Regulus calendula	Confirmed
Swainson's Thrush	Catharus ustulatus	Confirmed
Hermit Thrush	Catharus guttatus	Confirmed
American Robin	Turdus migratorius	Confirmed
Cedar Waxwing	Bombycilla cedrorum	Probable
Blue-headed Vireo	Vireo solitarius	Confirmed
Red-eyed Vireo	Vireo olivaceus	Probable
Tennessee Warbler	Vermivora peregrine	Possible
Nashville Warbler	Vermivora ruficappilla	Confirmed
Northern Parula Warbler	Parula americana	Confirmed
Chestnut-sided Warbler	Dendroica pensylvanica	Confirmed
Magnolia Warbler	Dendroica magnolia	Confirmed
Black-throated Blue Warbler	Dendroica caerulescens	Possible
Yellow-Rumped Warbler	Dendroica coronata	Confirmed

Table 2. Breeding Status of Birds Listed in the Atlas Square inWhich Wetland 3 is Located

Which Wetland 3 is Located				
Common Name	Species Name	Breeding Status in Atlas Square		
Black-throated Green Warbler	Dendroica virens	Confirmed		
Blackburnian Warbler	Dendroica fusca	Confirmed		
Palm Warbler	Dendroica palmarum	Confirmed		
Bay-breasted Warbler	Dendroica castanea	Confirmed		
Black-and-white Warbler	Mniotilta varia	Confirmed		
American Redstart	Setophaga ruticilla	Confirmed		
Ovenbird	Seiurus aurocapillus	Confirmed		
Mourning Warbler	Oporinis philadelphia	Confirmed		
Common Yellowthroat	Geothlypis trichas	Confirmed		
Canada Warbler	Wilsonia canadensis	Confirmed		
Song Sparrow	Melospiza melodia	Confirmed		
Lincoln's Sparrow	Melospiza lincolnii	Confirmed		
Swamp Sparrow	Melospiza georgiana	Confirmed		
White-throated Sparrow	Zonotrichia albicollis	Confirmed		
Dark-eyed Junco	Junco hyemalis	Confirmed		
Red-winged Blackbird	Agelaius phoeniceus	Possible		
Rusty Blackbird	Euphagus carolinus	Confirmed		
Common Grackle	Quiscalus quiscula	Confirmed		
Pine Grosbeak	Pinicola enucleator	Probable		
Purple Finch	Carpodacus purpureus	Possible		
White Winged Crossbill	Loxia leucoptera	Probable		
Pine Siskin	Carduelis pinus	Possible		
American Goldfinch	Carduelis tristis	Possible		
Evening Grosbeak	Coccothraustes vespertinus	Probable		

Table 2. Breeding Status of Birds Listed in the Atlas Square inWhich Wetland 3 is Located

None of these bird species were observed in Wetland 3 during the field surveys on September 21 2006 and June 13 2007. Wetland 3 is not considered to be critical breeding habits for any of these species.

A review of the ACCDC database of rare species records revealed fourteen at-risk species reported in the region. Three red-listed and eleven yellow-listed bird species were listed within 100 km by the ACCDC search. Each species' habitat preference was determined based on Erksine's 1990 data, and the likelihood of their presence on site was determined based on comparison of known habitat preferences with habitats present in the wetland. A summary of the rare bird species, their provincial status and their habitat preferences is provided in Table 3.

Table3. Habitat Preferences of Listed Bird Species Reported within 100 km of Wetland 3					
NSDNR Status	Common Name	Binomial	Habitat Preference		
Red	Roseate Tern	Sterna dougallii	Coast		
Red	Peregrine Falcon	Falco peregrinus	Rocky cliffs		
Red	Piping Plover	Charadrius melodus	Sandy Beaches		
Yellow	Common Tern	Sterna hirundo	Coast		
Yellow	Arctic Tern	Sterna paradisea	Coast		
Yellow	Barrow's Goldeneye	Bucephala islandica	Small clear lakes and ponds		
Yellow	Northern Goshawk	Accipiter gentiles	Mature woods		
Yellow	Semipalmated Sandpiper	Calidris pusilla	Beaches, mudflats, shallow estuaries, and inlets.		
Yellow	Eastern Meadowlark	Sturnella magna	Grassy fields, pastures, cultivated areas		
Yellow	Razorbill	Alca torda	Coastal islands		
Yellow	Eastern Bluebird	Sialia sialis	Areas with scattered trees and short ground cover.		
Yellow	Vesper Sparrow	Poecetes gramineus	Areas with short grass or low shrubs		
Yellow	Sharp-tailed Sparrow	Ammodramus caudacutus	Breed in meadows adjacent to salt marshes		
Yellow	Bobolink	Dolichonyx oryzivorus	Grasslands		

Arctic Terns, Common Terns, and Razorbills are coastal species, and so should not be present in Wetland 3. Sharp-tailed Sparrows breed in meadows adjacent to salt marshes. Vesper Sparrows are characteristic of areas with short grass or low shrubs, such as sandy pastures, blueberry fields, and clearings. Goshawks prefer heavily wooded areas, and prefer to breed in mature mixed woods. Eastern Bluebird, (*Sialis sialis*) nests in clear-cut areas, which are adjacent to the wetland, and in woodpecker cavities. Eastern Meadowlarks and Bobolinks are grassland/meadow species. Semipalmated Sandpipers and Barrow's Goldeneyes inhabit areas near large bodies of water. None of these three red-listed species or the eleven yellow-listed bird species is expected to be present in the Wetland 3 or to use Wetland 3 due to the lack of suitable habitat (Table 3). None of the birds listed in the ACCDC search were observed during the wetland survey and the area is not critical habitat for any of these species. The environmental screening conducted by the NSM found no records of rare or endangered birds on the Project site.

Mammals

Evidence of varying (snowshoe) hare (*Lepas americana*) was noted in Wetland 3 during the Sept 21, 2006 wetland survey.

Four uncommon to rare mammals were listed in the ACCDC 100 km database search. Two species of rare bat, the hoary bat, (*Lasiurus cinereus*), and the eastern pipistrelle (*Pipstrellus*

subflavus), were reported within 100 km; however, bats are not expected to make use of any habitat in this wetland. The eastern moose (*Alces alces americana*) is listed as endangered in Nova Scotia and was listed on the ACCDC database search for this area. The low density of moose in the area, and the tiny size of Wetland 3 results in the removal of this wetland having very low potential to affect moose. A Moose Mitigation Plan has been developed for the Touquoy Gold Project.

The fourth rare mammal listed by the ACCDC request is the long-tailed shrew (*Sorex dispar*), which lives only on talus slopes, thus they would be not be expected to occur within this wetland. The environmental screening conducted by the NSM found no records of rare or endangered mammals on the Project site.

Reptiles and Amphibians

No reptiles or amphibians were observed during the wetland surveys. The ACCDC request and the environmental screening conducted by the NSM both noted the presence of wood turtles and four-toed salamanders within 100 km of the site. Wood turtles (*Glyptemys insculpta*) are listed as yellow by NSDNR. There is no hibernating or breeding habitat for turtles in this wetland, as they require deep sections of rivers in which to hibernate, and sandy or gravelly banks for nesting. Four-toed salamanders (*Hemidactylium scutatum*) were previously yellow-listed by NSDNR; however, their status has been recently changed to green, indicating they are not considered to be sensitive or at-risk in Nova Scotia. The dry nature of Wetland 3 in summer makes the possibility of four-toed salamanders breeding in this wetland unlikely. There is no suitable habitat for any rare or endangered reptiles or amphibians in Wetland 3.

Odonates

The ACCDC search reported several rare odonates within a 100 km radius of Wetland 3. Most odonates (dragonflies and damselflies) lay their eggs in bodies of water, where they hatch and develop through several larval stages before emerging from the water and metamorphosing into the adult form. In most species, this larval stage lasts for about one year. The fact that Wetland 3 is a low shrub bog which contains no standing water in late summer indicates that most odonate species would be unable to complete larval development in this bog. As see in Table 4, most rare odonates listed in the ACCDC 100 km search inhabit areas near streams or rivers. Two species present in Nova Scotia, the ebony boghaunter (*Williamsonia fletcheri*) and the harlequin darner (*Gomphhaeschna furcillata*) are known to breed in sphagnum bogs (Table 4).

The ebony boghaunter is red-listed by NSDNR, and was reported once in the ACCDC 100 km search, from a location 95 km away. No ebony boghaunters were observed in Wetland 3 during the surveys on September 21, 2004 and June 13 2007. The harlequin darner is a yellow-listed species for which there were two records in the ACCDC 100 km list. The closest record was 60 km from Wetland 3. No harlequin darners were observed in Wetland 3 during the survey on September 21, 2004 and June 13, 2007. In addition, the dry nature of Wetland 3 in summer

containing standing water.			
Table 4. Ra	are Odonates Reported W	vithin 100 km of We	tland 3
Scientific Name	Common Name	Status	Preferred Habitat
Ophiogomphus rupinsulensis	Rusty Snaketail	RED	Large clear flowing

RED

RED

RED

RED

YELLOW

YELLOW

Skillet Clubtail

Taiga Bluet

Twinhorned Snaketail

Ebony Boghaunter

Harlequin Darner

Zorro Clubtail

indicates this wetland is not suitable breeding habitat for these species, which require bogs containing standing water.

Hydrological Characterization

Gomphus ventricosus

Coenagrion resolutum

Ophiogomphus mainensis

Williamsonia fletcheri

Gomphaeschna furcillata

Lanthus parvulus

There is no surface connection between this wetland and any surface watercourses or lakes in the immediate area as it is a bog, this is based on 1:10,000 topographical mapping, air photography, and field surveys. As a bog, this wetland is not expected to receive surface water flow and thus has no role in surface flow regulation. It has no role as a supply for local surface watercourse flow.

Hydrogeological Characterization

This wetland lies in an area with a thin layer of coarse till overlying the bedrock. The bedrock consists of quartzite and slate, and thus is relatively impermeable. The till tends to be coarsegrained and thus the layer is hydrologically conductive. The groundwater level is very shallow (likely < 2m) in this area. General movement of groundwater is from north to south over the project site, mirroring surface water patterns. Bogs are not fed by groundwater discharge. There are no seeps or springs visible.

Peat Characterization

Peat in this wetland was determined based on visual examination, and the presence of live *Sphagnum* mosses to be sphagnum peat. Peat thickness was measured at five locations in this wetland. The peat layer (with live *Sphagnum* layer included) averaged 1.92 m in depth, and ranged from 1.52 to 2.29 m. Humification of peat at the surface (just under the layer of live *Sphagnum*) was mostly in the H2 to H5 range, however one sample was rated as H7. Middepth samples ranged from H6 to H8. Deep samples were in the H8 to H10 range, with one exception (H6).

streams and rivers

Slow-moving rivers Small ponds with grassy

or marshy borders, often shaded

Streams and small rivers Small pools in

sphagnum bogs Sphagnum bogs and

wooded swamps Mountain streams with

muddy substrate

Reason for the Alteration

The wetland in question will be removed due to the construction of a tailings pond from an adjacent open-pit gold mine being constructed on the site.

Nature of the Proposed Alteration

The wetland will be entirely removed.

Alternatives That Have Been Considered

Alternative positions for the tailings management facilty have been considered, however, positions either to the east or west of the proposed location would have significant impacts on Moose River or Fish River with their sensitive fish habitat, and would impact additional wetlands. Moving the tailings management facilty north could result in impacts to Square Lake, while moving it south might impact Scraggy Lake, which is considered significant habitat for brook trout, Atlantic salmon, and gaspereau by NSDNR. The project boundary has already been adjusted to avoid the wetland complex located southeast of the Project site, and to avoid impacting Moose River.

Gold mining can be undertaken by either underground or open pit methods. In this particular instance the gold is relatively uniformly distributed, and at relatively low grades, throughout the local rock mass to the extent that large scale, high volume throughput from an open pit is commercially viable. Concentrations of gold of sufficient grade, continuity or predictability in quartz veins or other specific sites at Touquoy to support a commercial underground operation are not present. Commercial underground gold mining at Touquoy is not an option. There are no options for re-positioning of the open pit – the site of concentration of gold is fixed in nature.

Identifiable Impacts to Wetland

Wetland 3 will be entirely removed by the mine project. There are no species at risk or species of conservation concern known to be present in this wetland

No aquatic habitats or fish species are present, as the wetland is a low shrub bog which is dry during late summer months.

Past Impacts to the Wetland

Possible past impacts to the wetland may have arisen from forestry clear-cutting activities that have occurred in the area, which may have impacted drainage patterns to some extent. Aerial photography of the site dating from 1964, 1974, 1982, 1993, and 2003 was reviewed to provide information on historical forestry activities in the area. Clearing occurred less than 1 km to the north of Wetland 3 prior to 1992. Extensive clearing, as well as the creation of logging roads, occurred less than 1km south of the wetland during the period between 1992 and 2003.

Mitigation

The project footprint has been adjusted so as to minimize impacts to wetlands and watercourses in the area. As per NSDNR regulations, three times the wetland area to be removed must be recreated as compensation. DDV Gold Limited (DDVG) will work with NSDNR to develop the required mitigation measures including wetland compensation. DDVG is considering various approaches to the wetland compensation issue. The first approach, preferred by NSDNR, is to create wetland habitat within the same watershed as the wetland which is to be altered. DDVG is considering creating wetland habitat onsite once mine operations are completed by ensuring that the flooded quarry pit has sufficiently shallow edges to support a marsh-type wetland. If this is not possible, the proponent will consider a wetland enhancement or creation project outside of the local watershed. Contribution to wetland education and/or protection programs may also be considered.

Summary

In summary, assuming that the proposed mitigation measures are applied, and that existing site drainage conditions are maintained, the Touquoy Gold Project is not likely to have significant effects on wetland functional attributes in the area. Removal of this wetland is not expected to have negative impacts on any rare or endangered species in the area, as known are known to occur in this wetland.

Evaluation Expertise

Conestoga-Rovers & Associates is a multi-disciplinary engineering, environmental consulting, construction, and information technology (IT) services firm. Since its inception in 1976, CRA has provided practical, innovative, and effective services in the areas of environmental site assessment, impact assessment, environmental remediation, regulatory compliance and permitting, risk assessment, hydrology, solid and hazardous waste management, air quality management, and municipal infrastructure planning and design. We are an established, reputable company with a strong history of solving engineering and environmental challenges in a responsive and cost-efficient manner.

The CRA Family of Companies employs more than 2,600 professional and support staff in over 70 offices located throughout North America, with additional offices in Brazil and England. Our headquarter office is located in Waterloo, Ontario, Canada.

Beth Cameron, B.Sc. M.Sc., is a Terrestrial Ecologist with Conestoga-Rover & Associates' Halifax office. She has significant experience conducting surveys for flora and fauna, as well as wetland surveys, and has worked on federal and provincial environmental screenings involving wetland alterations. She has also completed a Wetland Delineation and Classification course on the US Army Corps of Engineers wetland delineation protocol and has also taken a course on identifying grasses, sedges, and rushes.

Jeffrey Balsdon, B.Sc., M.Sc., is a Terrestrial Ecologist with Conestoga-Rover & Associates' Halifax office. He has considerable experience conducting surveys for flora and fauna, as well as wetland surveys. He has also taken a course on identifying grasses, sedges, and rushes.

Kristen Nyborg is an Environmental Technologist with Conestoga-Rover & Associates' Halifax office. She holds an Ontario Wetland Evaluation System Certificate, and has significant wetland field experience. She has also completed a Wetland Delineation and Classification course on the US Army Corps of Engineers wetland delineation protocol.

Susan Belford, B.Sc., M.Sc., is a Senior Project Manager with Conestoga-Rovers & Associates' Halifax office. She is very familiar with wetland legislation, having worked on many environmental assessment projects involving provincial and federal regulations and processes.

Dave Strajt, M. Eng., is a Water Resources Engineer/Hydrologist with Conestoga-Rovers & Associates' Halifax office. He is very familiar with surface water processes as they relate to mining process.

Peter Oram, CESA, P.Geo. is a Geologist with Conestoga-Rovers & Associates' Halifax office. He has assisted with ten wetland alteration permits, providing hydrogeological advice. He is very familiar with wetland legislation, having worked on many environmental assessment projects involving provincial and federal legislative processes.

References

Davis, Derek, Sue Brown, 1997. The Natural History of Nova Scotia, Nova Scotia Museum.

Erskine, A.J. 1992. Atlas of Breeding Bird of the Maritime Provinces. Nova Scotia Museum.

Nova Scotia Department of Natural Resources, Nova Scotia General Status Ranks <u>http://www.gov.ns.ca/natr/wildlife/genstatus/ranks.asp</u>

Nova Scotia Department of Natural Resources, Significant Species and Habitats Database. <u>http://www.gov.ns.ca/natr/wildlife/Thp/disclaim.htm</u>

Nova Scotia Department of Natural Resources. Wetlands Database

Zinck, M. 1998. Roland's Flora of Nova Scotia.

WETLAND 4 REPORT

Wetland Delineation

Wetland 4 is a very small wetland dominated by low shrub bog. This wetland is 0.04 ha in area and is centered on 4980452 N, 506366 E. See Figure 1 for the location of this wetland on the Project site.

During the field surveys on September 21, 2006 and June 13, 2007, all species of plant, bird, mammal, reptile and amphibian detected within the wetland were recorded. Evidence of wildlife species such as sightings, vocalizations, tracks, faeces, skeletal remains, and characteristic bite marks or dens was recorded.

Ecological Characterization

Plants

This wetland is dominated by leatherleaf (*Chamaedaphne calyculata*) and lambkill (*Kalmia angustifolia*), with some Labrador tea (*Ledum groenlandicum*), and a few stunted larch (*Larix laricina*) and black spruce (*Picea mariana*). Ground vegetation consists of three-leaved false solomon's seal (*Smilacina trifolia*), small cranberry (*Vaccinium oxycoccos*), black crowberry (*Empetrum nigrum*), and cottongrass (*Eriophorum virginicum*). Dwarf dogwood (*Cornus canadensis*) and goldthread (*Coptis trifolia*) are also present. This wetland also contains open mucky areas which were considerably wetter at the time of the survey than all other wetlands on the study site.

The Atlantic Canada Conservation Data Centre (ACCDC) database consist of records of uncommon to rare plant and animal species records from the 1850s to the present. A review in 2005 for information or rare plants within 100 km of the project site yielded a list of five plants with habitat requirements similar to habitats present in the wetland. These are listed in Table 1. In addition, an environmental screening of all natural heritage resources in the area (within an approximate 10 km radius of the site) was compiled by the Nova Scotia Museum (NSM) in 2004, encompassing all their data from 1847 to 2004. As the Museum is a government department, not all of it its species records are available to the non-governmental ACCDC database. Thus the NSM screening generated a list of seven additional species known from the general area or from similar habitats. Of these, two species had potential to occur in habitats present in Wetland 4 (Table 1). None of the species listed by the ACCDC or the NSM are listed as rare or endangered under the *Nova Scotia Endangered Species Act* (NSESA) or Committee on the Status of Endangered Wildlife in Canada/ *Species at Risk Act* (COSEWIC/SARA).

(ACCDC search) or 10 km (NSM screening) of Wetland 4						
Species	Common Name	NSDNR Status	Bloom Period	Preferred Habitat	Record Source	
Coeloglossum viride	long-bract green orchis	Yellow	May- August	Boggy spots, damp mature (sugar maple) woods, fir or floodplain forest	ACCDC	
Listera australis	southern twayblade	Red	June	Sphagnum bog	ACCDC	
Plotanthera flava	southern rein orchid	Yellow	May- August	Sandy gravelly beach, wet peat, lake edge, bog	ACCDC	
Salix pedicellaris	bog willow	Yellow	Late May- Early June	Sphagnous lakeshore, acid bog	ACCDC	
Utricularia gibba	humped bladderwort	Yellow	Late June- Sept	Shallow lake edge, small pool, pond in peaty area	ACCDC	
Betula michauxii	Michaux's dwarf birch	Yellow	June and July	Peat and sphagnous bogs	NSM	
Viola nephrophylla	northern bog violet	Yellow	May to July	Cool mossy bogs, borders of streams, and damp woods	NSM	

Table 1 Phenology and Habitat Preferences of Bare Vascular Plants Reported Within 100 km

None of these plants were observed in the wetland on the survey on September 21, 2006.

Birds

During the field survey for Wetland 4 on September 21, 2006 and June 13, 2007, no bird species were observed within the wetland. A breeding bird survey conducted in the area encompassing the wetland was conducted in June 2007. One yellow-listed species, Canada Warbler (Wilsonia canadensis), was detected during this survey. Three other yellow-listed species were detected during other field surveys in the area encompassing the wetland. These were Common Loon (Gavia immer), Common Nighthawk (Chordeiles minor), and Barn Swallow (Hirundo rustica). These birds were observed or heard in the vicinity of the wetland, not in it. Canada warblers nest in cool wooded areas, while Common loons nest on lakeshores. Common Nighthawks breed in a wide variety of habitats, including urban areas, as do Barn Swallows, which tend to nest around buildings or under bridges. None of these species would be expected to utilize habitats present in this wetland. Removal of this wetland will not have a significant effect on the Provincial populations of any of these species.
A desktop review of bird species known to breed in the area where the wetland is located was conducted using the Atlas of Breeding Birds of the Maritime Provinces (Erskine 1990). A list of the status of each breeding bird species recorded from the 10 x 10 km atlas square containing Wetland 4 is provided in Table 2.

Which Wetland 4 is Located			
Common Name	Species Name	Breeding Status in Atlas Square	
Common Loon	Gavia immer	Possible	
Canada Goose	Branta Canadensis	Probable	
American Black Duck	Anas rubripes	Probable	
Ring-Necked Duck	Aythya collaris	Confirmed	
Common Merganser	Mergus merganser	Confirmed	
Sharp-Shinned Hawk	Accipiter striatus	Possible	
Broad-Winged Hawk	Buteo platypterus	Probable	
American Kestrel	Falco sparverius	Possible	
Common Nighthawk	Chordeiles minor	Confirmed	
Chimney Swift	Chaetura pelagica	Possible	
Belted Kingfisher	Ceryle alcyon	Possible	
Hairy Woodpecker	Picoides villosus	Confirmed	
Northern Flicker	Colaptes auratus	Confirmed	
Pileated Woodpecker	Dryocopus pileatus	Possible	
Olive-sided Flycatcher	Contopus borealis	Possible	
Eastern Wood-pewee	Contopus virens	Possible	
Yellow-bellied Flycatcher	Empidonax flaviventris	Confirmed	
Alder Flycatcher	Empidonax alnorum	Possible	
Least Flycatcher	Empidonax minimus	Probable	
Tree Swallow	Tachycineta bicolor	Confirmed	
Barn Swallow	Hirundo rustica	Confirmed	
Gray Jay	Perisoreus canadensis	Confirmed	
Blue Jay	Cyanocitta cristata	Possible	
American Crow	Corvus brachyrhynchos	Confirmed	
Common Raven	Corvus corax	Possible	
Black-capped Chickadee	Poecile atricapillus	Confirmed	
Boreal Chickadee	Poecile hudsonicus	Confirmed	
Red-breasted Nuthatch	Sitta Canadensis	Confirmed	
Winter Wren	Troglodytes troglodytes	Confirmed	
Golden-crowned Kinglet	Regulus satrapa	Confirmed	
Ruby-crowned Kinglet	Regulus calendula	Confirmed	
Swainson's Thrush	Catharus ustulatus	Confirmed	
Hermit Thrush	Catharus guttatus	Confirmed	
American Robin	Turdus migratorius	Confirmed	
Cedar Waxwing	Bombycilla cedrorum	Probable	
Blue-headed Vireo	Vireo solitarius	Confirmed	
Red-eyed Vireo	Vireo olivaceus	Probable	

Table 2 Breeding Status of Birds Listed in the Atlas Square in

Γ

Which Wetland 4 is Located			
Common Name	Species Name	Breeding Status in Atlas Square	
Tennessee Warbler	Vermivora peregrine	Possible	
Nashville Warbler	Vermivora ruficappilla	Confirmed	
Northern Parula Warbler	Parula americana	Confirmed	
Chestnut-sided Warbler	Dendroica pensylvanica	Confirmed	
Magnolia Warbler	Dendroica magnolia	Confirmed	
Black-throated Blue Warbler	Dendroica caerulescens	Possible	
Yellow-Rumped Warbler	Dendroica coronata	Confirmed	
Black-throated Green Warbler	Dendroica virens	Confirmed	
Blackburnian Warbler	Dendroica fusca	Confirmed	
Palm Warbler	Dendroica palmarum	Confirmed	
Bay-breasted Warbler	Dendroica castanea	Confirmed	
Black-and-white Warbler	Mniotilta varia	Confirmed	
American Redstart	Setophaga ruticilla	Confirmed	
Ovenbird	Seiurus aurocapillus	Confirmed	
Mourning Warbler	Oporinis philadelphia	Confirmed	
Common Yellowthroat	Geothlypis trichas	Confirmed	
Canada Warbler	Wilsonia canadensis	Confirmed	
Song Sparrow	Melospiza melodia	Confirmed	
Lincoln's Sparrow	Melospiza lincolnii	Confirmed	
Swamp Sparrow	Melospiza georgiana	Confirmed	
White-throated Sparrow	Zonotrichia albicollis	Confirmed	
Dark-eyed Junco	Junco hyemalis	Confirmed	
Red-winged Blackbird	Agelaius phoeniceus	Possible	
Rusty Blackbird	Euphagus carolinus	Confirmed	
Common Grackle	Quiscalus quiscula	Confirmed	
Pine Grosbeak	Pinicola enucleator	Probable	
Purple Finch	Carpodacus purpureus	Possible	
White Winged Crossbill	Loxia leucoptera	Probable	
Pine Siskin	Carduelis pinus	Possible	
American Goldfinch	Carduelis tristis	Possible	
Evening Grosbeak	Coccothraustes vespertinus	Probable	

Table 2. Breeding Status of Birds Listed in the Atlas Square in

None of these bird species were observed in Wetland 4 during the field survey on September 21, 2006 and June 13, 2007. Wetland 4 is not considered to be critical breeding habits for any of these species.

A review of the ACCDC database of rare species records revealed fourteen at-risk species reported in the region. Three red-listed and eleven yellow-listed bird species were listed within 100 km by the ACCDC search. Each species' habitat preference was determined based on Erksine's 1990 data, and the likelihood of their presence on site was determined based on comparison of known habitat preferences with habitats present in the wetland. A summary of the rare bird species, their provincial status and their habitat preferences is provided in Table 3.

Table 3. Habitat Preferences of Listed Bird Species Reported Within 100 km of Wetland 4				
NSDNR Status	Common Name	Binomial	Habitat Preference	
Red	Roseate Tern	Sterna dougallii	Coast	
Red	Peregrine Falcon	Falco peregrinus	Rocky cliffs	
Red	Piping Plover	Charadrius melodus	Sandy Beaches	
Yellow	Common Tern	Sterna hirundo	Coast	
Yellow	Arctic Tern	Sterna paradisea	Coast	
Yellow	Barrow's Goldeneye	Bucephala islandica	Small clear lakes and ponds	
Yellow	Northern Goshawk	Accipiter gentiles	Mature woods	
Yellow	Semipalmated Sandpiper	Calidris pusilla	Beaches, mudflats, shallow estuaries, and inlets.	
Yellow	Eastern Meadowlark	Sturnella magna	Grassy fields, pastures, cultivated areas	
Yellow	Razorbill	Alca torda	Coastal islands	
Yellow	Eastern Bluebird	Sialia sialis	Areas with scattered trees and short ground cover.	
Yellow	Vesper Sparrow	Poecetes gramineus	Areas with short grass or low shrubs	
Yellow	Sharp-tailed Sparrow	Ammodramus caudacutus	Breed in meadows adjacent to salt marshes	
Yellow	Bobolink	Dolichonyx oryzivorus	Grasslands	

Arctic Terns, Common Terns, and Razorbills are coastal species, and so should not be present in Wetland 4. Sharp-tailed Sparrows breed in meadows adjacent to salt marshes. Vesper Sparrows are characteristic of areas with short grass or low shrubs, such as sandy pastures, blueberry fields, and clearings. Goshawks prefer heavily wooded areas, and prefer to breed in mature mixed woods. Eastern Bluebirds, (Sialis sialis) nest in clear-cut areas, which are adjacent to the wetland, and in woodpecker cavities. Eastern Meadowlarks and Bobolinks are grassland/meadow species. Semipalmated Sandpipers and Barrow's Goldeneyes inhabit areas near large bodies of water. None of these three red-listed species or the eleven yellow-listed bird species is expected to be present in the Wetland 4 or to use Wetland 4 due to the lack of suitable habitat (Table 3). None of the birds listed in the ACCDC search were observed during the wetland survey and the area is not critical habitat for any of these species.

The environmental screening conducted by the NSM found no records of rare or endangered birds on the Project site.

Mammals

Evidence of varying (snowshoe) hare (*Lepas americana*), white-tailed deer (*Odocoileus virginanus*), and eastern moose (*Alces alces americana*) was noted in Wetland 4 during the September 21, 2006 wetland survey. One of these mammals, the mainland population of eastern moose, is listed as endangered in Nova Scotia and was listed on the ACCDC database search for this area. A small number of old moose tracks were observed around the perimeter of this bog. Survey by the Coucnil of Mainland Mi'kmaq in October and December of 2007 did not detect any moose sign. A Moose Mitigation Plan has been developed for the Touquoy Gold Project.

Three other rare mammals were also listed in the ACCDC database search. Two species of rare bat, the hoary bat, (*Lasiurus cinereus*), and the eastern pipistrelle (*Pipstrellus subflavus*), were reported; however, bats are not expected to make use of any habitat in this wetland. The fourth rare mammal listed by the ACCDC request is the long-tailed shrew (*Sorex dispar*), which lives only on talus slopes, thus they would be not be expected to occur within this wetland.

The environmental screening conducted by the NSM found no records of rare or endangered mammals on the Project site.

One endangered species, the eastern moose, has been shown to be present in this wetland on an infrequent basis. The results of the field survey suggest that the wetland does not provide significant habitat for moose. Important habitats for moose tend to be wintering and spring calving (late May) areas. Preferred wintering habitat typically consists of mature conifer or mixed conifer stands where snow tends to be less deep and browse is available, reducing winter energy demands. Calving areas are often associated with aquatic/wetland areas; however moose will use a wide range of habitats for calving such as islands on beaver ponds and wetland areas with standing water. The low density of moose in the area, and the tiny size of Wetland 4 results in the removal of this wetland having very low potential to affect wintering or calving of moose. The low shrub bog habitat that occupies most of the wetland is a common wetland type in this area, so this particular wetland is not considered to provide a unique habitat type for wildlife.

Reptiles and Amphibians

No reptiles or amphibians were observed during the wetland surveys. The ACCDC request and the environmental screening conducted by the NSM both noted the presence of wood turtles and four-toed salamanders within 100 km of the site. Wood turtles (*Glyptemys insculpta*) are listed as yellow by NSDNR. There is no hibernating or breeding habitat for turtles in this wetland, as they require deep sections of rivers in which to hibernate, and sandy or gravelly banks for nesting. Four-toed salamanders (*Hemidactylium scutatum*) were previously yellowlisted by NSDNR; however, their status has been recently changed to green, indicating they are not considered to be sensitive or at-risk in Nova Scotia. Four-toed salamanders may nest in the sphagnum moss hummocks around the margins of small pools in Wetland 4. Thus, with the recent change in status rank for four-toed salamanders, there is no suitable habitat for any rare or endangered reptiles or amphibians in Wetland 4.

Odonates

The ACCDC search reported several rare odonates within a 100 km radius of Wetland 4. Most odonates (dragonflies and damselflies) lay their eggs in bodies of water, where they hatch and develop through several larval stages before emerging from the water and metamorphosing into the adult form. In most species, this larval stage lasts for about one year. The fact that Wetland 4 is a low shrub bog which frequently contains only very shallow (< 15 cm) ephemeral pools indicates that most odonate species would be unable to complete larval development in this bog. As see in Table 4, most rare odonates listed in the ACCDC 100 km search inhabit areas near streams or rivers. However, at least two species present in Nova Scotia, the ebony boghaunter (*Williamsonia fletcheri*) and the harlequin darner (*Gomphhaeschna furcillata*) are known to breed in sphagnum bogs (Table 4).

The ebony boghaunter is red-listed by NSDNR, and was reported once in the ACCDC 100 km search, from a location 95 km away. No ebony boghaunters were observed in Wetland 4 during the surveys on September 21, 2004 and June 13, 2007. The harlequin darner is a yellow-listed species for which there were two records in the ACCDC 100 km list. The closest record was 60 km from Wetland 4. No harlequin darners were observed in Wetland 4 during the surveys on September 21, 2004 and June 13, 2007.

Table 4. Rare Odonates Reported Within 100 km of Wetland 4			
Scientific Name	Common Name	Status	Preferred Habitat
Ophiogomphus rupinsulensis	Rusty Snaketail	Red	Large clear flowing streams and rivers
Gomphus ventricosus	Skillet Clubtail	Red	Slow-moving rivers
Coenagrion resolutum	Taiga Bluet	Red	Small ponds with grassy or marshy borders, often shaded
Ophiogomphus mainensis	Twinhorned Snaketail	Red	Streams and small rivers
Williamsonia fletcheri	Ebony Boghaunter	Red	Small pools in sphagnum bogs
Gomphaeschna furcillata	Harlequin Darner	Yellow	Sphagnum bogs and wooded swamps
Lanthus paroulus	Zorro Clubtail	Yellow	Mountain streams with muddy substrate

Hydrological Characterization

There is no surface connection between this wetland and any surface watercourses or lakes in the immediate area, based on 1:10,000 topographical mapping, air photography, and field surveys. As a bog, this wetland is not expected to receive surface water flow and thus its role in surface flow regulation is expected to be minimal. It has no role as a supply for local surface watercourse flow.

Hydrogeological Characterization

This wetland lies in an area with a thin layer of coarse till overlying the bedrock. The bedrock consists of quartzite and slate, and thus is relatively impermeable. The till tends to be coarsegrained and thus the layer is hydrologically conductive. The groundwater level is very shallow (likely < 2m) in this area. General movement of groundwater is from north to south over the project site, mirroring surface water patterns. Bogs are not fed by groundwater discharge. There are no seeps or springs visible.

Peat Characterization

Peat in this wetland was determined based on visual examination, and the presence of live *Sphagnum* mosses to be sphagnum peat. Peat thickness was measured at two locations in this tiny wetland. The peat layer (with live sphagnum layer included) was found to be 0.53 and 0.89 m in depth, respectively. Humification of peat at the surface (just under the layer of live *Sphagnum*) was found to be H3 and H5, while deep samples (0.53 and 0.89 m) were ranked as H8 and H10.

Reason for the Alteration

The wetland in question will be removed due to the construction of a polishing pond from an adjacent open-pit gold mine being constructed on the site.

Nature of the Proposed Alteration

The wetland will be entirely removed.

Alternatives That Have Been Considered

Alternative positions for the tailings management facilty have been considered, however, positions either to the east or west of the proposed location would have significant impacts on Moose River or Fish River with their sensitive fish habitat, and would impact additional wetlands. Moving the tailings management facilty north could result in impacts to Square Lake, while moving it south might impact Scraggy Lake, which is considered significant habitat for brook trout, Atlantic salmon, and gaspereau by NSDNR. The project boundary has already

been adjusted to avoid the wetland complex located southeast of the Project site, and to avoid impacting Moose River.

Gold mining can be undertaken by either underground or open pit methods. In this particular instance the gold is relatively uniformly distributed, and at relatively low grades, throughout the local rock mass to the extent that large scale, high volume throughput from an open pit is commercially viable. Concentrations of gold of sufficient grade, continuity or predictability in quartz veins or other specific sites at Touquoy to support a commercial underground operation are not present. Commercial underground gold mining at Touquoy is not an option. There are no options for re-positioning of the open pit – the site of concentration of gold is fixed in nature.

Identifiable Impacts to Wetland

Wetland 4 will be entirely removed by the mine project. There are no species at risk or species of conservation concern known to be present in this wetland, although it may be visited infrequently by mainland moose.

No aquatic habitats or fish species are present, as the wetland is a low shrub bog which is dry during late summer months.

Past Impacts to the Wetland

Possible past impacts to the wetland may have arisen from forestry clear-cutting activities that have occurred in the area, which may have impacted drainage patterns to some extent. Aerial photography of the site dating from 1964, 1974, 1982, 1993, and 2003 was reviewed to provide information on historical forestry activities in the area. Clearing occurred less than 1 km to the north of Wetland 4 prior to 1992. Extensive clearing, as well as the creation of logging roads, occurred less than 1km south of the wetland during the period between 1992 and 2003.

Mitigation

The project footprint has been adjusted so as to minimize impacts to wetlands and watercourses in the area. As per NSDNR regulations, three times the wetland area to be removed must be recreated as compensation. DDV Gold Limited (DDVG) will work with NSDNR to develop the required mitigation measures including wetland compensation. The client is considering various approaches to the wetland compensation issue. The first approach, preferred by NSDNR, is to create wetland habitat within the same watershed as the wetland which is to be altered. DDVG is considering creating wetland habitat onsite once mine operations are completed by ensuring that the flooded quarry pit has sufficiently shallow edges to support a marsh-type wetland. If this is not possible, the proponent will consider a wetland enhancement or creation project outside of the local watershed. Contribution to wetland education and/or protection programs may also be considered.

Summary

In summary, assuming that the proposed mitigation measures are applied, and that existing site drainage conditions are maintained, the Touquoy Gold Project is not likely to have significant effects on wetland functional attributes in the area. Removal of this wetland is not expected to have negative impacts on any rare or endangered species in the area.

Evaluation Expertise

Conestoga-Rovers & Associates is a multi-disciplinary engineering, environmental consulting, construction, and information technology (IT) services firm. Since its inception in 1976, CRA has provided practical, innovative, and effective services in the areas of environmental site assessment, impact assessment, environmental remediation, regulatory compliance and permitting, risk assessment, hydrology, solid and hazardous waste management, air quality management, and municipal infrastructure planning and design. We are an established, reputable company with a strong history of solving engineering and environmental challenges in a responsive and cost-efficient manner.

The CRA Family of Companies employs more than 2,600 professional and support staff in over 70 offices located throughout North America, with additional offices in Brazil and England. Our headquarter office is located in Waterloo, Ontario, Canada.

Beth Cameron, B.Sc. M.Sc., is a Terrestrial Ecologist with Conestoga-Rover & Associates' Halifax office. She has significant experience conducting surveys for flora and fauna, as well as wetland surveys, and has worked on federal and provincial environmental screenings involving wetland alterations. She has also completed a Wetland Delineation and Classification course on the US Army Corps of Engineers wetland delineation protocol and has also taken a course on identifying grasses, sedges, and rushes.

Jeffrey Balsdon, B.Sc., M.Sc., is a Terrestrial Ecologist with Conestoga-Rover & Associates' Halifax office. He has considerable experience conducting surveys for flora and fauna, as well as wetland surveys. He has also taken a course on identifying grasses, sedges, and rushes.

Kristen Nyborg is an Environmental Technologist with Conestoga-Rover & Associates' Halifax office. She holds an Ontario Wetland Evaluation System Certificate, and has significant wetland field experience. She has also completed a Wetland Delineation and Classification course on the US Army Corps of Engineers wetland delineation protocol.

Susan Belford, B.Sc., M.Sc., is a Senior Project Manager with Conestoga-Rovers & Associates' Halifax office. She is very familiar with wetland legislation, having worked on many environmental assessment projects involving provincial and federal regulations and processes.

Dave Strajt, M. Eng., is a Water Resources Engineer/Hydrologist with Conestoga-Rovers & Associates' Halifax office. He is very familiar with surface water processes as they relate to mining process.

Peter Oram, CESA, P.Geo. is a Geologist with Conestoga-Rovers & Associates' Halifax office. He has assisted with ten wetland alteration permits, providing hydrogeological advice. He is very familiar with wetland legislation, having worked on many environmental assessment projects involving provincial and federal legislative processes.

References

Davis, Derek, Sue Brown, 1997. The Natural History of Nova Scotia, Nova Scotia Museum.

Erskine, A.J. 1992. Atlas of Breeding Bird of the Maritime Provinces. Nova Scotia Museum.

Nova Scotia Department of Natural Resources, Nova Scotia General Status Ranks http://www.gov.ns.ca/natr/wildlife/genstatus/ranks.asp

Nova Scotia Department of Natural Resources, Significant Species and Habitats Database. <u>http://www.gov.ns.ca/natr/wildlife/Thp/disclaim.htm</u>

Nova Scotia Department of Natural Resources. Wetlands Database

Zinck, M. 1998. Roland's Flora of Nova Scotia.

WETLAND 5 REPORT

Wetland Delineation

The wetland referred to as Wetland 5 was assessed by Dillon Consulting Limited on behalf of CRA on June 13, July 14, and September 14, 2005. The entire wetland is a 6.0 ha wetland consisting of open water wetland surrounded by shrub bog with tall shrub swamp around the perimeter.

This wetland is centered on 4980758 N, 0505629 E. Its geographical boundaries are listed in Table 1. See Figure 1 for the location of this wetland on the Project site.

Table 1. Geographical Boundaries of Wetland 5 (NAD 83)			
Boundary	Northing	Easting	
North	4890667	505786	
South	4980590	505595	
East	4890744	505496	
West	4981019	505615	

A small portion (0.19 ha) of the easternmost section of the wetland, lies within the Project footprint. Conestoga-Rovers & Associates surveyed this area on September 13, 2006 and June 13, 2007.

During the field surveys in 2005, 2006, and 2007, all species of plant, bird, mammal, reptile and amphibian detected within the wetland were recorded. Evidence of wildlife species such as sightings, vocalizations, tracks, faeces, skeletal remains, and characteristic bite marks or dens was recorded.

Ecological Characterization

Plants

The open water portion of this wetland is home to submerged and emergent aquatic species such as pipewort (*Eriocaulon aquaticum*) and pondweeds (*Potamogeton* spp. (confirmed not to be the listed pondweed species)). The bog portion surrounding the open water contains shrub species such as pale laurel (*Kalmia polifola*), Labrador tea (*Ledum groenlandicum*), speckled alder (*Alnus rugosa*), and meadowsweet (*Spiraea alba*), with rhodora (*Rhododendron canadense*) and leatherleaf (*Chamaedaphne calyculata*) in wetter areas. There are also a few black spruce (*Picea mariana*) and tamarack (*Larix laracina*) scattered throughout and around the perimeter. There are scattered pockets of sphagnum development containing typical species such as northern

pitcher plant (*Sarracenia purpurea*) and round-leaved sundew (*Drosera rotundifolia*). Surrounding the bog, there are areas of tall shrub swamp containing larch, speckled alder, meadowsweet, red maple, and Labrador tea.

It is a small portion (0.20 ha) of the tall shrub swamp area which will be impacted by the proposed Project. The tree layer in this region consists of scattered larch (*Larix laracina*) and black spruce. Shrubs such as speckled alder, meadowsweet, possum-haw viburnum (*Viburnum nudum*), immature red maple, and Labrador tea. Ground vegetation consists of sphagnum mosses (*Sphagnum spp.*), dewberry (*Rubus hispidus*), dwarf dogwood (*Cornus canadensis*), and scattered sedges (*Carex trisperma* and *C. imtumescens*), all common and upiquitous species in Nova Scotia.

The Atlantic Canada Conservation Data Centre (ACCDC) database consist of records of uncommon to rare plant and animal species from the 1850s to the present. A review in 2005 for information or rare plants within 100 km of the project site yielded a list of five plants with habitat requirements similar to habitat present in the wetland. These are listed in Table 1.

In addition, an environmental screening of all natural heritage resources in the area (within an approximate 10 km radius of the site) was compiled by the Nova Scotia Museum (NSM) in 2004, encompassing all their data from 1847 to 2004. As the Museum is a government department, not all of it its species records are available to the non-governmental ACCDC database. Thus the NSM screening generated a list of seven additional species known from the general area or from similar habitats. Of these, none had potential to occur in habitats present in Wetland 5 (Table 1). None of the species listed by the ACCDC or the NSM are listed as rare or endangered under the *Nova Scotia Endangered Species Act* (NSESA) or Committee on the Status of Endangered Wildlife in Canada/ *Species at Risk Act* (COSEWIC/SARA).

Table 2. Phenology and Habitat Preferences of Rare Vascular Plants Reported Within 100 km(ACCDC search) or 10 km (NSM screening) of Wetland 5					
Species	Common Name	NSDNR Status	Bloom Period	Preferred Habitat	Record Source
Coeloglossum viride	long-bract green orchis	Yellow	May- August	Boggy spots, damp mature (sugar maple) woods, fir or floodplain forest	ACCDC
Listera australis	southern twayblade	Red	June	Sphagnum bog	ACCDC
Plotanthera flava	southern rein orchid	Yellow	May- August	Sandy gravelly beach, wet peat, lake edge, bog	ACCDC
Salix pedicellaris	Bog willow	Yellow	Late May- Early June	Sphagnous lakeshore, acid bog	ACCDC
Utricularia gibba	Humped	Yellow	Late June-	Shallow lake edge, small	ACCDC

Table 2. Phenology and Habitat Preferences of Rare Vascular Plants Reported Within 100 km(ACCDC search) or 10 km (NSM screening) of Wetland 5					
Species	Common	NSDNR	Bloom Poriod	Preferred Habitat	Record
	INdille	Status	renou	1 11 .	Source
	bladderwort		Sept	pool, pond in peaty area	
Betula michauxii	Michaux's	Yellow	June and	Peat and sphagnous bogs	NSM
Dermin michanisti	dwarf birch	renow	July	r cut una opinignous bogs	1,0111
Viola	porthern bog			Cool mossy bogs, borders	
		Yellow	May to July	of streams, and damp	NSM
пертгорпуши	violet			woods	

None of these plants were observed in the wetland on the surveys in 2005, 2006, or 2007.

Birds

Due to the field survey being conducted in late summer, a breeding bird survey was not possible for this wetland. A desktop review of bird species known to breed in the area where the wetland is located was conducted using the Atlas of Breeding Birds of the Maritime Provinces (Erskine 1990). A list of the status of each breeding bird species recorded from the 10 x 10 km atlas square containing Wetland 5 is provided in Table 2.

Table 3. Breeding Status of Birds Listed in the Atlas Square inWhich Wetland 5 is Located			
Common Name	Species Name	Breeding Status in Atlas Square	
Common Loon	Gavia immer	Possible	
Canada Goose	Branta canadensis	Probable	
American Black Duck	Anas rubripes	Probable	
Ring-Necked Duck	Aythya collaris	Confirmed	
Common Merganser	Mergus merganser	Confirmed	
Sharp-Shinned Hawk	Accipiter striatus	Possible	
Broad-Winged Hawk	Buteo platypterus	Probable	
American Kestrel	Falco sparverius	Possible	
Common Nighthawk	Chordeiles minor	Confirmed	
Chimney Swift	Chaetura pelagica	Possible	
Belted Kingfisher	Ceryle alcyon	Possible	
Hairy Woodpecker	Picoides villosus	Confirmed	
Northern Flicker	Colaptes auratus	Confirmed	
Pileated Woodpecker	Dryocopus pileatus	Possible	
Olive-sided Flycatcher	Contopus borealis	Possible	
Eastern Wood-pewee	Contopus virens	Possible	
Yellow-bellied Flycatcher	Empidonax flaviventris	Confirmed	
Alder Flycatcher	Empidonax alnorum	Possible	
Least Flycatcher	Empidonax minimus	Probable	

Table 3. Breeding Status of Birds Listed in the Atlas Square in Which Wetland 5 is Located			
Common Name	Species Name	Breeding Status in Atlas Square	
Tree Swallow	Tachycineta bicolor	Confirmed	
Barn Swallow	Hirundo rustica	Confirmed	
Gray Jay	Perisoreus canadensis	Confirmed	
Blue Jay	Cyanocitta cristata	Possible	
American Crow	Corvus brachyrhynchos	Confirmed	
Common Raven	Corvus corax	Possible	
Black-capped Chickadee	Poecile atricapillus	Confirmed	
Boreal Chickadee	Poecile hudsonicus	Confirmed	
Red-breasted Nuthatch	Sitta Canadensis	Confirmed	
Winter Wren	Troglodytes troglodytes	Confirmed	
Golden-crowned Kinglet	Regulus satrapa	Confirmed	
Ruby-crowned Kinglet	Regulus calendula	Confirmed	
Swainson's Thrush	Catharus ustulatus	Confirmed	
Hermit Thrush	Catharus guttatus	Confirmed	
American Robin	Turdus migratorius	Confirmed	
Cedar Waxwing	Bombycilla cedrorum	Probable	
Blue-headed Vireo	Vireo solitarius	Confirmed	
Red-eyed Vireo	Vireo olivaceus	Probable	
Tennessee Warbler	Vermivora peregrine	Possible	
Nashville Warbler	Vermivora ruficappilla	Confirmed	
Northern Parula Warbler	Parula americana	Confirmed	
Chestnut-sided Warbler	Dendroica pensylvanica	Confirmed	
Magnolia Warbler	Dendroica magnolia	Confirmed	
Black-throated Blue Warbler	Dendroica caerulescens	Possible	
Yellow-Rumped Warbler	Dendroica coronata	Confirmed	
Black-throated Green Warbler	Dendroica virens	Confirmed	
Blackburnian Warbler	Dendroica fusca	Confirmed	
Palm Warbler	Dendroica palmarum	Confirmed	
Bay-breasted Warbler	Dendroica castanea	Confirmed	
Black-and-white Warbler	Mniotilta varia	Confirmed	
American Redstart	Setophaga ruticilla	Confirmed	
Ovenbird	Seiurus aurocapillus	Confirmed	
Mourning Warbler	Oporinis philadelphia	Confirmed	
Common Yellowthroat	Geothlypis trichas	Confirmed	
Canada Warbler	Wilsonia canadensis	Confirmed	
Song Sparrow	Melospiza melodia	Confirmed	
Lincoln's Sparrow	Melospiza lincolnii	Confirmed	
Swamp Sparrow	Melospiza georgiana	Confirmed	
White-throated Sparrow	Zonotrichia albicollis	Confirmed	
Dark-eyed Junco	Junco hyemalis	Confirmed	
Red-winged Blackbird	Agelaius phoeniceus	Possible	
Rusty Blackbird	Euphagus carolinus	Confirmed	
Common Grackle	Quiscalus quiscula	Confirmed	
Pine Grosbeak	Pinicola enucleator	Probable	

Table 3. Breeding Status of Birds Listed in the Atlas Square inWhich Wetland 5 is Located			
Common Name	Species Name	Breeding Status in Atlas Square	
Purple Finch	Carpodacus purpureus	Possible	
White Winged Crossbill	Loxia leucoptera	Probable	
Pine Siskin	Carduelis pinus	Possible	
American Goldfinch	Carduelis tristis	Possible	
Evening Grosbeak	Coccothraustes vespertinus	Probable	

None of these bird species were observed in Wetland 5 during the field survey on September 13, 2006. Wetland 5 is not considered to be critical breeding habits for any of these species. During the field survey for Wetland 5 on September 13, 2006, three bird species were observed in vicinity of the wetland. These were Spruce Grouse, Pileated Woodpecker and Common Crow. None of these birds are expected to breed in tall shrub swamp.

A review of the ACCDC database of rare species records revealed fourteen NSDNR- listed species reported in the region. Three red-listed and eleven yellow-listed bird species were listed within 100 km by the ACCDC search. Each species' habitat preference was determined based on Erksine's 1990 data, and the likelihood of their presence on site was determined based on comparison of known habitat preferences with habitats present in the wetland. A summary of the rare bird species, their provincial status and their habitat preferences is provided in Table 3.

Table 4. Habitat Preferences of NSDNR-Listed Bird Species Reported Within 100 km of Wetland 5				
NSDNR Status	Common Name	Binomial	Habitat Preference	
Red	Roseate Tern	Sterna dougallii	Coast	
Red	Peregrine Falcon	Falco peregrinus	Rocky cliffs	
Red	Piping Plover	Charadrius melodus	Sandy Beaches	
Yellow	Common Tern	Sterna hirundo	Coast	
Yellow	Arctic Tern	Sterna paradisea	Coast	
Yellow	Barrow's Goldeneye	Bucephala islandica	Small clear lakes and ponds	
Yellow	Northern Goshawk	Accipiter gentiles	Mature woods	
Yellow	Semipalmated Sandpiper	Calidris pusilla	Beaches, mudflats, shallow estuaries, and inlets.	
Yellow	Eastern Meadowlark	Sturnella magna	Grassy fields, pastures, cultivated areas	
Yellow	Razorbill	Alca torda	Coastal islands	
Yellow	Eastern Bluebird	Sialia sialis	Areas with scattered trees and short ground cover.	

Table 4. Habitat Preferences of NSDNR-Listed Bird Species Reported Within 100 km of Wetland 5				
NSDNR Status	Common Name	Binomial	Habitat Preference	
Yellow	Vesper Sparrow	Poecetes gramineus	Areas with short grass or low shrubs	
Yellow	Sharp-tailed Sparrow	Ammodramus Caudacutus	Breed in meadows adjacent to salt marshes	
Yellow	Bobolink	Dolichonyx Oryzivorus	Grasslands	

Arctic Terns, Common Terns, and Razorbills are coastal species, and so should not be present in Wetland 5. Sharp-tailed Sparrows breed in meadows adjacent to salt marshes. Vesper Sparrows are characteristic of areas with short grass or low shrubs, such as sandy pastures, blueberry fields, and clearings. Goshawks prefer heavily wooded areas, and prefer to breed in mature mixed woods. Eastern Bluebirds, (*Sialis sialis*) nest in clear-cut areas, which are adjacent to the wetland, and in woodpecker cavities. Eastern Meadowlarks and Bobolinks are grassland/meadow species. Semipalmated Sandpipers and Barrow's Goldeneyes inhabit areas near large bodies of water. None of these three red-listed species or the eleven yellow-listed bird species is expected to be present in the Wetland 5 or to use Wetland 5 due to the lack of suitable habitat (Table 3). None of the birds listed in the ACCDC search were observed during the wetland survey and the area is not critical habitat for any of these species. A breeding bird survey will be conducted in spring of 2007. The environmental screening conducted by the NSM found no records of rare or endangered birds on the Project site.

Mammals

Evidence of black bear (*Ursus americana*), red squirrel (*Tamiasciurius hudsonicus*) and eastern chipmunk (*Tamias striatus*) was noted in Wetland 5 during the September 13, 2006 wetland survey.

Four uncommon to rare mammals were listed in the ACCDC 100 km database search. Two species of rare bat, the hoary bat, (*Lasiurus cinereus*), and the eastern pipistrelle (*Pipstrellus subflavus*), were reported within 100 km; however, bats are not expected to make use of any habitat in this wetland. The eastern moose (*Alces alces americana*) is listed as endangered in Nova Scotia and was listed on the ACCDC database search for this area. The low density of moose in the area, and the tiny size of the portion of Wetland 5 to be impacted results in the removal of this wetland having very low potential to affect moose. A Moose Mitigation Plan has been developed for the Touquoy Gold Project.

The fourth rare mammal listed by the ACCDC request is the long-tailed shrew (*Sorex dispar*), which lives only on talus slopes, thus they would be not be expected to occur within this wetland. Additional mammal observations will be taken concurrently with the spring botany surveys in 2007. The environmental screening conducted by the NSM found no records of rare or endangered mammals on the Project site.

Reptiles and Amphibians

No reptiles or amphibians were observed during the wetland survey. The ACCDC request and the environmental screening conducted by the NSMNH both noted the presence of wood turtles and four-toed salamanders within 100 km of the site. Wood turtles (*Glyptemys insculpta*) are listed as yellow by NSDNR. There is no hibernating or breeding habitat for turtles in the relevant portion of this wetland, as they require deep sections of rivers in which to hibernate, and sandy or gravelly banks for nesting. Four-toed salamanders (*Hemidactylium scutatum*) were previously yellow-listed by NSDNR; however, their status has been recently changed to green, indicating they are not considered to be sensitive or at-risk in Nova Scotia. There is no suitable habitat for any rare or endangered reptiles or amphibians in the 0.20 ha portion of Wetland 5 to be removed.

Odonates

The ACCDC search reported several rare odonates within a 100 km radius of Wetland 5. Most odonates (dragonflies and damselflies) lay their eggs in bodies of water, where they hatch and develop through several larval stages before emerging from the water and metamorphosing into the adult form. In most species, this larval stage lasts for about one year. The fact that the portion of Wetland 5 to be impacted is a tall shrub swamp which contains no pools of water in summer indicates that most odonate species would be unable to complete larval development in this environment. As seen in Table 4, most rare odonates listed in the ACCDC 100 km search inhabit areas near streams or rivers or in sphagnum bogs, and thus are not expected to occur in the relevant portion of Wetland 5. None of these rare odonates, with the exception of the Harlequin darner (*Gomphaeschna furcillata*) are expected to breed in the portion of Wetland 5 to be impacted. No harlequin darners were observed in this wetland during field surveys.

Table 5. Rare Odonates Reported Within 100 km of Wetland 5							
Scientific Name	Common Name	Status	Preferred Habitat				
Ophiogomphus rupinsulensis	Rusty Snaketail	Red	Large clear flowing streams and rivers				
Gomphus ventricosus	Skillet Clubtail	Red	Slow-moving rivers				
Coenagrion resolutum	Taiga Bluet	Red	Small ponds with grassy or marshy borders, often shaded				
Ophiogomphus mainensis	Twinhorned Snaketail	Red	Streams and small rivers				

Table 5. Rare Odonates Reported Within 100 km of Wetland 5								
Scientific Name	Common Name	Status	Preferred Habitat					
Milliamsonia flatchari	Ebony Boghaunter	Rod	Small pools in					
vviitumsoniu jiereneri	Ebony Dognaunter	Keu	sphagnum bogs					
Comphasschna furcillata	Harloquin Darnor	Vallow	Sphagnum bogs and					
Gomphueschnu jurchlulu	Tianequin Damer	Tellow	wooded swamps					
I anthre narrulus	Zorra Clubtail	Vallary	Mountain streams					
	Zorro Ciubtali	renow	with muddy substrate					

Hydrological Characterization

This wetland is fed by an unnamed tributary of Moose River which runs from north to south through the centre of the project site. It lies within the Moose Rover watershed (IEL-5P). Calculations by CRA indicate that this particular wetland is fed by a drainage basin of 150 ha in area. The wetland is expected to flood during periods of high surface water flow, and thus plays a role in surface water regulation within its watershed. The very small portion (<4%) of the wetland to be impacted will not result in significant adverse effects to the wetland as a whole.

Hydrogeological Characterization

This wetland lies in an area with a thin layer of coarse till overlying the bedrock. The bedrock consists of quartzite and slate, and thus is relatively impermeable. The till tends to be coarsegrained and thus the layer is moderately conductive. The groundwater level is likely very shallow (<2m depth) in this area. General movement of groundwater is from north to south over the project site, mirroring surface water patterns. There are no seeps or springs visible, and this wetland is not expected to be a strong recharge or discharge area for groundwater.

Reason for the Alteration

A small portion (4%) of the wetland will be altered due to the construction of a tailings management facility for an adjacent open-pit gold mine being constructed in the area.

Nature of the Proposed Alteration

A small portion (0.25 ha, or 4%) of Wetland 5 will be removed due to the construction of a tailings management facility for an adjacent open-pit gold mine being constructed in the area. A containment dam for the tailings management facility will be constructed over the easternmost lobe of this wetland.

Alternatives That Have Been Considered

Alternative positions for the tailings management facility have been considered, however, positions either to the east or west of the proposed location would have significant impacts on Moose River or Fish River with their sensitive fish habitat, and would impact additional wetlands. Moving the tailings management facility north could result in impacts to Square

Lake, while moving it south might impact Scraggy Lake, which is considered significant habitat for brook trout, Atlantic salmon, and gaspereau by NSDNR. The project boundary has already been adjusted to avoid the wetland complex located southeast of the Project site, and to avoid impacting Moose River. Geotechnical and engineering aspects of the tailings management facility design make it difficult to move the dam any further eastward at this particular location.

Mitigation

During construction of the dam, standard Nova Scotia Environment and Labour sedimentation and erosion control guidelines will be adhered to (Nova Scotia Sediment and Erosion Control Handbook for Construction Sites). This will prevent negative impacts to the rest of this wetland. This section of the wetland is located at the eastern boundary of its watershed, and so likely provides very little surface runoff to Wetland 5. Thus removal of this portion of Wetland 5 will not interfere with water supply to the wetland as a whole.

There are no species at risk or species of conservation concern known to be present in this wetland.

The project footprint has been adjusted so as to minimize impacts to wetlands and watercourses in the area. DDV Gold Limited (DDVG) will work with NSDNR to develop the required mitigation measures including wetland compensation and the preferred compensation ratio. DDVG is considering various approaches to the wetland compensation issue. The first approach, preferred by NSDNR, is to create wetland habitat within the same watershed as the wetland which is to be altered. DDVG is considering creating wetland habitat onsite once mine operations are completed by ensuring that the flooded quarry pit has sufficiently shallow edges to support a marsh-type wetland. If this is not possible, the proponent will consider a wetland enhancement or creation project outside of the local watershed. Contribution to wetland education and/or protection programs may also be considered.

Summary

In summary, assuming that the proposed mitigation measures are applied, and that existing site drainage conditions are maintained, the Touquoy Gold Project is not likely to have significant effects on wetland functional attributes in the area. Removal of 4% of Wetland 5 is not expected to have negative impacts on any rare or endangered species in the area.

Evaluation Expertise

Conestoga-Rovers & Associates is a multi-disciplinary engineering, environmental consulting, construction, and information technology (IT) services firm. Since its inception in 1976, CRA has provided practical, innovative, and effective services in the areas of environmental site assessment, impact assessment, environmental remediation, regulatory compliance and permitting, risk assessment, hydrology, solid and hazardous waste management, air quality

management, and municipal infrastructure planning and design. We are an established, reputable company with a strong history of solving engineering and environmental challenges in a responsive and cost-efficient manner.

The CRA Family of Companies employs more than 2,600 professional and support staff in over 70 offices located throughout North America, with additional offices in Brazil and England. Our headquarter office is located in Waterloo, Ontario, Canada.

Aerial photography of the site dating from 1964, 1974, 1982, 1993, and 2003 was reviewed to provide information on historical forestry activities in the area.

Beth Cameron, B.Sc. M.Sc., is a Terrestrial Ecologist with Conestoga-Rover & Associates' Halifax office. She has significant experience conducting surveys for flora and fauna, as well as wetland surveys, and has worked on federal and provincial environmental screenings involving wetland alterations. She has also completed a Wetland Delineation and Classification course on the US Army Corps of Engineers wetland delineation protocol and has also taken a course on identifying grasses, sedges, and rushes.

Jeffrey Balsdon, B.Sc., M.Sc., is a Terrestrial Ecologist with Conestoga-Rover & Associates' Halifax office. He has considerable experience conducting surveys for flora and fauna, as well as wetland surveys. He has also taken a course on identifying grasses, sedges, and rushes.

Kristen Nyborg is an Environmental Technologist with Conestoga-Rover & Associates' Halifax office. She holds an Ontario Wetland Evaluation System Certificate, and has significant wetland field experience. She has also completed a Wetland Delineation and Classification course on the US Army Corps of Engineers wetland delineation protocol.

Susan Belford, B.Sc., M.Sc., is a Senior Project Manager with Conestoga-Rovers & Associates' Halifax office. She is very familiar with wetland legislation, having worked on many environmental assessment projects involving provincial and federal regulations and processes.

Dave Strajt, M. Eng., is a Water Resources Engineer/Hydrologist with Conestoga-Rovers & Associates' Halifax office. He is very familiar with surface water processes as they relate to mining process.

Peter Oram, CESA, P.Geo. is a Geologist with Conestoga-Rovers & Associates' Halifax office. He has assisted with ten wetland alteration permits, providing hydrogeological advice. He is very familiar with wetland legislation, having worked on many environmental assessment projects involving provincial and federal legislative processes.

References

Davis, Derek, Sue Brown, 1997. The Natural History of Nova Scotia, Nova Scotia Museum.

Erskine, A.J. 1992. Atlas of Breeding Bird of the Maritime Provinces. Nova Scotia Museum.

Nova Scotia Environment and Labour, 1988. The Erosion and Sedimentation Control Handbook for Construction Sites.

Nova Scotia Department of Natural Resources, Nova Scotia General Status Ranks <u>http://www.gov.ns.ca/natr/wildlife/genstatus/ranks.asp</u>

Nova Scotia Department of Natural Resources, Significant Species and Habitats Database. <u>http://www.gov.ns.ca/natr/wildlife/Thp/disclaim.htm</u>

Nova Scotia Department of Natural Resources. Wetlands Database

Zinck, M. 1998. Roland's Flora of Nova Scotia.

APPENDIX J

GEOCHEMICAL DATA

This Appendix Includes:

- Report M1496 and Hg assays A4COA
- VO07104119: Assay certificate for the McGregor tailings
- VO07102220 and VO07104831: Assay certificates for the site soil sampling (samples SS058-176)Note that sample 61 also comes from McGregor tailings
- VO07055647: Assay certificate for the other two tailings areas (Moose River Gold Mines and G&K)
- VO07046023 and VO07046024: More accurate As and Hg assays from high values in MRGM and G&K tailings areas detected in VO07055647

DETERMINATION OF LOW LEVEL MERCURY VALUES IN TOUQUOY COMPOSITE SAMPLES

REPORT NUMBER	M1496			
CLIENT	Atlantic Gold NL			
DATE	3 rd August, 2007			
TEST SAMPLES	The thirteen composite samples as listed in Table 2 of Metcon Laboratories report M1142.			
	TAMArgillite master compositeTWTArgillite location composite - western section topTWMArgillite location composite - western section middleTWBArgillite location composite - western section bottomTETArgillite location composite - eastern section topTEBArgillite location composite - eastern section bottomTGAArgillite grade compositeTGBArgillite grade compositeTGDArgillite grade compositeTGDArgillite grade compositeTGEArgillite grade compositeTGEArgillite grade compositeTGMGreywacke compositeTGWGreywacke compositeTMXMixed lithology composite			
OBJECTIVE	The previous mercury assays reported were all <1ppm, which was the detection limit for the analytical method used. However, for environmental reasons more quantitative assays were required. Therefore, the composites were re-assayed using an analytical procedure with a lower detection limit.			
RESULTS	The new mercury assays are shown in the table overleaf All the assays were carried out by ALS Chemex (Brisbane). They were completed using the same acid digestion procedure as before, but with the initial ICP-AES finish replaced by an ICP-MS (mass spectrometry) finish, which reduces the detection limit from 1ppm to 5ppb.			

S. F. RAYNER

It is important to recognize that the results reported relate only to material represented by the sample tested. Table 1 below shows the original head assays in Report M1142, but with the new mercury assays inserted.

Compo	Expected	Au	Au	Ag	Total	Sulphate	Sulphide	Org C	Св	Pb	Zn	As.	Hg	SG
-site	Au g/t *	assays	average	g/t	S	S	S	%	ppm	ppm	ppm	ppm	ppb	
		g/t	g/t		%	*/9	₽%							
TAM		i	1	<0.2	0.55	0.02	0.53	0.40	55	49	108	1495	11	2.83
TWT		ş		<0.2	0.59	0.03	0.56	0.43	57	23	102	784	5	2.84
TWM		(<0.2	0.57	0.02	0.55	0.44	55	22	97	969	9	2.81
TWB				0.2	0.67	0.03	0.64	0.37	66	120	221	1390	6	2.81
TET				0.6	0.38	0.02	0.36	0.34	56	27	98	1390	9	2.79
TEB				<0.2	0.51	0.01	0.50	0.42	71	30	122	1815	7	2.81
TGA				<0.2	0.44	0.01	0.43	0.35	41	19	95	1095	5	2.82
TGB				0.5	0.33	0.01	0.32	0.43	46	24	101	406	6	2.82
TGC				<0.2	0.71	0.02	0.69	0.41	66	28	98	1370	6	2.84
TGD				<0.2	0.59	0.02	0.57	0.40	56	19	96	2110	12	2.83
TGE			,	0.2	0.63	0.02	0.61	0.39	56	28	103	1820	5	2.83
TGW				<0.2	0.18	0.01	0.17	0.41	25	6	55	210	<5	2.73
TMX			e	<0.2	0.29	0.01	0.28	0.47	40	16	73	770	5	2.77
	and the second s	Server and the server of the s	1000 C						ł					

Table 1. Composite Head Assays

The ALS assay certificate is attached

To: DDV GOLD SUITE 701 - 220 PACIFIC HIGHWAY CROWS NEST NSW 2065 AUSTRALIA

Page: 1 Finalized Date: 16-JUN-2007 Account: DDVGO

> EXCELLENCE IN ANAL YTICAL CHEMISTRY ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

> > ٦

CEF	RTIFICATE VO0704602	23		SAMPLE PREPARATION	
			ALS CODE	DESCRIPTION	
Project: TOUQUOY			FND-02a	Find Sample at Branch Lab	
P.O. No.					
This report is for 2 Sediment se	amples submitted to our lab in Va	al d'Or, QC, Canada on		ANALYTICAL PROCEDURES	
The following have			ALS CODE	DESCRIPTION	INSTRUMENT
I THE TOHOWING HAVE ACCESS I WALLY BUCKNELL	O DATA ASSOCIATED WITH THIS CE	Princate: DDV GOLD	As-A62	Ore grade As - four acid / AAS	AAS
ROBERT MURPHY	JOHN UTLEY				

To: DDV GOLD ATTN: WALLY BUCKNELL SUITE 701 - 220 PACIFIC HIGHWAY CROWS NEST NSW 2065 AUSTRALIA This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Lawrence Ng, Laboratory Manager - Vancouver allestance (1) Ù Signature:

		ALS CHEMEX EXCELLENCE IN ANALYTICAL CHEMISTRY ALS COMMA LIC	To: DDV GOLD SUITE 701 - 220 PACIFIC HIGHWAY CROWS NEST NSW 2065	Page: 2 - A Total # Pages: 2 (A) Finalized Date: 16-JUN-2007
ALS		212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com	AUSTRALIA Project: TOUQUOY	Account: DDVGO
			CERTIFICATE OF ANALYSIS	VO07046023
Sample Description	Method Analyte Units LOR	As-AA62 As % 0.D1		
MRT-07-05 MRT-07-08		2.05 3.50		

To: DDV GOLD SUITE 701 - 220 PACIFIC HIGHWAY CROWS NEST NSW 2065 AUSTRALIA

Page: 1 Account: DDVGO Finalized Date: 7-JUN-2007

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

VO07046024

CERTIFICATE

Project: TOUQUOY

INSTRUMENT FIMS ANALYTICAL PROCEDURES Trace Hg - cold vapor/AAS DESCRIPTION ALS CODE Hg-CV41

This report is for 8 Sediment samples submitted to our lab in Val d'Or, QC, Canada on DDV GOLD The following have access to data associated with this certificate: JULI FIDLER WALLY BUCKNELL ROBERT MURPHY 7-JUN-2007. P.O. No.:

ATTN: WALLY BUCKNELL SUITE 701 - 220 PACIFIC HIGHWAY **CROWS NEST NSW 2065** AUSTRALIA DDV GOLD ö

Signature:

Lawrence Ng, Laboratory Manager - Vancouver aller and a for

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Comments: Hg-CV41 data on all samples were originally reported on VO07055647.

IEX CHEMISTRY	www.alschemex.com
ALS CHER XCELLENCE IN ANALYTICAL S Canada Ltd.	2 Brooksbank Avenue ofth Vancouver BC V7J 2C1 ione: 604 984 0221 Fax: 604 984 0218

To: DDV GOLD SUITE 701 - 220 PACIFIC HIGHWAY CROWS NEST NSW 2065 AUSTRALIA

Page: 1 Finalized Date: 6-JUN-2007 Account: DDVGO

WEI-21	DRY-22	PUL-21 HOM-01	L0G-22		
		l d'Or, QC, Canada on	rtificate:	DDV GOLD	
		amples submitted to our lab in Va	o data associated with this ce	JULI FIDLER JOHN UTLEY	
Project: TOUQUOY	P.O. No.: DDV-283	This report is for 8 Sediment se 30-MAY-2007.	The following have access t	WALLY BUCKNELL ROBERT MURPHY	

	SAMPLE PREPARATION	······
ALS CODE	DESCRIPTION	
WEI-21 DRY-22 PUL-21 HOM-01 LOG-22	Received Sample Weight Drying - Maximum Temp 60C Pulverize entire sample Homogenise Sample Sample login - Rcd w/o BarCode	
	ANALYTICAL PROCEDURES	and the second s
ALS CODE	DESCRIPTION	

ICP-AES

35 Element Aqua Regia ICP-AES Trace Hg - cold vapor/AAS

ME-ICP41 Hg-CV41

FIMS

To: DDV GOLD ATTN: WALLY BUCKNELL SUITE 701 - 220 PACIFIC HIGHWAY CROWS NEST NSW 2065 AUSTRALIA This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

devenue (1) Signature:

Lawrence Ng, Laboratory Manager - Vancouver

To: DDV GOLD SUITE 701 - 220 PACIFIC HIGHWAY CROWS NEST NSW 2065 AUSTRALIA

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 6-JUN-2007 Account: DDVGO

Project: TOUQUOY

	ME-ICP41 Ga ppm 10	€ 6 6 6 6 6	6 6 6
55647	ME-ICP41 Fe % 0.01	4.35 4.53 3.14 5.87 5.71	5.19 4.84 13.15
V0070	ME-ICP41 Cu ppm	80 80 46 14 85	58 267 113
-ΥSIS	ME-ICP41 Cr ppm	55 25 55 25 4 5 5 5	23 28 10
F ANAI	ME-ICP41 Co ppm	55 1 5 9 9	10 154 10
CATE O	ME-ICP41 Cd D.5	0.5 0.5 0.5 0.5 0.5	 40.5 50.5 50.5
ERTIFI	ME-ICP41 Ca 0.01	0.09 0.12 0.13 0.04 0.08	0.14 0.037 0.37
J	ME-ICP41 Bi ppm 2	ดดงิดด	N N M
	ME-ICP41 Be ppm 0.5	 40.5 40.5 40.5 40.5 50.5 	C C C C C C C C C C C C C C
	ME-ICP41 Ba ppm 10	30 2 4 6 0 0 1 0	8 8 8 2 8 8
	ME-ICP41 B ppm 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40 40 40 40
	ME-ICP41 As ppm 2	866 895 637 9650 >10000	3260 5740 *100000
	ME-ICP41 AI % 0.01	1.49 2.11 1.37 1.60 1.60	2.13
	ME-ICP41 Ag ppm 0.2	0.2 0.2 0.9 0.9 0.9	0.2 6.2 55
	WEH-21 Recvid W1. kg 0.02	3.30 3.32 2.27 4.25 2.85	3.48 2.07 2.07
	Method Analyte Units LOR		
	Sample Description	MRT-07-01 MRT-07-02 MRT-07-03 MRT-07-04 MRT-07-05	MRT-07-06 MRT-07-08 MRT-07-08

Comments: It took 2 days to have dry samples in drying oven that is controlled to a maximum temperature of 60C.

	www.alschemex.com
ALS CHER EXCELLENCE IN ANALYTICAL ALS CONNERS IN ANALYTICAL	212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218

To: DDV GOLD SUITE 701 - 220 PACIFIC HIGHWAY CROWS NEST NSW 2065 AUSTRALIA

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 6-JUN-2007 Account: DDVGO

Project: TOUQUOY

	AE-JCP41 Ti % 0.01	0.01 0.01 0.01 0.01	0.01	
647	AE-ICP41 & Sr ppm	80 17 17 80 66 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	23 6 30	
007055	AE-ICP41 N Sc ppm 1	~~~~	- ~ ~ ~	
YSIS V	ME-iCP41 Sb ppm 2	4 2 2 2 4	≠ Ç, Ç, 4	
- ANAL	ME-ICP41 S % 0.01	0.06 0.01 0.01 0.19	0.01 0.33 0.12	
ATE OI	ME-ICP41 Pb ppm 2	17 29 37 297		
ERTIFIC	ME-ICP41 P ppm 10	310 460 410 180	500 820 610	
ပ	ME-KCP41 Ni Ppm	33 24 24	25 19 108	
	ME-fCP41 Na % 0.03	0.0 0.0 0.0 0.0 0.0 0.0	 60.01 60.01 60.01 60.01 	
	ME-ICP41 Mo ppm	222-2	5 7 7 A	
:	ME-ICP41 Mn 5	902 745 2210 288 220	508 262 15400	
	ME-ICP41 Mg % 0.01	0.66 0.94 0.64 0.57	1.07 0.98 0.34	
	ME-ICP41 La ppm 10	2 2 2 3 <u>3</u> 2	20 20 20	
	ME-ICP41 K % 0.01	0.14 0.18 0.12 0.05	0.17 0.14 0.08	
	Hg-CV41 Hg ppm 0.01	5.10 7.03 6.40 60.2 9.38	4.36 16.9 3.85	
	Method Analyte Units LOR			
	Sample Description	MRT-07-01 MRT-07-02 MRT-07-03 MRT-07-04 MRT-07-05	MRT-07-06 MRT-07-07 MRT-07-08 MRT-07-08	

Comments: It took 2 days to have dry samples in drying oven that is controlled to a maximum temperature of 60C.

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 6-JUN-2007 Account: DDVGO		VO07055647								
To: DDV GOLD SUITE 701 - 220 PACIFIC HIGHWAY CROWS NEST NSW 2065 AUSTRALIA	Project: TOUQUOY	CERTIFICATE OF ANALYSIS								
UX Imistry	ww.alschemex.com		41 ME-ICP41 Zn ppm 2	66 60 81	57	98 80 149				
	04 984 0218 wv		-HCP41 ME-ICP V W ppm ppm	11 <10 16 <10 10 <10 13 <10	12 <10	16 <10 14 <10 12 <10				
NCE NANAL Sink Avenue Wer BC V7J 2C1	84 0221 Fax: 6		ME-JCP41 ME U ppm 10	A 10 10 10 10	<10	5 5 5				
ALS EXCELLE: ALS Canada Li ALS Canada Li ALS Cooksbé North Vancou	Phone: 604 9		ME-KCP41 TI ppm 10	<pre>^10 *10 *10 *10</pre>	0	0 0 0 0 0 0 0				
	\		Method Analyte Units LOR						 	
			Sample Description	MRT-07-01 MRT-07-02 MRT-07-03 MRT-07-04	MRT-07-05	MRT-07-08 MRT-07-08 MRT-07-08				

Comments: It took 2 days to have dry samples in drying oven that is controlled to a maximum temperature of 60C.

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd. ALS Chemex

SUITE 701 - 220 PACIFIC HIGHWAY CROWS NEST NSW 2065 AUSTRALIA To: DDV GOLD

Page: 1 Finalized Date: 19-OCT-2007 Account: DDVGO

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

CER	RTIFICATE VO071022	20		SAMPLE PREPARATION	
			ALS CODE	DESCRIPTION	
Project: TOUQUOY			WEI-21	Received Sample Weight	
P.O. No.: DDV-307			L0G-22	Sample login - Rcd w/o BarCode	
This report is for 74 Oall comple	se submitted to such the Viel die		SCR-41	Screen to -180um and save both	
12-SEP-2007.	es sudmineu lu our iad in vai d	ur, wu, uanada on	DRY-22	Drying - Maximum Temp 60C	
The following have access to	o data associated with this r	ertificate.			
WALLY BUCKNELL		DDV GOLD		ANALYTICAL PROCEDURES	
ROBERT MURPHY	JOHN UTLEY		ALS CODE	DESCRIPTION	INSTRUMENT
			ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES
			Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES

ATTN: WALLY BUCKNELL SUITE 701 - 220 PACIFIC HIGHWAY **CROWS NEST NSW 2065** AUSTRALIA DDV GOLD To:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Lawrence Ng, Laboratory Manager - Vancouver deserver (1) Ą

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Litt. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS

SUITE 701 - 220 PACIFIC HIGHWAY CROWS NEST NSW 2065 AUSTRALIA To: DDV GOLD

Total # Pages: 3 (A - C) Finalized Date: 19-OCT-2007 Account: DDVGO Page: 2 - A

Project: TOUQUOY

										CERTIFIC	CATE O	F ANAI	YSIS	V0071	02220	
	Method	WEI-21	Au-ICP21	Au-ICP21	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
	Analyte Units	ko ko	and d	Au Crieck	6v	₹ ¥	S Con	0 22	80 0	9 20	ñ	ھ ر	5	3	5	3 8
Sample Description	LOR	0.02	0.001	0.001	0.5	0.01	2	10	0	0.5	N	0.01	0.5	-	-	ž –
SS-07-58		0.56			<0.2	1.10	39	<10	20	<0.5	Ŷ	0.02	<0.5	3	12	4
SS-07-59		0.41			<0.2	1,41	31	<10	10	<0.5	Ø	0.01	<0.5	-	16	ņ
SS-07-60	*****	0.44			0.2	1,44		<10 <	20	<0.5	\$	0.01	<0.5	ę	18	~
SS-07-61		0.52			0.4	1.21	4550	<10	10	<0.5	2	0.04	<0.5	5	14	16
SS-07-62		0.38	-		<0.2	1.22	34	<10	20	<0.5	8	0.01	<0.5	2	ŧ	N
SS-07-63		0.53	à		0.3	1.96	23	<10	20	<0.5	2	0.02	<0.5	5	20	29
SS-07-64		0.46			0.2	2.26	21	<10	20	<0.5	6	0.03	<0.5	ß	25	თ
SS-07-65		0.44			0.2	2.65	107	<10	8	<0.5	V	0.02	<0.5	15	29	o
SS-07-67		0.50			0.2 0.2	1.03 3.87	30 8	10 10 10	2 2	<0.5 <0.5	0 0	0.02 0.01	<0.5 <0.5	13 4 1	16 43	0 ¢
SS-07-68		0.34			<0.2	2.55	144	<10	20	<0.5	2	0.03	<0.5	7	26	16
\$\$-07-69		0.56			0.2	1.39	88	<10	20	<0.5	Ŷ	0.03	<0.5	10	18	21
SS-07-70		0.50			<0.2	1.91	34	<10	20	<0.5	8	0.01	<0.5	ю	21	6
SS-07-71		0.55			<0.2	1.02	06	<10	20	<0.5	¢	0.03	<0.5	4	13	N
SS-07-72		0.58			<0.2	0.28	8	<10	10	<0.5	8	0.01	<0.5	5	e	*-
SS-07-73		0.64			<0.2	1.22	19	<10	10	<0.5	2	0.01	<0.5	ŝ	15	6
SS-07-74		0.61			<0.2	1.23	17	<10	10	<0.5	₽	0.01	<0.5	ъ	15	6
SS-07-75		0.43			0.2	1,47	31	<10	40	<0.5	8	0.04	<0.5	18	17	ß
SS-07-76		0.68			<0.2	1.38	27	<10	20	<0.5	2	0.03	<0.5	თ	19	21
SS-07-77		0.46			<0.2	1.47	17	<10	10	<0.5	ю	<0.01	<0.5	4	19	10
SS-07-78		0.39			0.3	2.11	28	<10	30	<0.5	2	0.01	<0.5	14	21	12
SS-07-79		0.37			0.2	1.20	13	<10	60	0.6	Q	0.08	<0.5		13	თ
SS-07-80		0.44			<0.2	0.84	4	<10	20	<0.5	₽	0.01	<0.5	4	4~~ 4~~	0
02-01-01 55 04 65		0.45			<0.2	1.61		<10	30	<0.5	8	0.01	<0.5	7	22	,
22-11-22		0.49			0.2	1.49	6	<10	30	<0.5	Q	0.01	<0.5	Q	20	10
SS-07-83		0.38			0.2	1.81	7	<10	40	0.5	₽	0.02	<0.5	10	19	8
SS-07-84		0,49			<0.2	1.45	80	<10	40	<0.5	ç	0.01	<0.5	7	19	80
55-01-85 cc 07 ac		0.39			0.2	1.62	~	~10 ~10	40	<0.5	₽ '	0.01	<0.5	10	20	on 1
SS-07-87		0.62			<0.2	0.94	y 4	015	20 30	<0.5 <0.5	99	0.01	<0.5 <0.5	4 e	4 0	<u>ہ</u> م
SS-07-88		0.41			60	3 45	23	10	90	505	ç	0.04	1 U U		00	- 40
SS-07-89		0.59			202 402	180	28	<10 <10	9 Ç	<0.5 <0.5	чÇ	500	<0.5 60.5	o u	C 2	5 2
SS-07-90		0.48			<0.2	1.26	4	<10 210	20	<0.5	10	0.01	<0.5	24	13	ţu
SS-07-91		0.54			<0.2	1.16	- 60	<10	30	40.5	• \$	0.01	<0.5 <0.5	4	14) थ
SS-07-92		0.46			0.2	2.48	31	<10	20	<0.5	6	0.01	<0.5	e e	29	14
SS-07-93		0.56			0.2	2.47	120	<10	20	<0.5	2	0.01	<0.5	12	28	11
SS-07-94		0.40			0.3	1.92	18	<10	10	<0.5	22	0.01	<0.5	4	21	12
SS-07-95		0.34			<0.2	1.94	ŝ	<10	40	<0.5	₽	0.01	<0.5	თ	21	6
06-70-00		0.43			<u>6.2</u>	1.92	00 1	×10	50	0.5	₽.	0.01	<0.5		23	11
00-01-01		0.40			<0.2	1.74	8	<10	40	<0.5	2	0.01	<0.5	9	19	œ

A L S

To: DDV GOLD SUITE 701 - 220 PACIFIC HIGHWAY CROWS NEST NSW 2065 AUSTRALIA

Total # Pages: 3 (A - C) Finalized Date: 19-OCT-2007 Account: DDVGO Page: 2 - B

Project: TOUQUOY

					:				J	ERTIFI	CATE O	F ANAI	_YSIS	V0071	02220	
	Method	ME-(CP41 Fa	ME-ICP41 Ga	ME-ICP41 Hn	ME-ICP41 K	ME-ICP41	ME-ICP41 Mo	ME-ICP41 Min	ME-ICP41 Mo	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
	Units	2	bpm	nudd	4 %	bpm	5 ×	u u u u	nw	8N 8	in the	r nga	0 MOD	n %	os mod	x Eg
Sample Description	LOR	0.01	10	4.	0.01	10	0.01	ю	***	0.01	- -	10	. 64	0.01	2	
SS-07-58		1.12	10	+	0.03	10	0.21	150	₽ V	<0.01	4	80	11	0.02	-2	-
SS-07-59		2.81	10	~	0.02	10	0.12	78	ţ	<0.01	N	190	8	0.02	Ş	*
SS-07-60		3.24	1 0	v i	0.02	10	0.09	198	4	<0.01	9	280	14	0.03	<2	*-
SS-U/-61		4.71	<10	19	0.01	20	0.63	245	4	<0.01	ۍ	360	65	0.06	ŝ	-
5S-07-62		2.17	10	1	0.02	<10	0.19	161	4	<0.01	4	50	4	0.03	\$	~
SS-07-63		2.61	10	<1	0.02	10	0.18	266	-1	<0.01	8	340	10	0.03	42	t.
SS-07-64		4.92	10	-	0.02	10	0.29	353	¥	<0.01	æ	410	15	0.06	4	5
SS-07-65		5.23	1 0	-	0.04	10	0.37	649	7	<0.01	33	400	29	0.05	q	~
ss-07-67 SS-07-67		1.70 5.15	₽	ζ,	0.03	<u>6</u> 6	0.30	274 200	← *	0.0 20	4 4 7	120	9 4	0.02	9 (د נ
		2.12	2	7	60°0	2	21.22	\$00		10.02	-	400	10	0.08	75	7
SS-07-68		3.25	10		0.02	10	0.14	838	***	<0.01	8	350	16	0.05	₹2	7
50-77-03		2.09	<10	v,	0.03	10	0.36	405	~	<0.01	25	200	10	0.02	5	
00-01-10		5.4Z	2 5		10.0	2 9	0.21	173	2	<0.01	۰ م	210	۵	0.03	4	N
SS-07-72		N 010	012		0.01	56	0.37	232	7	<0.01	<u>ن</u> ص	<u>6</u> 8	m ·	0.02	5	.
		4 5	21/	-	0.01	2	10.0	40	5	<0.01	۲.	30	4	0.01	8	v
SS-01-73		2.05	<10	.	0.03	10	0.27	303	-	<0.01	თ	150	œ	0.03	<2	Ţ
55-01-14		1.98	<10		0.03	10	0.25	286	Ŷ	<0.01	ø	160	80	0.04	4	-
01-10-00 ar ro so		2.21	<10 10	 .	0.03	10	0.23	738	-	<0.01	11	330	18	0.03	5	
01-10-00		202	<10 2	. .	0.03	20	0.37	528	-	<0.01	18	250	11	0.02	42	~-
11-11-00		4.92	10	1	0.01	10	0.19	136	₽	<0.01	Q	260	4	0.03	\$	۰.
SS-07-78		3.50	10	1	0.05	20	0.22	705	2	<0.01	æ	370	17	0.05	<2	-
SS-07-79		2.17	<10 ∧10	-	0.03	10	0.17	4350	4	<0.01	12	460	18	0.04	\$	*
SS-U/-80		1,19	<10	0	0.03	10	0.13	316	Ÿ	<0.01	ന	140	თ	0.01	Ş	۰.
00-01-01 50 07 00		2.81	9	-	0.05	10	0.28	436	~	<0.01	11	280	11	0.03	₹2	5
70-10-00		2.65	10	₹	0.05	10	0.26	432		<0.01	12	280	10	0.03	\$	*
SS-07-83		2.66	10	2	0.05	20	0.24	1085	۰	<0.01	12	380	*	0.04	4	
55-07-84		2.13	~10	, - .	0.05	10	0.28	804		<0.01	10	320	~	0.05	Q	.
50-11-00 55_07_86		2.03	01		0.05	0	0.25	1290	.	<0.01	10	350	σ I	0.04	42	4
SS-07-87	****	0.88	2 ₽ ₽	- ⊽	0.04	0 0	0.12	240 114		10.0> €0.01	თთ	081 06	- 10	0.02	~ 7	
SS-07-88		4.05	10	ţ	0.03	10	0.17	257	<1>	<0.01		460	12	0.11	6	6
SS-07-89		2.88	<10	6	0.02	10	0.23	287	٢	<0.01	6	260	10	0.04	0	. 0
SS-07-90		1.92	10	****	0.04	10	0.16	241	-	<0.01	ŝ	210	7	0.02	8	- -
SS-07-91		1.91	10	4 00	0.05	10	0.22	290	٢	<0.01	7	160	7	0.02	\$	*
SS-07-92		5.63	10	2	0.02	20	0.33	263	۲.	<0.01	12	640	7	0.05	Q	~
SS-07-93		3.84	10	***	0.02	20	0,44	450	-	<0.01	6	290	5	0.04	4	~
SS-07-94		4.49	10	***	0.02	10	0.14	276	•	<0.01	ۍ ۱	380	5	0.04	2	£
00-70-00 30-70-30		2.70	10	f (0.05	9	0.22	1575	4	<0.01	10	400	-	0.04	8	*
SS.07.97		2667Z	0.0	، ۳	0.05	₽ ;	0.32	920	Xur 4	<0.01 5 0.01	5,	210	13	0.03	5	2
			-	5	0.0	2		4 14		10.05	}	920	14	0.03	7.5	

Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 19-OCT-2007 Account: DDVGO		VO07102220																																			
60LD 701 - 220 PACIFIC HIGHWAY /S NEST NSW 2065 RALIA	t: ΤουαυοΥ	CERTIFICATE OF ANALYSIS	ME-ICP41	Zu	ppm 2	20	14	21 52	15	80	45 67	33	33	27	42	32 33	2	32	31	00 44	29	37	36	39	35	39	40 39	26	16	31	31 24	26	43	55	26	52	28
To: DDV G SUITE CROW AUSTI	Projec		ME-ICP41	N	10	<10	<10	0 0 0	<10	<10	0 10 10	0 0 0 0 0 0	<10	<10	010	012 210	<10	<10	410 1	012 210	×10	<10	10 10 10 10 10 10 10 10 10 10 10 10 10 1	012	<10	<10	012	<10	<10	<10	010 010	<10 5 10	<10	<10	×10 10	510 210	<10
	шо		ME-ICP41	>	udd +	18	31	8 ¢	52	23	28	35 25	33	27	13	32 12	0	15	15	5 L	36	27	19	22	52	23	22	17	15	25	19 20	20	22	22	88	24	27
STRY	alschemex.o		ME-ICP41	þ	ррт 10	<10	<10	0 ₽ ₽	10	<10	410 10	2 10 10	<10	<10	40	012 410	<10	<10	5 2 2 2	015 015	<10 510	<10	410 7	01×	<10	<10	10	<10	<10	<10	40	<10	<10	<10	10	210 210	<10
	218 WWW.8		ME-ICP41	Ħ	10 10	<10	<10	0 1 1 1 1 1 1	-10 -10	<10	€ ₹		<10	<10	₽ 1	012	<10	<10	-10 10	012	<10 <10	<10	0 10 10	2 0 0 0 0	<10	<10	012 10 10	<10	<10	<10	000	<pre>10 10</pre>	<10	<10	10	ç ₽	<10
	ix: 604 984 0		ME-ICP41	Ē	°,01	0.07	0.04	0.05	0.05	0.03	0.13	0.04	0.05	0.04	0.04	0.0 0	0.03	0.04	0.04	0.03	0.01	0.04	0.02	0.04	0.04	0.02	0.03	0.03	0.02	0.06	0.05	0.02	0.02	0.01	0.06	0.02	0.02
	84 0221 Fe		ME-ICP41	£	ppm 20	<20	<20	\$ \$	₹9 50	<20	9 70 70	8 7 8	<20	<20	8 8	8	50 F	<20	8	88	20	<20	²⁰	8	<20	<20	02 \$20	<20	<20	<20	° ₹	<20	<20	<20	88	20 6	<20
AL EXCELLE ALS Canada LI ALS Canada LI 212 Brooksbi	Phone: 604 9		ME-ICP41	ર્લ	udd	2	4	m	~~~	4	η	04	3	4	ഗ	2 4	t m	4	4 (یں م	o - -	ຍ	on •	t vC) O	9	рıc	ŝ	ŝ	3	ধ খ	rvo	e	2	m u	ເພ	S
			Method	Analyte	Log		******																														
	(ALS				Sample Description	SS-07-58	SS-07-59	SS-07-60	SS-07-62	SS-07-63	SS-07-64	SS-07-66	SS-07-67	SS-07-68	SS-07-69	SS-07-71	SS-07-72	SS-07-73	SS-07-74	32-01-75 SS-07-76	SS-07-77	SS-07-78	SS-07-79	SS-07-81	SS-07-82	SS-07-83	SS-07-85	SS-07-86	SS-07-87	SS-07-88	SS-07-89 SS-07-80	SS-07-91	SS-07-92	SS-07-93	SS-07-94 SS-07-05	SS-07-96	SS-07-97

Page: 2 - C

To: DDV GOLD

ALS

To: DDV GOLD SUITE 701 - 220 PACIFIC HIGHWAY CROWS NEST NSW 2065 AUSTRALIA

Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 19-OCT-2007 Account: DDVGO

Project: TOUQUOY

										ERTIFIC	CATE O	F ANAI	YSIS	V0071	02220	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd WL kg 0.02	Au-ICP21 Au ppm 0.001	Au-ICP21 Au Check ppm 0.001	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As Ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu Ppm 1
	T															
SS-07-98		0.35			0.2	1.51	10	<10 <	20	<0.5	~	0.01	<0.5	ı ما	18	ω
66-/0-SS		0,44			<0.2	0.78	7	<10	10	<0.5	Ŷ	0.01	<0.5	ю	10	4
SS-07-100		0.53			<0.2	1.40	14	<10	20	<0.5	8	0.01	<0.5	9	16	42
SS-07-101		0.64			<0.2	0.99	ო	<10	20	<0.5	5	0.01	<0.5	ß	13	ç
SS-07-102		0.40			0.2	1.49	đ	<10	30	<0.5	N	0.01	<0.5	5	16	ŝ
SS-07-103		0.57			<0.2	1.06	4	<10	20	<0.5	≎	0.01	<0.5	°,	12	ъ
SS-07-104		0.39			0.2	2.19	19	<10	10	<0.5	~	0.01	<0.5	4	22	6
SS-07-105		0.53			<0.2	1.27	ιΩ	<10	10	<0.5	Ŷ	0.01	<0.5	ო	14	ហ
SS-07-106		0.51			<0.2	1.21	11	<10	10	<0.5	\$	<0.01	<0.5	T aylor	12	ო
SS-07-107		0.44			<0.2	2.21	38	<10	10	<0.5	ო	0.01	<0.5	4	21	14
SS-07-108		0.41			0.2	1.16	24	<10	10	<0.5	\$	0.01	<0.5	2	16	7
SS-07-109		0.47			<0.2	1.32	10	<10	30	<0.5	8	0.01	<0.5	5	17	7
SS-07-110		0.46			<0.2	0.88	£	<10	20	<0.5	5	0.01	<0.5	4	10	ю
SS-07-111		0.37			0.3	1,94	6	<10	40	<0.5	8	0.01	<0.5	7	21	12
SS-07-112		0.51			<0.2	1.21	8	<10	30	<0.5	2	0.01	<0.5	7	16	7
SS-07-113		0,52			0.2	2.27	15	<10	50	0.7	\$	0.02	<0.5	12	24	14
SS-07-114		0.53			0.2	1.80	11	<10	40	<0.5	ų	0.01	<0.5	7	22	თ
SS-07-115		0.53			<0.2	1.75	2	<10	30	<0.5	22	0.01	<0.5	1.1	20	10
SS-07-116		0.49			0.2	1.95	0	<10	30	<0.5	\$	0.01	<0.5	9	20	10
SS-07-117		0.75			<0.2	1.03	5	<10	10	<0.5	₽	0.02	<0.5	4	14	11
SS-07-118		0.52			<0.2	1.07	13	<10	10	<0.5	42	0.01	<0.5	2	12	4
SS-07-119		0.68			<0.2	0.76	4	<10	10	<0.5	22	0.01	<0.5	e	1 ~~	ю
SS-07-120		0.65			<0.2	0.69	9	<10	10	<0.5	\$	<0.01	<0.5	f	9	9
SS-07-121		0.49			<0.2	2.90	62	<10	10	<0.5	Ÿ	0.01	<0.5	9	27	20
SS-07-122		0.59			<0.2	1.60	71	<10	10	<0.5	7	0.01	<0.5	4	18	8
SS-07-123		0.39			0.2	0.70	116	<10	10	<0.5	<2	<0.01	<0.5	4	7	9
SS-07-124		0.42			<0.2	0.77	4	<10	<10	<0.5	5	0.01	<0.5	۳	6	***
SS-07-125		0.60			<0.2	1,11	თ	<10	10	<0.5	8	0.02	<0.5	4	13	en
SS-07-126 SS-07-127		0.49			<0.2 <0.2	1.72	1 6	0 10 10	0 , 0	<0.5 <0.5	90	0.01	<0.5	ლ -	25 F	t o
		0.00			2.07	0.10	7	2	77	5.07	7	10.0	0.02	-	0	4.
		5			2. 2	0.7.0	n	2	2	0 5	N	70'N	C.U.	٥	2	מ
-																
		-														

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

A L

To: DDV GOLD SUITE 701 - 220 PACIFIC HIGHWAY CROWS NEST NSW 2065 AUSTRALIA

Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 19-OCT-2007 Account: DDVGO

										ERIFIC	CATEO	IF ANAI	-YSIS	V0071	02220	
	Method Analyte	ME-ICP41 Fe	ME-ICP41 Ga	ME-ICP41 Hg	ME-ICP41 K	ME-ICP41 La	ME-ICP41 Ma	ME-ICP41 Mn	ME-ICP41 Mp	ME-ICP41 Na	ME-ICP41 Ni	ME-ICP41 P	ME-ICP41 Ph	ME-ICP41	ME-ICP41 Sh	ME-ICP41
	Units	*	mqq	bmdd	%	mqq	%	udd	mqq	%	e udd	bpm	a udd	5 %	n udd	ng ng
	LOK	0.01	10		0.01	10	0.01	5	1	0.01	¢-	10	2	0.01	7	
SS-07-98		2.96	10	4	0.03	10	0.20	424	1	<0.01	7	290	11	0.03	2	~
66-/0-00		1.48	<10	~	0.02	10	0.16	181	-	<0.01	ы С	150	7	0.01	2	.
SS-07-100		2.40	10	v	0.02	10	0.19	405	-	<0.01	~	270	00	0.03	9	*
SS-07-101		1.58	<10	4	0.03	10	0.22	258	•	<0.01	7	140	œ	0.02	4	*
SS-07-102		2.44	10	*	0.04	10	0.20	327	-	<0.01	6	320	12	0.03	Q	*
SS-07-103		1.68	<10	-	0.03	10	0.12	201		<0.01	4	120	9	0.01	\$	-
SS-07-104		4.35	10	4 m	0.02	10	0.13	163	,	<0.01	5	290	10	0.06	9	• ~
SS-07-105		2.17	10	4 ~~	0.03	10	0.19	180	ŗ	<0.01	ß	110	7	0.01	8	
SS-07-106	-,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,	3.01	10	4 ~~	0.02	<10	0.06	74	ţ	<0.01	2	300	4	0.02	4	-
5S-07-107		4.18	10	2	0.01	Q	0.14	156	v	<0.01	4	580	11	0.05	\$	***
SS-07-108		3.60	10	۴	0.01	10	0.09	197	<1	<0.01	4	280	12	0.03	2	-
SS-07-109		2.28	<10	4 000	0.04	10	0.20	597	-	<0.01	8	260	7	0.03	4	~
SS-0/-110		1.47	<10	Ţ	0.03	10	0.16	513	-	<0.01	ഗ	200	ŝ	0.02	\$2	***
SS-07-111		2.94	0	•	0.05	10	0.32	494	*-	<0.01	12	340	10	0.04	\$	÷
711-JN-00		2.09	<10	+	0.04	10	0.24	1200	-	<0.01	6	220	7	0.02	ç	*
SS-07-113		3.19	10	2	0.06	20	0.28	1145	2	<0.01	15	420	16	0,04	<2	2
SS-0/-114		2.61	10	2	0.05	10	0.34	765	2	<0.01	14	340	10	0.04	4	*
SS-07-115		2.34	1 0	•	0.04	10	0.24	500	6	<0.01	13	230	10	0.03	8	6
00-07-116 00-00-01-116		2.96	10		0.05	10	0.21	421	~	<0.01	æ	400	12	0.04	<2	***
111-10-66		1.47	<10	<1	0.02	10	0.24	237	-	<0.01	6	150	7	0.02	\$	۳
SS-07-118		3.08	10	+	0.02	10	0.06	83	۲ ۲	<0.01	e	250	2	0.02	Ş	1
SS-07-119		1.32	<10	2	0.03	10	0.18	193	Ŷ	<0.01	9	70	4	0.01	2	
SS-07-120	· .	1.08	10	-	0.01	<10	0.03	48	ř	<0.01	2	60	N	0.01	Q	+
		5.09	10	2	0.02	10	0.25	234	2	<0.01	6	420	15	0.06	8	7
771-10-00		5.11	10	٢	0.02	10	0.32	171	*	<0.01	9	280	7	0.03	2	*
SS-07-123		2.87	<10	2	0.01	10	0.06	80	<u>د</u>	<0.01	2	140	2	0.01	2	\$ \$
55-07-124 55-07-125		1.11	10	v	0.01	v10 ∧1	0.17	123	5	<0.01	2	50	7	0.01	<2	
071-70-00 301-20-00		1.82	10	. ۲	0.02	9	0.41	244	2	<0.01	æ	100	ŝ	0.01	4	
SS-07-127		0.00	0	~~ •	0.02	10	0.17	180 3.0	01	<0.01	ın -	330	14	0.04	2	
00.07.400		0.03	0	-	0.03	012	60.0	62	·~~	<0.01	3	80	9	0.01	8	
871-150 000	44444444444444444444444444444444444444	9.75 9	0	N	0.03	0	0.53	421	2	<0.01	50	510 0	5	0.04	m	N

<		AL				★		To: DDV (SUITE	GOLD E 701 - 220 PACIFIC HIGHWAY WS NEST NSW 2065	Page: 3 - C otal # Pages: 3 (A - C)
		ALS Canada Lt 212 Brooksba North Vancou	d. ink Avenue ver BC V7J 2	52				AUST		ed Date: 19-UCI-2007 Account: DDVGO
		Phone: 604 9	84 0221 Fe	ax: 604 984 02	218 www.at	schemex.cc	m	Projec	ct: TOUQUOY	
									CERTIFICATE OF ANALYSIS VO071	7102220
ž	Nethod	ME-ICP41 Sr	ME-ICP41 Th	ME-ICP41 Ti	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	
(~	Units	, Ra	DOUL	*	H QQ		۸ mod	200	17 17	
Sample Description	LOR	۳	20	0.01	10	10	-	10	Parts 12	
SS-07-98		3	<20	0.04	<10	<10	24	<10	29	
66-70-53		ი [.]	<20 1	0.03	<10	<10	15	<10	16	
SS-07-101		4 4	82 S	0.03	€ €	0 10 10	18	0 10 10	29 26	
SS-07-102		4	2 2 2	0.02	9, 1 0	<10 <10	50	0 10 10	28	
SS-07-103		4	<20	0.02	<10	<10	19	<10	16	
SS-0/-104 SS-07-105	_	°∩ ×	\$ \$	0.06	6 6	510 510	36	o12	26	
SS-07-106		t ~	§ {	cn'n	010	015 €10	202	01× 01×	ۍ د د	
SS-07-107		2	<20	0.03	<10	<10	26	40	23	
SS-07-108		2	<20	0.05	<10	<10	24	<10	28	
SS-07-109 SS-07-110		4 4	\$9 \$0	0.02	1 0 10	6 4	19	₽ ₽	28	
SS-07-111		r 50	20 20	0.03	10	012	4 23	010	20	
SS-07-112		4	₹0	0.02	<10	<10 <10	17	210 V	30	
SS-07-113		5	<20	0.04	<10	<10	25	<10	53	
SS-07-115 SS-07-115		ب م	86	0.03	€ 1	410 10	20	0 10	50	
SS-07-116		r vo	98	0.02	000	012	52 22	00	30	
SS-07-117		4	<20	0.05	<10 510	<10	5	410	24	
SS-07-118 SS-07-118		2 1	<20	0.07	<10	<10	33	<10	10	
SS-07-120		n -	<20	0.05	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	015 015	14 26	010	1 <u>7</u>	
SS-07-121		3	<20	0.05	410	<10	26 26	210	36	
SS-07-122		2	≺20	0.03	<10	<10	39	<10	39	
SS-07-123		•~ •	50 70	0.01	<10 10	<10	20	<10	12	
SS-07-125		- ო	50 20	0.03	0.5	012	5	015 14	16 35	
SS-07-126		3	<20	0.06	<10	<10	32	2 0	26	
171-17-00			<20	0.08	<10	<10	17	<10	6	
077		'n	~20	20:0	40	20 20	2	40 0	62	

SUITE 701 - 220 PACIFIC HIGHWAY CROWS NEST NSW 2065 AUSTRALIA To: DDV GOLD

Account: DDVGO Page: 1 Finalized Date: 22-OCT-2007

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

٩

CERT	TFICATE VO071041	19		SAMPLE PREPARATION	
			ALS CODE	DESCRIPTION	
Project: TOUOUOY			. WEI-21	Received Sample Weight	
			DRY-22	Drying - Maximum Temp 60C	
			L0G-22	Sample login - Rcd w/o BarCode	
This report is for 4 soil samples s 21-SEP-2007.	sudmilled to our iad in val d U	, ac, callada oli	SCR-41	Screen to -180um and save both	
I he tollowing have access to (data associated with this cr	eruncate:			
WALLY BUCKNELL	JULI FIDLER	DDV GOLD		ANALY IICAL PRUCEDURES	
ROBERT MURPHY	JOHN UTLEY		ALS CODE	DESCRIPTION	INSTRUMENT
			MF_ICP41	35 Element Anita Renia ICP-AFS	ICP-AFS
			Hg-CV41	Trace Hg - cold vapor/AAS	FIMS

ATTN: WALLY BUCKNELL SUITE 701 - 220 PACIFIC HIGHWAY CROWS NEST NSW 2065 AUSTRALIA DDV GOLD To:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

aller and the 1

Lawrence Ng, Laboratory Manager - Vancouver Signature:

le X	CHEMISTRY	www.alschemex.com
ALS Chem	EXCELLENCE IN ANALYTICAL C ALS Canada Ltd.	212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218

To: DDV GOLD SUITE 701 - 220 PACIFIC HIGHWAY CROWS NEST NSW 2065 AUSTRALIA

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 22-OCT-2007 Account: DDVGO

		EXCELLEN ALS Canada Ltd. 212 Brooksban	ICE IN AI	VAL YTICA	IL CHEMIS	STRY		SUIT CRO AUS	TRALIA	0 PACIFIC NSW 206	: HIGHWA	≻		Toti Finalizeo	al # Pages 1 Date: 22- Accoun	: 2 (A - C) OCT-2007 t: DDVGO
ALS	\sim	North Vancouv Phone: 604 98-	er BC V7J 2 4 0221 Fa.	2C1 x: 604 984 02	18 www.alt	schemex.cc	Æ	Proje	set: TOUQI	You						
										CERTIFI	CATE (DF ANA	LYSIS	V0071	04119	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be 0.5	ME-ICP41 Bi ppm	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm	ME-ICP41 Cr ppm	ME-ICP41 Cu ppm 1	ME-KCP41 Fe % 0.01	ME-ICP41 Ga ppm 10
MRT-07-10 MRT-07-11 MRT-07-12 MRT-07-12		0.57	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.70 1.48 1.23	> 10000 3630 733 1770	400 400 400 400 400	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 0 0	9 7 7 9 9 7 9 9	0.05 0.24 0.03 0.03	 <0.5 <0.5 <0.5 <0.5 	~ ~ 3 3 82	C 6 6 4	189 55 55	5,64 4,69 3.07 3.07	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	an a															
Comments: Detection limi	its on sa	mples requirinį	g dilutions	for Hg-CV4:	1, due to inte	eferences o	r high conce	entration lev	rels, have be	en increase	ed according	to the dilution	on factor.			

le X	CHEMISTRY	www.atschemex.com
S Chen	LENCE IN ANAL YTICAL (ksbank Avenue ncouver BC V7J 2C1 34 984 0221 Fax: 604 984 0218
	EXCEL ALS Canad	ALS Phone: 60

To: DDV GOLD SUITE 701 - 220 PACIFIC HIGHWAY CROWS NEST NSW 2065 AUSTRALIA

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 22-OCT-2007 Account: DDVGO

	ME-ICP41 Th ppm 20	<pre><20 < 20 < 20 < 20</pre>
04119	ME-ICP41 Sr ppm	4 / 7 4 4
V0071	ME-ICP41 Sc ppm 1	
LYSIS	ME-ICP41 Sb ppm	72 42 42 42 42 42 42 42 42 42 42 42 42 42
DF ANA	ME-ICP41 S % 0.01	1.51 1.29 0.02 0.22 0.22 to the diluti
CATE (ME-ICP41 Pb ppm 2	55 53 17 20 20 20 20 20 20 20 20 20 20 20 20 20
CERTIFI	ME-ICP41 P ppm 10	440 280 290 100 100 100 100 100 100 100 100 100 1
	ME-ICP41 Ni ppm	75 50 12 12
	ME-ICP41 Na %	<0.01 <0.01 <0.01 <0.01 <0.01 entation lev
	ME-ICP41 Mo ppm	r ifight conce
	ME-ICP41 Mn ppm 5	286 416 2555 200 200 feferences c
	ME-ICP41 Mg 0.01	0.89 0.83 0.68 0.68 0.68 1, due to int
	ME-ICP41 La ppm 10	20 20 20 20 20 20 20 20 20 20 20 20 20 2
	ME-ICP41 K % 0.01	0.02 0.01 0.01 0.01 0.01 0.01 0.01
	ME-ICP41 Hg ppm	52 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	Method Analyte Units LOR	mits on same
	Sample Description	MRT-07-09 MRT-07-10 MRT-07-12 MRT-07-12 Omments: Detection It

		AL EXCELLE ALS Canada Lit				X STRY		To: DDV GOL SUITE 70 CROWS N AUSTRAL	.D 1 - 220 PACIFIC HIGHWAY NEST NSW 2065 .IA		Page: 2 - C Total # Pages: 2 (A - C Finalized Date: 22-OCT-2007 Account: DDVGC	Umho
(SIN)		Phone: 604 9	in rvenue iver BC V7J 84 0221 Fi	2C1 ax: 604 984 0:	218 www.a	Ischemex.o	mo	Project: Tr	ουαιογ			`
									CERTIFICATE OF AN	VALYSIS	VO07104119	
An An Sample Description L	fiethod unalyte Units LOR	ME4CP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Hg-CV41 Hg ppm act				1
MRT-07-09 MRT-07-10 MRT-07-11 MRT-07-12		0.01 <0.01 0.01 0.01	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	<pre>^ 10 ^ 10 ^ 10 ^ 10 ^ 10</pre>	51112	<pre>5 10 10 10 10 10 10 10</pre>	77 71 59 52	47.4 47.4 10.3 7.53 17.0				

	4444											
Comments : Detection limits /		doo roos irio		for U.A.]
WALLIGTON PONCES IN 1997	1.000 100 1	hico Icquin.	ระเภาแกเก ใช	101 TU-UV4	l, que lo mu	eterences o.	ť high conce	ntration levels, no	ive been increased according to the di	ilution factor.		

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Lid. ALS Chemex

SUITE 701 - 220 PACIFIC HIGHWAY CROWS NEST NSW 2065 AUSTRALIA To: DDV GOLD

SAMPLE PREPAR	ALS CODE DESCRIPTION	WEI-21 Received Sample Weight	LOG-22 Sample login - Rcd w/o BarCode	Screen to -180um and save both	tc, canada on DRY-22 Drying - Maximum Temp 60C			DDV GOLD ANALY IICAL FRUC	
TIFICATE VO07104831					es submitted to our lab in val d'Or, C	3 (1),	o data associated with this certil	JULI FIDLER	JOHN UTLEY
CER		oject: TOUQUOY	0 No - DOV 310		its report is for 48 Soll sample 3-SEP-2007.		ne rollowing nave access to	WALLY BUCKNELL	ROBERT MURPHY

INSTRUMENT ICP-AES ICP-AES DURES 35 Element Aqua Regia ICP-AES Au 30g FA ICP-AES Finish DESCRIPTION ALV CUUE ME-ICP41 Au-ICP21

> ATTN: WALLY BUCKNELL SUITE 701 - 220 PACIFIC HIGHWAY **CROWS NEST NSW 2065** AUSTRALIA DDV GOLD To:

Signature:

Lawrence Ng, Laboratory Manager - Vancouver aller and the

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Chemex	ANALYTICAL CHEMISTRY
ALS	EXCELLENCE II ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschernex.com

ALS

To: DDV GOLD SUITE 701 - 220 PACIFIC HIGHWAY CROWS NEST NSW 2065 AUSTRALIA

Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 19-OCT-2007 Account: DDVGO

										ERTIFI	CATE C	DF ANA	YSIS	V0071	04831	
	Method Analyte	WEI-21 Recvd Wt.	Au-ICP21 Au	ME-ICP41 Ag	ME-ICP41 AU %	ME-ICP41 As	ME-ICP41 B	ME-ICP41 Ba	ME-ICP41 Be	ME-ICP41 Bi	ME-ICP41 Ca	ME-ICP41 Cd	ME-ICP41 Co DDM	ME-ICP41 Cr pom	ME-ICP41 Cu pom	ME-ICP41 Fe %
Sample Description	TOR	0.02	0.001	0.2	0.01	рын 2	10	10 10	0.5	2	0.01	0.5	1	1	-	0,01
SS-07-129		0.38		<0.2	2.17	6	<10	30	<0.5	8	0.01	<0.5	7	22	1	3.55
SS-07-130		0.47		<0.2	1.47	4	<10	20	<0.5	ά.	0.01	40.5 0.5	4	16 2	φr	2.15
SS-07-131 SS-07-132		0.42 0.68		40 % V 70	1.73 1 56	ი წ	0 ₹10	30	<0.5 <0.5	₽ 0	0.01	40.5 60.5	<u>ه</u> م	55	~ 4	2.38 1.91
SS-07-133		0.59		40.2 60.2	1.01	t co	9€	9 0	<0.5	4 Q	0.01	<0.5 60.5	} *	1	7	2.93
SS-07-134		0.29	×	<0.2	1.84	9	<10	10	<0.5	2	<0.01	<0.5	e	16	5	3.35
SS-07-135		0.49		<0.2	1.37	25	<10	20	<0.5	2	0.01	<0.5	17	16	34	2.95
SS-07-136		0.31		<0.2	0.74	33	40	10	0.5 5 5	Ϋ́,	0.01	0.0 10.1	.	, 6	ۍ ۲	2.59
SS-07-137 SS-07-138		0.46		0.2	2.47 1.36	- 0	010 610	20 20	60.5 6.5	88	0.0	<0.5	იო	5 16	10	3.14
SS-07-139		0.44		<0.2	1,44	13	<10	20	<0.5	4	0.01	<0.5	3	18	6	4.66
SS-07-140		0.47		<0.2	2.06	12	<10	20	<0.5	5	0.01	<0.5	80	20	12	2.85
SS-07-141		0.37		0.2	3.34	23	<10 10	ç (0.5 7	ო {	0.01	0.5 6	C4 *	41	- 12	8.36 2.02
SS-07-143		0.61		<0.2 40.2	1.32	2 ~	0 10 10	5 5	0.5 0.5	26	0.02	<0.5 20.5	t vt	<u>t</u> 9	o vo	2.20
SS-07-144	T	0.37		<0.2	4.05	7	<10	20	<0.5	<2	0.01	<0.5	5	33	13	4.00
SS-07-145		0.37		<0.2	2.58	1	<10	20	<0.5	4	0.01	<0.5	n	25	1	3.74
SS-07-146		0,44		<0.2	1,44	ы С	<10	10	<0.5	2	<0.01	<0.5	ო	11	8	1.69
SS-07-147		0.61		<0.2	1.37	10	<10	50	<0.5	Ŷ	0.03	<0.5	1	16	•	2.45
SS-07-148		0.58		<0.2	3.75	18	<10	20	<0.5	2	0.02	<0.5	8	40	16	4.67
SS-07-149		0.76		<0.2	0.66	4	<10	10	<0.5	⊲2	0.02	<0.5	3	8	3	1.12
SS-07-150		0.63		0.2	1.26	~ 5	<10 <10	10	0.5 7	φ.	0.01	₹0.5 10.5	~ ~	<u>to</u> é	- J	2.89
SS-07-152		0.61		×0.×	1.40 0.51	0 V	10.5	9 C	0.0 7.0 7.0	чQ	0.01 60.01	0,12 0,12 0,12	± ∧	<u>°</u> ~	⊳ ₹	0.10
· SS-07-153		0.49		<0.2	1.73	15	<10	10	<0.5	2	0.01	<0.5	ŝ	18	12	3.53
SS-07-154		0.71		<0.2	0.37	2	<10	<10	<0.5	\$	<0.01	<0.5	2	2	<u>۲</u>	0.19
SS-07-155		0.62		<0.2	2.85	ŝ	<10	20	<0.5	5.	0.02	60°5	ц С	26	£ (3.46
SS-07-156		0.39		202	3 22	4 4 8	<10 <10	02 02	<0.5 <0.5	20	0.01	<0.0 <0.5	າເ	61	0 (1	3,00 4 09
SS-07-158		0.52		0.2	2.00	200	<10	20	<0.5	· ₩	0.01	<0.5	4	5	7	3.62
SS-07-159		0.58		<0.2	1.59	9	<10	30	<0.5	2	0.01	<0.5	в	16	9	2.32
SS-07-160		0.46		<0.2	1.06	5	<10	10	<0.5	¢	0.01	<0.5	, - -	on 1	en 1	2.17
SS-07-161		0.39		0.2	0.89	5 2	0 1 0 1 0	50	0.5 0.5 7	~ ~	0.01	0.5 v. n	¢	ς; σ	40	3.06
SS-07-163		0.64		40.5	1.58	15	<10 10	30	<0.5	40	0.01	60.5 0.5	4	18	24	2.61
SS-07-164		0.77	-	0.2	1.03	<u> </u>	<10	20	<0.5	<2	0.01	<0.5	4	11	7	1.68
SS-07-165		0.58		<0.2	1.28	4	<10	30	<0.5	<2	0.01	<0.5	4	16	7	1.93
SS-07-166		0.56		60.2 0.2	1,41		0 ¹ 0	50	0.5 1	ς,	0.01	60.5 10 1	~ ∗	17	ig u	2.65
SS-07-168 SS-07-168		0.54		<0.2 <0.2	1 45	= 5	91 V	20	<0.5 <0.5	N Ŷ	0.02	€0.5 60.5	4 vî	4 19	n in	2.15

ALS

To: DDV GOLD SUITE 701 - 220 PACIFIC HIGHWAY CROWS NEST NSW 2065 AUSTRALIA

Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 19-OCT-2007 Account: DDVGO

									J	CERTIFIC	CATE O	F ANAI	-YSIS	V0071	04831	
Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb 2	ME-KCP41 S % 0.01	ME-ICP41 Sb Ppm 2	ME-ICP41 Sc 1	ME-ICP41 Sr ppm
SS-07-129		10	· ·	0.05	10	0.28	497	`	<0.01	15	360	15	0.05	668	2	ß
55-07-130 55-07-131		<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<l< td=""><td>- c</td><td>0.02</td><td>10</td><td>0.22</td><td>327</td><td>₩.</td><td>0.0 200</td><td>1</td><td>240</td><td>4</td><td>0.02</td><td>68</td><td>· •</td><td></td></l<>	- c	0.02	10	0.22	327	₩.	0.0 200	1	240	4	0.02	68	· •	
SS-07-132		10	4 ₽	0.02	0	0.12	90 1	- 2	<0.05	5 ~	150	<u>א ה</u>	0.03 0.03	53 17	.	04
\$\$-07-133		10	7	0.02	<10	0.07	72	∇	<0.01	4	160	9	0.01	12	*	N
SS-07-134		10	4	0.02	<10	0,15	111	v	<0.01	8	250	6	0.02	10	-	-
SS-07-135 SS-07-136		¢ €	- 7	0.03	20	0.48	794	- 1	60.01 50.01	27	380	÷	0.02	13	5	ю.
SS-07-137		÷ 0;	5 01	0.02	0	0.21	200	ī -	0.010.0	0 E	290	ით	0.08 0.08	- 9 - 9	- 0	৸ ৸
SS-07-138		10	۴-	0.03	10	0.15	276	÷	<0.01	ø	190	10	0.03	4	*	4
SS-07-139		10	÷	0.03	10	0.13	195	-	<0.01	9	250	10	0.02	5	۲	4
SS-07-140		0 0	7.	0.03	0 9	0.20	405	- 1	0.01	5	420	13	0.03	₽.	2	ر م
SS-07-142		0 0	- 7	0.04	<u>0</u>	0.32	261	7 7	<0.01	× 5	100	<u>5</u>	0.07	4 0		NV
SS-07-143		10	N	0.05	10	0.32	256	7	<0.01	12	130	17	0.02	° °	- 	• vo
SS-07-144		<10		0.02	10	0.26	354	۲	<0.01	12	550	12	0.06	9	3	2
SS-07-145		10	Ł	0.03	10	0.24	231	2	<0.01	10	400	11	0.05	8	2	ო
SS-07-146 SS-07-147		10	•- •	0.01	10	0.08	126	₩,	<0.01	4	250	÷	0.03	ю [.]	4 1	i Ω
SS-07-148		012 012	- ~-	0.02	70	0.34	635 215	- 5	€0.01 50.05	24	110 320	5 5	0.02	44	2	r u
SS-07-140		-40 -	61	50.0	10	010	150		10.0	-	700	4 L L	01.0	> '	r i	2
SS-07-149 SS-07-150		01 01	7 7	0.03	0 0	0.15 0.17	194	5 2	20.02 20.02	ωu	100	م ۵	0.01	ς.	4 ~~ 4	ഗറ
SS-07-151		10	~	0.04	10	0.23	370	7 7	6.0 10.0	റത	250	o 7	0.02	0.4	~ * ~	ل ە د
SS-07-152		10	2	0.02	<10	0.01	27	Ŷ	<0.01	ŗ.	20	e	<0.01	<2	v.	-
SS-07-153		10	7	0.02	10	0.13	112	ŗ.	<0.01	7	220	13	0.03	ю	4 ~~	2
SS-07-154		<10	÷	0.01	10	0.01	27	₹ V	<0.01	-	20	-2	<0.01	2	<1	
55-07-155 55-07-156		6 6	Ţ.	0.03	10	0.36	277	7 ₹	6.01 20.02	13	380	÷.;	0.06	ς,	5	C4 (
SS-07-157		10		0.02	01	0.16	210	7 5	5005 1010	Γι ας	530 530	14	0.05	7 ~	- 0	N (*
SS-07-158		10	*	0.03	10	0.16	204	2	<0.01	6	260	ω	0.04	5 ℃	101	3 4
SS-07-159		10	41	0.02	10	0.15	197	₽	<0.01	6	190	7	0.02	2	-	4
SS-07-160		10	Δ.	0.02	<10	0.08	49	V	<0.01	е	140	4	0.01	2	۳	N
01-10-00 55-07-160		0	5 1	0.04	<10 <10	0.12	106	₽ 1	60.01 50.01	υ i	320	ന	0.01	ç,	ł	ŝ
SS-07-163		s 10	7	0.04	50	0.10	421	⊽ ⊽	-0.05 10.05	0 <u>6</u>	60 220	8 01	0.01	m V	- 2	თ. თ
SS-07-164		10	<1	0.03	10	0.25	249	₽	<0.01	6	180	11	0.02	<2	+	4
SS-07-165		10	2	0.05	10	0.28	284	2	<0.01	<u>د</u>	120	-	0.01	+ Ç	. .	r vo
SS-07-166		10	2	0.02	10	0.15	251	₽.	<0.01	ŝ	190	7	0.03	Υ2	۰-	ŝ
SS-07-168		5 6	5	0.03	10	0.16	203	• ک	0.01 0.01	ທີ່ຜ	370	13	0.03	64 G	**** *	4
				~~~	2	21.0	107	-	10.04	D	460	70	0.04	7>	**	4

	AL	<b>N</b>			¥		To: DDV GOLD SUITE 701 - 220 D	ACIFIC HIGHWAY	Page: 2 - C Total # Pages: 3 (A - C)
	EXCELLE ALS Canada U	INCE IN AI	VAL YTICA	IL CHEMIL	STRY		CROWS NEST NS AUSTRALIA	W 2065	Finalized Date: 19-OCT-2007 Account: DDVGO
VIS VIS	212 Brooksb North Vanco Phone: 604 5	ank Avenue uver BC V7J 2 384 0221 Fa.	001 X: 604 984 02	.18 www.al	schemex.co	ш	Project: TOUQUON	~	
							CE	RTIFICATE OF ANALYSIS	VO07104831
And	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41		
Analyte	Ш	Ţ	7	n	>	M	Zn		
Units Sample Description LOR	ррш 50	% 0.01	ppm 10	ppm 10	ppm	ppm 10	ppm 2		
SS-07-129	<20	0.04	<10	<10	25	<10	38		
SS-07-130	<20	0.02	<10	<10	16	€	31		
SS-07-131 SS-07-132	69 69 09 69	0.03	01 <u>1</u> 0	01 012 012	20 25	40 10	33 13		
SS-07-133	~50 ~50	0.10	<10	×10	ା ଝ	<10	10		
SS-07-134	<20	0.09	<10	<10	39	<10	16		
SS-07-135	\$ <b>5</b> 0	0.05	10	₽ ₹	15	₽ <del>{</del>	55 12		
SS-07-130 SS-07-137	20 20	0.04	015 10	90	t 6	c10	31		
SS-07-138	50	0,02	<10	<10	25	<10	21		
SS-07-139	<20	0.05	<10	<10	35	<10	22		
SS-07-140	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.03	0 7 0	01 <u>1</u> 0	19 87	015	43		
58-07-141 58-07-142	2 S	0.15	< 10 < 10	512 510	21	<10	34		
SS-07-143	<20	0,14	<10	<10	22	<10	33		
SS-07-144	<20	0.06	<10	<10	30	<10 410	41		
SS-07-145	× 20	0.08	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 40	29 17	015 11	38 18		
SS-07-147	§ §	0.05	10	2027	19	-10 -10	42		
SS-07-148	<20	0.06	<10	<10	30	<10	36		
SS-07-149	<20	0.02	<10	<10	12	<10	17		
SS-07-150	20	0.03	10	210 10	24	010 10	12		
88-07-152 88-07-152	8 €	0.05	410 410	0; 0;	ţσ	210 210	4		
SS-07-153	<20	0.08	<10	<10	36	<10	21		
SS-07-154	<20	0.03	<10	<10	10	<10	2		
SS-07-155 SS-07-156	\$ 50	0.09	<10 <10	00	22	012	33		
SS-07-157	- <u>2</u> 0	0.05	<10	<10	31	<10	38		
SS-07-158	<20	0.04	<10	<10	27	<10	27		
SS-07-159	\$ 50	0.02	410 1	<10 10	21	<del>7</del> 0 1	24 7		
SS-07-161	07 50 50 50	0.15	010	98	8 8	0 10 10	- 22		
SS-07-162	<20 20</td <td>0.13</td> <td>&lt;10</td> <td>&lt;10</td> <td>20</td> <td>&lt;10</td> <td>14</td> <td></td> <td></td>	0.13	<10	<10	20	<10	14		
SS-07-163	<20	0.06	<10	<10	16	<10	50		
SS-07-164	<20	0.04	<10	410 410	35	<del>1</del> 0 0	26 28		
SS-07-165 SS-07-166	<u>8</u> 8	0.03	015 015	0 €	24	015 10	25 25		
SS-07-167	<20	0.04	<10	<10	25	<10	24		
SS-07-168	<20	0.05	<10	<10	29	<10	25		

3 - A A - C) -2007 VGO			CP41 6 31	25 70 18 25	90 7 7
Page: es: 3 (/ 9-OCT. int: DD			W W W W	64000	r r d
il # Page   Date: 1 Accou		04831	ME-ICP41 Cu ppm	407-4	∞ ► ►
Tota Finalized		V0071	ME-ICP41 Cr ppm	<u></u> 2 2 2 2 2 2 2 2 2 2 2 2 2	e & ά
		LYSIS	ME-ICP41 Co ppm 1	- 0 7 7 N	v 4 Č
		F ANA	ME-ICP41 Cd ppm 0.5	40.5 6.5 0.5 0.5 0.5	ረ
HIGHWA		CATE C	ME-ICP41 Ca % 0.01	0.01 0.05 0.05 0.05 0.01	0.0 0.0 0.0
) PACIFIC NSW 2065	ο	ERTIFI	ME-ICP41 Bl 2	00999	8 8 8
GOLD E 701 - 220 WS NEST I RALIA	at: Touqu	o	ME-ICP41 Ba ppm 0.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(0) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
To: DDV SUITI CROV AUST	Proje		ME-ICP41 Ba ppm 10	01 0 0 0 0	2 2 2 2 2 3 2 9
	m		ME-ICP41 B 10 10	6 6 6 6 6	
K stry	lschemex.cc		ME-ICP41 As ppm 2	©©%?\$	ო <b>ი</b> . თ
	218 www.a		ME-ICP41 AI % 0.01	1.58 1.72 0.30 0.36 1.19	0.71 0.74 1.34 1.34
	2C1 x: 604 984 02		ME-ICP41 Ag ppm 0.2	0.2 2 2 2 2 2 0 5 0 5 0 5 0 5 0 5 0 5 0 5	0 0 0 0 0 0 0
	ann Avenue Jver BC V7J 2 84 0221 Fa		Au-ICP21 Au ppm 0.001		
AL EXCELLE ALS Canada LI	Z IZ BIUUNSUR North Vancou Phone: 604 9		WEI-21 Recvd Wt. kg 0.02	0.43 0.53 0.55 0.52 0.54	0.61 0.74 0.38
	$\sim$		Method Analyte Units LOR		
	ALS		ample Description	SS-07-169 SS-07-170 SS-07-171 SS-07-172 SS-07-173 SS-07-173	SS-07-174 SS-07-175 SS-07-176

٦٢ Г

ALS Chemex

ge: 3 - B 3 (A - C) CT-2007 DDVGO			ME-ICP41 Sr ppm	~~~~	4 <del>4</del> 0)
Pa # Pages: ( Date: 19-O Account:		4831	ME-ICP41Sc Sc Ppm	- ~ 5 5 -	* * *
Total Finalized I		V00710	ME-ICP41 Sb ppm 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	888
		-YSIS	ME-ICP41 S % 0.01	0.02 0.02 0.01 0.01	0.010.000.001
		F ANAL	ME-ICP41 Pb ppm 2	N 9 6 4 6	رة م ت
нісниал		CATE O	ME-ICP41 P ppm 10	190 350 20 160	58 80 59 80
PACIFIC NSW 2065	٥٢	ERTIFI	ME-ICP41 Ni ppm 1	ru α ≁ ≜ 4	د <del>۲</del> ه
GOLD E 701 - 220 VS NEST I RALIA	x: TOUQU	0	ME-ICP41 Na % 0.01	0.05 0.05 0.05 0.05 0.05	40.01 40.05 0.01
To: DDV SUITT CROV AUST	Projec		ME-ICP41 Mo ppm 1	~~~~~	
	E		ME-ICP41 Mn ppm 5	84 111 13 15 231 231	156 228 346
<b>K</b> stry	lschemex.co		ME-ICP41 Mg % 0.01	0.11 0.16 0.01 0.01	0.16 0.22 0.18
	218 www.a		ME-JCP41 La ppm 10	6 6 6 9 0	5 <del>5 5</del>
	201 ax: 604 984 02		ME-ICP41 K % 0.01	0.02 0.02 0.02 0.02	0.02 0.03 0.04
	84 0221 Fe		ME-ICP41 Hg ppm		∇ ∇ ∇
EXCELLE ALS Canada L 212 Brooksb	Phone: 604 9		ME-ICP41 Ga ppm 10	0 0 0 0 0 0 0 0 0 0 0	<pre>&lt; 70 &lt; 70 &lt; 61 &lt; 10 </pre>
			Method Analyte Units LOR		
	(ALS		Sample Description	SS-07-169 SS-07-170 SS-07-171 SS-07-172 SS-07-173	SS-07-174 SS-07-175 SS-07-176

Page: 3 - C Total # Pages: 3 (A - C) ized Date: 19-OCT-2007 Account: DDVGO		17104831										
Linal Linal		Š										
JLD 701 - 220 PACIFIC HIGHWAY 5 NEST NSW 2065 ALIA	τουαυογ	CERTIFICATE OF ANALYSIS										
To: DDV G SUITE CROW AUSTF	Project		VE-ICP41 Zn	mdd c		15	2	17	16	24	i	
	ε		ME-ICP41 W	ppm 10		010	<10	0 € €	<10	€ 7		
STRY STRY	lschemex.co		ME-ICP41 V	ppm 1		3 6	~	12 24	13	<del>1</del> 0		
	218 www.a		ME-ICP41 U	ppm 10	047	0 0 0	<10	0 0 0 0 0 0 0	<10	01 v		
	ax: 604 984 0		ME-ICP41 TI	ppm 10	<10	012	10	0 10 10	<10	015		
LLLCE IN A bank Avenue ouver BC V7J	984 0221 F		ME-ICP41 TI	% 0.01	0.04	0.19	0.04	0.03	0.03	0.03		
EXCELL EXCELL ALS Canada ALS Canada 212 Brooks North Vano	Phone: 604		ME-ICP41 Th	ppm 20	0¢>	2 ² 2	59 59 75	§ 8	50	29 59 59 59		
			Method Analyte	Units LOR								
				Sample Description	SS-07-169	SS-07-170	SS-07-171 SS-07-170	SS-07-173	SS-07-174	SS-07-176		



ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY Australian Laboratory Services Pty Ltd 32 Shand Street 32 Shard Street Restrone OI D Arks

Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 Fax: +61 (7) 3243 7218 www.alschemex.com

## CERTIFICATE BR07079766

ALS CODE

Project: M1496 P.O. No.: M12486 This report is for 13 Pulp samples submitted to our lab in Brisbane, QLD, Australia on 26-JUL-2007. The following have access to data associated with this certificate:

STEVE RAYNER

SAMPLE PREPARATION

Page: 1

Finalized Date: 31-JUL-2007 This copy reported on 22-OCT-2007 Account: METLAB

LOG-22 LEV-01	Sample login - Rcd w/o BarCode Waste Disposal Levy	
	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
ME-MS42	Up to 34 elements by ICP-MS	ICP-MS

To: METCON LABORATORIES PTY LTD ATTN: STEVE RAYNER 16 ETHEL AVENUE BROOKVALE NSW 2100 This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Comments: Sample marked as TGW on paperwork indicated as TWG on pulp bag.

Signature:



Shaun Kenny, Brisbane Laboratory Manager

	ALS Chemex	Pade: 2 - A
	EXCELLENCE IN ANALYTICAL CHEMISTRY Australian Laboratory Services Phy.Ltd	Total # Pages: 2 (A) Finalized Date: 31-111 -2007
	32 Shand Street Stafford	Project: M1496
	Brisbane QLD 4053 Phone: +61 (7) 3243 7222 Fax: +61 (7) 3243 7218 www.alschemex.com	CERTIFICATE OF ANALYSIS BR07079766
Method	ME-MS42	
Analyte Unite	H	
Sample Description Lor	500.0 5	
TAM	0.011	
TGA TCR	0.005	
160	0.006	
TGD	0.008	
TGE	0.007	
TWB	0.005	
TWW	0.006	
TWT	0.012	
TEB Yer	0.005	
TMX	<ul> <li>&lt;0.005</li> <li>0.005</li> </ul>	
Comments: Sample marked as TG	W on paperwork indicated as TWG on pulp bag.	

i paper



APPENDIX K

METEOROLOGIC DATA - WIND ROSE DIAGRAMS

































APPENDIX L

EMISSION SUMMARY AND DISPERSION MODELLING REPORT



## EMISSION SUMMARY AND DISPERSION MODELLING REPORT

## TOUQUOY GOLD PROJECT MOOSE RIVER, HALIFAX COUNTY, NOVA SCOTIA

Prepared for: DDV Gold Limited

DISCLAIMER: SOME FORMATTING CHANGES MAY HAVE OCCURRED WHEN THE ORIGINAL DOCUMENT WAS PRINTED TO PDF; HOWEVER, THE ORIGINAL CONTENT REMAINS UNCHANGED. Prepared by: Conestoga-Rovers & Associates

651 Colby Drive Waterloo, Ontario Canada N2V 1C2

Office: (519) 884-0510 Fax: (519) 884-0525

web: http://www.CRAworld.com

October 2007 Ref. no. 820933 (7)

## TABLE OF CONTENTS

1.0	INTRODUCTION AND SITE DESCRIPTION1								
2.0	PURPOS	SE AND SCOPE OF ESDM REPORT	2						
3.0	DESCRI 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	PTION OF PROCESSES AND AIR EMISSIONS ORE CRUSHING, HANDLING, AND CONVEYING HIGH INTENSITY CYANIDATION CARBON-IN-LEACH ELUTION CARBON REACTIVATION ELECTROWINNING CALCINATION OVEN. SMELTING FURNACE CYANIDE DESTRUCTION TAILINGS POND.							
4.0	FUGITI	VE DUST EMISSIONS	10						
5.0	EXPLAN RATES. 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	NATION OF THE METHODS USED TO CALCULATE EMISSION CYANIDE EMISSIONS SMELTING EMISSIONS	N 12 12 13 14 15 16 16 17 18 19						
6.0	DESCRI	PTION OF SENSITIVE RECEPTORS	20						
7.0	DISPER: 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6	SION MODELLING MODELLING METHODOLOGY METEOROLOGICAL DATA AVERAGING PERIODS DIGITAL ELEVATION MAPPING DATA SOURCE INPUT PARAMETERS SENSITIVE RECEPTORS ON-SITE BUILDING DATA	21 22 22 23 23 23 24 24 25 25						
	7.2	DISPERSION MODELLING RESULTS							

<u>Page</u>
### TABLE OF CONTENTS

# <u>Page</u>

8.0	EMISSION SUMMARY TABLE AND CONCLUSIONS		27
	8.1	EMISSION SUMMARY TABLE	27
0.0			20
9.0			28

#### LIST OF FIGURES (Following Text)

- FIGURE 1 SITE PLAN
- FIGURE 2A AIR EMISSION SOURCE LOCATIONS
- FIGURE 2B AIR EMISSION SOURCE LOCATIONS
- FIGURE 3 PROCESS FLOW DIAGRAM
- FIGURE 4 POINT OF RECEPTION LOCATIONS
- FIGURE 5 CYANIDE MASS BALANCE FLOW DIAGRAM

#### LIST OF TABLES (Following Text)

- TABLE 1SUMMARY OF AIR EMISSIONS SOURCES
- TABLE 2CYANIDE EMISSIONS
- TABLE 3PROCESS EMISSIONS FROM SMELTING
- TABLE 4
   MERCURY EMISSIONS FROM CHEMICAL PROCESSES
- TABLE 5LPG COMBUSTION EMISSIONS
- TABLE 6EMISSIONS FROM ELECTROWINNING CELLS
- TABLE 7TSP AND PM10 EMISSIONS FROM FRONT-END GOLDMINE OPERATIONS
- TABLE 8
   METAL EMISSIONS FROM FRONT-END GOLDMINE OPERATIONS
- TABLE 9FACILITY-WIDE SUMMARY OF EMISSIONS
- TABLE 10AERMOD DISPERSION MODEL INPUT PARAMETERS
- TABLE 11AERMOD DISPERSION MODEL EMISSION RATES BY AIR<br/>CONTAMINANT AND SOURCE
- TABLE 12SUMMARY OF MAXIMUM PREDICTED GROUND LEVEL<br/>CONCENTRATION AT SENSITIVE RECEPTORS

### 1.0 INTRODUCTION AND SITE DESCRIPTION

Conestoga-Rovers & Associates has prepared this Emission Summary and Dispersion Modelling (ESDM) Report for the Touquoy Gold Project at the Moose River Gold Mines development (Site) in Halifax County, Nova Scotia. The mine will be operated by DDV Gold Limited (DDVG).

The mine is planned as a surface operation with drill-and-blast, load-and-haul, process-on-site type development. Production is estimated at approximately 4,500 tonnes of ore per day with a total ore production estimate over the life of the mine of at least 9 million tonnes for recovery of almost 0.5 million ounces (oz) of gold. Following a 12 month construction and commissioning phase, the mine life is estimated to be six years for production and two years for closure.

The proposed active surface footprint of the Site is approximately 265 ha within a total property area of 400 ha and encompasses the settlement of Moose River Gold Mines, part of a small provincial park and undeveloped forest.

The Site will operate 24 hours per day, seven days a week, up to 52 weeks per year.

#### 2.0 PURPOSE AND SCOPE OF ESDM REPORT

This ESDM Report was prepared to assess potential air releases to the atmosphere and their impact on surrounding receptors in support of a Class I Environmental Assessment under the Nova Scotia *Environment Act* and *Environmental Assessment Regulations*.

The location of the Facility is presented on Figure 1. The location of the discharges from each of the sources are presented on Figures 2A and 2B; the location of each of the sources is specified with the source reference number.

### 3.0 DESCRIPTION OF PROCESSES AND AIR EMISSIONS

The processing operations at the Site have been classified into two types.

### Front-End Processing of Raw Ore

Activities included in this group include:

- Primary Crushing;
- Secondary Crushing;
- Tertiary Crushing;
- Wet Grinding (Ball Milling);
- Gravity Concentration;
- Classification;
- Handling, Transferring and Conveying Operations;
- Loading to Ore Stockpiles; and
- Unloading from Ore Stockpiles.

### Chemical Processing

Activities included in this group include:

- Carbon-in-Leach (CIL);
- High Intensity Cyanidation (HIC);
- Elution;
- Carbon Reactivation;
- Electrowinning;
- Calcination Oven;
- Smelting Furnace;
- Cyanide Destruction; and
- Tailings Pond.

A summary of the potential air contaminants being emitted by each of the processing activities is listed in Table 1. A process flow diagram illustrating the interaction between these process stages is provided on Figure 3.

Of the processing activities listed above, the following have negligible emissions and have not been assessed further:

- Classification (activity occurs indoors);
- Wet Grinding (Ball Milling) (activity is saturated with water and occurs indoors); and
- Cyanide Destruction (INCO SO₂/air process results in negligible air emissions).

## 3.1 ORE CRUSHING, HANDLING, AND CONVEYING

Run-of-mine (ROM) ore will be delivered to the crushing circuit via the ROM bin by trucks or the front-end loader. The primary jaw crusher will reduce 600 mm (24 inch) material to 80 percent passing 150 mm. Second and third stage crushing will further reduce the ore to 30 mm (1 1/4 inch) and finally 10 mm (3/8 inch). A triple-deck screen in closed circuit with the secondary and tertiary crushers will ensure that fines are bypassed directly to the crushed ore stockpile.

The crushed product will be conveyed to a 15,000 tonne covered stockpile, which will provide 72 hours of surge capacity ahead of the ball mill in the event of shutdown of the crushing circuit for maintenance or weather. Vibrating feeders located beneath the stockpile will reclaim crushed ore onto a conveyor, which feeds the ball mill.

The air emissions associated with ore crushing, handling and conveying operations include:

- Total Suspended Particulate (TSP);
- Particulate Matter less than 10 microns (PM-10); and
- Heavy metals contained in the ore.

## 3.2 <u>HIGH INTENSITY CYANIDATION</u>

After grinding, 30 percent of the hydro-cyclone underflow is directed to gravity concentration while the remainder is re-circulated to the ball mill. Gravity concentration uses centrifugal forces to separate the material into light and heavy fractions. The

lighter fraction, gravity tails, is directed back to the ball mill while the heavy fraction is subjected to high-intensity cyanidation (HIC) to take the gold present into solution.

The leach solution is made up in the Reaction Vessel Feed Tank by combining potable water with sodium cyanide, caustic soda, and LeachAid. Approximately 10 kg of sodium cyanide is used per batch. Caustic soda is used to adjust pH and LeachAid (lead nitrate) accelerates the reaction. At the conclusion of an HIC run, the pregnant (gold-bearing) solution is sampled for gold content and pumped to a holding tank where it is available for electrowinning. The residual solids are rinsed and discharged to the grinding circuit.

The air emissions associated with HIC operations include:

• Cyanide (as hydrogen cyanide).

# 3.3 <u>CARBON-IN-LEACH</u>

After the ore is processed in the ball mill, the overflow is screened and thickened to 50 percent solids in a pre-leach thickener with the aid of a polymer-type flocculant. Pre-leach thickening is possible as the low-cyanide consuming nature of the ore eliminates the need to recover cyanide after leaching.

The thickener underflow is then pumped to the carbon-in-leach (CIL) circuit where gold dissolution and adsorption occurs. Cyanide is added only in the CIL circuit and is done so by means of a pipeline which permits transfer from the mixing tank to the CIL feed box where dosing occurs automatically.

The leach circuit is composed of six CIL tanks, each approximately 900 m³ in volume measuring 12 metres in diameter and 12 metres high. Leaching occurs primarily in the first tank. Lime is added to maintain a slurry pH of 10 to 11 to keep cyanide volatilization to a minimum. The slurry is agitated and aerated to accelerate leaching which will occur over a 16 to 24 hour period.

Activated carbon is added to the last CIL tank and progressively pumped forward from tank to tank counter to the slurry flow. The carbon adsorbs gold from solution as it moves forward in the circuit until it is fully "loaded" when it reaches the first CIL tank. The loaded carbon is removed from the CIL circuit at the first tank, screened, and transferred to the elution circuit for stripping. The barren slurry is screened to capture carbon and treated in the cyanide destruction circuit prior to transfer to the tailings management facility (TMF).

The air emissions associated with elution operations include:

• Cyanide (as hydrogen cyanide).

## 3.4 <u>ELUTION</u>

The loaded carbon transferred from the CIL circuit is washed with dilute (3 percent) hydrochloric acid in the acid wash column to remove inorganic contaminants. Used acid is discharged to the TMF where it is neutralized by the lime in the tailings.

The gold is then "stripped" from the carbon under heat and pressure in a circulating, dilute solution of caustic soda and sodium cyanide.

The air emissions associated with CIL operations include:

• Products of liquefied petroleum gas combustion associated with the elution heater.

#### 3.5 <u>CARBON REACTIVATION</u>

Once elution is complete, the barren carbon is then screened and heated in a kiln to 700°C to reactivate the carbon surfaces. The reactivated carbon is recycled to the last CIL tank to be re-used.

The air emissions associated with carbon reactivation operations include:

• Products of liquefied petroleum gas combustion associated with the kiln.

## 3.6 <u>ELECTROWINNING</u>

During elution, the gold-rich (pregnant) solution from the elution circuit is circulated through an electrolytic or "electrowinning" cell. The gold is deposited in the form of a thick sludge on stainless steel wool cathodes via an electro-chemical process.

The pregnant solution from the HIC circuit is similarly treated on a batch basis in a separate, dedicated electrowinning cell. After electrowinning is complete, the barren solution (eluate) is discharged to the CIL circuit.

Extraction fans above the electrowinning cells remove any off-gases from the gold room. This exhaust is treated by a modern wet scrubber system prior to release to atmosphere.

The air emissions associated with electrowinning operations include:

- Ammonia;
- Mercury vapour;
- Sulphur Dioxide (negligible once scrubbed out);
- Acid mist (negligible once scrubbed out); and
- Cyanide (negligible amount).

## 3.7 <u>CALCINATION OVEN</u>

The sludge recovered by electrowinning is dewatered and the resulting filter cake dried in an oven (calcined) prior to smelting.

The air emissions associated with calcination operations include:

• Products of liquefied petroleum gas combustion associated with the drying oven.

## 3.8 <u>SMELTING FURNACE</u>

The calcined filter cake is then charged in a smelting furnace together with a standard flux mixture and heated to 1100 degrees C° for 6-7 hours. Impurities are separated from the molten metal and doré (near pure gold) is poured into bars.

Similarly to the electrowinning, the smelting furnace exhaust is treated by a modern wet scrubber system prior to release to atmosphere.

The air emissions associated with smelting furnace operations include:

- Products of liquefied petroleum gas combustion;
- Sulphur Dioxide;
- Mercury vapour;
- Total Suspended Particulate (TSP);
- PM-10; and
- Heavy Metals.

#### 3.9 <u>CYANIDE DESTRUCTION</u>

While emissions from this process are insignificant, this descriptive section has been included to illustrate the level of cyanide reduction from the chemical processing to its final destination in the tailings pond.

The widely used INCO  $SO_2$ /air process will be employed to destroy almost all of the residual cyanide in CIL tailings prior to disposal. The cyanide destruction reaction is described by the following equation:

CN-Free + SO₂ + O₂ + H₂O = OCN- + H₂SO₄

Sodium meta-bisulphite will be added to the tailings in two agitated and aerated tanks to provide sulphur dioxide (SO₂), which transforms the toxic free cyanide ion to more stable cyanate (OCN⁻). Copper sulphate is used to catalyze the reaction while pH control is maintained through lime addition.

Laboratory testing conducted on the Touquoy ore samples by SGS Lakefield Research Limited employing the INCO SO₂/Air process indicates that total cyanide ( $CN_{Total}$ ) concentrations in the tailings can be reduced from more than 189 ppm to a level of 0.85 ppm in less than 90 minutes using relatively low concentrations of reagents. This equates to a cyanide destruction efficiency of approximately 99.5 percent.

### 3.10 TAILINGS POND

The treatment processes occurring in the tailings pond include the natural degradation of cyanide, the breakdown of cyanate resulting from the cyanide destruction process, and settlement of suspended solids.

In the adjacent effluent treatment facility, the precipitation of dissolved arsenic, metals, suspended solids, and the co-precipitation of cyanide-metal complexes occurs.

The air emissions associated with tailings pond include:

• Cyanide (as hydrogen cyanide).

### 4.0 **FUGITIVE DUST EMISSIONS**

There will be sources of fugitive dust emissions present at the Site, which are all part of normal operation. These sources are the open-pit operations, unpaved haulroads, and storage piles. Specifically, these include:

## **Open-pit** operations

- Blasting;
- Truck Loading;
- Bulldozing; and
- Grading.

#### **Unpaved Haulroads**

- Road surrounding perimeter of the pit;
- Road from pit to ROM pad;
- Road from pit to waste rock pile; and
- Road from the chemical processing area to the effluent treatment plant.

#### Storage Piles

- Wind erosion of the ROM stockpile;
- Wind erosion of the waste rock pile; and
- Wind erosion of the tailings beach pile.

As per guidance from the Ontario Ministry of the Environment from the document entitled "Procedure for Preparing an ESDM Report", these sources of fugitive dust can be excluded from the ESDM and subsequent air dispersion modelling if the Site implements a best management practices plan (BMPP) to monitor and control releases of fugitive dust.

Several mitigative measures will be utilized to reduce particulate emissions from these fugitive sources.

- Wet suppression controls on unpaved surfaces;
- Stabilized slopes of either mulch or vegetation for waste rock piles;

- Hardened surfaces where practical;
- Speed reduction;
- Use of large haul vehicles so as to minimize trip frequency; and
- Storage piles will be sprayed as necessary to minimize emissions.

The BMPP will provide additional detail on the protocols and procedures in place to minimize the occurrence of fugitive dust releases, and will list frequency of specific measures to be implemented and monitoring protocols to ensure these measures are having the desired effect.

#### 5.0 EXPLANATION OF THE METHODS USED TO CALCULATE EMISSION RATES

### 5.1 <u>CYANIDE EMISSIONS</u>

As identified in Section 3 of this report, hydrogen cyanide will be emitted from the CIL tanks, the HIC tank, and the tailings pond. These sources are open to atmosphere and therefore volatilization of the cyanide will occur.

A mass-balance approach was used to estimate the emissions of cyanide from each source. Table 2 summarizes the calculations and results, and Figure 5 provides a visual representation of the inputs and outputs used for the mass balance calculations.

Cyanide will be input as sodium cyanide (NaCN), a common reagent used for the dissolution of gold from gold ores. Sodium cyanide will be added to both the CIL feed box and the HIC Reaction Vessel feed tank. As provided in the "Environmental Assessment Registration Document for the Touquoy Gold Project" prepared by CRA, 10 kg/hr of sodium cyanide will be used in the HIC tank and 83.21 kg/hr will be used in the CIL tanks.

In both the HIC tank and the CIL tanks the slurry pH will be maintained between 10 and 11 by the addition of caustic soda or lime, which will significantly limit the volatilization of cyanide above the tanks. To be conservative, it was assumed that 1 percent of the cyanide input will be released to atmosphere through volatilization. The estimated emission rate of cyanide from the CIL tanks was estimated as follows:

*CN- emission rate = NaCN usage rate x molar ratio (CN : NaCN ) x 1% volatilized* 

$$CN^{-} = 83.21 \frac{kg}{hr} (NaCN) \times \frac{26 \frac{g}{mol} (CN^{-})}{49 \frac{g}{mol} (NaCN)} \times 1\% \times 1000 \frac{g}{kg} \div 3600 \frac{s}{hr} = 0.1226 \frac{g}{s}$$

The same method was utilized to estimate the cyanide emissions from the HIC tank.

The tailings from the CIL tanks will be subject to the INCO  $SO_2$ /Air cyanide destruction process described in Section 3.9 of this report. The small percentage of cyanide that will not be converted to cyanate by this process (~0.5 percent) will be carried on to the tailings pond. The cyanide input to the tailings pond was estimated as follows:

As per the Metal Mining Effluent Regulations (MMER), the maximum allowable concentration of cyanide in the discharge from a tailings pond is 1 ppm  $CN_{TOT}$ . As indicated by laboratory testing conducted by SGS Lakefield Research Limited, the effluent from the Touquoy project will typically contain 0.21 ppm  $CN_{TOT}$ . The water return from the tailings pond will be treated to effluent quality. Both the effluent and the water return have been considered outputs in the mass balance around the tailings pond, as indicated on Figure 5.

The Australian National Pollutant Inventory document, "Emissions estimation technique manual for Gold Ore Processing", recommends assuming a 10 percent groundwater seepage rate, with a cyanide concentration equal to that in the return water. In accordance with this document, CRA has considered groundwater seepage as an output from the mass balance around the tailings pond.

The cyanide in the tailings pond is intended to break down via natural degradation, and the pH is not controlled with the addition of reagents as it is in the HIC tank and CIL tanks. Therefore, it has been conservatively assumed that 100 percent of the cyanide that will not be exiting the tailings pond in the effluent water, return water, or through groundwater seepage will be emitted to atmosphere. The estimated emissions of cyanide from the tailings pond were estimated as follows:

$$CN^{-} = CN^{-}_{INPUT} - CN^{-}_{RETURN.W} - CN^{-}_{EFFLUENT} - CN^{-}_{SEEPAGE}$$
$$CN^{-}_{s} = 0.219 \frac{kg}{hr} - 0.0312 \frac{kg}{hr} - 0.0312 \frac{kg}{hr} - (10\% \times 0.0312 \frac{kg}{hr}) \times 1000 \frac{g}{s} \div 3600 \frac{s}{hr} = 0.0425 \frac{g}{s}$$

A more detailed breakdown of the calculation inputs and assumptions is provided in Table 2.

## 5.2 <u>SMELTING EMISSIONS</u>

Section 3.8 of this report identifies the potential emissions from the smelting furnace. A scrubber will significantly reduce the emissions from the smelter. Because the furnace will be fired by liquefied petroleum gas (LPG), the products of LPG combustion (particulate matter, sulphur dioxide, oxides of nitrogen, carbon monoxide, and carbon dioxide) were considered in the emissions evaluation. Additional particulate matter and sulphur dioxide will be released to atmosphere during the firing of the calcined filter cake. This additional particulate matter will contain heavy metals.

Due to the unavailability of emission factors for gold smelting, emission factors for copper smelting were adjusted with a safety factor of 10 and incorporated into the calculations. Emission factors for particulate matter and sulphur dioxide were obtained from The Pollution Prevention and Abatement Handbook published by the World Bank Group. The emission rate of sulphur dioxide was then estimated as follows:

*SO*₂ *emission rate* = *gold extraction rate x emission factor x safety factor* 

$$SO_2 = 9.49 \frac{oz}{hr} \div 37524 \frac{oz}{tonne} \div 3600 \frac{s}{hr} \times 25 \frac{kgSO2}{tonne} \times 1000 \frac{g}{kg} \times 10(SF)$$

The same approach was used to estimate the emission rate of particulate matter from the smelter.

A report prepared by Golder Associates entitled "Report on Geochemical Study Static and Kinetic Testing of Waste Rock and Tailings, Touquoy Project" provides the results of an ore assay at the Site. Based upon the known concentrations of heavy metals in the ore, the metals emissions were calculated. Because the metals will be emitted as particulate, the weight fractions of metals were assumed to represent the fraction of the total suspended particulate matter (TSP) emission rate that will be attributed to each metal. For example, the emission rate of nickel was estimated as follows:

> Ni emission rate = wt. % Ni x TSP emission rate Ni =  $0.003\% \times 8.24E - 4\frac{g}{s} = 2.43E - 8\frac{g}{s}$

The smelter process emissions are summarized on Table 3, and combustion emissions are summarized on Table 5. While mercury was present in the ore assay, a different method has been used for estimating an emission rate, as detailed in Section 5.3 of this report. The methodology for LPG combustion emissions calculations is presented in Section 5.4 of this report.

## 5.3 <u>MERCURY EMISSIONS</u>

Mercury is a typical component in gold ores, and because of its physical and chemical properties can be emitted to the air in significant amounts during certain gold processing activities. At the DDV Gold Site, Mercury will be emitted from the carbon regeneration kiln, the electrowinning units, and the smelting furnace. Emissions were estimated for mercury from each of these three sources using the methodology presented in the document "Mercury Mass Balance and Emissions Factor Estimates for Gold Ore Processing Facilities", prepared for the USEPA by Booz Allen & Hamilton, Inc.

The equation presented in the aforementioned document for estimating mercury emissions from the carbon regeneration kiln is as follows:

*Hg emission rate* = *kiln feed rate x Hg concentration in stripped carbon* 

The equation for estimating mercury emissions from the electrowinning units is:

*Hg emission rate (lb/hr) = cathode area (ft²) x Hg fraction in plated metal x 0.02 (lbs/ft²/hr)* 

Table 4 details the assumptions made for each equation variable and further explains the estimation of mercury emission rates from these two sources.

A mass balance approach was used to estimate the mercury emissions from the smelting furnace. The mercury content of the doré was estimated to be 1000 mg/kg and the furnace throughput was assumed to be 0.23 tonnes/hr based on typical values for gold mine presented in the Booz Allen & Hamilton report. Using this information, the emission rate of mercury from the smelting furnace was estimated as follows:

*Hg emission rate = furnace throughput x Hg content of doré* 

## 5.4 <u>LPG COMBUSTION EMISSIONS</u>

Liquefied petroleum gas (LPG) will be used as fuel for the elution heater, carbon regeneration kiln, calcinations oven, and the smelting furnace. Emissions were estimated using emission factors presented in USEPA AP-42 Chapter 1.5 - Liquefied Petroleum Gas Combustion. It is estimated that the annual usage of LPG at the Site will be  $19.05 \times 10^3$  L/yr. Using this information, emissions were calculated for each product of combustion. For example, the emission rate of carbon monoxide was calculated as follows:

CO emission rate = LPG usage x CO emission factor  

$$CO = 19.05E + 10^{3} \frac{L(LPG)}{yr} \times 0.384 \frac{kg}{10^{3}L} = 2.32E - 4\frac{g}{s}$$

Table 5 summarizes the estimated emission rates of the products of LPG combustion.

#### 5.5 <u>EMISSIONS FROM ELECTROWINNING</u>

As discussed in Section 3.6 of this report, the emissions from the electrowinning processes at the Site that will not be completely scrubbed out are ammonia and mercury vapour. The emission estimation technique for mercury vapour is detailed in Section 5.3 of this report.

The emission rate of ammonia from the electrowinning units was estimated using an emission factor presented in the report "Development and Selection of Ammonia Emission Factors" prepared for the USEPA by Battye, Battye, Overcash and Fudge in August 1994.

$$NH_{3} = 187.5 \frac{tonnes(ore)}{hr} \times 0.029 \frac{kg}{Mg} \times \frac{1000 \frac{g}{kg}}{3600 \frac{s}{hr}} = 1.51 \frac{g}{s}$$

NH₃ emission rate = ore processing rate x NH3 emission factor (kg/Mg of ore processed)

Tables 4 and 6 summarize the expected emissions from electrowinning.

#### 5.6 EMISSIONS FROM FRONT-END OPERATIONS

The physical processes that will occur at the front end of the mine to prepare the ore for gold extraction in the plant are described in Section 3.0 of this report. These operations will generate total suspended particulate, and  $PM_{10}$ . The TSP will potentially contain heavy metals, and so these have been included in the emissions estimates.

Emission factors for TSP and  $PM_{10}$  from various front-end gold mining operations are published in the Australian National Pollutant Inventory document, "Emissions estimation technique manual for Gold Ore Processing", Version 2.0. The emission factors for high moisture content ores were chosen in this case because the moisture content of the Touquoy ore is greater than 5 percent. Using the provided emission factors, the estimated emission rates of TSP and  $PM_{10}$  from each operation were determined. For example, the emission rate of TSP from primary crushing was estimated as follows:

*TSP emission rate = ore processing rate x TSP emission factor (high moisture content ores)* 

Because the metals will be emitted as particulate, the weight fractions of metals in the ore were assumed to represent the fraction of the total suspended particulate matter (TSP) emission rate that will be attributed to each metal. Using this approach, the metal emissions from each of the front-end operations were estimated. For example, the emission rate of cadmium from primary crushing was estimated as follows:

*Cd emission rate* = *TSP emission rate x wt*. *fraction Cd* 

$$Cd = 0.52 \frac{g}{s} \times 0.12 \frac{\mu g}{g} \times 10^{-6} \frac{g}{\mu g} = 6.25 \text{E} - 8 \frac{g}{s}$$

Tables 7 and 8 summarize the front-end operations emission estimates and any necessary assumptions.

### 5.7 EQUIPMENT ENGINE COMBUSTION EMISSIONS

The emissions from the equipment used in the open pit will include products of diesel combustion from the engines. The emissions were estimated using the USEPA Tiered Emission Standards for NonRoad Diesel Engines, an average load factor for the equipment, and the maximum equipment horsepower (hp) rating. The USEPA Tiered Emission Standards do not specify emission standards for SO₂ from nonroad engines and therefore, the USEPA AP-42 emission factors for Gasoline and Diesel Industrial Engines (Chapter 3.3) were used for SO₂.

The USEPA nonroad emission standards are a tiered system for equipment engines of various power ratings. The tiers relate to specific model years of equipment for specific engine sizes. The equipment used at the Facility will follow USEPA Tier 3 standards, which apply to 2006 vehicle model years.

Along with the USEPA standards and emission factors, an average engine load of 55 percent was assumed for all equipment to obtain the maximum emission rate for all contaminants. Emissions from the equipment were estimated on a 1-hour and 24-hour basis to account for the operating hours of the equipment. For example, the CO emissions from the Loader 980G were estimated as follows:

1-hour:

$$CO = 3.5 \frac{g}{kW \cdot hr} \times 317 hp \times \frac{0.7457 kW}{1hp} \times 55\% \times \frac{1hr}{3600s}$$
$$CO = 1.26E - 1g/s$$

24-hour:

$$CO = 1.26E - \frac{1g}{s} \times \frac{10.6hours}{day} \times \frac{1day}{24hours}$$
$$CO = 5.57E - \frac{2g}{s}$$

Detailed emission calculations for the equipment engines are provided in Table 14.

#### 5.8 <u>VEHICLE IDLING EMISSIONS</u>

The vehicles at the Site will idle for a period of time during normal operations. The emissions of the idling vehicles were estimated based on the USEPA MOBILE6 Vehicle Emissions Model, the number of trucks on-site per day, and an assumed vehicle speed for idling vehicles.

The USEPA MOBILE6 emissions factor model predicts vehicle emission rates, in grams per vehicle mile traveled (g/VMT), for combustion products from gasoline- and diesel-fuelled highway motor vehicles. MOBILE6 uses a wide range of inputs to predict emission rates, such as: mileage accumulation rates, fraction of vehicle fleet that is diesel powered, age distribution of the vehicle fleet, fuel evaporative pressure (Reid Vapour Pressure), fuel sulphur content, typical daytime temperatures, and evaluation year. The model is able to calculate predictive emission rates for expected tailpipe emissions such as SO₂, PM, VOCs, NOx, and a small number of air toxics. Not all of MOBILE6's input options are required to calculate vehicle emission rates.

Along with the emission factors determined from MOBILE6, it was assumed that vehicles will idle 10 percent of the time and the idling vehicles were assumed to be equivalent to those moving at a speed of 4.02 kilometers per hour (km/hr). This assumption is consistent with the MOBILE6 guidance provided in the USEPA document *Technical Guidance on the Use of MOBILE6.2 for Emission Inventory Preparation* (August 2004). Emissions from idling vehicles were estimated as follows:

CO Emissions from Idling Service Truck



#### 5.9 <u>TAILPIPE EMISSIONS</u>

Tailpipe emissions from the mine service vehicles were estimated using the USEPA MOBILE6 Model as described in Section 5.8 in this report. Tailpipe emissions from all vehicles travelling on-site were estimated based on the MOBILE6 emission factors, the provided maximum operational hours per year, and estimated vehicle speed. The tailpipe emissions from each vehicle type were summed to obtain the total estimated emission rate for each contaminant. For modelling purposes it was assumed that all vehicles will be operating simultaneously, which provides conservative results.

The tailpipe and idling emissions from the on-site roads are summarized in Table 13.

#### 6.0 DESCRIPTION OF SENSITIVE RECEPTORS

In order to determine the potential worst-case off-Site ambient air impacts, sensitive receptors were selected for inclusion in the air dispersion modelling.

The nearest sensitive receptor has been considered to be at a point in Scraggy Lake, where a camper may be situated.

The second closest sensitive receptor is a children's overnight camp (Camp Kidston) located at a distance of approximately 3 km northwest from the open-pit area.

The third closest sensitive receptor is a permanent residential dwelling located at a distance of approximately 5 km northwest from the open-pit area.

Figure 4 illustrates the locations of these three sensitive receptors relative to the Site.

Ground-level concentrations for all contaminants were calculated at various averaging times from the air dispersion modelling. These values were compared to available criterion for each of the receptors to determine the off-Site ambient air impacts potentially occurring from the Site operations.

#### 7.0 DISPERSION MODELLING

Dispersion modelling was performed to assess the proposed Facility's maximum ground level concentrations for the following air contaminants:

- carbon monoxide (CO);
- nitrogen oxides (NOx);
- sulphur dioxide (SO₂);
- total suspended particulates (TSP);
- particulate matter less than 10 microns in diameter (PM₁₀);
- aluminum oxide;
- ammonia;
- antimony;
- arsenic;
- barium;
- beryllium
- bismuth
- cadmium;
- cobalt;
- chromium;
- copper;
- cyanide;
- ferric oxide;
- iron;
- lead;
- lithium;
- magnesium oxide;
- manganese;
- mercury;
- molybdenum;
- nickel;
- phosphorous;
- selenium;

21

- strontium;
- tin;
- titanium;
- thallium;
- uranium;
- vanadium; and
- zinc.

The dispersion modelling was performed using the United States Environmental Protection Agency (USEPA) multi-source dispersion model AERMOD (Version 06341). AERMOD is an advanced steady-state plume model that has the ability to incorporate building cavity downwash, actual source parameters, emission rates, terrain and historical meteorological information to predict ground level concentrations (GLCs) at specified locations.

# 7.1 <u>MODELLING METHODOLOGY</u>

As Nova Scotia does not have an air dispersion modelling guidance document, the Ontario air compliance regulation (Ontario Regulation 419/05; O. Reg. 419/05) and dispersion modelling guidance ("Air Dispersion Modelling Guideline for Ontario", July 2005) were referenced to develop the modelling methodology.

# 7.1.1 <u>METEOROLOGICAL DATA</u>

Five years of hourly meteorological data was processed using the AERMOD meteorological preprocessor, AERMET (Version 06341). AERMET enters raw surface and upper air recorded data, and processes this data with user provided land-use characteristics, to produce surface and upper air meteorological files that are suitable for use with AERMOD.

For the Facility's assessment, five years of meteorological data was obtained and processed. The raw surface data is from Halifax, NS. The raw upper air file is from Yarmouth, NS. The meteorological data covers the years 2002 to 2006 inclusive. The hourly data included many factors which affect the dispersion of air contaminants including wind speed, wind direction, temperature, ceiling height, and atmospheric stability.

# 7.1.2 <u>AVERAGING PERIODS</u>

Averaging periods for modelled compounds were specified based on the type of air contaminant and available air standards as listed by the Nova Scotia Ministry of Environment and Labour (NSMEL) as per Nova Scotia Regulation 28/2005 (N.S. Reg. 28/05), and by the Environment Canada (EC) document "Environmental Code of Practice for Base Metal Smelter and Refiners" (Environment Canada, March 2006). For those modelled compounds that do not have a published air standard, the following regulations and guidances were used:

- Ontario Ministry of the Environment (MOE) standards as per O. Reg. 419/05; and
- Summary of O. Reg. 419/05 Standards and Point of Impingement Guidelines & Ambient Air Quality Criteria (AAQCs) (Ontario MOE, December 2005).

The majority of the air contaminant models used a 24-hour averaging period. Only the following air contaminants were modelled with averaging periods instead of, or in addition to, the 24-hour period:

- CO 1-hour and 8-hours;
- NOx 1-hour and annual;
- SO2 1-hour, 24-hour and annual;
- TSP 24-hours and annual;
- lead 24-hour and 30-day; and
- nickel 1-hour and 24-hour.

## 7.1.3 DIGITAL ELEVATION MAPPING DATA

Canadian digital elevation mapping (DEM) data for the vicinity around the Facility was obtained from the GeoBase geospatial website (www.geobase.ca). DEM data was downloaded and processed using the AERMOD terrain processor AERMAP (Version 04300). AERMAP calculates digital terrain elevation data for all sources, receptors and buildings, and provides the user with a suitable input file for use with AERMOD.

Note that an older version of AERMAP was used as the most recent version of the model (Version 06341) contains a bug that prevents the model from successfully processing the terrain data from GeoBase. The bug primarily affects terrain files located further north than the continental United States.

### 7.1.4 SOURCE INPUT PARAMETERS

Sources at the Facility were modelled as a point source, volume source or area source based on the physical orientation or process operations associated with the source. All source parameters were estimated based on known described operations.

Of particular note are a number of sources that are identified as potentially fitted with rain caps or are potentially oriented horizontally. Both rain caps and horizontal orientation of exhausts will inhibit the vertical momentum of exhaust gases from stacks and can have an impact on the dispersion modelling. These capped or horizontal sources were modified as per the Ontario MOE guidance for horizontal sources and rain caps. The guidance states that, if:

- *V* = actual stack gas exit velocity
- *V* = stack gas exit velocity as entered into the model
- *D* = actual stack inside diameter
- *D'* = stack inside diameter as entered into the model
- *H* = actual stack height
- *H*' =stack height entered into the model

Then a rain capped source would have its parameters modified as follows:

- 1. Set V' = 0.1 m/s;
- 2. Set  $D' = D \times \text{SQRT}(V/V')$ ; and
- 3. H' = H 3D (to account for the frequent stack tip downwash from the capped source; may not be less than the roof height).

A summary of the AERMOD source input parameters is provided in Table 10. The locations of the modelled sources are shown on Figures 2A and 2B.

## 7.1.5 <u>SENSITIVE RECEPTORS</u>

Receptors were placed at three locations identified as potentially impacted by the Facility. The locations were previously identified as:

- POR-1 residential receptor;
- POR-2 children day camp; and
- POR-3 Scraggy Lake.

A single receptor was placed at both POR-1 and POR-2. A discrete receptor grid with a spacing interval of 25 m was placed over POR-3.

## 7.1.6 <u>ON-SITE BUILDING DATA</u>

The Facility's main buildings were modelled in AERMOD to account for building cavity downwash. Cavity downwash can result in air contaminants being forced to ground level prematurely under certain meteorological conditions, which can result in higher than expected near-field GLCs.

The USEPA building downwash model BPIP was used to predict downwash effects for use with the AERMOD models.

## 7.2 DISPERSION MODELLING RESULTS

All AERMOD models were developed and executed following the methodology described above.

The five years of meteorological data included over 43,800 hours of data. The AERMOD model was run to calculate the maximum GLCs for each of the air contaminants and averaging periods previously described. The meteorological conditions, which would result in the maximum concentration, would typically be stable atmospheric conditions such as an inversion with low wind speed. The maximum hour out of 43,800 hours of data would not occur at each grid point simultaneously since the wind can only blow in one direction during one hour.

The maximum GLCs for each air contaminant at each of the sensitive receptors are predicted to be well below the established limits. Table 12 summarizes the maximum

concentration predicted for each air contaminant at each sensitive receptor. Table 12 also summarizes the limits used for evaluation, and the percentage of predicted GLC relative to the limit at each sensitive receptor.

#### 8.0 EMISSION SUMMARY TABLE AND CONCLUSIONS

#### 8.1 <u>EMISSION SUMMARY TABLE</u>

For each source of significant contaminants the following parameters are referenced in Table 12:

- Contaminant name;
- CAS number;
- Total facility emission rate;
- Maximum concentrations at each sensitive receptor;
- Averaging period for the dispersion modelling;
- Ambient air criteria; and
- The percentage of criteria at each sensitive receptor.

The concentrations listed in Table 12 were compared against criteria from various jurisdictions, also listed in Table 12.

#### 9.0 <u>CONCLUSIONS</u>

Based on the estimated maximum emissions scenario presented in this ESDM, the predicted maximum ground level ambient air concentrations of all potential contaminants calculated from the air dispersion modelling are all well below applicable criterion at the three sensitive points of reception (PORs).

This ESDM Report demonstrates that the Site operations under worse-case meteorological conditions will not adversely impact human health or the surrounding environment at these PORs.



⁸²⁰⁹³³⁻D(007)GN-WA001 SEP 24/2007



820933-D(007)GN-WA002 SEP 24/2007





PROCESS FLOW DIAGRAM EMISSIONS SUMMARY AND DISPERSION MODELLING REPORT TOUQUOY GOLD PROJECT *Moose River, Nova Scotia* 

820933-D(007)GN-WA003 OCT 16/2007

SR



NOTE: DRAWING ADAPTED FROM AUSENCO LTD. DRAWING NO. 1666-F-100

figure 3



⁸²⁰⁹³³⁻D(007)GN-WA004 SEP 24/2007



820933-D(007)GN-WA005 SEP 24/2007
### SUMMARY OF AIR EMISSIONS SOURCES DDV GOLD LIMITED TOUQUOY GOLD PROJECT MOOSE RIVER, NOVA SCOTIA

Source ID		Description	Expected Contaminants	Reference
CIL-1 to CIL-6	CIL Tanks	General Tank Exhaust	Cyanide	Table 2
CIL-1 to CIL-6	HIC Leach Feed Tank	General Tank Exhaust	Cyanide	Table 2
SCRUB-1	EW Cells (with scrubber) -HIC stream -CIL stream	EW Cell Fumes to Atmosphere	Ammonia Mercury SO ₂ - negligible once scrubbed out. Hydrochloric acid mist- negligible once scrubbed out. Cyanide- negligible amount (1)	Table 3.2, 5
CRK	Carbon Reactivation Kiln	Vapour emitted through stack	Products of Combustion (LPG) Mercury Cyanide- negligible amount (1)	Table 3.2, 4
ELUTION	Elution Heater	Combustion Process	Products of Combustion (LPG) Cyanide- negligible amount (1)	Table 4
CALCOVEN	Calcination Oven	Combustion Process	Products of Combustion (LPG)	Table 4
SCRUB-2	Smelting Furnace (with Scrubber)	Fume to Atmosphere	Products of Combustion (LPG) SO ₂ gas Mercury Total Suspended Particulate (TSP) PM ₁₀ Metals	Table 3.1, 3.2
TAILPOND	Tailings Pond	Off-gas	Cyanide	Table 2
CRUSHERS	-Crushing/Handling and Transfers/Conveyance	Front-End Operations	Total Suspended Particulate (TSP) PM ₁₀ Metals	Table 8.1, 8.2, 8.3
ROMTRANS	-Loading/Unloading ROM stockpile	Front-End Operations	Total Suspended Particulate (TSP) PM ₁₀ Metals	Table 8.1, 8.2, 8.3

#### Note:

(1) Identified as negligible based on criteria presented in the Australian National Pollutant Inventory document, "Emissions estimation technique manual for Gold Ore Processing", Version 2.0.

### CYANIDE EMISSIONS DDV GOLD LIMITED TOUQUOY GOLD PROJECT MOOSE RIVER, NOVA SCOTIA

Source ID	Description	NaCN input (kg/hr)	CN ⁻ input (kg/hr)	% volatized	Water return	CN ⁻ emission rate (g/s)
CIL-1 to CIL-6	CIL Tanks	83.21	44.15	1%	NA	0.1226
CIL-1 to CIL-6	HIC Tank	10.00	5.31	1%	NA	0.0147
TAILINGS	Tailings Pond	NA	0.219 (1)	100%	0.0312	0.0430 (2)

Knowns:				<u>Molecular weights</u>		
	Sodium Cyanide usage:	816,480	kg/yr	NaCN	49	g/mol
				CN ⁻	26	g/mol
Cyan	nide ( $CN^{-}$ ) usage (total facility):	433,234	kg/yr			

	<i>TMF carry through (TMF ct)</i>	TMF water return (TMF $_{wr}$ )
L/yr	1.44E+09	1.3E+09
'total' cyanide (ppm)	0.85	0.21
tonnes/yr	1.224	0.27
WAD cyanide (ppm)	0.64	below detection
free cyanide (ppm)	0	0

Notes:

- The cyanide input to the tailing pond represents the cyanide that remains after volatilization above the CIL tanks and the conversion to cyanate by the SO2/Air Process.
- (2) Calculated using a mass-balance approach, following the methodology presented in the Australian National Pollutant Inventory document, "Emissions estimation technique manual for Gold Ore Processing", Version 2.0.
- (3) Seepage rate to groundwater was assumed to be 0.4%, as indicated by the client per the TMF design specifications.

### PROCESS EMISSIONS FROM SMELTING DDV GOLD LIMITED TOUQUOY GOLD PROJECT MOOSE RIVER, NOVA SCOTIA

Gold Extraction Rate (1)	Emission Factor (2)	Compound			Emission Rate (4) (5)
( <i>oz/hr</i> )	(kg/tonne gold extracted)		(µg/g)	wt. % (3)	(g/s)
9.49	1.0	Total Particulate		100%	8.20E-04
		Aluminum oxide		16.87%	1.38E-04
		Arsenic	1042	0.10%	8.55E-07
		Barium	551.31	0.055%	4.52E-07
		Beryllium	1.88	0.00019%	1.54E-09
		Bismuth	0.37	0.000037%	3.04E-10
		Cadmium	0.12	0.000012%	9.84E-11
		Cobalt	14.74	0.0015%	1.21E-08
		Chromium	56.07	0.0056%	4.60E-08
		Copper	47.32	0.0047%	3.88E-08
		Ferric Oxide		7.26%	5.96E-05
		Iron		5.02%	4.12E-05
		Phosphorus		3.06%	2.51E-05
		Lithium	30.02	0.0030%	2.46E-08
		Magnesium oxide		2.2%	1.80E-05
		Manganese	814.89	0.081%	6.68E-07
		Molybdenum	1.66	0.00017%	1.36E-09
		Nickel	29.67	0.0030%	2.43E-08
		Lead	17.66	0.0018%	1.45E-08
		Antimony	0.85	0.000085%	6.97E-10
		Selenium	2.2	0.00022%	1.80E-09
		Tin	2.41	0.00024%	1.98E-09
		Strontium	96.04	0.0096%	7.88E-08
		Titanium	1806.74	0.18%	1.48E-06
		Thallium	0.69	0.000069%	5.66E-10
		Uranium	1.61	0.00016%	1.32E-09
		Vanadium	104.47	0.010%	8.57E-08
		Zinc	94.84	0.0095%	7.78E-08
		Mercury		See ta	able 3.1
	25	SO ₂		100%	1.87E-02

Notes:

(1)	Based	on	knowns:

tonnes/hr
oz/hr

- (2) From the 'Pollution Prevention and Abatement Handbook' published by the World Bank Group, July 1998 This factor is the recommended maximum release of TSP from a moden smelting operation in the presence of emission controls (scrubber) from copper smelting. It has been assumed that the gold smelting operations would achieve this value at a minimum.
- (3) The worst case scenario for each metal from the generic ore assays presented in Table A1 of the Australian National Pollutant Inventory document, "Emissions estimation technique manual for Gold Ore Processing", Version 2.0 has been used in this table.
- (4) Estimates have been adjusted upwards by a safety factor of 10 to account for values stemming from an emission factor of TSP from copper smelting and not gold smelting (no literature exists). The factor has been applied to be conservative in lieu of this uncertainty. Safety Factor 10
- (5) The total particulate and sulfur dioxide emissions presented in this table represent those resulting from propane combustion as well as those generated as by-products during the smelting process.

### MERCURY EMISSIONS FROM CHEMICAL PROCESSES DDV GOLD LIMITED TOUQUOY GOLD PROJECT MOOSE RIVER, NOVA SCOTIA

Source ID	Description	Mercury Emission Rate (g/s)
CRK	Carbon Regeneration Kiln	7.64E-02 (1)
SCRUB-1	Electrowinning Cells	1.16E-01 (2)
SCRUB-2	Smelting Furnace	6.30E-02 (3)

Notes:

(1) Based on the following equation:

Mercury Emission Rate = Kiln Feed Rate x Mercury Concentration in Stripped Carbon Kiln Feed Rate: 0.25 tonnes/hour

The kiln feed rate was assumed based on the typical range presented in "Mercury Mass Balance and Emissions Factor Estimates for Gold Ore Processing Facilities", prepared for the USEPA by Booz Allen & Hamilton, Inc.

Mercury concentration in stripped carbon:	1,100	mg/kg
-------------------------------------------	-------	-------

The mercury concentration in stripped carbon was assumed based on the provided typical mid-point in "Mercury Mass Balance and Emissions Factor Estimates for Gold Ore Processing Facilities", prepared for the USEPA by Booz Allen & Hamilton, Inc.

(2) Based on the following equation: Emission Rate (lb/hr) = Cathode Area (ft²) x Mercury Fraction in plated metal x 0.02 (lbs/ft²/hr) *Emission Rate (lb/hr) = Cathode Area (ft2) x Mercury Fraction in plated metal x 0.02 (lbs/ft2/hr)* Cathode Area: 115 ft²

Cathode area assumed based on the cathode area of a typical electrowinning unit configuration, as presented in "Mercury Mass Balance and Emissions Factor Estimates for Gold Ore Processing Facilities", prepared for the USEPA by Booz Allen & Hamilton, Inc.

(3) The mercury content of the dore and the furnace throughput were assumed based on the typical ranges presented in "Mercury Mass Balance and Emissions Factor Estimates for Gold Ore Processing Facilities", prepared for the USEPA by Booz Allen & Hamilton, Inc.

Mercury content of dore:	1000	mg/kg
Furnace throughput:	0.23	tonnes/hour

# LPG COMBUSTION EMISSIONS DDV GOLD LIMITED TOUQUOY GOLD PROJECT MOOSE RIVER, NOVA SCOTIA

LPG Usage: 378,000 kg/yr 19.05 10³L/yr

Compound	Emission Factor (1)	Emission Rate
	$(kg/10^{3}L)$	(g/s)
NOx	2.28	1.38E-03
СО	0.384	2.32E-04
SO ₂	3.396 (2)	2.05E-03
$PM_{10}$	0.072	4.35E-05
CO ₂	1,500	9.06E-01

Notes:

- LPG Emission Factors were obtained from USEPA AP-42, (Chapter 1.5, Liquified Petroleum Gas Combustion) for Industrial Boilers.
- (2) Based on the maximum sulfur content of propane, 10ppm.
- (3) Facility-wide propane usage has been estimated to be divided as follows: - Elution Heater (22%)
  - Carbon Regeneration Kiln (22%)
  - Calcination Oven (22%)
  - Smelting Furnace (33%)

# EMISSIONS FROM ELECTROWINNING CELLS DDV GOLD LIMITED TOUQUOY GOLD PROJECT MOOSE RIVER, NOVA SCOTIA

Ore Processing Rate: 187.5 tonnes/ hr

Compound	Emission Factor (1)	EF Rating	Emission Rate
	(kg/Mg ore processed)		(g/s)
Ammonia 0.029		D	1.51
Mercury	S	ee Table 3.2	

# Note:

 Source: "Development and Selection of Ammonia Emission Factors" Final Report, prepared for USEPA. http://www.factoryfarm.org/docs/Battye_Report.pdf

### TSP AND PM10 EMISSIONS FROM FRONT-END GOLDMINE OPERATIONS DDV GOLD LIMITED TOUQUOY GOLD PROJECT MOOSE RIVER, NOVA SCOTIA

**Process Tonnage** 

187.5 tonnes / hour

	High Moisture Content Ores (3)					
	TSF	)	PM10			
	Emission Factor	Emission Rate	Emission Factor	Emission Rate		
	(kg/tonne)	(g/s)		(g/s)		
Mechanical Reduction Process						
Primary Crushing	0.01	0.52	0.0040	0.21		
Secondary Crushing	0.03	1.56	0.0120	0.63		
Tertiary Crushing	0.03	1.56	0.0100	0.52		
Wet Grinding (Milling) (1)	0	0.00	0.0000	0.00		
Material Handling and Storage						
Handling, Transferring and Conveying	0.005	0.26	0.0020	0.10		
Loading ROM Stockpiles (2)	0.004	0.10	0.0017	0.04		
Unloading from ROM Stockpiles (2)	0.03	0.78	0.0130	0.34		
Total Emissions (g/s)		4.79		1.84		

Percentage of Material Processed Emitted as TSP

0.009

Notes:

 Emission factors are not provided for wet grinders because the high-moisture content in these operations reduce emissions to negligible level, as provided in the Australian National Pollutant Inventory document, "Emissions estimation technique manual for Gold Ore Processing", Version 2.0.)

(2) Total Emissions of TSP and PM10 from stockpiles have been reduced by 50% to account for wetting of the piles.

(3) A high moisture content ore is defined as having a moisture content of more than 5%, by the Australian National Pollutant Inventory document, "Emissions estimation technique manual for Gold Ore Processing", Version 2.0. The ore from the Touquoy Gold Project has a moisture content of greater than 5%, and emission factors were selected accordingly.

		High Moisture	Content Ores
			TSP
	Metal	Metal Emission	Metal Emission
		Factor (µg/g) (1)	Rate (g/s)
Mechanical Reduction Process			
Primary Crushing	Aluminum oxide	16.87%	8.79E-02
	Arsenic	1042	5.43E-04
	Barium	551.31	2.87E-04
	Beryllium	1.88	9.79E-07
	Bismuth	0.37	1.93E-07
	Cadmium	0.12	6.25E-08
	Cobalt	14.74	7.68E-06
	Chromium	56.07	2.92E-05
	Copper	47.32	2.46E-05
	Ferric Sulphate	7.26%	3.78E-02
	Iron	5.02%	2.61E-02
	Phosphorus	3.06%	1.59E-02
	Lithium	30.02	1.56E-05
	Magnesium oxide	2.20%	1.15E-02
	Manganese	814.89	4.24E-04
	Mercury	0.1	5.21E-08
	Molybdenum	1.66	8.65E-07
	Nickel	29.67	1.55E-05
	Lead	17.66	9.20E-06
	Antimony	0.85	4.43E-07
	Selenium	2.2	1.15E-06
	Tin	2.41	1.26E-06
	Strontium	96.04	5.00E-05
	Titanium	1806.74	9.41E-04
	Thallium	0.69	3.59E-07
	Uranium	1.61	8.39E-07
	Vanadium	104.47	5.44E-05
	Zinc	94.84	4.94E-05

		High Moisture Content Ores		
			TSP	
	Metal	Metal Emission	Metal Emission	
		Factor (µg/g) (1)	Rate (g/s)	
Secondary Crushing	Aluminum oxide	16.87%	2.64E-01	
	Arsenic	1042	1.63E-03	
	Barium	551.31	8.61E-04	
	Beryllium	1.88	2.94E-06	
	Bismuth	0.37	5.78E-07	
	Cadmium	0.12	1.88E-07	
	Cobalt	14.74	2.30E-05	
	Chromium	56.07	8.76E-05	
	Copper	47.32	7.39E-05	
	Ferric oxide	7.26%	1.13E-01	
	Iron	5.02%	7.84E-02	
	Phosphorus	3.06%	4.78E-02	
	Lithium	30.02	4.69E-05	
	Magnesium oxide	2.20%	3.44E-02	
	Manganese	814.89	1.27E-03	
	Mercury	0.1	1.56E-07	
	Molybdenum	1.66	2.59E-06	
	Nickel	29.67	4.64E-05	
	Lead	17.66	2.76E-05	
	Antimony	0.85	1.33E-06	
	Selenium	2.2	3.44E-06	
	Tin	2.41	3.77E-06	
	Strontium	96.04	1.50E-04	
	Titanium	1806.74	2.82E-03	
	Thallium	0.69	1.08E-06	
	Uranium	1.61	2.52E-06	
	Vanadium	104.47	1.63E-04	
	Zinc	94.84	1.48E-04	

		High Moisture Content Ores		
			TSP	
	Metal	Metal Emission	Metal Emission	
		Factor (µg/g) (1)	Rate (g/s)	
Tertiary Crushing	Aluminum oxide	16.87%	2.64E-01	
	Arsenic	1042	1.63E-03	
	Barium	551.31	8.61E-04	
	Beryllium	1.88	2.94E-06	
	Bismuth	0.37	5.78E-07	
	Cadmium	0.12	1.88E-07	
	Cobalt	14.74	2.30E-05	
	Chromium	56.07	8.76E-05	
	Copper	47.32	7.39E-05	
	Ferric oxide	7.26%	1.13E-01	
	Iron	5.02%	7.84E-02	
	Phosphorus	3.06%	4.78E-02	
	Lithium	30.02	4.69E-05	
	Magnesium oxide	2.20%	3.44E-02	
	Manganese	814.89	1.27E-03	
	Mercury	0.1	1.56E-07	
	Molybdenum	1.66	2.59E-06	
	Nickel	29.67	4.64E-05	
	Lead	17.66	2.76E-05	
	Antimony	0.85	1.33E-06	
	Selenium	2.2	3.44E-06	
	Tin	2.41	3.77E-06	
	Strontium	96.04	1.50E-04	
	Titanium	1806.74	2.82E-03	
	Thallium	0.69	1.08E-06	
	Uranium	1.61	2.52E-06	
	Vanadium	104.47	1.63E-04	
	Zinc	94.84	1.48E-04	

		High Moisture Content Ores		
			TSP	
	Metal	Metal Emission	Metal Emission	
		Factor (µg/g) (1)	Rate (g/s)	
Material Handling and Storage	Aluminum oxide	16.87%	4.39E-02	
Handling, Transferring and Conveying	Arsenic	1042	2.71E-04	
	Barium	551.31	1.44E-04	
	Beryllium	1.88	4.90E-07	
	Bismuth	0.37	9.64E-08	
	Cadmium	0.12	3.13E-08	
	Cobalt	14.74	3.84E-06	
	Chromium	56.07	1.46E-05	
	Copper	47.32	1.23E-05	
	Ferric oxide	7.26%	1.89E-02	
	Iron	5.02%	1.31E-02	
	Phosphorus	3.06%	7.97E-03	
	Lithium	30.02	7.82E-06	
	Magnesium oxide	2.20%	5.73E-03	
	Manganese	814.89	2.12E-04	
	Mercury	0.1	2.60E-08	
	Molybdenum	1.66	4.32E-07	
	Nickel	29.67	7.73E-06	
	Lead	17.66	4.60E-06	
	Antimony	0.85	2.21E-07	
	Selenium	2.2	5.73E-07	
	Tin	2.41	6.28E-07	
	Strontium	96.04	2.50E-05	
	Titanium	1806.74	4.71E-04	
	Thallium	0.69	1.80E-07	
	Uranium	1.61	4.19E-07	
	Vanadium	104.47	2.72E-05	
	Zinc	94.84	2.47E-05	

		High Moisture Content Ores		
			TSP	
	Metal	Metal Emission	Metal Emission	
		Factor (µg/g) (1)	Rate (g/s)	
Loading Stockpiles	Aluminum oxide	16.87%	1.76E-02	
	Arsenic	1042	1.09E-04	
	Barium	551.31	5.74E-05	
	Beryllium	1.88	1.96E-07	
	Bismuth	0.37	3.85E-08	
	Cadmium	0.12	1.25E-08	
	Cobalt	14.74	1.54E-06	
	Chromium	56.07	5.84E-06	
	Copper	47.32	4.93E-06	
	Ferric oxide	7.26%	7.56E-03	
	Iron	5.02%	5.23E-03	
	Phosphorus	3.06%	3.19E-03	
	Lithium	30.02	3.13E-06	
	Magnesium oxide	2.20%	2.29E-03	
	Manganese	814.89	8.49E-05	
	Mercury	0.1	1.04E-08	
	Molybdenum	1.66	1.73E-07	
	Nickel	29.67	3.09E-06	
	Lead	17.66	1.84E-06	
	Antimony	0.85	8.85E-08	
	Selenium	2.2	2.29E-07	
	Tin	2.41	2.51E-07	
	Strontium	96.04	1.00E-05	
	Titanium	1806.74	1.88E-04	
	Thallium	0.69	7.19E-08	
	Uranium	1.61	1.68E-07	
	Vanadium	104.47	1.09E-05	
	Zinc	94.84	9.88E-06	

# METAL EMISSIONS FROM FRONT-END GOLDMINE OPERATIONS DDV GOLD LIMITED TOUQUOY GOLD PROJECT MOOSE RIVER, NOVA SCOTIA

		High Moisture Content Ores		
			TSP	
	Metal	Metal Emission	Metal Emission	
		Factor (µg/g) (1)	Rate (g/s)	
Unloading from Stockpiles	Aluminum oxide	16.87%	1.32E-01	
	Arsenic	1042	8.14E-04	
	Barium	551.31	4.31E-04	
	Beryllium	1.88	1.47E-06	
	Bismuth	0.37	2.89E-07	
	Cadmium	0.12	9.38E-08	
	Cobalt	14.74	1.15E-05	
	Chromium	56.07	4.38E-05	
	Copper	47.32	3.70E-05	
	Ferric oxide	7.26%	5.67E-02	
	Iron	5.02%	3.92E-02	
	Phosphorus	3.06%	2.39E-02	
	Lithium	30.02	2.35E-05	
	Magnesium oxide	2.20%	1.72E-02	
	Manganese	814.89	6.37E-04	
	Mercury	0.1	7.81E-08	
	Molybdenum	1.66	1.30E-06	
	Nickel	29.67	2.32E-05	
	Lead	17.66	1.38E-05	
	Antimony	0.85	6.64E-07	
	Selenium	2.2	1.72E-06	
	Tin	2.41	1.88E-06	
	Strontium	96.04	7.50E-05	
	Titanium	1806.74	1.41E-03	
	Thallium	0.69	5.39E-07	
	Uranium	1.61	1.26E-06	
	Vanadium	104.47	8.16E-05	
	Zinc	94.84	7.41E-05	

Note:

(1) The worst-case scenario for each metal from the generic ore assays presented in Table A1 of the Australian National Pollutant Inventory document, "Emissions estimation technique manual for Gold Ore Processing", Version 2.0.

#### FACILITY-WIDE SUMMARY OF EMISSIONS DDV GOLD LIMITED TOUQUOY GOLD PROJECT MOOSE RIVER, NOVA SCOTIA

Source ID	Source Description	Compound	CAS No.	Emission Rate	% of Overall Emissions
CIL-1 to CIL-6	CIL Tanks	Cyanide	57-12-5	1.23E-01	67.97%
CIL-1 to CIL-6	HIC Leach Feed Tank	Cyanide	57-12-5	1.47E-02	8.17%
SCRUB-1	EW Cells (with scrubber)	Ammonia	7664-41-7	1.51E+00	100%
		Mercury	7439-97-6	1.16E-01	45.41%
CRK	Carbon Reactivation Kiln	Oxides of Nitrogen	10102-44-0	3.03E-04	22.22%
		Carbon Monoxide	630-08-0	5.10E-05	22.22%
		Sulphur Dioxide	7446-09-5	4.51E-04	2.25%
		PM ₁₀	NA	9.57E-06	<1%
		Carbon Dioxide	124-38-9	1.99E-01	22.22%
		Mercury	7439-97-6	7.64E-02	29.92%
ELUTION	Elution Heater	Oxides of Nitrogen	10102-44-0	3.03E-04	22.22%
		Carbon Monoxide	630-08-0	5.10E-05	22.22%
		Sulphur Dioxide	7446-09-5	4.51E-04	2.25%
		PM ₁₀	NA	9.57E-06	<1%
		Carbon Dioxide	124-38-9	1.99E-01	22.22%
CALCOVEN	Calcination Oven	Oxides of Nitrogen	10102-44-0	3.03E-04	22.22%
		Carbon Monoxide	630-08-0	5.10E-05	22.22%
		Sulphur Dioxide	7446-09-5	4.51E-04	2.25%
		PM ₁₀	NA	9.57E-06	<1%
		Carbon Dioxide	124-38-9	1.99E-01	22.22%
SCRUB-2	Smelting Furnace (with Scrubber)	Oxides of Nitrogen	10102-44-0	4.55E-04	33.33%
		Carbon Monoxide	630-08-0	7.66E-05	33.33%
		Sulphur Dioxide	7446-09-5	1 87E-02	93 25%
		Total Suspended Particulate	NA	8 20E-04	<1%
		Carbon Dioxide	124-38-9	2 99E-01	33.33%
		Aluminum oxide	1344-28-1	1.38E-04	<1%
		Arsenic	7440-38-2	8 55E-07	<1%
		Barium	7440-39-3	4.52E-07	<1%
		Bervllium	7440-41-7	1.54E-09	<1%
		Bismuth	7440-69-9	3.04E-10	<1%
		Cadmium	7440-43-9	9.84F-11	<1%
		Cobalt	7440-48-4	1.21E-08	<1%
		Chromium	7440-47-3	4.60E-08	<1%
		Copper	7440-50-8	3.88E-08	<1%
		Ferric ovide	1309-37-1	5.96E-05	<1%
		Iron	7439-89-6	4.12E-05	<1%
		Phosphorus	7723-14-0	2.51E-05	<1%
		Lithium	7439-93-2	2.51E-05	<1%
		Magnesium ovide	1309-48-4	2.40E-00	<1%
		Manganoso	7439-96-5	6.68E.07	<1%
		Marcury	7439-97-6	6 30E-07	24.67%
		Molyhdonum	7439-98-7	1.36E.00	<1%
		Niekel	7430-02.0	2.42E.09	<1%
		Load	7430 02 1	2.45E-08	<1%
		Antimony	7439-92-1	1.45E-00	<1%
		Selenium	7782 /0 2	1 80E 00	<1%
		Tin	7440-31-5	1 985 00	<1%
		Strontium	7440 24 6	7 88E 00	~1 /0 <1 ^{0/}
		Titonium	7440 22 4	1.00E-U0	<1 %
		Thallium	7440 28 0	5.40E-00	>1 /0 <1 ⁰ /
		Iranium	7440-20-0	1 37E 00	<1 %
		Vanadium	7440-01-1	1.32E-09 9 57E 09	<1%
			7440-02-2	0.37 E-U0	<1%
		Zine	7440-66-6	7.78E-08	<1%

#### FACILITY-WIDE SUMMARY OF EMISSIONS DDV GOLD LIMITED TOUQUOY GOLD PROJECT MOOSE RIVER, NOVA SCOTIA

Source ID	Source Description	Compound	CAS No.	Emission Rate	% of Overall Emissions
TAILPOND	Tailings Pond	Cyanide	57-12-5	4.30E-02	23.86%
CRUSHERS	-Crushing	Total Suspended Particulate	NA	3.65E+00	76.07%
		PM ₁₀	NA	1.35E+00	73.55%
		Aluminum oxide	1344-28-1	6.15E-01	76.07%
		Arsenic	7440-38-2	3.80E-03	76.07%
		Barium	7440-39-3	2.01E-03	76.07%
		Beryllium	7440-41-7	6.85E-06	76.07%
		Bismuth	7440-69-9	1.35E-06	76.07%
		Cadmium	7440-43-9	4.38E-07	76.07%
		Cobalt	7440-48-4	5.37E-05	76.07%
		Chromium	7440-47-3	2.04E-04	76.07%
		Copper	7440-50-8	1.73E-04	76.07%
		Ferric oxide	1309-37-1	2.65E-01	76.07%
		Iron	7439-89-6	1.83E-01	76.07%
		Phosphorus	7723-14-0	1.12E-01	76.07%
		Lithium	7439-93-2	1.09E-04	76.07%
		Magnesium oxide	1309-48-4	8.02E-02	76.07%
		Manganese	7439-96-5	2.97E-03	76.07%
		Mercury	7439-97-6	3.65E-07	<1%
		Molybdenum	7439-98-7	6.05E-06	76.07%
		Nickel	7440-02-0	1.08E-04	76.07%
		Lead	7439-92-1	6.44E-05	76.07%
		Antimony	7440-36-0	3.10E-06	76.07%
		Selenium	7782-49-2	8.02E-06	76.07%
		Tin	7440-31-5	8.79E-06	76.07%
		Strontium	7440-24-6	3.50E-04	76.07%
		Titanium	7440-32-6	6.59E-03	76.07%
		Thallium	7440-28-0	2.52E-06	76.07%
		Uranium	7440-61-1	5.87E-06	76.07%
		Vanadium	7440-62-2	3.81E-04	76.07%
		Zinc	7440-66-6	3.46E-04	76.07%

#### FACILITY-WIDE SUMMARY OF EMISSIONS DDV GOLD LIMITED TOUQUOY GOLD PROJECT MOOSE RIVER, NOVA SCOTIA

Source ID	Source Description	Compound	CAS No.	Emission Rate	% of Overall Emissions
CRUSHERS	-Handling, Transfering and Conveying	Total Suspended Particulate	NA	2.60E-01	5.43%
		PM ₁₀	NA	1.04E-01	5.66%
		Aluminum oxide	1344-28-1	4.39E-02	5.43%
		Arsenic	7440-38-2	2.71E-04	5.43%
		Barium	7440-39-3	1.44E-04	5.43%
		Beryllium	7440-41-7	4.90E-07	5.43%
		Bismuth	7440-69-9	9.64E-08	5.43%
		Cadmium	7440-43-9	3.13E-08	5.43%
		Cobalt	7440-48-4	3.84E-06	5.43%
		Chromium	7440-47-3	1.46E-05	5.43%
		Copper	7440-50-8	1.23E-05	5.43%
		Ferric oxide	1309-37-1	1.89E-02	5 43%
		Iron	7439-89-6	1.31E-02	5.43%
		Phosphorus	7723-14-0	7 97E-03	5 43%
		Lithium	7439-93-2	7.82E-06	5 43%
		Magnesium oxide	1309-48-4	5.73E-03	5 43%
		Manganese	7439-96-5	2 12E-04	5 43%
		Mercury	7439-97-6	2.60E-08	<1%
		Molyhdenum	7439-98-7	4 32E-07	5 43%
		Nickel	7440-02-0	7.73E-06	5 43%
		Lead	7439-92-1	4.60E-06	5 43%
		Antimony	7440-36-0	2.00E-00	5.43%
		Selenium	7782-49-2	5.73E-07	5.43%
		Tin	7440-31-5	6.28E-07	5.43%
		Strontium	7440-24-6	2.50E-05	5.43%
		Titanium	7440-32-6	4.71E-04	5.43%
		Thallium	7440-28-0	1.80E.07	5.43%
		Uranium	7440-61-1	4 19E-07	5.43%
		Vanadium	7440-62-2	2.72E.05	5.43%
		Zinc	7440-66-6	2.72E=05	5.43%
ROMTRANS	Unloading and Loading of ROM pile	Total Suspended Particulate	NA	8.85E-01	18.48%
Rominanto	or not using time bout ing or not price	PM ₁₀	NA	3.83E-01	20.79%
		Aluminum oxide	1344-28-1	1.49E-01	18.48%
		Arsenic	7440-38-2	9.23E-04	18.48%
		Barium	7440-39-3	4.88E-04	18.48%
		Beryllium	7440-41-7	1.66E-06	18.48%
		Bismuth	7440-69-9	3.28E-07	18.48%
		Cadmium	7440-43-9	1.06E-07	18.48%
		Cobalt	7440-48-4	1.31E-05	18.48%
		Chromium	7440-47-3	4.96E-05	18.48%
		Eerric oxide	1309-37-1	4.19E-03	18.48%
		Iron	7439-89-6	4.44E-02	18.48%
		Phosphorus	7723-14-0	2.71E-02	18.48%
		Lithium	7439-93-2	2.66E-05	18.48%
		Magnesium oxide	1309-48-4	1.95E-02	18.48%
		Manganese	7439-96-5	7.22E-04	18.48%
		Mercury	7439-97-6	8.85E-08	<1%
		Molybdenum	7439-98-7	1.47E-06	18.48%
		Nickel	7440-02-0	2.63E-05	18.48%
		Antimony	7439-92-1	1.36E-05 7.53E-07	18.48%
		Selenium	7440-30-0	1.95E-07	18.48%
		Tin	7440-31-5	2.13E-06	18,48%
		Strontium	7440-24-6	8.50E-05	18.48%
		Titanium	7440-32-6	1.60E-03	18.48%
		Thallium	7440-28-0	6.11E-07	18.48%
		Uranium	7440-61-1	1.43E-06	18.48%
		Vanadium	7440-62-2	9.25E-05	18.48%
1		Zinc	7440-66-6	8.40E-05	18.48%

# AERMOD DISPERSION MODEL INPUT PARAMETERS DDV GOLD LIMITED TOUQUOY GOLD PROJECT MOOSE RIVER GOLD, NOVA SCOTIA

# **Table 10A: Point Sources**

Source		Coordii	ıates (1)	Exhaust	Release	Exit	Exit	Exit
Identifier	Description	X	Ŷ	Orientation (2)	Height	Velocity	Diameter	Temperature
		<i>(m)</i>	<i>(m)</i>		( <i>m</i> )	(m/s)	( <i>m</i> )	(K)
CIL-1	Carbon-In-Leach Vent	505071.1	4981781.9	vertical, capped	24.9	0.1	4.3	293.15
CIL-2	Carbon-In-Leach Vent	505071.2	4981771.1	vertical, capped	24.9	0.1	4.3	293.15
CIL-3	Carbon-In-Leach Vent	505071.0	4981760.7	vertical, capped	24.9	0.1	4.3	293.15
CIL-4	Carbon-In-Leach Vent	505077.0	4981776.7	vertical, capped	24.9	0.1	4.3	293.15
CIL-5	Carbon-In-Leach Vent	505076.9	4981765.9	vertical, capped	24.9	0.1	4.3	293.15
CIL-6	Carbon-In-Leach Vent	505077.0	4981753.2	vertical, capped	24.9	0.1	4.3	293.15
SCRUB-1	Electrowinning	505065.7	4981793.2	horizontal	9.0	0.1	4.0	293.15
SCRUB-2	Smelting Furnace	505070.6	4981793.0	horizontal	9.0	0.1	4.0	293.15
CRK	Carbon Reactivation Furnace	505079.5	4981806.3	vertical	22.0	20.0	0.4	573.15
ELUTION	Elution Heater Stack	505077.4	4981814.8	vertical	22.0	12.8	0.2	333.15
CALCOVEN	Calcination Oven	505068.4	4981807.7	vertical	15.2	12.8	0.2	333.15

# AERMOD DISPERSION MODEL INPUT PARAMETERS DDV GOLD LIMITED TOUQUOY GOLD PROJECT MOOSE RIVER GOLD, NOVA SCOTIA

Source		Coordinates (1)		Release	Length	Initial Dimensions	
Identifier	Description	X (m)	Y (m)	Height (m)	of Side (m)	Initial Din Laterla (m) 6.2 9.3 h of Side Y-Side (m) 300	Vertical (m)
		. ,	. ,	. ,	. ,	. ,	. ,
CRUSHERS	Primary/Secondary, Tertiary Crushing,	504965.2	4981901.3	2.5	26.8	6.2	2.3
	Screening and Conveying Near Raw						
	Materials Storage Pile						
ROMTRANS	Transfer Operations Around Raw	504922.8	4981948.4	2.0	39.8	9.3	1.9
	Materials Storage Pile						
Table 10C: Area	Sources						
Source		Coordii	nates (1)	Release	Length	of Side	-
Identifier	Description	X	Ŷ	Height	X-Side	Y-Side	-
		( <i>m</i> )	( <i>m</i> )	( <i>m</i> )	<i>(m)</i>	<i>(m)</i>	_
TAILPOND	Tailings Pond	505872.5	4980425.6	0	500	300	
PIT	Mining Pit	504358.4	4981180.2	0	188735	$5 \text{ m}^2$ (3)	

# AERMOD DISPERSION MODEL INPUT PARAMETERS DDV GOLD LIMITED TOUQUOY GOLD PROJECT MOOSE RIVER GOLD, NOVA SCOTIA

#### **Table 10D: Line Sources** Source Coordinates (1) Release Length Vertical Total Identifier Description X Υ Height of Side **Dimension** Sources (4) (*m*) *(m) (m) (m)* (*m*) RD_ROMPD Road - Between Mining Pit and Raw 504742.2 4981338.1 0 17 4 23 Materials Storage Pile Road - Between Facility and Tailings RD_TAIL 505069.0 4982164.3 0 17 4 82 Management Area

Notes:

(1) Reference projection is in Universal Transverse Mercator (UTM), North American Datum reference of 1983 (NAD83), Zone 20.

(2) Exhaust orientation affects exit parameters for point sources. Capped and horizontal exhaust parameters are calculated as per Ontario MOE guidance.

(3) Mining pit modelled as a polygon area, therefore it has no fixed dimensions other than a total area.

(4) Total number of volume sources required by model to approximate emissions from the roadways.

# AERMOD DISPERSION MODEL EMISSION RATES BY AIR CONTAMINANT AND SOURCE DDV GOLD LIMITED TOUQUOY GOLD PROJECT MOOSE RIVER, NOVA SCOTIA

		Facility-Wide	Emission Rate By Source														
Air Contaminant	CAS No.	Emission Rate	CIL-1	CIL-2	CIL-3	CIL-4	CIL-5	CIL-6	SCRUB-1	SCRUB-2	ČRK	ELUTION	CALCOVEN	CRUSHERS	ROMTRANS	TAIL	POND
			(g/s)	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)	$(g/s-m^2)$
СО	630-0-3	2.30E-04								7.66E-05	5.10E-05	5.10E-05	5.10E-05				
NOx	10102-44-0	1.36E-03								4.55E-04	3.03E-04	3.03E-04	3.03E-04				
TSP	N/A	4.80E+00								8.20E-04	9.57E-06	9.57E-06	9.57E-06	3.91E+00	8.85E-01		
PM ₁₀	Ń/A	1.84E+00												1.45E+00	3.83E-01		
SO ₂	7446-09-5	2.01E-02								1.87E-02	4.51E-04	4.51E-04	4.51E-04				
Ammonia	7664-41-7	1.51E+00							1.51E+00								
Arsenic	7440-38-2	4.99E-03								8.55E-07				4.07E-03	9.23E-04		
Cadmium	7440-43-9	5.75E-07								9.84E-11				4.69E-07	1.06E-07		
Cvanide	57-12-5	1.80E-01	2.29E-02	2.29E-02	2.29E-02	2.29E-02	2.29E-02	2.29E-02								4.25E-02	2.83E-07
Lead	7439-92-1	8.46E-05								1.45E-08				6.90E-05	1.56E-05		
Mercury	7439-97-6	2.55E-01							1.16E-01	6.30E-02	7.64E-02			3.91E-07	8.85E-08		
Nickel	7440-02-0	1.42E-04								2.43E-08				1.16E-04	2.63E-05		
Aluminum Oxide	1344-24-1	8.08E-01								1.38E-04				6.59E-01	1.49E-01		
Barium	7440-39-3	2.64E-03								4.52E-07				2.15E-03	4.88E-04		
Bervllium	7440-41-7	9.00E-06								1.54E-09				7.34E-06	1.66E-06		
Bismuth	7440-69-9	1.77E-06								3.04E-10				1.45E-06	3.28E-07		
Cobalt	7440-48-4	7.07E-05								1.21E-08				5.75E-05	1.31E-05		
Chromium, II/III/VI	7440-47-3	2.68E-04								4.60E-08				2.19E-04	4.96E-05		
Copper	7440-50-8	2.27E-04								3.88E-08				1.85E-04	4.19E-05		
Ferric Oxide	1309-37-1	3.48E-01								5.96E-05				2.84E-01	6.43E-02		
Iron	7439-89-6	2.41E-01								4.12E-05				1.96E-01	4.44E-02		
Phosphorous	7723-14-0	1.47E-01								2.51E-05				1.20E-01	2.71E-02		
Lithium	7439-93-2	1.43E-04								2.46E-08				1.17E-04	2.66E-05		
Magnesium Oxide	1309-48-4	1.05E-01								1.80E-05				8.59E-02	1.95E-02		
Manganese	7439-96-5	3.90E-03								6.68E-07				3.18E-03	7.22E-04		
Molvbdenum	7439-98-7	7.95E-06								1.36E-09				6.48E-06	1.47E-06		
Antimony	7440-36-0	4.07E-06								6.97E-10				3.32E-06	7.53E-07		
Selenium	7782-49-2	1.05E-05								1.80E-09				8.59E-06	1.95E-06		
Tin	7440-31-5	1.15E-05								1.98E-09				9.42E-06	2.13E-06		
Strontium	7440-24-6	4.60E-04								7.88E-08				3.75E-04	8.50E-05		
Titanium	7440-32-6	8.66E-03								1.48E-06				7.06E-03	1.60E-03		
Thallium	7440-28-0	3.31E-06								5.66E-10				2.70E-06	6.11E-07		
Uranium	7440-61-1	7.72E-06								1.32E-09				6.29E-06	1.43E-06		
Vanadium	7440-62-2	5.01E-04								8.57E-08				4.08E-04	9.25E-05		
Zinc	7440-66-6	4.55E-04								7.78E-08				3.71E-04	8.40E-05		

#### SUMMARY OF MAXIMUM PREDICTED GROUND LEVEL CONCENTRATION AT SENSITIVE RECEPTORS DDV GOLD LIMITED TOUQUOY GOLD PROJECT MOOSE RIVER GOLD, NOVA SCOTIA

						Scaggy	y Lake	POR-1, Reside	ntial Dwelling	POR-2, Day Camp		
Air Contaminant	CAS No.	Facility-Wide Emission Rate	Averaging Period	Criterium	Reference	Maximum Predicted GLC	Percentage of Criterium	Maximum Predicted GLC	Percentage of Criterium	Maximum Predicted GLC	Percentage of Criterium	
			(hours) (1)	$(ug/m^{3})$		(ug/m ³ )	(%)	$(ug/m^{3})$	(%)	$(ug/m^3)$	(%)	
СО	630-0-3	2.30E-04	1	34600	(2)	5.04E+01	0.1%	1.64E+01	< 0.1%	1.70E+01	< 0.1%	
NO	10102 44.0	1.0(7).00	8	12/00	(2)	9.52E+00	< 0.1%	4.69E+00	< 0.1%	4.78E+00	< 0.1%	
NOx	10102-44-0	1.36E-03	1	400	(2)	5.82E+01	14.5%	1.88E+01	4.7%	1.96E+01	4.9%	
TCD	NI/A	4.805+00	annuai	100	(2)	2.50E-01	0.3%	2.84E-02	< 0.1%	3.68E-02	< 0.1%	
ISP	N/A	4.80E+00	24	120	(2)	8.3/E+00	7.0%	2.12E+00	1.8%	2.52E+00	2.1%	
DM	NT / A	1.84E+00	24	70	(2)	0.20E-01	6.5%	1.39E-01	1.6%	0.71E-01	1.0%	
F1M10	IN/ A	1.04E+00	24	50	(3)	5.20E+00	0.3%	0.12E-01	1.0 %	9.71E-01	1.9%	
SO ₂	7446-09-5	2.01E-02	1	900	(2)	1.79E+01	2.0%	5.83E+00	0.6%	6.03E+00	0.7%	
			24	300	(2)	1.06E+00	0.4%	6.50E-01	0.2%	6.61E-01	0.2%	
			annual	60	(2)	6.48E-02	0.1%	7.85E-03	< 0.1%	9.99E-03	< 0.1%	
Ammonia	7664-41-7	151E+00	24	100	(6)	533E+00	53%	1 13E+00	11%	1 19E+00	1.2%	
Arsenic	7440-38-2	4 99E-03	24	0.3	(0)	8.67E-03	2.9%	2 20E-03	0.7%	2.62E-03	0.9%	
Cadmium	7440-43-9	5.75E-07	24	2	(4)	< 1.00E-05	< 0.1%	< 1.00E-05	< 0.1%	< 1.00E-05	< 0.1%	
Cvanide (as Hydrogen Cvanide)	74-90-8	1.80E-01	24	8	(5)	1.06E+00	13.3%	1.82E-01	2.3%	1.51E-01	1.9%	
Lead	7439-92-1	8.46E-05	24	2	(4)	2.71E-03	0.1%	4.00E-05	< 0.1%	4.00E-05	< 0.1%	
			30-day	0.7	(6)	4.20E-04	< 0.1%	< 1.00E-05	< 0.1%	1.00E-05	< 0.1%	
Mercury	7439-97-6	2.55E-01	24	2	(6)	6.20E-01	31.0%	1.39E-01	6.9%	1.47E-01	7.4%	
Nickel	7440-02-0	1.42E-04	1	5	(4)	2.38E-03	< 0.1%	7.90E-04	< 0.1%	1.03E-03	< 0.1%	
			24	2	(6)	2.50E-04	< 0.1%	6.00E-05	< 0.1%	7.00E-05	< 0.1%	
Aluminum Oxide	1344-24-1	8.08E-01	24	120	(4)	1.40E+00	1.2%	3.56E-01	0.3%	4.24E-01	0.4%	
Barium	7440-39-3	2.64E-03	24	10	(4)	4.59E-03	< 0.1%	1.16E-03	< 0.1%	1.39E-03	< 0.1%	
Beryllium	7440-41-7	9.00E-06	24	0.01	(6)	2.00E-05	0.2%	< 1.00E-05	0.1%	< 1.00E-05	0.1%	
Bismuth	7440-69-9	1.77E-06	24	N/A		< 1.00E-05	N/A	< 1.00E-05	N/A	< 1.00E-05	N/A	
Cobalt	7440-48-4	7.07E-05	24	0.1	(4)	1.20E-04	0.1%	3.00E-05	< 0.1%	4.00E-05	< 0.1%	
Chromium, II/III/VI	7440-47-3	2.68E-04	24	1.5	(4)	4.70E-04	< 0.1%	1.20E-04	< 0.1%	1.40E-04	< 0.1%	
Copper	7440-50-8	2.27E-04	24	50	(6)	3.90E-04	< 0.1%	1.00E-04	< 0.1%	1.20E-04	< 0.1%	
Ferric Oxide	1309-37-1	3.48E-01	24	25	(6)	6.05E-01	2.4%	1.53E-01	0.6%	1.83E-01	0.7%	
Iron	7439-89-6	2.41E-01	24	4	(6)	4.18E-01	10.4%	1.06E-01	2.6%	1.26E-01	3.2%	
Phosphorous	7723-14-0	1.47E-01	24	N/A		2.55E-01	N/A	6.48E-02	N/A	2.55E-01	N/A	
Lithium	7439-93-2	1.43E-04	24	20	(6)	2.50E-04	< 0.1%	6.00E-05	< 0.1%	8.00E-05	< 0.1%	
Magnesium Oxide	1309-48-4	1.05E-01	24	120	(6)	1.83E-01	0.2%	4.64E-02	< 0.1%	5.53E-02	< 0.1%	
Manganese	7439-96-5	3.90E-03	24	2.5	(4)	6.78E-03	0.3%	1.72E-03	< 0.1%	2.05E-03	< 0.1%	
Molybdenum	7439-98-7	7.95E-06	24	120	(4)	1.00E-05	< 0.1%	< 1.00E-05	< 0.1%	< 1.00E-05	< 0.1%	
Antimony	7440-36-0	4.07E-06	24	25	(6)	1.00E-05	< 0.1%	< 1.00E-05	< 0.1%	< 1.00E-05	< 0.1%	
Selenium	7782-49-2	1.05E-05	24	10	(4)	2.00E-05	< 0.1%	< 1.00E-05	< 0.1%	1.00E-05	< 0.1%	
Tin	7440-31-5	1.15E-05	24	10	(6)	1.70E-04	< 0.1%	4.00E-05	< 0.1%	5.00E-05	< 0.1%	
Strontium	7440-24-6	4.60E-04	24	120	(4)	8.00E-04	< 0.1%	2.00E-04	< 0.1%	2.40E-04	< 0.1%	
Titanium	7440-32-6	8.66E-03	24	120	(6)	1.50E-02	< 0.1%	3.82E-03	< 0.1%	4.55E-03	< 0.1%	
Thallium	7440-28-0	3.31E-06	24	N/A		1.00E-05	N/A	< 1.00E-05	N/A	< 1.00E-05	N/A	
Uranium	7440-61-1	7.72E-06	24	N/A		1.00E-05	N/A	< 1.00E-05	N/A	< 1.00E-05	N/A	
Vanadium	7440-62-2	5.01E-04	24	2	(6)	8.70E-04	< 0.1%	2.20E-04	< 0.1%	2.60E-04	< 0.1%	
Zinc	7440-66-6	4.55E-04	24	120	(6)	7.90E-04	< 0.1%	2.00E-04	< 0.1%	2.40E-04	< 0.1%	

Notes:

N/A - Not Available.

(1) Unless otherwise noted.

(2) Nova Scotia Reg. 28/2005.

(3) Ontario PM₁₀ interim guideline.

(4) Environment Canada Environmental Code of Practice for Base Metals Smelters and Refiners (March 2006).

(5) Ontario MOE ambient air quality criteria guideline.(6) Ontario Reg. 419/05 standard.