

Nova Scotia Transportation and Infrastructure Renewal

Hydrogeological Investigation

Type of Document Final

Project Name Kurdistan and Arrow Oily Waste Disposal Sites Fourchu, St.Peter's-Oban and Janvrin Island

Project Number SYD-00020400-A0

Prepared By: Fred Baechler, M.Sc., P.Geo.

Reviewed By: Steven Schaller, B.Tech, EP

exp Services Inc. 77 Kings Road Sydney, NS B1S 1A2 Canada

Date Submitted June 2012

Nova Scotia Transportation and Infrastructure Renewal

Hydrogeological Investigation

Type of Document: Released for Construction

Project Name: Kurdistan and Arrow Oily Waste Disposal Sites Fourchu, St. Peter's-Oban and Janvrin Island

Project Number: SYD-00020400-A0

Prepared By: Fred Baechler, M.Sc., P.Geo.

Reviewed By: Steven Schaller, B.Tech, EP

exp Services Inc. 77 Kings Road Sydney, NS B1S 1A2 Canada T: +902.562.2394 F: +902.564.5660 www.exp.com

Date Submitted: June 2012

Legal Notification

This report was prepared by **exp** Services Inc. for the account of **Nova Scotia Transportation and Infrastructure Renewal**.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. **Exp** Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Nova Scotia Transportation and Infrastructure Renewal Hydrogeological Investigation SYD-00020400-A0 June 7, 2012

Distribution List

Report Distributed to:

Connie Roney, Nova Scotia Department of Transportation and Infrastructure Renewal, two hard copies and one digital

Table of Contents

Execu	tive Summ	ary	i.
1	Introduct	ion	1
1.1	Contract.		1
1.2	Location of	f Sites	1
1.3	Structure	of Report	1
2	Backgrou	Ind	1
2.1	Spill Histo	ry	1
2.2	Site Selec	tion	2
2.3	Site Opera	ations	2
2.4	Site Closu	re	2
2.5	Wastes D	isposed of and Potential Pathways for Release	2
3	Scope of	Work and Project Objectives	5
4	Field Pro	gram	5
4.1	Field Reco	onnaissance	5
4.2	Design of	Intrusive Program	5
4.3	Assessme	ent and Evaluation Criteria	6
4.4	Drilling an	d Well installation	7
4.5	Laborator	y Analyses and QA/QC	7
4.6	Risk Asse	ssment	7
4.7	Data Appe	ended	7
5	Fourchu	Site	8
5.1	Location		8
5.2	Land Owr	ership, Use and Access	9
5.3	Site Reco	nnaissance	9
5.4	Intrusive F	Program	9
5.5	Site Desig	n and Operations1	0
5.6	Hydrologi	cal Setting1	1
	5.6.1	Hydrological Region/District1	1
	5.6.2	Hydrogeology1	2
	5.6.3	Hydrology1	3

Nova Scotia Transportation and Infrastructure Renewal Hydrogeological Investigation SYD-00020400-A0 June 7, 2012

5.7	Soil Geochemistry						
	5.7.1	Geochemistry	13				
	5.7.2	Quality	14				
5.8	Water Che	emistry and Quality	14				
	5.8.1	In-Trench Leachate wells	14				
	5.8.2	Groundwaters	15				
	5.8.3	Surface Waters	16				
5.9	Preliminar	y Evaluation of Risk Management Options	16				
5.10	Conclusior	ns and Recommendations	17				
6	St. Peter's	s–Oban Site	18				
6.1	Location		18				
6.2	Land Own	ership, Use and Access	19				
6.3	Site Recor	nnaissance	19				
6.4	Intrusive P	rogram	20				
6.5	Site Desig	n and Operations	20				
6.6	Hydrological Setting21						
	6.6.1	Hydrological Region/District	21				
	6.6.2	Hydrogeology	21				
	6.6.3	Hydrology	23				
6.7	Soil Geoch	nemistry	23				
	6.7.1	Geochemistry	23				
	6.7.2	Quality	24				
6.8	Water Chemistry and Quality24						
	6.8.1	In-Trench Leachate Wells	24				
	6.8.2	Groundwaters	25				
	6.8.3	Surface Waters	26				
6.9	Evaluation	of Risk Management Options	26				
	6.9.1	Conclusions and Recommendations	27				
7	Janvrin Is	land	28				
7.1	Location		28				
7.2	Land Own	ership, Use and Access	28				
7.3	Site Recor	nnaissance	28				
7.4	Intrusive P	rogram	29				

Nova Scotia Transportation and Infrastructure Renewal Hydrogeological Investigation SYD-00020400-A0 June 7, 2012

	7.4.1	Site Design and Operations29					
7.5	Hydrological Setting						
	7.5.1	Hydrological Region/District					
7.6	Hydrogeol	ogy31					
	7.6.1	Hydrology					
7.7	Soil Geoch	emistry					
	7.7.1	Geochemistry					
	7.7.2	Quality					
7.8	Conclusior	as and Recommendations					
8	List of References						
Append	dix A Four	chu1					
Append	dix B	2					
St. Pete	St. Peter's-Oban2						
Append	Appendix C3						
Janvin	Island						

Appendix A	Fourchu
Appendix B	St. Peter's-Oban
Appendix C	Janvin Island

List of Figures

After Page

Page

Figure 1-1	Location Map	1
Figure 5-1	Fourchu Site Location Plan	8
Figure 5-2	Atlantic Coastal Region – Conceptual Hydrologic Model	12
Figure 6-1	St. Peter's-Oban Site Location Plan	18
Figure 6-2	Lowland Coastal Region – Sedimentary Plan	21
Figure 7-1	Janvrin Island Site Location Plan	28
Figure 7-2	Lowland Coastal Region – Windsor Lowland District – Conceptual Hydrologic	
	Model	31

List of Tables

Table 5-1	Oily Waste Leachate Indicator Chemistry from Fourchu In-Trench Wells	15
Table 5-2	Groundwaters Elevated Above Background In Inorganic Indicators Fourchu	16
Table 6-1	Oily Waste Leachate Indicator Chemistry for In-Trench Wells at St.	
	Peter's-Oban Site	24
Table 6-2	Groundwater Elevated Above Background in Inorganic Indicators	25

List of Plates

Page

Plate 5-1 Plate 5-2	Oblique Aerial View of the Fourchu Site After Closure (1979) Looking Northeast Oblique Aerial View of the Fourchu Site During the Assignment (2010) Looking Northeast	8 8
Plate 5-3	Tree Growth Over the Cover Caps and Around the In-Trench Monitoring Wells for Trenches 2 (Foreground) and 3 (Centre Background) on 26 May 2010	9
Plate 5-4	Trench 3 Ready for Disposal with In-Trench Monitoring Well Construction Within the East Side Wall	10
Plate 5-5	An Oblique Arial View of the Site After Capping Looking Toward the Northeast. Note the French Drain and Swale Diverting Shallow Groundwaters Around the Site	11
Plate 6-1	Oblique Aerial View of the St. Peter's-Oban Site After Closure (1979) Looking Toward the Northeast	18
Plate 6-2	Oblique Aerial View of the St. Peter's-Oban Site During This Assignment (2010) Looking to the Southwest	18
Plate 6-3	Tree Growth Over Trench1. In Trench Monitoring Well (Centre Foreground) Awaits Construction of Mounded Cover Cap	19
Plate 6-4	Trench 1 Ready for Waste Disposal. Note M-Trench Monitoring Well Centre Background (Also Present in Plate 6-3)	20
Plate 7-1 Plate 7-2	Oblique Aerial View of the Janvrin Island Site Looking Southeast (2009) Tree Growth Over the Disposal Area to Right of Vehicles During Site Reconnaissance	28 29
Plate 7-3	Lense of Oily Waste in Test Pit 6	30

exp Quality System Checks								
Project No. :	SYD-00020400-A0	Date: June 7, 2012						
Type of Docum	ent: Final	Revision No.: 0						
Prepared By:	Fred Baechler, M.Sc., P.Geo.	Juse Sceekler						
Reviewed By:	Steven Schaller, B.Tech, EP	Ahlen						

Executive Summary

Nova Scotia Transportation and Infrastructure Renewal and Nova Scotia Environment contracted **exp** Services Inc., the new identity of ADI Limited, to undertake intrusive investigations at three Provincial oily waste management sites located in Richmond County. These were associated with cleanup of two marine based oil spills from the 1970s.

On 04 February 1970 the tanker Arrow ran aground on Cerberus Rock in Chedabucto Bay, Nova Scotia, spilling approximately 5.9×10^6 litres of Bunker "C" oil into Chedabucto Bay. Approximately 2.3×10^6 litres was recovered and disposed of in nine sites. On 15 March 1979, the tanker Kurdistan split in two in the Cabot Straits, spilling 7.3×10^6 litres of Bunker "C" oil. Approximately 890,000 bags and 1,300 barrels of oil and oily debris were collected and disposed of in 10 sites. The three sites described in this report include the 30 year old Fourchu and St. Peter's-Oban sites, which were associated with the Kurdistan spill. The 40 year old Janvrin Island site was associated with the Arrow spill

The overall objectives for work on the Kurdistan sites were to delineate any impacts to soil, groundwater and surface waters and to provide recommendations for managing risks at the sites, including monitoring. Work on the Janvrin Island site was limited in scope to delineation activities.

Four types of potential contaminants were disposed in the Kurdistan sites, including Bunker "C" oil, polyethylene bags, organic matter (dead birds, seaweed, oiled fish) and miscellaneous materials (i.e., fish nets, oil booms, 205 litre drums). Details of materials disposed of in the Janvrin Island site, other than Bunker "C" oil are unknown. The composition of the buried oil was complicated by formation of a seawater-in-oil emulsion and weathering on the beaches prior to pick up and disposal. Once placed in the disposal sites, the oil was transferred from a high energy sea/beach environment to a low energy, subsurface environment. Therefore, the rate of natural degradation of the oil is minimized and the active life time of the sites extended. The chemical characteristics of the oily waste contacted water was generally characterized by elevated concentrations of total dissolved solids, pH, alkalinity, chloride, ammonia nitrogen, total organic carbon, iron, manganese and total petroleum hydrocarbons. Sampling of wells within the Kurdistan disposal trenches noted a reduction in concentration in these parameters over the 30 years since disposal ceased.

The main objectives for conducting the environmental site assessment work at the Kurdistan sites were to assess soil, groundwater and surface water conditions around the disposal areas to determine if any petroleum impacts, which may be cause for concern, had occurred as a result of the historical disposal activities. No such impacts were in evidence that would warrant a more detailed assessment. Care and maintenance, with long-term monitoring is recommended.

Fourchu Site

The Fourchu site, covering approximately 1 hectare, is located on Provincial Crown Land some 4.5 km west of the community of Fourchu in Richmond County, along the southeast coast of Cape Breton Island.

The 30 year old site employed an entombment disposal methodology within a low permeable glacial till. Approximately 126,000 bags of Bunker "C" oil, sea water and oiled debris were disposed of at this site.

Investigations included installation of four groundwater monitoring wells and two surface water stations.

There were preliminary indications for the presence of elevated inorganic parameters, (ammonia nitrogen) in groundwater at both background and downgradient sites. Hydrocarbons were not present.

Given minimal dwellings in the vicinity, there is a low human health risk from the site. The proper management approach would include regular monitoring, care and maintenance, removal of trees growing over the trench cover caps, construction of a gate to prevent unauthorized entrance and identifying the site on existing mapping to restrict any other future land use.

St. Peter's-Oban Site

The St. Peter's-Oban site, covering approximately 0.4 hectares, is located on Provincial Crown Land, 6.5 km northwest of the Village of St. Peter's, Richmond County, Nova Scotia.

The 30 year old site also employed an entombment disposal methodology within a low permeable glacial till. Approximately 202,000 bags and forty, 205 litre drums of Bunker "C" oil, sea water, oiled debris and 2,268 kg of oiled mackerel, as well as 6,819 to 9,092 litres of diesel fuel and organic solvent from a net laundromat were disposed of at this site.

Investigations included installation of six groundwater monitoring wells and one surface water station.

There was sporadic presence of hydrocarbons, but within guidelines. There were elevated concentrations in select non-organic parameters, but within applicable guidelines. The site hydrogeology is more complex than the Fourchu site, with less overburden and a strong downward gradient into the bedrock.

Given minimal dwellings in the vicinity, there is a low human health risk from the site. It is, however, situated on a watershed divide with some drainage directed into the Bras d'Or Lake Estuary. The proper management approach would include consideration for constructing mounded cover caps over each trench, removal of domestic wastes illegally dumped on-site, regular monitoring, care and maintenance, removal of trees growing over the site and trench cover caps, construction of a gate to prevent unauthorized entrance and identifying the site on existing mapping to restrict other future land use. Additional intrusive testing is recommended to aid in better understanding the hydrogeological conditions under the site.

Janvrin Island Site

The Janvrin Island site, covering approximately 0.2 hectares, is located some 1 km north of the community of Janvrin Harbour in Richmond County, Nova Scotia.

Since very little was documented concerning disposal operations, the intrusive program focussed solely on test pits to delineate the extent and method of disposal, as well as type of wastes. The 40 year old site did not employ any appropriate disposal methodology, as would be appropriate by today's standards. The disposal zone is placed near or within the water table, with no under till liner, minimal surface cover, no mounded cover cap and is overgrown with trees. The disposal area covers some 4600 m² to depths ranging from 1 to 2 metres, resulting in volumes of 4600 to 9200 m³. The risk for release is, therefore, qualitatively high.

Investigations included excavating 19 test pits within and around the disposal area. While organic contaminants were visually noted scattered in discrete zones, lab analyses of product layers did not exhibit elevated values above guidelines. Hydrocarbons were not visually evident on surface.

1 Introduction

1.1 Contract

Nova Scotia Transportation and Infrastructure Renewal (NSTIR) and Nova Scotia Environment (NSE) contracted **exp** Services Inc., the new identity of ADI Limited, to undertake intrusive investigations at three Provincial oily waste management sites located in Richmond County. These were associated with the cleanup of two marine based oil spills from the 1970s.

The Fourchu and St. Peter's-Oban sites were associated with the 1979 Kurdistan oil spill. The Janvrin Island site was associated with the 1970 Arrow oil spill.

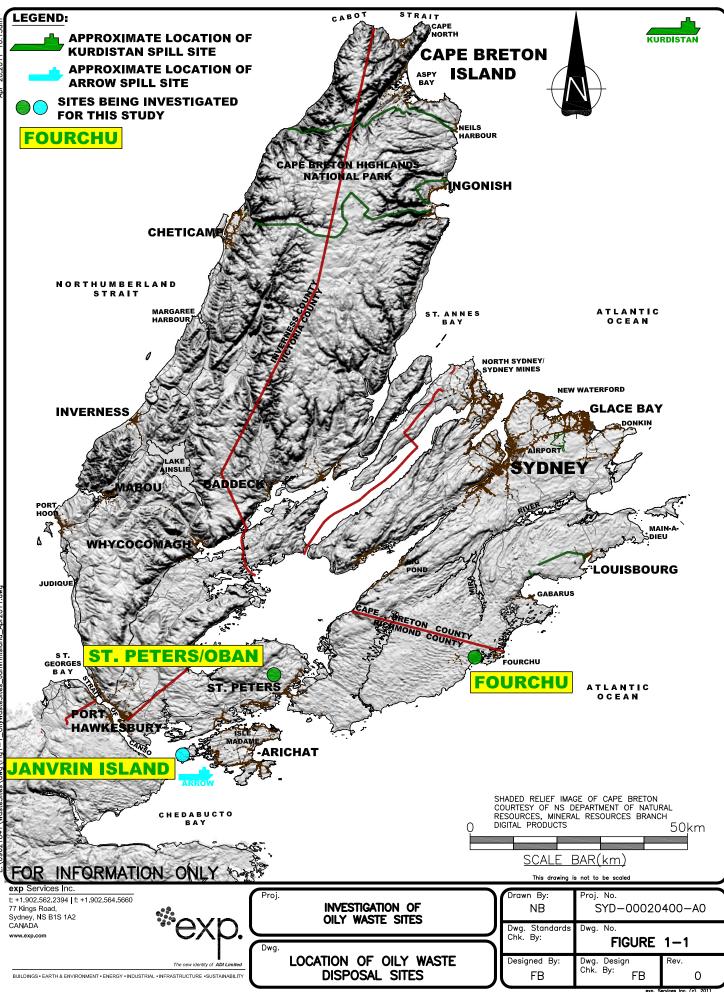
The initial field program was carried out between May and September 2010. Additional intrusive work and monitoring was undertaken during November and December 2010.

1.2 Location of Sites

The location of the three sites is provided in Figure 1-1. They were positioned primarily along the southeastern coast of the Island to accommodate cleanup of the most heavily oiled shorelines.

1.3 Structure of Report

The report is structured to provide background information regarding the nature of the spills and reasons for selection of the sites in Section 2.0. Section 3.0 outlines the scope of work required for this assignment. Section 4 summarizes the field program employed to assess the sites. Sections 5.0, 6.0 and 7.0 outline the findings for the Fourchu, St. Peter's-Oban and Janvrin Island sites, respectively.


2 Background

2.1 Spill History

On 04 February 1970 the 18,000 DWT tanker Arrow, carrying 17.3 x of 10^6 litres of Bunker "C" fuel oil, ran aground on Cerberus Rock in Chedabucto Bay, Nova Scotia (Figure 1-1). Approximately one-third of the cargo was recovered from the tanker and one-third driven out to sea. The remaining 5.9 x of 10^6 (approximately) was trapped in Chedabucto Bay and was mainly on the beaches. Approximately 2.3 x of 10^6 was recovered from some 48 km of cleaned beaches and placed in nine selected disposal sites (Task Force Operation Oil, 1970). One of the sites was the Janvrin Island site discussed in this report. A preliminary assessment of the site was undertaken by Baechler et al (1976). Recommendations were made for intrusive investigations to better understand and monitor the impact of disposal operations.

On 15 March 1979 the tanker Kurdistan split in two in the Cabot Straits (Figure 1-1), spilling 7.3×10^6 litres of Bunker "C" oil. Approximately 890,000 bags and 1,300 barrels of oil and oily debris were collected on Cape Breton Island and the Canso Straits area; accounting for approximately 91% of all oil recovered (Baechler, 1980). Two of the specially designed containment sites were constructed at

the Fourchu and St. Peter's-Oban locations discussed in this report. A report detailing design, construction and operations was provided by Baechler (1980). Recommendations were made for intrusive investigations to better understand and monitor the impact of disposal operations.

2.2 Site Selection

At the time of the Arrow incident disposal sites had not been pre-selected; therefore, sites selected were in proximity to the shorelines being cleaned up, i.e., Janvrin Island. A review of the sites 6 years after spill cleanup (Baechler et al, 1976) noted that as a result there was no time for intrusive investigations to assess and design the sites. Further, no information was collected during operations concerning the amount and type of oily waste disposed of, nor disposal methodology. No ground/surface water monitoring programs were established.

In the fall of 1975, NSE created a list of guidelines for selection of oily waste disposal sites (Brisco et al, 1977), giving consideration to land ownership, accessibility, surficial material, topography, bedrock and surface/groundwaters. Preliminary site selections were made over the Province, of which the St. Peter's-Oban site was one. However, no intrusive investigations were undertaken prior to the Kurdistan incident. In addition, due to the location of the Kurdistan spill and currents there were remote, heavily oiled shorelines requiring cleaning in areas for which sites had not been pre-selected, as exemplified by the Fourchu site. In the latter case, the guidelines outlined above were applied to quickly find a site in proximity to the shoreline to minimize travel time and costs (Baechler, 1980).

2.3 Site Operations

The Fourchu and St. Peter's-Oban sites were operational between approximately April and November 1979. These abandoned sites are now over 30 years old. The Janvrin Island site was operational during the winter of 1970; placing it at approximately 40 years old. Details are provided under the relevant sections describing each site.

2.4 Site Closure

No additional assessment and/or monitoring, except for visual assessment of general site conditions, have been undertaken on these sites since disposal operations ceased.

2.5 Wastes Disposed of and Potential Pathways for Release

Generally four types of wastes were disposed of within the Kurdistan sites including:

- Bunker "C" oil;
- polyethylene bags;
- organic matter (including dead birds, kelp, seaweed, oiled fish);
- miscellaneous materials (i.e., fish nets, oil booms, 205 litre drums, some domestic waste); and
- diesel oil and solvent at St. Peter's-Oban site.

No chemical dispersants were used in cleanup operations associated with the Kurdistan. Dispersants and cleaning solutions were experimented with on select beaches during the Arrow cleanup and, therefore, may be present in the Janvrin Island site.

The principal contaminant in the disposal sites is a heavy, residual #6 fuel oil or Bunker "C" (C20 and greater) being transported by both the Kurdistan and Arrow tankers. No complete analysis is available of either cargo. A preliminary analysis of the Arrow product (Baechler, 1980) indicated:

Hydrocarbons (oils including paraffins, isoparaffins, cycloparaffins, mono-	73.1% wt.
aromatics, polyaromatics and sulfur compounds)	
Non Hydrocarbons (Resins – little known about composition)	16.31% wt.
Asphaltenes (little known about composition)	9.28% wt.
Unrecovered (little known about composition)	1.31% wt.

Notable elements present (as % wt.) included carbon (86.13), hydrogen (11.56), sulfur (2.21), oxygen (1.25) and nitrogen (0.39). Notable metals (at greater than 10 ppm) included: vanadium (272 to 386), aluminium (100), barium (970), nickel (50), iron (50), titanium (40) and cadmium (10).

The quality certificate for the Kurdistan cargo indicated:

Penski-Martin Flash Point	93°C
Specific Gravity at 15.6°C	0.9561
Pour Point	7°C

This chemical composition is complicated by the fact that the oil was initially spilled into seawater at a time of extreme agitation by heavy pack ice, high wind and waves. This allowed the oil to form a seawater-in-oil emulsion prior to pick up and disposal. Weathering processes likely to have occurred during this time include evaporation, emulsification, solution, dispersion, photo-chemical reaction, oxidation and biodegradation. All of these will have acted to change the chemical/physical characteristics of the initial oil.

In addition, once ashore and depending upon priority placed upon beach cleanup, the oil may have remained exposed for up to 4 to 5 months prior to removal; leaving the oil exposed to wave action, microbiological activity and sunlight. It was noted that as summer proceeded, heating of the oil on the beach caused it to mobilize and sink into the beach sediment. Hence bags disposed of during the summer months had more sediment and less oil than during the winter.

The ramifications of this characterization for assessing the risk of release at the disposal sites is four fold:

- 1. Once placed in the disposal sites, the oily wastes are transferred from an active, aerobic, high energy sea/beach environment to an anaerobic, low energy, low temperature subsurface environment. Therefore, the time for natural degradation of the oil is expected to be lengthened considerably and the life time during which the sites act as a source for release of contaminants is expanded.
- Due to the low vapour pressure of Bunker "C", high carbon numbers (>C20) and ground temperature (10 to 15°C) in the subsurface disposal regime, evaporation may be disregarded. This is expected to eliminate formation and transport of volatiles in the unsaturated zone.
- 3. The initial release of the oil will be controlled by the 100% polyethylene bags used for transporting the oil from the beaches to the disposal sites. This method of transport was characteristic of the Kurdistan spill; with bulk transport of debris from the beaches in dump trucks characterizing the Arrow spill. While the material comprising the bags can be broken down by contact with oil, the time frame is unknown.

- 4. This leaves the possibility of four pathways for transporting hydrocarbons off-site including:
 - non-soluble light non-aqueous phase liquid (LNAPL) components could move laterally downgradient on the water table/capillary fringe.
 - the soluble components could move throughout the groundwater flow system.
 - whether dense non-aqueous phase liquid (DNAPL) components were formed as a result of weathering and emulsification of the oil is unknown. Based upon the chemistry of the Arrow oil, this is considered a low probability. However, wells were monitored for its presence; none was found.
 - residual Phase will be present, adsorbed onto sediment within the trenches and available for leaching.

Minimal data was available in the literature concerning the composition of waste contacted water to be expected within an on-land disposal site for Bunker "C" from a marine based spill. To provide guidance in this regard and, therefore, indicator parameters to aid in detection of any plume movement, Baechler (1980) reported on samples collected from 11 in-trench wells at the Hadleyville, Fourchu and St. Peter's disposal sites. These samples represent water within the disposal trenches soon after capping. They, therefore, should represent the chemical characteristics of the waste contacted water in question. Details of each trench sample are reported within the discussion of the relevant disposal site. Overall comments are provided as summarized by Baechler (1980):

- Generally the chemistry indicates a brackish to saline (total dissolved solids (TDS) of 748 to 12,832 mg/L), very hard (315 to 4,000 mg/L), encrusting, sodium-chloride to sodium bicarbonate type water, with a pH range of 6.6 to 7.5. Nutrients are characterized by elevated nitrogen (kejldahl N of 1 to 46 mg/L) and total organic carbon (27 to 1500 mg/L). Of the 20 metals analyzed for, iron (5.4 to 104 mg/L) and manganese (6 to 51 mg/L) were always elevated. There were also fluctuations in arsenic, barium, lead, antimony and selenium. Organics were characterized by non-detectable to 5 mg/L of total petroleum hydrocarbons (TPH). Microbiological traits were characterized by total and faecal coliforms ranging from 0 to plus 8000/100 ml.
- 2. Elevated concentrations of sodium and chloride, as well as sodium/chloride ratios of 0.83 (similar to seawater of 0.85) indicate the dominance of this source.
- 3. The relatively large concentration of nitrogen is predominately in the form of ammonia or organic nitrogen. Possible sources include hydrocarbons, biodegradation products, organics (kelp, dead birds, etc.).
- 4. Hydrocarbons were visually apparent in the leachate, but difficult for the lab to quantify. This was partly due to the large concentrations of sediment in the water and analytical techniques focused on <C20. Therefore, non-detects may still include the presence of higher carbon numbers. The data indicated a variable range of 0 to 5 mg/L in the liquid extract, with six out of 11 trenches showing nothing. The sediment extracts showed contamination in virtually the same trenches as the liquid extract. In those samples recording oil, large concentrations were found in the sediment involving a wide range of carbon numbers and a definite indication of the presence of C20 and above.</p>

3 Scope of Work and Project Objectives

The overall objectives for the work performed on the Kurdistan Sites, as outlined by the NSTIR, were as follows:

- 1. Assess soil, groundwater and surface water conditions surrounding the disposal sites in order to determine if any contaminant impacts have occurred as a result of the historic disposal activities.
- 2. Provide recommendations for the risk management of the sites in the short and long-term (including any required immediate remedial or risk assessment activities, remedial plan or risk management plan) commensurate with the significance of identified impacts.
- 3. Provide recommendations for monitoring of the sites in the short and long-term, commensurate with the significance of identified impacts.

Work performed on the Janvrin Island site was solely to outline the disposal area using test pits.

4 Field Program

4.1 Field Reconnaissance

A field reconnaissance was carried out over the two Kurdistan sites between 18 and 26 May 2010. Prior to the visit, Nova Scotia Department of Natural Resources (NSDNR) personnel had cleared the access roads to both sites. Potential drill sites were selected and located with a hand-held GPS. These locations were provided to NSDNR, which provided cutting crews to clear access. Reconnaissance of the Janvrin Island site was undertaken on 16 November 2010.

Both the St. Peter's and Fourchu sites were flown by **exp** on 11 June 2010 to provide oblique aerial digital photographs. This supplemented oblique aerial photographs taken by NSDNR and NSE personnel in the fall of 2009.

4.2 Design of Intrusive Program

The approach in designing the intrusive program for the entombment disposal methodology utilized at the Kurdistan sites recognized that:

- 1. The release pathways for contaminants to be transported off-site could include:
 - Pathway 1: downward flow into the shallow bedrock and then laterally off-site within the active Groundwater Flow Field (GFF).
 - Pathway 2: vertical upward transport through the seal and cap, then flow through the interflow zone within the shallow groundwater Quick Flow System (QFS).
 - Pathway 3: lateral flow through the till.
- The thickness of overburden between the base of the trenches and the top of rock was an important consideration for assessing Pathway 1. Given project scope it was decided that the first well on each site would go to approximately 19 metres. If bedrock was not encountered, then

Pathway 1 was not a focus of the investigation and subsequent drilling and monitoring well installation targeted Pathway 3 down to a depth of 2 to 3 metres below the base of the trenches.

- 3. For wells specifically targeting the overburden, the decision was made to focus on determining the presence of contamination, not to assess the horizontal and vertical components of the groundwater flow system in detail. Therefore, rather than short screened length piezometers, the entire length of the boreholes were screened to within approximately 2 metres of ground surface.
- 4. Monitoring wells were installed immediately downgradient of the operations area to detect the first sign of release, not at the edge of the property boundaries where regulatory compliance points maybe implemented. No intrusive testing was targeted directly within the operations area, to ensure the viability of the disposal trenches was not compromised.
- 5. Given the shallow nature of Pathway 2, assessment for the presence of contamination focused on: a) visual inspection of topographic depressions where interflow would come to the surface as storm saturated overland flow, b) evidence of staining and dead vegetation; and c) springs/seeps.

Given the absence of intrusive information and method of disposal for the Janvrin Island site, a test pit program was undertaken to delineate the lateral and vertical extent of the disposal area, as well as type of wastes disposed of, method of disposal and capping. To minimize contaminant transport to depth into the bedrock, test pits were excavated only to the bottom of the wastes. No monitoring wells were installed.

Submissions were made to NSDNR requesting access to the Crown lands on which the sites were located. This included provision of Health/Safety and Fire Protection Plans. GPS coordinates for proposed intrusive sites and an outline of what clearing was required to provide access for the drill rig or trackhoe were also provided.

4.3 Assessment and Evaluation Criteria

Discussions with the appropriate regulatory agencies defined the following guidelines to be applied to the sites.

- 1. Given that the sites in question are waste disposal areas, groundwater under and around the disposal areas, were to be deemed non potable.
- 2. TPH in soil and water would be screened against Atlantic PIRI Tier II screening for commercial use with coarse grained soil, based on ingestion.
- 3. Metals and volatile organic compounds (VOCs) in soils would be screened against Canadian Council of Ministers of the Environment (CCME) Industrial Land Use.
- 4. Metals, general inorganics, VOCs and polycyclic aromatic hydrocarbons (PAHs) in water would be screened against draft NSE guidelines for contaminated sites (2011).
- 5. PAHs in soil would be screened against CCME 2010 industrial guidelines.

Guidelines are provided in Appendices on summary soil and water tables for the respective sites.

4.4 Drilling and Well installation

Drilling, installation of monitoring wells and collection of soil samples for analysis at the Kurdistan sites was undertaken between 26 July and 07 August 2010. The drilling subcontractor was Boart Longyear, which provided equipment and personnel from their Sydney operation. All well sites were surveyed into geodetic for horizontal and vertical control.

Subsequent water monitoring was carried out between 30 August and 02 September 2010, representing a summer, non-rainfall event condition, including:

- collection of head levels and water samples for chemical analysis from the recently installed monitoring wells;
- collection of streamflow and water samples for chemical analysis from nearby pertinent surface waters/springs; and
- collection of head levels and indicator chemistry from select in-trench monitoring wells.

Based upon review of the initial results, additional drilling was undertaken at the St. Peter's-Oban site on 18/19 November 2010. A second suite of samples was collected at both sites in early December 2010 to represent fall recharge events.

Test pits on Janvrin Island were undertaken on 02 December 2010. These were located with a handheld GPS instrument.

4.5 Laboratory Analyses and QA/QC

All soil and water samples were submitted to Maxxam Analytics Inc.'s (Maxxam) Sydney laboratory for chemical analysis. This laboratory is a Standards Council of Canada (SCC) and Canadian Association of Laboratory Accreditation (CALA) accredited laboratory.

A value of 10% of samples was duplicated as part of a Quality Assurance (QA)/Quality Control (QC) program through blind internal lab duplicates. QA/QC criteria included <10% ion balance error and 25% relative percent difference.

4.6 Risk Assessment

No detailed human and/or ecological risk evaluation was requested as part of this assignment. However, a qualitative evaluation of potential risks was developed, based upon existing land use, site reconnaissance and activity in the area.

4.7 Data Appended

A separate appendix is provided for each of the three sites. Within each, information is provided for well logs, hydraulic testing, water levels, soil geochemistry and water chemistry.

5 Fourchu Site

5.1 Location

The Fourchu site, covering approximately 1 hectare, is located some 4.5 km west of the community of Fourchu (Figure 5-1). Two overview oblique aerial photographs characterize conditions during operations (Plate 5-1) and testing for this assignment (Plate 5-2).

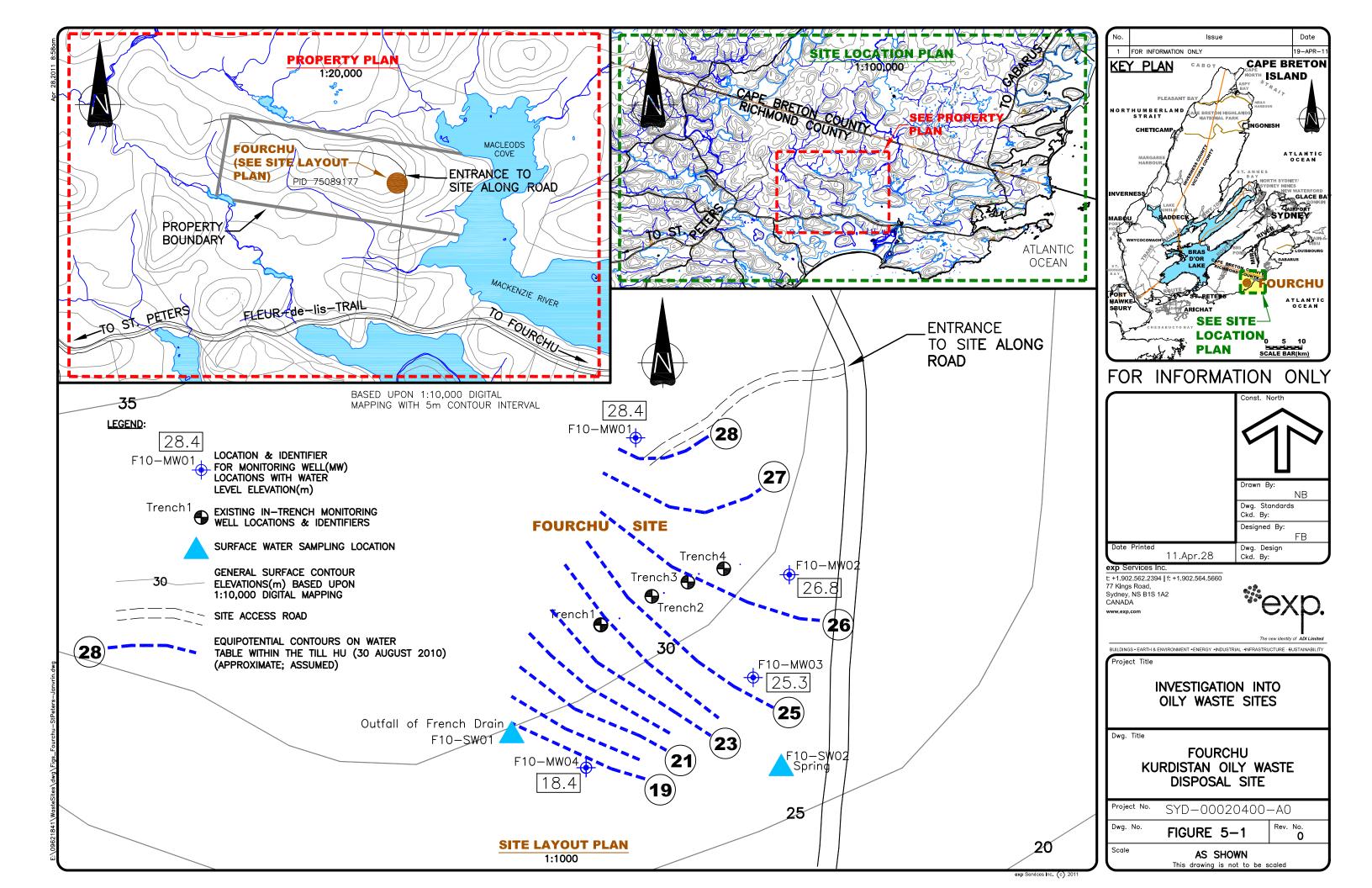


Plate 5-1: Oblique aerial view of the Fourchu site after closure (1979) looking northeast.

Plate 5-2: Oblique aerial view of the Fourchu site during this assignment (2010) looking to the northeast.

5.2 Land Ownership, Use and Access

The site is positioned on Provincial Crown land under the jurisdiction of the NSDNR.

The site is accessed off the Fleur-de-lis Trail, along a gravelled secondary woods road 0.9 km from the intersection with the former (Figure 5-1)

Prior to development for disposal, the site was clear cut (Plate 5-1). Since disposal ceased, the site is gradually growing back in with shrubs and spruce (Plates 5-2 and 5-3).

The gravelled secondary access road allowed for forestry operations on and around the site prior to disposal. The road was recently re-opened for continuation of such operations. No further developments have take place within 1 km of the site since disposal operations ceased.

5.3 Site Reconnaissance

The site was visited by **exp** personnel on 26 May 2010. The site access road from the forestry road had been cleared recently by NSDNR personnel, with a locked wire gate still in place.

Plate 5-3: Tree growth over the cover caps and around the in-trench monitoring wells for Trenches 2 (foreground) and 3 (center background) on 26 May 2010.

Forestry operations had not damaged the site. 3 (c

There was no indication of damage by off-road and/or recreational vehicles. No other wastes had been dumped on-site.

The site was growing over with shrubs and spruce. The growth of latter to heights of 2 to 4 metres on the cover caps was of concern, due to potential damage to the viability of the trench caps and seals (Plate 5-3).

All in-trench wells were still in place. Surrounding concrete caps were not cracked, but the ground had settled to varying degrees under them.

There were no visual or olfactory signs of hydrocarbon release at surface. One spring was located downstream of the eastern most trench (Figure 5-1), with no signs of hydrocarbon contamination. No zones of dead vegetation were in evidence.

5.4 Intrusive Program

For this assignment, a total of four sites were drilled and one monitoring well installed at each site (Figure 5-1), screened in the glacial till.

Monitoring well F10-MW01 was positioned upgradient of the disposal area to provide background conditions. The remaining three well sites were positioned immediately down topographic gradient of

the disposal trenches. This assumed that groundwater flow in the overburden would in large measure be controlled by topographic constraints.

5.5 Site Design and Operations

The Fourchu site was operational for the Kurdistan spill. It received oily wastes from approximately 90 km of shoreline from the mouth of Grand River to Louisbourg. Information reported by Baechler (1980) indicated:

- 1. The site was operational between May and August 1979.
- 2. An entombment disposal methodology was utilized in the design. This included selection of sites with thick, low permeability, basal glacial till. Subsurface burial was within four, 3 to 3.5 metre deep trenches (Plate 5-4).

Plate 5-4: Trench 3 ready for disposal with in trench well construction commencing within the east side wall.

3. Daily disposal of material was followed by a thin cover of fill, derived from on-site till, which was graded to drain any rainwater to a sump for pumping to keep the trenches dry for disposal. This daily cover created numerous mini cells within each trench. Disposal ceased within approximately 1 metre of ground surface.

4. A seal of fill (reworked till) was emplaced to bring the trench to grade, but without any permeability specification. The trench was then mounded above grade with the same fill (Plate 5-5) and seeded to both facilitate runoff and minimize erosion.

Plate 5-5: An oblique aerial view of the site after capping looking toward the northeast. Note the French drain and swale diverting shallow groundwaters around the site.

- 5. A monitoring well was installed in the side wall of each trench (Plate 5-4) during operations to allow for monitoring of water level and chemistry within each trench after burial ceased.
- 6. A French drain was installed upgradient of the trenches to direct shallow subsurface flow around the site into a linear topographic depression on the west side of the operations area (Plate 5-5).
- 7. A total of 126,240 bags of Bunker "C" oil, sea water and oiled debris were disposed of at this site.

5.6 Hydrological Setting

5.6.1 Hydrological Region/District

The site is positioned within the Atlantic Coastal Plain Hydrological Region, Till Plain Hydrological District of Cape Breton (Baechler et al, 2009). This Region forms most of the southeastern coastline, northeast of St. Peter's, comprising some 8.8% of the island. Distinctive features generally include a low relief, gently undulating, eastward dipping plain. It is underlain by igneous and metamorphic bedrock with ubiquitous wetlands. Thick glacial till deposits allow for overburden controlled relief in

the form of ridges and drumlins. Unique climate conditions are created by proximity to the Atlantic Ocean, which creates extensive fog and exposure to strong winds, as well as relatively cool summers and warm winters in comparison with the rest of the Island.

A three-dimensional conceptual block model of this District (Figure 5-2) notes the active groundwater flow field is expected to be governed by the low permeable underlying bedrock Igneous $_{Plutonic}$ (I_P) and Igneous $_{Volcanic}$ Metamorphic (I_VM) Hydrostratigraphic Units (HUs). These are confined by a thick, fine grained Till HU. Ground surface water interaction is expected to be controlled predominately by the shallow groundwater quick-flow-system operating in the soil and upper weathered portion of the Till HU, usually within 1 to 2 metres of ground surface.

Hydrologically the site is positioned within provincial drainage basin 1FJ-SD9, locally identified as the Mackenzie River watershed. It drains to the east-southeast, discharging into the Atlantic Ocean at Framboise Cove. Specifically, it is positioned near the western shoreline of MacLeods Cove, which forms the upper reaches of the Framboise Estuary (Figure 5-1).

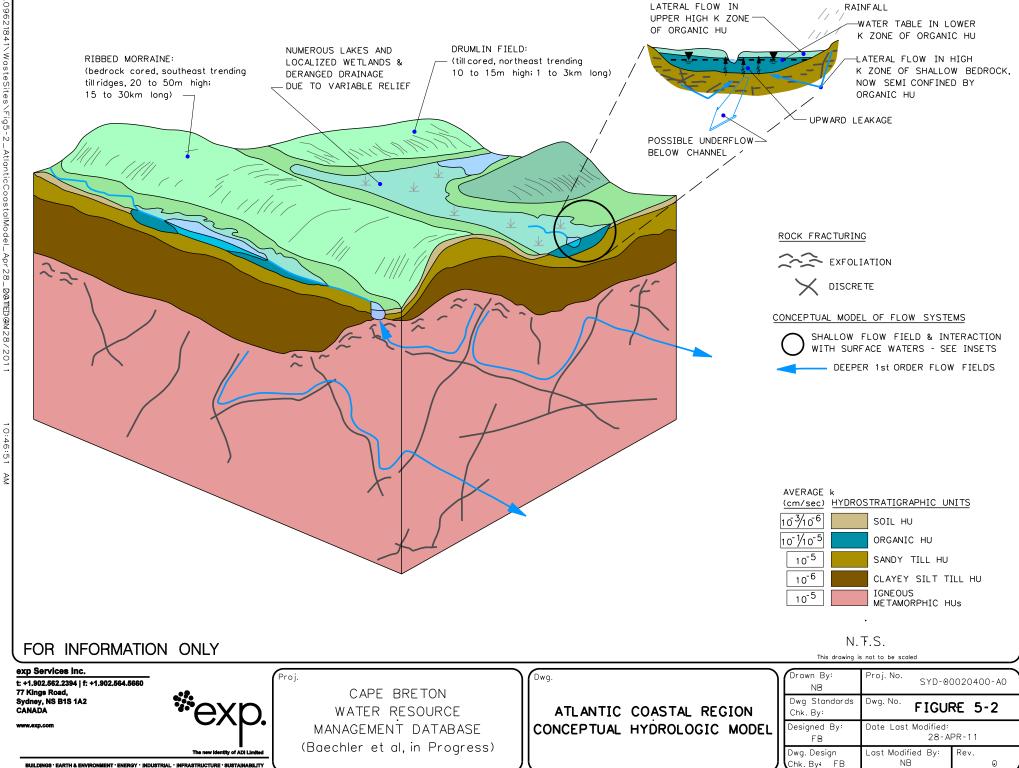
5.6.2 Hydrogeology

The drilling program confirmed the hydrological setting noted above, as well as the findings from the initial test pit program undertaken prior to site development (Baechler, 1980), which suggested good qualities for an entombment site. Specifically the background well (F10-MW01) and a downgradient well (F10-MW04) encountering over 19.2 metres of a compact to dense, gravelly, moderate brown, sandy silt basal glacial till; no bedrock was encountered. The initial test pit exposures also noted coarser sand lenses within the basal till and the presence of a possible 1 to 1.5 metre thick ablation till over the basal till. During construction of the trenches, the basal till was found to be sufficiently dense enough to require use of a ripper on a D7 to allow excavation to proceed.

Given this depth, the remaining two wells were drilled to 6.7 metres depth, some 3 metres below the depth of the disposal trenches.

One grain size analysis, taken from a sample at F10-MW01 at 2 metres depth, indicated gravel (16.1%), sand (33.7%) and silt/clay (50.3%). This generally agreed with six samples collected during the initial test pit investigations prior to disposal (Baechler, 1980). Those samples indicated percent gravel (range 16 to 30%; average 23%), percent sand (range 28 to 40%; average 35%) and percent silt/clay (range 32 to 48%; average 42%).

Geotechnically, the liquid limit of 22.7, plastic limit of 20.6 and plastic index of 2.2 indicated a soil symbol of ML (silt) or OL (organic silt) and Till soil type.


Hydraulic testing of the monitoring wells installed for this program indicated a range of hydraulic conductivity from 4.6×10^{-6} to 4.9×10^{-8} cm/sec, averaging 1.5×10^{-6} cm/sec.

During trench construction, seepage was noted out of the upper ablation till and the basal till was damp to wet. However, no major seepage problems or slope stability problems arose. Sumps and pumps were required for dealing with heavy rains.

Two sets of water levels were collected to characterize:

 summer groundwater recession conditions (low water levels, low gradients) on 30 August 2010; and

• fall groundwater recharge conditions (high water levels and elevated gradients) on 10 December 2010.

The water table within the Till HU was relatively high, resembling ground surface. It ranged between 1.2 and 2.0 metres in both the summer and fall. The only exception was at MW10-04, which ranged from 8.8 metres deep during the summer to 2.1 metres deep during the fall. Whether this is an accurate representation of fluctuating seasonal water levels, or slow response after well installation is unknown and will have to wait further monitoring. Subsequent monitoring on 02 May 2011 by NSE personnel indicated a water level of 1.83 metres, suggesting slow response was the reason for the initial low level. Generally there is a thin unsaturated zone and, therefore, wastes within the trenches are placed below the water table.

The equipotential lines for the water table during the August 2010 summer groundwater recession event are provided on Figure 5-1 (site layout plan). They indicate that direction of lateral groundwater flow within the Till HU (assuming a homogeneous, isotropic media) is from north-northeast to south-southwest at a maximum gradient of 9.5% due to the low water level in MW10-04. The vertical flow component is unknown.

Assuming a porosity range for the Till HU of 30 to 50%, the steep gradient and the range in hydraulic conductivity indicates a theoretical, average, linear, groundwater flow velocity of 1 to 1.5 m/year, ranging from 0.04 to 2.4 m/yr. If the lower fall gradient associated with the higher water level at MW10-04 is utilized, the flow velocity reduces to approximately 0.5 m/yr. Given the 30 year life time of the site, any waste contacted plume, if present, could have travelled a maximum of some 30 to 45 metres. The actual position of the end of the trenches is unknown; with the in-trench monitoring wells usually positioned near the middle, deepest part of the trench. Using the distance from the in-trench wells to the nearest downgradient monitoring well provides for a minimum travel distance of 45 to 50 metres; approximately 20 to 30 metres from the nearest end of the trench. Therefore, any conservative indicator of plume transport may be just past or upgradient of the wells.

5.6.3 Hydrology

No defined ephemeral or perennial stream channels were present on-site. No rills or gullies were developed over the former operations area. One broad, natural, heavily vegetated swale was present along the western boundary of the site, which forms the primary receptor surface water system for site drainage and outflow from the french drain dewatering system (Plate 5-5). A road side drainage ditch is present along the eastern perimeter of the site.

Two surface water sampling stations were established for this assignment (Figure 5-1). One located at the spring and one in the receptor swale, just downstream of the french drain discharge.

No flow was visually noticeable during either sampling event; standing water was sampled.

5.7 Soil Geochemistry

5.7.1 Geochemistry

One soil sample of the Till HU was analyzed per borehole (two in MW04). Each sample was analyzed for TPH/BTEX, as well as a suite of 32 metals and 19 PAH compounds. The results are provided in Appendix A.

Analysis of the data indicated:

- 1. No hydrocarbons monitored for were detectable in the samples of the Till HU either in background or downgradient wells (Table A-1).
- 2. Most metals analyzed for were detectable. For the select metals (Table A-2), the dominant ones in terms of concentration (exceeding 100 mg/Kg) were similar at all four sites and included in descending order of concentration:
 - iron (range 22,000 to 30,000 mg/Kg; background 23,000 mg/Kg);
 - aluminium (range 9,300 to 11,000 mg/Kg; background 9,800 mg/Kg);
 - manganese (range 460 to 700 mg/Kg; background 610 mg/Kg);
 - titanium (range 220 to 390 mg/Kg; background 330 mg/Kg); and
 - barium (range 120 to 190 mg/Kg; background 120 mg/Kg).

As can be noted, the range of concentrations for these five metals resembles background concentrations and, therefore, are expected to be a result of normal geochemistry within the Till HU in this area.

 All samples indicated non-detectable PAH concentrations (Table A-3, A-4 and A-5) except for sporadic, low concentrations of select parameters. Perylene was detected in the downstream wells at F10-MW03 (0.11 mg/Kg) and F10-MW04 (0.04 mg/Kg), as well as the background well F10-MW01 (0.02 mg/Kg) and is, therefore, not expected to be a function of contaminant release.

Other low level concentrations were recorded at downgradient wells F10-MW03 (benzo(a)pyrene at 0.12 mg/Kg and naphthalene (0.04 mg/Kg)) and F10-MW02 (naphthalene at 0.02 mg/Kg). The source of these are unknown; however, given the low levels, forested nature of the site and shallow depth of the sampling these may be recording PAH compounds in natural organics washed in from the upper soil horizons.

5.7.2 Quality

There were no soil samples elevated above guidelines for hydrocarbons, metals or PAHs.

5.8 Water Chemistry and Quality

5.8.1 In-Trench Leachate wells

From examination of the initial in-trench monitoring well samples, Baechler (1980) noted that Trenches 1 and 3 provided the best and worst-case scenarios for oily waste contacted water (OWCW) chemistry. These were re-sampled during the first sampling event for this assignment to obtain a range in conditions after 30 years of dormancy. Based upon the results Trench 3 was resampled on the second event.

Nine "indicator" parameters were selected to allow for a comparison not only between trenches, but with the initial leachate composition and background groundwaters, as summarized in Table 5-1.

Location	Date	TDS	рН	Cl	NH_4	Alk	Fe	Mn	TOC	ТРН
	mg/L	mg/L	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Trench 1	2010	427	6.9	61	0.53	290	31	11	100	ND^1
	1979	748	6.7	300	1.46	195	29	12	37	Trace
Trench 2	2010(1)	988	6.7	150	3.8	740	34	17	55	ND^1
	2010(2)	1030	7.0	130	4.1	750	44	21	54	ND^{1}
	1979	7462	6.7	3100	<0.05	1600	67	41	780	ND
Background	2010	223 to	8.1 to	39 to	0.33 to	140	<0.1	0.36 to	1.6 to	ND^1
Groundwaters		234	8.2	52	0.4			0.45	2.7	
Notes:										
TDS - total dissolved solids				NH4 - nitrogen as ammonia nitrogen			gen	Mn - manganese		
TOC - total organic carbon				TPH - total petroleum hydrocarbons			ns	Fe - iron		

Table 5-1: Oily Waste Contacted Water Indicator Chemistry from Fourchu In-Trench Wells

TOC - total organic carbon

Background groundwater taken from F10-MW01 ND¹ - Non-detectable as modified TPH

Alk - Alkalinity (as HCO₃)

CI - chloride

The indicator parameters noted continual elevated values for all parameters in comparison to background groundwaters in the Till HU, except for TPH. However, the indicators were considerably reduced in concentration compared with initial samples collected after operations ceased. This suggests that dilution and other chemical reactions have reduced the strength of the leachate composition within the trenches with time. This could be accounted for by: 1) groundwater flow through the trenches (given the wastes were buried below the water table and the direction and rate of groundwater flow) and/or 2) recharge through the cover cap.

No LNAPLs or DNAPLs were present in the in-trench wells during either monitoring event.

Detectable, but low concentrations of ethylbenzene (0.033 to 0.057 mg/L) were noted in both trenches during the summer sampling event. It was again noted in Trench 3 during the fall sampling, at a similar concentration (0.029 mg/L).

No PAH compounds were analyzed for during the initial 1979 sampling event. One sample from Trench 3 during the fall sampling event noted detectable, but relatively low concentrations of five compounds including 1-methylnaphthalene (0.15 µg/L), 2-methylnaphthalene (0.13 µg/L), acenaphthene (0.08 μ g/L), fluorine (0.05 μ g/L) and phenanthrene (0.05 μ g/L). The primary PAH indicators of naphthalene and benzo(a)pyrene were non-detectable.

5.8.2 Groundwaters

In terms of major inorganic ion chemistry (Table A-6), the background chemistry of the Till HU at this site (F10-MW01) is characterized as a fresh (TDS of 223 to 234 mg/L), hard (170 mg/L), encrusting, calcium-bicarbonate type water with an alkaline pH (8.1 to 8.2) and alkalinity of 140 mg/L. Nutrients were exemplified by low concentrations of ammonia nitrogen (0.33 to 0.4 mg/L) and total organic compounds (TOC) of 1.6 to 2.7 mg/L. Of the 26 select metals analyzed for, nine were consistently detectable, but at low concentrations, including manganese (0.36 to 0.45 mg/L) and aluminium (0.019 to 0.023 mg/L).

Using the eight major OWCW indicators (Table 5-2) elevated concentrations above background were noted at MW02 and MW03. Therefore, inorganic chemical indicators suggest the presence of an oily waste contacted plume at these sites.

Location	TDS	CI NH4 Alk		Alk	Fe	Mn	TOC
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
MW02	325 to 359	*	*	270	3.3 to 15	4.5 to 6.3	72 to 130
MW03	407 to 450	53 to 56	1.2 to 1.9	260 to 330	32 to 39	11 to 17	28 to 32
MW04	242 to 301	*	*	*	*	*	5.1 to 5.5
Background	223 to 224	39 to 52	0.33 to 0.4	140 <0.1 0.36 to 0.45 1		1.6 to 2.7	
Notes: TDS – total disso	lved solids	CI – chloride	1	тс)C – total orga	nic carbon	

Table 5-2: Groundwaters Elevated Above Back	ground In Inorganic Indicators - Fourchu
Table 3-2. Groundwaters Elevated Above Dack	

TDS – total dissolved solids NH4 – ammonia nitrogen Fe – iron

Alk – alkalinity Mn – manganese TOC – total organic carbo * not above background

No detectable TPH/BTEX were present in the wells during either monitoring event (Table A-7). No LNAPLs or DNAPLs were present during either monitoring event.

In terms of PAH compounds, which were monitored during the fall sampling event, all wells recorded a varying number of detectable compounds, but all at relatively low levels (Table A-8). The largest number (seven) was encountered at MW02. The two indicator PAH compounds, naphthalene and benzo(a) pyrene, were non-detectable in all wells.

All TPH and PAH compounds analyzed for in groundwaters were at concentrations lower than criteria. In terms of critical inorganic compounds in groundwater, the background well exhibited an elevated concentration for ammonia nitrogen (0.33 to 0.40 mg/L). Downgradient well MW03 (1.2 to 1.9 mg/L) also exhibited a similar elevated value, but at a concentration four to five times higher. Aluminium also exhibited elevated values in MW02 (0.13 to 0.68 mg/L) and MW03 (0.11 to 0.13 mg/L).

5.8.3 Surface Waters

There were no background surface water stations immediately adjacent the site. The two identified surface water stations represent springs where groundwater is coming to the surface, but with no defined channel downgradient.

Using the eight major inorganic leachate "indicators" elevated concentrations at the spring in TDS (90 to 101 mg/L), due in part to elevated alkalinity (56 to 57 mg/L), suggest some influence may be present, but will require additional sampling to confirm.

No detectable TPH/BTEX was present in the French drain or spring in the summer event and one low detectable concentration of ethylbenzene (0.002 mg/L) at the spring during the fall event. No PAH compounds were detectable at either station.

All TPH and PAH compounds analyzed for in surface waters met guideline criteria. In terms of critical inorganic compounds, only pH at SW01 (5.6 to 5.7); aluminum at SW01 (0.37 to 0.88 mg/L) and SW02 (0.11 to 0.17 mg/L); and iron at SW01 (0.0021 mg/L) and SW02 (0.0021 mg/L) were elevated above applicable guidelines.

5.9 Preliminary Evaluation of Risk Management Options

No domestic dwellings are present within 1 km of the site.

The site is owned by Provincial Crown, which allows for employing restrictions on land use.

The site is growing over with trees, some of which are positioned on top of the cover caps, possibly degrading the viability of the seal. If not addressed, this could allow for release of contaminants through the quick-flow-system.

Forestry operations are ongoing in the general area, which increases the probability of encroachment onto the site by cutting and/or vehicle access.

The site has not been adequately secured to prevent access by vehicles along the site access road. The site has not been identified as restricted land use on existing mapping or in the field to ensure restrictions to future land use of the site.

There was initial evidence of an oily waste contacted groundwater plume being transported off the operations area as detected through inorganic indicators at MW02 and 03 based upon two sets of samples. No exceedences in organics were recorded. Ammonia nitrogen was in exceedence in MW03.

5.10 Conclusions and Recommendations

The field program for this assignment has confirmed the entombment characteristics of the site. The wastes are encapsulated below the water table within a tight, dense, relatively low permeable glacial till. The trench seals and cover caps have not been disturbed. The primary pathway for OWCW transport appears to be through slow transport in the Till water table aquifer.

Based on the monitoring conducted to date, there is no indication of any organic contaminant impacts from hydrocarbons occurring immediately around the site some 30 years after waste disposal operations ceased. Additional monitoring data from the wells around the site (including background wells) have indicated elevated concentrations of certain compounds including ammonia, nitrogen and several metals. Overall, based on an evaluation of all monitoring data, site characteristics, relevant pathways and receptors, there is a qualitatively low human health or ecological risk at this site. Therefore, the proper management approach would indicate consideration of the following.

- 1. A regular monitoring program should include existing ground and surface water stations, as well as the in-trench monitoring wells. Initially the sampling should be on a quarterly basis. An analysis of the data should be on an annual basis to allow for refinements to the program when and where required.
- It is recommended that all trees should be cut over the former operations area. Skidders or other heavy equipment should not be utilized to remove trees, to ensure minimal damage to the cover caps. A care and maintenance schedule should be developed for the site to manually keep forest and understory development to a minimum.
- 3. A permanent gate should be constructed at the entrance to the site access road and a treed buffer zone maintained around the site to ensure access by unauthorized vehicles does not occur.
- 4. The site should be identified on existing government mapping to ensure restricted future land use.
- 5. Consideration for research opportunities could entail autopsying one of the trenches to assess the extent of degradation of the bags holding the oil, as well as the oil itself. This would aid in understanding how long the sites pose a risk and require monitoring.

6 St. Peter's–Oban Site

6.1 Location

The St. Peter's-Oban site, covering approximately 0.4 hectares, is located 6.5 km northwest of the Village of St. Peter's (Figure 6-1). Two overview oblique aerial photographs characterize conditions during operations (Plate 6-1) and testing for this assignment (Plate 6-2).

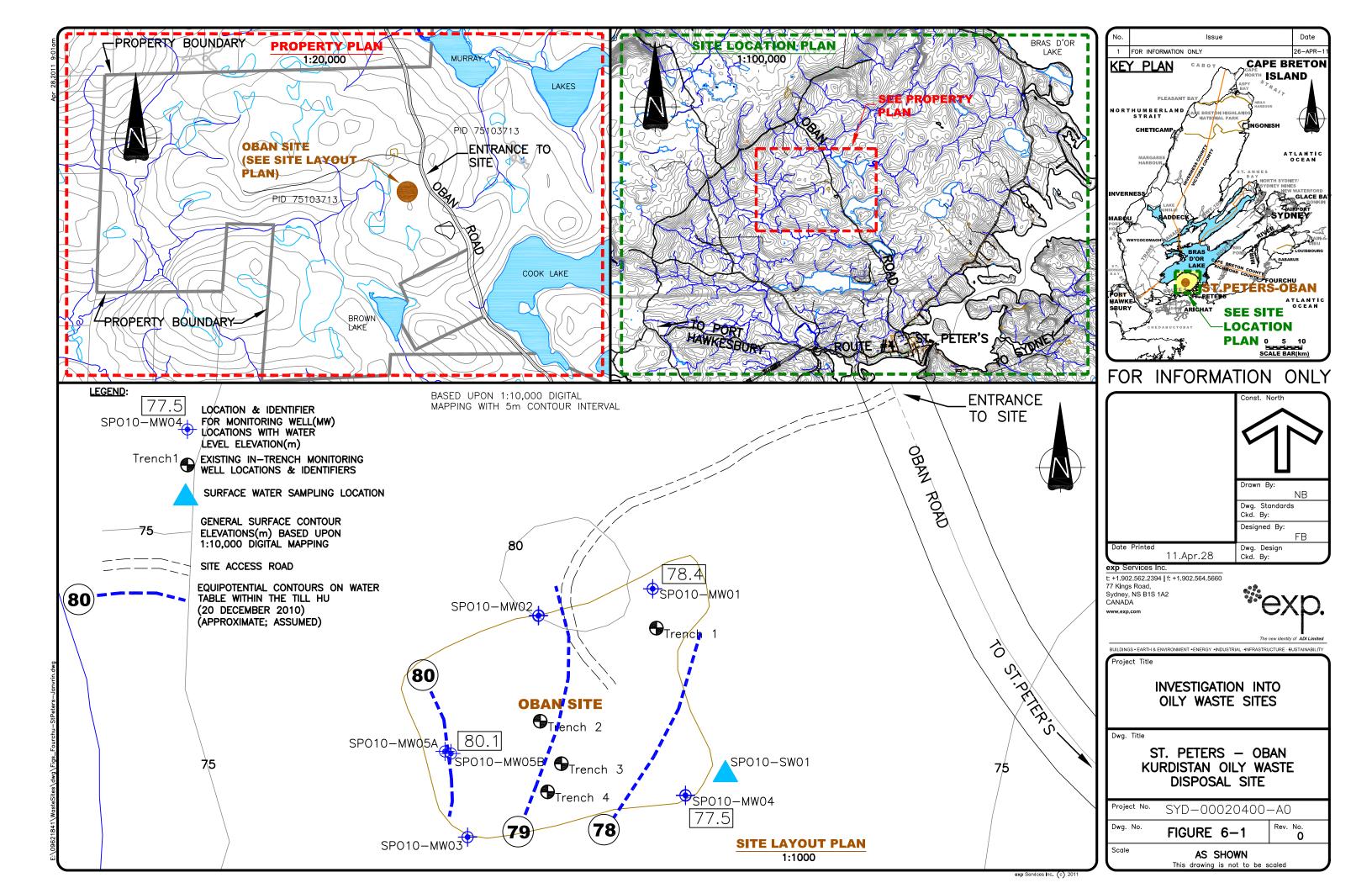


Plate 6-1: Oblique aerial view of the St. Peter's-Oban site after closure (1979) looking toward the northeast.

Plate 6-2: Oblique aerial view of the St. Peter's-Oban site during this assignment (2010) looking to the southwest.

6.2 Land Ownership, Use and Access

The site is positioned on Provincial Crown land under the jurisdiction of NSDNR.

The site is accessed off the Oban Road, a gravelled secondary road, some 6 km from the intersection with the Sampsonville Road (Figure 6-1).

Prior to development for disposal the site was forested and required clearing (Plate 6-1). Since disposal operations ceased the site is gradually growing back in with shrubs and spruce (Plate 6-2 and 6-3).

No further developments have take place within 1 km of the site since disposal operations ceased. Test holes were drilled along the Oban Road looking for a water supply for the Village of St. Peter's. It is understood that this program was unsuccessful.

6.3 Site Reconnaissance

The site was visited by **exp** personnel on 19 May 2010. The site access road from the Oban Road had recently been cleared by NSDNR personnel; no gate was in-place.

The waste trenches were left as they were after disposal ceased, with seals, but no mounded cover caps. All in-trench wells were still in place, but not properly completed, awaiting final installation of the caps. There was no indication of damage by off-road and/or recreational vehicles. Some domestic wastes had been illegally dumped on-site.

The site was growing over with shrubs and conifers. The growth of latter to heights of over 7 metres on the surface of the trenches (Plate 6-3) was of concern, due to potential damage to the viability of the seal.

There were no visual or olfactory signs of hydrocarbon release at surface. No zones of dead vegetation were in evidence.

Plate 6-3: Tree growth over Trench 1. In-trench monitoring well (center foreground) awaits construction of mounded cover cap.

6.4 Intrusive Program

For this assignment a total of six monitoring wells were installed. Initially this included two wells in the Till HU and two wells in the shallow bedrock. Based upon the first round of sampling, an additional two wells, at site MW05, were installed in proximity to the areas of domestic waste disposal, including one in the overburden and one in shallow bedrock (Figure 6-1).

Monitoring wells SP010-MW01 and 02 were positioned in what was expected to be locations upgradient of the disposal area to provide background conditions. However, the site was relatively flat lying and flow directions were difficult to assign. The remaining three well sites were positioned immediately down topographic gradient of the disposal trenches, assuming that groundwater flow in the overburden would in large measure be controlled by topographic constraints.

6.5 Site Design and Operations

The St. Peter's-Oban site was operational for the Kurdistan spill. It received oily wastes from approximately 350 km of shoreline, positioned between the Canso Causeway and the mouth of the Grand River. Information reported by Baechler (1980) indicated:

- 1. The site was operational between May and November 1979.
- 2. An entombment disposal methodology was utilized in the design. This included selection of sites with thick, low permeability, basal glacial till. Subsurface burial was within four, 3.6 to 4.6 metre deep trenches.
- 3. Daily disposal of material was followed by a thin cover of fill, derived from on-site till, which was graded to drain any rainwater to a sump for pumping off-site to keep the trenches dry for disposal (Plate 6-4). This daily cover created numerous mini cells within each trench. Disposal ceased within approximately 1 metre of ground surface.

Plate 6-4: Trench 1 ready for waste disposal. Note in-trench monitoring well center background (also present in Plate 6-3).

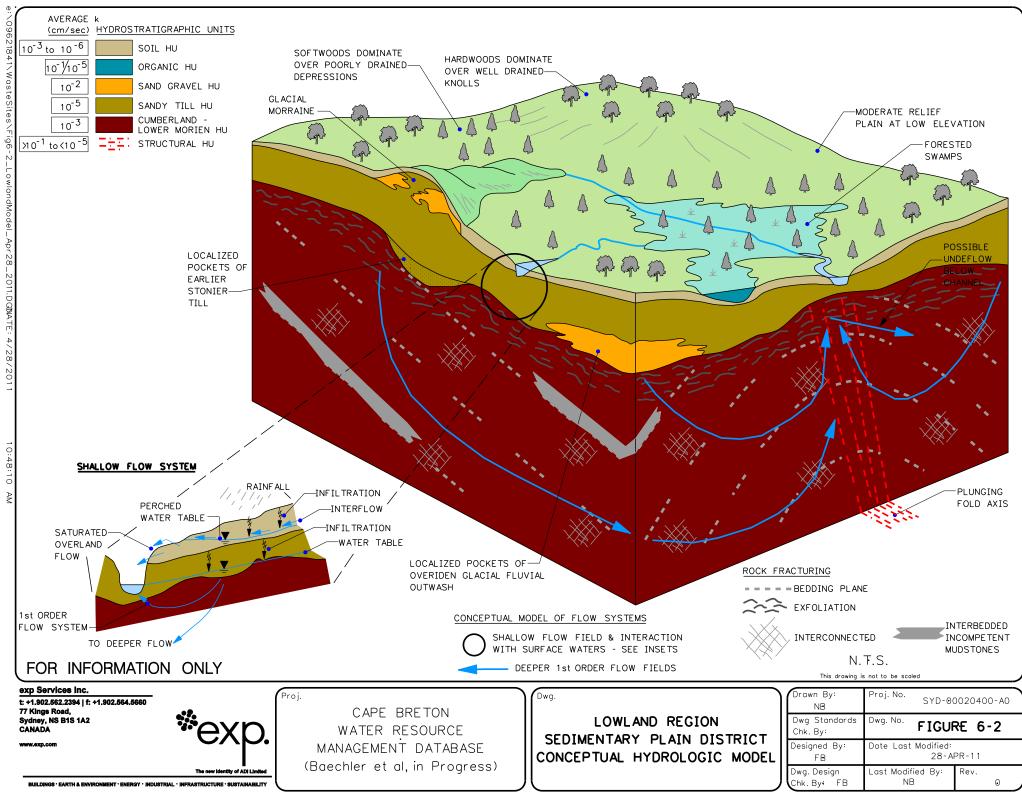
- 4. A seal of fill (reworked till) was emplaced to bring the trench to-grade, but without any density or permeability requirements.
- 5. A monitoring well was installed in the side wall of each trench (Plate 6-4) during operations to allow for monitoring of water level and chemistry within each trench after burial ceased.
- 6. A total of 202,091 bags and forty, 205 litre drums of Bunker "C" oil, sea water, oiled debris (seaweed) and 2,268 kg of oiled mackerel were disposed of at this site. It also included 6,819 to 6,092 litres of diesel fuel and organic solvent from a net laundromat, which was ignited and burned in Trench 4.

6.6 Hydrological Setting

6.6.1 Hydrological Region/District

The site is positioned within the Lowland Hydrological Region, Sedimentary Plain Hydrological District of Cape Breton (Baechler et al, 2009). Distinctive features generally include a low relief, gently undulating, bedrock controlled topography, underlain by sedimentary bedrock, comprised predominately of sandstone, interbedded to varying degrees with siltstones and shales. The surface is blanketed by thin to thick continuous silty sand to clayey silt glacial till. It is influenced by a coastline of submergence, which has dissected the Region with deeply indented salt water embayments.

A three-dimensional conceptual block model of this District (Figure 6-2) notes the active groundwater flow field is expected to be governed by the hydrostructural fracture domain created in the Cumberland HU. This unit is semi-confined by a silty sand Till HU. Ground surface water interaction is expected to be controlled predominately by the shallow groundwater quick-flow-system operating in the soil and upper weathered portion of the Till HU, usually within 1 to 2 metres of ground surface.


Hydrologically the site is positioned on the watershed divide between two drainage basins. Topographic relief over the operations area is relatively low varying over only 3 metres between 78 and 81 metres geodetic. Southward directed flow is positioned within provincial drainage basin 1FH-2B, locally identified as the River Tillard watershed, which drains south to discharge into the ocean at St. Peter's Bay. Flow to the north is directed into provincial drainage basin 1FH-3, locally identified as the Scott Brook watershed, which drains into the Bras d'Or Lake Estuary within the St. Peter's Inlet. Most of the site surface drainage is to the former.

6.6.2 Hydrogeology

The drilling program generally confirmed the hydrological setting noted above. However, the depth of the glacial till was not as great as expected, varying between 9.1 to 12.2 metres; with a slight trend toward increasing depth under the topographic high where the waste trenches were located. This still provides some 5 to 8 metres of till between the base of the trench and top of bedrock.

The overburden comprised a compact to dense, gravelly, clayey silt basal glacial till over the entire depth. This agreed with the initial test pit program carried out by Baechler (1980) prior to disposal. Sites along the northern perimeter (MWs 01, 02 and 05) noted evidence of 2 to 2.5 metres of fill

exp. Services Inc. ⓒ 2011

overlying the till, probably as a result of re-worked till associated with push off during site clearing and development.

Given that bedrock was encountered within the initial target depth of 19 metres, monitoring wells were installed into the shallow bedrock at MWs 02, 03 and 05. At each location the bedrock consisted of argillaceous sedimentary rock, comprised of competent grey siltstone to mudstone. The bedrock subcrop surface elevation was generally flat lying at around 70 metres geodetic, with a possible slight dip to the northeast.

One grain size analysis taken from a sample of MW03 at 3.5 metre depth indicated gravel (11.4%), sand (25.3%) and silt/clay (63.3%). This generally agreed with five samples collected during the initial test pit investigations prior to disposal (Baechler, 1980). It indicated a massive, dry, very dense, stony, clayey silt basal till with a -200 mesh fraction (silt/clay) ranging between 61 and 64%.

Geotechnically the liquid limit of 31.7 and plastic limit of 26.5, with a plastic index of 5.3, indicated a soil symbol of ML (silt) or OL (organic silt) and Till soil type.

Hydraulic testing indicated a range of hydraulic conductivity (K) for the Till HU ranging from 1.1×10^{-7} to 8.3×10^{-8} cm/sec; averaging 9.6 x 10^{-8} cm/sec. However, at MW05B it was notably higher at 1.5×10^{-4} cm/sec; exemplifying the presence of lithologic discontinuities in the till. One K value for the bedrock noted a value of 6.7×10^{-5} cm/sec.

During trench construction, no groundwater seepage was noted and the trench walls remained stable. Sump/pumps were required for dealing with heavy rains.

Two sets of water levels were collected on 31 August and 20 December 2010. The latter was used for plotting given the additional monitoring well nest available. The water table within the Till HU was relatively high, resembling ground surface. It ranged between 1.5 and 3.1 metres below ground surface. Therefore, there is a very thin unsaturated zone and, as a result, the wastes within the trenches are placed below the water table.

The equipotential lines for the water table during the late fall event are provided on Figure 6-1. They indicate an "apparent" direction of lateral groundwater flow within the Till HU (assuming a homogeneous isotropic media) from the west-northwest to east-southeast at an apparent gradient of 3.5%.

An anomalous situation occurred within the bedrock piezometric surface, as two of the three shallow bedrock wells were dry during both sampling events. Initially this was thought to be a function of the low permeability of this argillaceous type bedrock. However, one well (MW03), which encountered highly fractured argillaceous bedrock, did record a water level at 19.4 metres below ground surface. This places it 10.4 metres below the subcrop surface; a very unusual event for this hydrological setting, which should be confirmed by long-term monitoring. This suggests a heavily fractured and, therefore, permeable Bedrock HU beneath the site, possibly a function of the structural activity associated with a number of northeast-southwest trending anticlinal and synclinal fold axes in the vicinity of the site. Such deep bedrock water levels will create a strong vertical downward flow component.

Assuming a porosity range for the Till HU of 30 to 50%, provides for a theoretical, average, linear, groundwater flow velocity of <0.1 m/year. This would indicate that any conservative indicator of OWCW plume transport would not have reached the monitoring wells.

6.6.3 Hydrology

No defined ephemeral or perennial stream channels were present on-site. No rills or gullies were developed over the former operations area. One broad, natural, heavily vegetated swale was present along the western boundary of the site, which forms part of the River Tillard watershed; no defined channel was present. Road side drainage along the access road drains into the Scott Brook watershed.

One surface water sampling station was established for this assignment, located in a seepage area just south of MW 4 (Figure 6-1).

6.7 Soil Geochemistry

6.7.1 Geochemistry

One soil sample of the Till HU was analyzed per borehole. Each sample was analyzed for TPH/BTEX, as well as a suite of 32 metals, 19 PAH compounds and 35 volatile organics. The results are provided in Appendix B.

Analysis of the data indicated:

- Hydrocarbons monitored for were generally not detectable in the samples of the Till HU either in upgradient or downgradient wells (Table B-1). The only exceptions were at downgradient wells MW03-04 and MW05A, both of which exhibited 26 mg/Kg modified TPH due to >C10-C21 hydrocarbons.
- 2. Most metals analyzed for were detectable (Table B-2). Of the heavy metals, the dominant ones in terms of concentration (exceeding 100 mg/Kg) were similar at all five sites and included in descending order of concentration:
 - iron (range 30,000 to 36,000 mg/Kg; background 30,000 mg/Kg);
 - aluminum (range 4,400 to 11,000 mg/Kg; background 9,300 mg/Kg); and
 - manganese (range 470 to 620 mg/Kg; background 590 mg/Kg).

As can be noted, the ranges of concentrations for these three metals resembles background concentrations and, therefore, are expected to be a result of normal geochemistry of the Till HU in this area.

3. The background sample for PAH analysis (Tables B-3, B-4 and B-5) noted detectable, but low level concentrations of PAH compounds including chrysene (0.01 mg/Kg), phenanthrene (0.02 mg/Kg) and pyrene (0.01 mg/Kg). This was also characteristic of MW01, MW03-04 and none were detected in MW05B. However, MWs 03-02 and 05A noted additional PAH compounds in the detectable range including 1-methylnaphthalene (0.02 to 0.05 mg/Kg), 2-methylnaphthalene (0.01 to 0.08 mg/Kg), fluorine (0.01 to 0.04 mg/Kg) and naphthalene (0.03 to 0.05 mg/Kg), with the larger concentrations in the latter. In addition, the latter also noted detectable concentrations of benzo(b)fluoranthene (0.02 mg/Kg) and benzo(g,h,i)perylene (0.02 mg/Kg). The source of these are unknown; however, the MW05B sample was collected at the 3 to 3.5 metres depth at the fill/till interface, at which depth an LNAPL sheen was visible on drill water and a hydrocarbon odour was detected. This suggests some transport via Pathway 2 in the quick-flow-system.

4. No VOC compounds were detectable in any of the samples (Tables B-6).

6.7.2 Quality

There were no soil exceedences for hydrocarbons, metals or PAHs.

6.8 Water Chemistry and Quality

6.8.1 In-Trench Leachate Wells

Examination of the initial in-trench monitoring well samples (Baechler, 1980) noted that Trenches 1, 3 and 4 provided a range to characterize leachate chemistry, especially with the light end hydrocarbons disposed of in Trench 4. These were re-sampled during the first sampling event for this assignment, to obtain a range in conditions after 30 years of dormancy. Based upon the results, Trench 4 was re-sampled on the second event.

Nine indicator parameters were selected to allow for a comparison not only between trenches, but with the initial leachate composition and background groundwaters, as summarized in Table 6-1.

Olle										r
Location	Date	TDS	рН	CI	NH₄	Alk	Fe	Mn	TOC	TPH
	mg/L	mg/L	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Trench 1	2010	390	7.6	110	27	210	2.4	0.47	6.8	ND
	1979	11,14	7.0	5300	38	3200	5.4	10.4	250	NA
		2								
Trench 3	2010(1)	768	7.2	320	11	290	11	0.84	11	ND
	1979	6,383	6.9	750	22	2450	95	15.3	355	NA
Trench 4	2010(1)	1,250	8.0	510	15	520	6.5	1.1	13	ND
	2010(2)	1,530	7.7	540	15	680	6.6	1.9	14	ND
	1979	12,83	7.1	6500	24	3000	18	13.5	275	NA
		2								
Background	2010	716 to	7.8	35 to	0.14	260	<0.1	0.48	1.8	ND ¹
Groundwaters		805	to	69	to	to	to	to	То	
			8.1		0.22	290	0.13	0.89	7	

Table 6-1: Oily Waste Leachate Indicator Chemistry for In-Trench Wells at St. Peter's-Oban Site

Notes:

TDS - total dissolved solids

TOC - total organic carbon

Background groundwater F10-MW01 ND¹ - Non-detectable as modified TPH

Mn - manganese

 NH_4 - nitrogen as ammonia nitrogen TPH - total petroleum hydrocarbons Alk - Alkalinity (as HCO_3) Fe - iron Cl - chloride

The initial (1979) indicator parameters noted continual elevated values for all parameters in comparison to background groundwaters in the Till HU, except for TPH, which was not analyzed for. However, during the 2010 sampling the indicators were considerably reduced in concentration. This suggests that dilution and other chemical reactions have reduced the strength of the leachate composition within the trenches. This could be accounted for by: 1) groundwater flow through the trenches (given the wastes were buried below the water table and the direction and rate of groundwater flow) and/or 2) recharge through the cover cap. At this time chloride, ammonia nitrogen iron, manganese and TOC appear still to be elevated over background.

No LNAPLs or DNAPLs were present in the in-trench wells during either monitoring event.

Detectable, but low concentrations of ethylbenzene (0.024 to 0.21 mg/L) were noted in all three trenches during the summer sampling event (Table B-7). It was also noted in Trench 4 (0.002 mg/L) during the fall event. In addition, the summer event also noted detectable concentrations of toluene (0.001 to 0.002 mg/L) in Trenches 1 and 3, as well as 0.2 mg/L of <C10-C16 hydrocarbons in Trench 1. This was confirmed in the volatile organic scans in which during the summer event ethylbenzene (34 to 170 μ g/L) and toluene (1 μ g/L) were present in all three trenches. The latter also showed up in Trench 4 during the fall sampling at 5 µg/L.

No PAH compounds were analyzed for during the initial 1979 sampling event. One sample from Trench 4 during the fall sampling event (Table B-8)noted detectable but relatively low concentrations of phenanthrene (0.01 μ g/L).

No VOCs other than ethylbenzene and toluene were detected.

6.8.2 Groundwaters

In terms of major inorganic ion chemistry (Table B-9), the background chemistry of the Till HU at this site (S10-MW01) is characterized as a fresh (TDS 716 to 805 mg/L), very hard (420 to 580 mg/L), encrusting, sodium-bicarbonate/sulfate to calcium-bicarbonate/sulfate type water with an alkaline pH (7.8 to 8.1) and alkalinity of 260 to 290 mg/L. Nutrients were exemplified by low concentrations of nitrate+nitrite (as N) (0.05 mg/L), ammonia nitrogen (0.22 to 0.14 mg/L) and TOC (1.8 to 7 mg/L). Of the 26 "heavy metals" analyzed for nine were consistently detectable, but at low concentrations, including iron (<0.1 to 0.13 mg/L), manganese (0.48 to 0.89 mg/L) and aluminum (0.01 to 0.034 mg/L).

Using the eight major inorganic ion leachate indicators (Table 6-2), no elevated concentrations were present. This would agree with the slow travel times calculated for the Till HU.

				J	<u> </u>		
Location	TDS	CI	NH₄	Alk	Fe	Mn	TOC
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Till	716 to 805	35 to 69	0.11 to 0.22	260 to 290	<0.1 to 0.13	0.48 to 0.89	1.8 to 7
Background							
MW04	631 to 699	15 to 31	0.18 to 0.25	230 to 300	<0.1 to 0.17	0.43 to 0.7	1.4 to 2.4
MW5B	298	10	<0.05	220	<0.1	1.7	4.5
Notes:							

Table 6-2: Groundwater Elevated Above Background in Inorganic Indicators

TDS - total dissolved solids NH4 - ammonia nitrogen Fe - iron

CI - chloride Alk - alkalinity Mn - manganese TOC - total organic carbon

No detectable TPH/BTEX compounds were present in the wells during either monitoring event (Table B-7). No LNAPLs or DNAPLs were present during either monitoring event.

In terms of PAH compounds, which were monitored during the fall sampling event (Table B-8), all wells recorded a varying number of detectable compounds, but all at relatively low levels. The largest number (10) was encountered at MW05B. The two indicator PAH compounds naphthalene and benzo(a) pyrene, were non-detectable. This is the site where an LNAPL sheen was noted at the fill/till interface during drilling. However, whether this signifies a release from the trenches or is related to illegal dumping is unknown.

All TPH, PAH and VOC compounds (Table B-10) analyzed in groundwaters were below criteria.

In terms of critical inorganic compounds, those parameters not elevated in the background included iron at MW03 (0.51 mg/L) and cobalt (0.003 mg/L). Given the low concentration these could just as well by part of the normal variability in the HU.

6.8.3 Surface Waters

There were no background surface water stations immediately adjacent the site.

The one identified surface water station represented a groundwater seepage area with no defined channel downstream.

Using the eight major inorganic OWCW water indicators, no noticeable elevated concentrations were noted in the seepage area sampled during either event.

No detectable TPH/BTEX or PAH compounds were present in the seepage area during either event.

The only elevated value above guidelines was for aluminium (0.072 to 0.09 mg/L).

6.9 Evaluation of Risk Management Options

No domestic dwellings are present within 1 km of the site.

The site is owned by Provincial Crown, which allows for employing restrictions on land use.

Disposal sites at the other NSE sites (Fourchu and Hadleyville) were completed by the construction of mounded cover caps using on-site till. These were intended to shed water and minimize infiltration into the trenches. The four disposal trends at the Oban site do not have mounded cover caps.

The site is growing over with trees, some of which are positioned on top of the trenches, possibly degrading the viability of the seal. If not addressed, this could also promote increased infiltration into the trenches and hence contaminant transport.

Forestry operations are ongoing in the general area, which increases the probability of encroachment onto the site by cutting and/or vehicle access.

Illegal dumping of municipal solid wastes has occurred on-site.

The site resides on the watershed divide between the River Tillard watershed (1FH-2B) and Scott Brook (1FH-3) subbasin of the Bras d'Or Lake watershed.

The Village of St. Peter's has undertaken a water well drilling program southeast of the site along Oban Road in an effort to assess the underlying bedrock aquifer for a water supply. Given unfavourable results, the well field was positioned some 5 km to the east-southeast within a different subbasin (1FH-SD6).

The site has not been secured or identified as restricted land use on existing mapping or in the field.

6.9.1 Conclusions and Recommendations

The field program for this assignment has confirmed the entombment characteristics of the site. The wastes are encapsulated below the water table within a tight, dense, relatively low permeability glacial till. However, the depth of overburden beneath the base of the trenches is lower than expected (9 to 12 metres), but still providing some 5 to 8 metres of till between the base of the trench and top of bedrock.

The trench seals are in place but none have mounded cover caps in-place. The primary pathway for contaminant release appears to be through slow transport in the till water table aquifer. However, there is an indication of organics in transport through shallow near surface groundwaters at MW05. Whether this signifies a release from the trenches or is related to illegal dumping is unknown. However, all detectable organics met exceedence criteria.

The intrusive program to date has shown the site to be hydrogeologically complex. Additional drilling is recommended to further assess the Bedrock HU and test pits to assess the shallow groundwater flow under the site.

A preliminary evaluation of risk suggests that given minimal dwellings in the vicinity there is a low risk from the site. Therefore, the proper management approach would include consideration of:

- 1. A regular monitoring program should include existing ground and surface water stations, as well as the in-trench monitoring wells. Initially this should be on a quarterly basis. An analysis of the data on an annual basis should be carried out to allow for refinements to the program when and where needed.
- 2. While monitoring data from the site does not indicate any unacceptable contaminant impacts have occurred, it is recommended that mounded cover caps be installed over the trenches as part of the implementation of best management practices.
- 3. It is recommended that all trees should be cut over the former operations area. Skidders or other heavy equipment should not be utilized to remove trees, to ensure minimal damage to the trenches.
- 4. A care and maintenance schedule should be developed for the site to manually keep forest and understory development to a minimum.
- 5. A permanent gate should be constructed at the entrance to the site access road and a treed buffer zone maintained around the site to ensure access by unauthorized vehicles does not occur.
- 6. The site should be identified on existing government mapping to ensure no other land use is allowed in the future.
- 7. Consideration for research opportunities could entail autopsying one of the trenches to assess the extent of degradation of the bags holding the oil, as well as the oil itself. This would aid in understanding how long the sites pose a risk and will have to be monitored for.

7 Janvrin Island

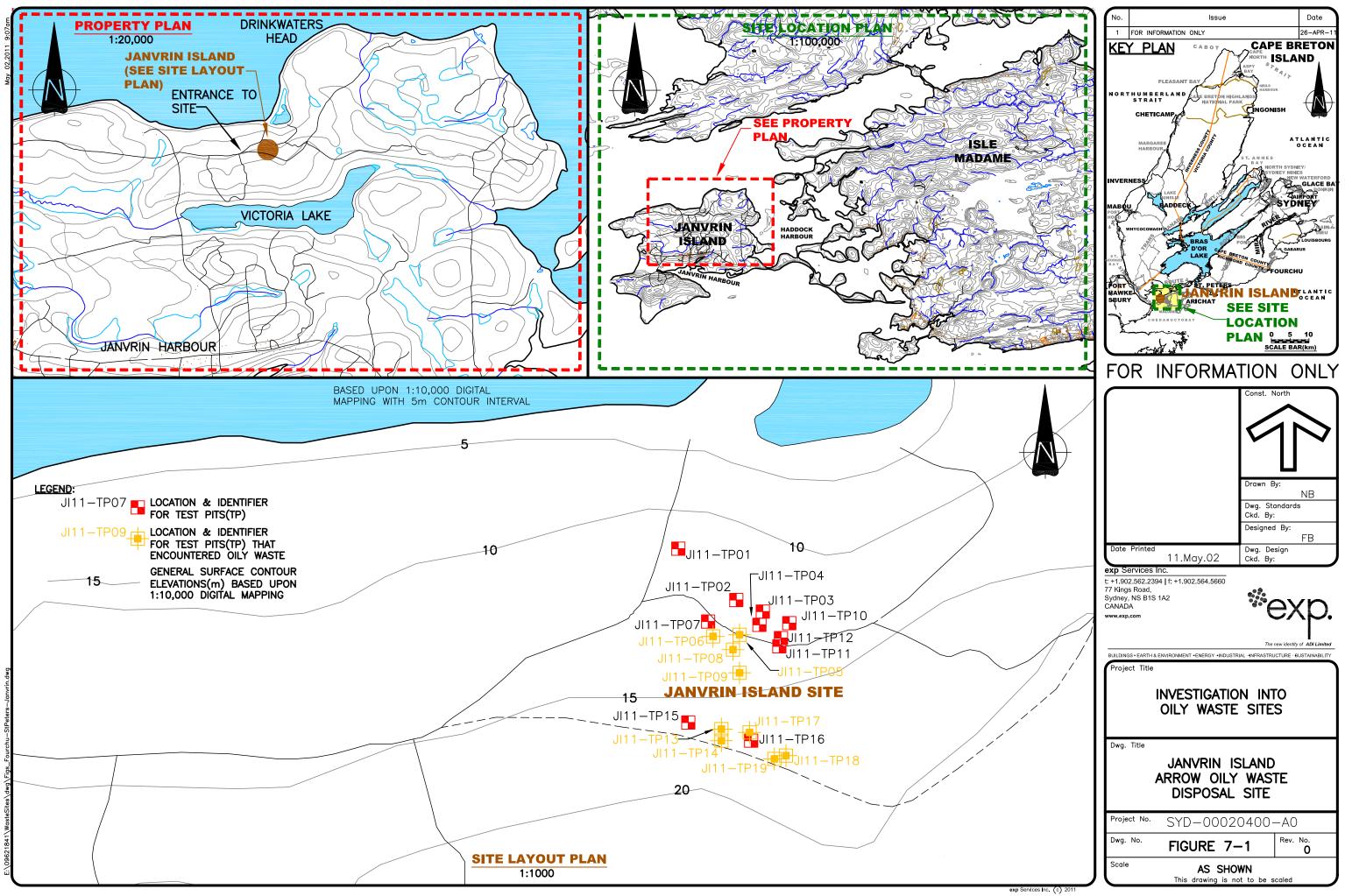
7.1 Location

The Janvrin Island site, covering approximately 0.2 hectares (Plate 7-1), is located some 1 km north of the community of Janvrin Harbour (Figure 7-1).

Plate 7-1: Oblique aerial view of the Janvrin Island site looking southeast (2009) - courtesy of NSE.

7.2 Land Ownership, Use and Access

The site is positioned on Provincial Crown land under the jurisdiction of NSDNR.


The site is accessed off a gravelled secondary woods road created for forest harvesting operations (Figure 7-1)

Prior to development for disposal the site was an abandoned farm property. Since disposal the site was recently harvested for wood.

7.3 Site Reconnaissance

The site was visited by **exp** personnel on 16 November 2010.

The site access road was not gated. Forestry operations had not damaged the main portion of the site, but had cut into the southern corner. There was no indication of damage by off-road and/or recreational vehicles over the main part of the site. No other wastes had been dumped on-site.

The site was growing over with shrubs and trees, primarily spruce. The growth of the latter to heights of 2 to 4 metres was of concern, due to potential damage to the viability of whatever cover cap had been employed (Plates 7-1 and 7-2).

Plate 7-2: Tree growth over the disposal area to right of vehicles during site reconnaissance.

There were no visual or olfactory signs of hydrocarbon release at surface. No zones of dead vegetation were in evidence.

7.4 Intrusive Program

For this assignment a total of 19 test pits were excavated in a grid pattern over and around the site to determine: a) the areal and vertical extent, as well as method of disposal; b) nature of wastes; and c) groundwater level within the wastes. No monitoring wells were emplaced; soil samples were collected specifically of visually contaminated materials.

7.4.1 Site Design and Operations

Very little is known concerning disposal operations. Information reported by Baechler et al (1976) indicated the site was operational during cleanup of the beaches associated with the Arrow oil spill;

most probably between February and March 1970. The type of wastes were expected to include Bunker "C" oil associated with sand and gravel from beaches, as well as peat moss used as an absorbent. No data is available on quantity of wastes disposed of; the best estimate is "couple of tons of oil".

The site was apparently prepared by excavation of a depression to an unknown depth. A small berm was constructed across a seepage line draining northward along the western edge of the site, utilized to impound water and prevent transport of hydrocarbons off-site. Oily wastes were not placed into polyethylene bags prior to disposal, but excavated in bulk off the beaches and dumped in a loose state within the excavation. After disposal the site was covered with an unknown depth of re-worked till excavated from an area immediately east of the site.

The test pit program noted:

- 1. Oily wastes were present in test pits 05, 06, 08, 09, 13, 14, 17, 18 and 19 (Figure 7-1).
- 2. When present, hydrocarbons took the form of discrete layers (Plate 7-3) containing oil, sand and gravel in certain areas of the test pits (rarely throughout the excavation), staining on clasts, hydrocarbon odour and/or tar.
- 3. Test pits with oily wastes terminated on bedrock, suggesting the site was prepared for disposal by excavating down to rock.
- When present, oily wastes were 0.25 to 0.75 metres below ground surface, suggesting a thin variable cover of loose fill (reworked till) was placed over the wastes.

Plate 7-3: Lense of oily waste in Test Pit 6.

The approximate aerial extent of the disposal area, as outlined in Figure 7-1 is 4600 m². Using a depth range for disposed material of 1 to 2 metres gives a preliminary volume estimate of 4600 to 9200 m^3 .

7.5 Hydrological Setting

7.5.1 Hydrological Region/District

The site is positioned within the Lowland Hydrological Region, Windsor Lowland District of Cape Breton (Baechler et al, 2009).

Distinctive features generally include a low relief, gently undulating, bedrock controlled topography, underlain by fine grained sedimentary bedrock, comprising predominately siltstones, shales and evaporite sequences. The surface is blanketed by thin to thick continuous, generally clayey, silt glacial till. It is influenced by a coastline of submergence which has dissected the Region with deeply indented salt water embayments.

A three-dimensional conceptual block model of this District (Figure 7-2) notes the active groundwater flow field is expected to be governed by the hydrostructural fracture domain created in the Windsor-Mabou HU. This unit is semi-confined by the Till HU. Ground surface water interaction is expected to be controlled predominately by the shallow groundwater quick-flow-system operating in the soil and upper weathered portion of the Till HU, usually within 1 to 2 metres of ground surface.

Hydrologically the site is positioned within provincial drainage basin SD2, with no locally identified name. It drains northward discharging into the Atlantic Ocean within an unnamed cove west of Drinkwaters Head (Figure 7-1).

7.6 Hydrogeology

The test pit program and recent bedrock geological mapping (Giles et al, 2010) provided some confirmation for the hydrological setting described above.

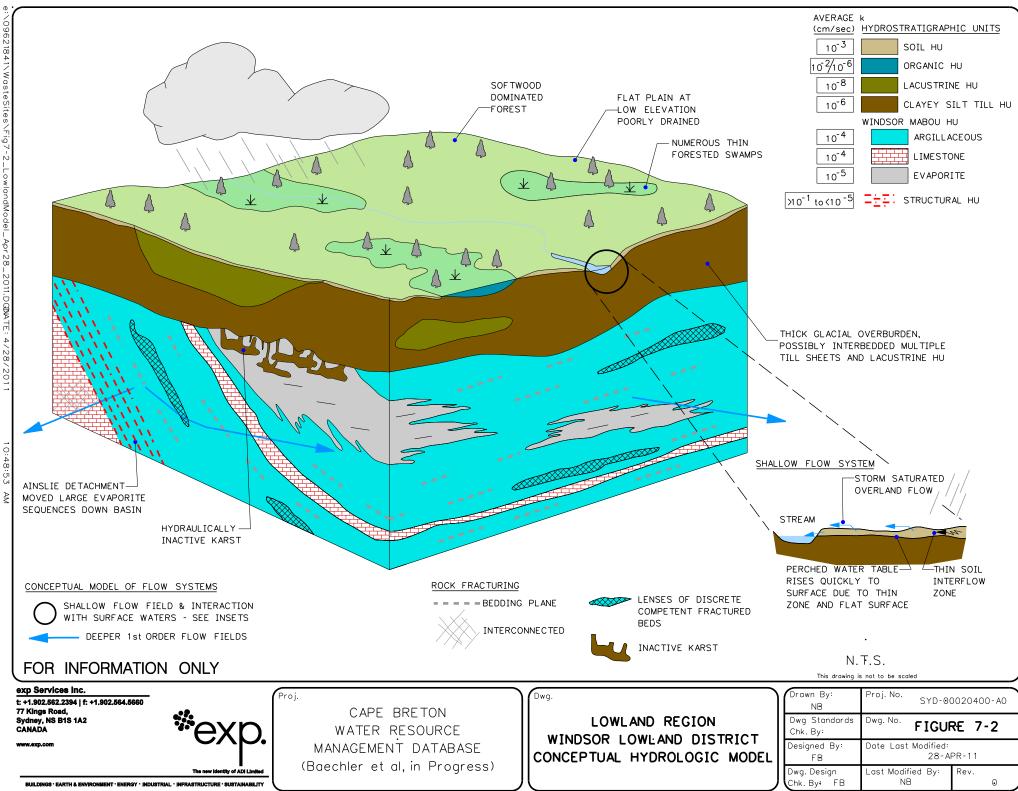
Mapping noted the site is underlain geologically by the Mabou Group Pomquet Formation, encompassed by Baechler et al (in progress) within the Windsor Mabou HU. It is positioned in a zone of intense structure with bedding exposed along the shoreline striking northeast-southwest and overturned, dipping at 65 to 75 degrees to the southeast. Test pitting indicated a reddish brown sandy silt basal Till HU, 1 to 2 metres thick.

Generally no groundwater in flow was encountered in the test pits. However, slight seepage was noted at test pits 07, 11, 13, 15, 16 and 17; usually in the 1 to 1.5 metres depth range. Excavations were not allowed to remain open to determine static level. Therefore, it is expected that at least some of the oily wastes are buried below the water table.

7.6.1 Hydrology

No defined ephemeral or perennial stream channels were present on-site. No rills or gullies were developed over the former operations area. One broad, natural, heavily vegetated swale was present along the western boundary of the site.

7.7 Soil Geochemistry


7.7.1 Geochemistry

Five soil samples were collected of visually contaminated soils within the disposal area; one each from test pits 05, 06, 09, 13 and 17. Each sample was analyzed for TPH/BTEX, as well as a suite of 32 metals and 19 PAH compounds. Two samples were further analyzed for 35 volatile organics. The results are provided in Appendix C.

Analysis of the data indicated:

 Modified TPH was detected in all five samples (Table C-1), ranging from 730 to 11,000 mg/Kg. Each sample indicated the same breakdown, as expected given the Bunker "C" nature of the oil. The >C21-<C32 forming the largest concentration (550 to 5,700 mg/Kg), followed by >C16-C21

exp. Services Inc. © 2011

(160 to 4,200 mg/Kg), then >C10-C16 (20 to 1,500 mg/Kg), with the lowest concentrations in the C6-C10 (less BTEX) ranging from <3 to 81 mg/Kg.

- 2. Lighter BTEX components were detectable in TP06 and TP09 with benzene (0.004 mg/Kg), ethylbenzene (0.58 to 0.25 mg/Kg) and xylene (total) (1.1 to 1.5 mg/Kg), respectively.
- 3. The PAH analysis (Tables C-2, C-3 and C-4) noted essentially non-detectable compounds except in TP06 and 09. In these two samples nearly all compounds were detectable. The two indicators of naphthalene and benzo(a)pyrene noted ranges of 1.9 mg/Kg and 0.3 to 0.5 mg/Kg, respectively. The highest concentrations were present in 1-methylnaphthalene (7.3 to 9.2 mg/Kg), 2-methylnaphthalene (8.3 to 12 mg/Kg) and phenanthrene (6.1 to 8.3 mg/Kg).
- 4. No VOC compounds (Table C-5) were detectable in the two samples tested, except for the BTEX components identified above.
- 5. The highest concentrations of select metals were consistently found with iron (14,000 to 25,000 mg/Kg), aluminium (4800 to 7800 mg/Kg) and manganese (390 to 1000 mg/Kg).

7.7.2 Quality

There were no soil values elevated above guidelines for hydrocarbons, metals and PAHs.

7.8 Conclusions and Recommendations

The field program for this assignment has confirmed the absence of any disposal methodology, as would be appropriate by today's standards. The disposal zone covers approximately 0.46 hectares. It is placed near or within the water table, with no under till liner, minimal surface cover, no mounded cover cap and is overgrown with trees.

While organic contaminants were visually noted scattered in discrete zones throughout the disposal area, lab analyses of product layers did not exceed applicable guidelines. There is no visual evidence on surface for release of hydrocarbons off-site.

8 List of References

Baechler, F. and L. Baechler, 2009, Mapping Cape Breton's Waterscape – Approach and Challenges, Geo Halifax conference, 7 pages.

Baechler, F., 1980, Kurdistan Oil Spill: Land Based Disposal Operations for Cape Breton Island and Chedabucto Bay – Report and Implications, Internal Nova Scotia Dept Environment Report, 211 pages

Baechler, F., H. LeBlanc, and O. Quinn Jr., 1976, A Proposed Hydrogeological Investigation of the Arrow Oil Dumpsites, Nova Scotia Department of the Environment, internal report, 119 pages

Brisco, C., C. Moir, and S. Thorne, 1977, Oily Waste Disposal Sites, Nova Scotia, Nova Scotia Department of the Environment, internal report, 12 pages

Giles, P.S., R.D. Naylor, P.J. Teniere, C.E. White, S.M. Barr, G. DeMont, and E.R. Force, 2010: Bedrock Geology Map of the Port Hawkesbury Area, part of NTDS sheets 11F/06, 11F/07, 11F/10, 11F/11 and 11F/15, Inverness, Richmond, Guysborough and Antigonish counties, Nova Scotia; Nova Scotia Department of Natural Resources, Mineral Resources Branch, open File Map ME 2010-6, scale 1:50,000

Task Force Operation Oil, 1970, Report of the Task Force - Operation Oil (Cleanup of the Arrow Oil Spill in Chedabucto Bay), to the Ministry of Transport, Vols 1-4.

Appendix A Fourchu

Table A-1: Hydrocarbons in SoilsFourchu Kurdistan Oily Waste Disposal Site

Maxxam ID		RBCA	GQ1840	GQ1841	GQ1842	GQ1843	GQ1844
Sampling Date	Units	Commercial	26-Jul-10	27-Jul-10	27-Jul-10	27-Jul-10	27-Jul-10
COC Number		Guideline**	B 130829				
Sample ID		Guideime	F10-MW01-4	F10-MW04-2	F10-MW04-4	F10-MW03-3	F10-MW02-2
TPH COMPOUNDS							
Benzene	mg/kg	570	< 0.003	< 0.003	< 0.003	< 0.003	<0.003
Toluene	mg/kg	18000	< 0.03	< 0.03	< 0.03	<0.03	<0.03
Ethylbenzene	mg/kg	10000	<0.01	<0.01	<0.01	<0.01	<0.01
Xylene (Total)	mg/kg	180000	<0.05	<0.05	<0.05	<0.05	<0.05
C6 - C10 (less BTEX)	mg/kg	13000	<3	<3	<3	<3	<3
>C10-C21 Hydrocarbons	mg/kg	7700	<15	<15	<15	<15	<15
>C21- <c32 hydrocarbons<="" td=""><td>mg/kg</td><td>12000</td><td><15</td><td><15</td><td><15</td><td><15</td><td><15</td></c32>	mg/kg	12000	<15	<15	<15	<15	<15
Modified TPH (Tier1)	mg/kg	***	<20	<20	<20	<20	<20
Product Identifiecation	na	-	na	na	na	na	na

Notes:

RDL = Reportable Detection Limit, NG = No guideline

** Atlantic RBCA Version 2.0, Table 8 For Coarse-grained soils on **Commercial** receptor sites with non-potable water use, Soil Ingestion (2003 update).

- (1) Fuel oil / lube oil range.
- (2) Fuel oil fraction
- (3) Lube oil fraciton. TEH surrogate not within acceptable limits due to sample matrix.
- (4) Lube oil fraction
- (5) Fuel Oil Fraction and Lube Oil Fraction

*** As per laboratory identified fraction and/or Atlantic RBCA Version 2.0 Table 5, Modified TPH concentration must be compared with appropriate fraction. Shading indicates exceedance of Residential guideline.

TABLE A-2: Metals in Soil Fourchu Kurdistan Oily Waste Disposal Site

Maxxam ID		CCME	GS6087	GS6088	GS6089	GS6090	GS6091
Sampling Date	Units	CEQG	26/07/2010	27/07/2010	27/07/2010	27/07/2010	27/07/2010
COC Number	Units	Industrial	B 130829				
		Guideline*	F10-MW01-4	F10-MW04-2	F10-MW04-4	F10-MW03-3	F10-MW02-2
Elements (ICP-MS)							
Aluminum (Al)	mg/kg	-	9800	10000	9900	9300	11000
Antimony (Sb)	mg/kg	40	<1	<1	<1	<1	<1
Arsenic (As)	mg/kg	12	3	4	4	5	3
Barium (Ba)	mg/kg	2000	120	190	160	120	130
Beryllium (Be)	mg/kg	8	<1	<1	<1	<1	<1
Boron (B)	mg/kg	-	<7	<7	<7	<7	<7
Cadmium (Cd)	mg/kg	22	0.2	<0.2	0.2	0.3	0.3
Calcium (Ca)	mg/kg	I	14000	22000	20000	3600	11000
Chromium (Cr)	mg/kg	87	19	21	42	19	19
Cobalt (Co)	mg/kg	300	10	12	11	11	11
Copper (Cu)	mg/kg	91	26	31	42	28	31
Iron (Fe)	mg/kg	-	23000	25000	30000	22000	24000
Lead (Pb)	mg/kg	600	11	17	13	12	11
Lithium (Li)	mg/kg	-	18	21	18	15	17
Magnesium (Mg)	mg/kg	I	7600	8100	7900	5900	7600
Manganese (Mn)	mg/kg	-	610	630	700	460	650
Mercury (Hg)	mg/kg	50	<0.1	<0.1	<0.1	<0.1	<0.1
Molybdenum (Mo)	mg/kg	40	<1	<1	3	7	<1
Nickel (Ni)	mg/kg	50	17	21	26	17	17
Phosphorus (P)	mg/kg	-	420	490	430	420	470
Potassium (K)	mg/kg	-	720	900	1000	490	690
Selenium (Se)	mg/kg	2.9	1.1	0.7	1	1.4	1.1
Silver (Ag)	mg/kg	40	<1	<1	<1	<1	<1
Sodium (Na)	mg/kg	-	<400	<400	<400	<400	<400
Strontium (Sr)	mg/kg	-	30	48	81	22	30
Sulphur (S)	mg/kg	-					
Thallium (TI)	mg/kg	1	<0.7	<0.7	<0.7	<0.7	<0.7
Tin (Sn)	mg/kg	300	<10	<10	<10	<10	<10
Titanium (Ti)	mg/kg	-	330	220	220	250	390
Uranium (U)	mg/kg	300	<1	<1	<1	3	<1
Vanadium (V)	mg/kg	130	27	30	29	28	32
Zinc (Zn)	mg/kg	360	71	88	78	72	74

Notes:

* CCME Canadian Environmental Quality Guidelines for **Industrial** site land use (September 2007

update)

RDL = Reportable Detection Limit

Exceeds Industrial

Table A-3: PAHs in SoilFourchu Kurdistan Oily Waste Disposal Site

Maxxam ID		CCME	GS6087	GS6088	GS6089	GS6090	GS6091
Sampling Date	Units	CEQG	26-Jul-10	27-Jul-10	27-Jul-10	27-Jul-10	27-Jul-10
COC Number	Units	Industrial	B 130829				
		Guideline*	F10-MW01-4	F10-MW04-2	F10-MW04-4	F10-MW03-3	F10-MW02-2
PAHs							
1-Methylnaphthalene	mg/kg	-	<0.01	<0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	mg/kg	-	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg	-	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	mg/kg	-	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene	mg/kg	-	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)anthracene	mg/kg	10	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)pyrene	mg/kg	0.7	<0.01	<0.01	<0.01	0.12	<0.01
Benzo(b)fluoranthene	mg/kg	10	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(g,h,i)perylene	mg/kg	-	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(k)fluoranthene	mg/kg	10	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	mg/kg	-	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenzo(a,h)anthracene	mg/kg	10	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoranthene	mg/kg	-	<0.01	<0.01	<0.01	<0.01	<0.01
Fluorene	mg/kg	-	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	mg/kg	10	<0.01	<0.01	<0.01	<0.01	<0.01
Naphthalene	mg/kg	22	<0.01	<0.01	<0.01	0.04	0.02
Perylene	mg/kg	-	0.02	<0.01	0.04	0.11	<0.01
Phenanthrene	mg/kg	50	<0.01	<0.01	<0.01	<0.01	<0.01
Pyrene	mg/kg	100	<0.01	<0.01	<0.01	<0.01	<0.01

Notes:

* CCME Canadian Environmental Quality Guidelines for **Industrial** site land use (September 2006 update)

RDL = Reportable Detection Limit

Exceeds Industrial

Table A-4: PAHs in Soil Fourchu Kurdistan Oily Waste Disposal Site

Maxxam ID				GS6087		GS6088		GS6089		GS6090		GS6091	
Sampling Date	Units	CCME		26-Jul-10		27-Jul-10		27-Jul-10		27-Jul-10		27-Jul-10	Comula TDE
COC Number	Units	Direct Contact	CCME PEFs	B 130829	Sample TPE								
		Contact		F10-MW01-4		F10-MW04-2		F10-MW04-4		F10-MW03-3		F10-MW02-2	
PAHs													
1-Methylnaphthalene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
2-Methylnaphthalene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
Acenaphthene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
Acenaphthylene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
Anthracene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
Benzo(a)anthracene	mg/kg	NV	0.1	0.005	0.0005	0.005	0.0005	0.005	0.0005	0.005	0.0005	0.005	0.0005
Benzo(a)pyrene	mg/kg	NV	1	0.005	0.005	0.005	0.005	0.005	0.005	0.12	0.12	0.005	0.005
Benzo(b)fluoranthene	mg/kg	NV	0.1	0.005	0.0005	0.005	0.0005	0.005	0.0005	0.005	0.0005	0.005	0.0005
Benzo(g,h,i)perylene	mg/kg	NV	0.01	0.005	0.00005	0.005	0.00005	0.005	0.00005	0.005	0.00005	0.005	0.00005
Benzo(k)fluoranthene	mg/kg	NV	0.1	0.005	0.0005	0.005	0.0005	0.005	0.0005	0.005	0.0005	0.005	0.0005
Chrysene	mg/kg	NV	0.01	0.005	0.00005	0.005	0.00005	0.005	0.00005	0.005	0.00005	0.005	0.00005
Dibenzo(a,h)anthracene	mg/kg	NV	1	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Fluoranthene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
Fluorene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
Indeno(1,2,3-cd)pyrene	mg/kg	NV	0.1	0.005	0.0005	0.005	0.0005	0.005	0.0005	0.005	0.0005	0.005	0.0005
Naphthalene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.04	-	0.02	-
Perylene	mg/kg	NV	-	0.02	-	0.005	-	0.04	-	0.11	-	0.005	-
Phenanthrene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
Pyrene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
B (a) P TPE	mg/Kg	5.3	-	-	0.0121	-	0.0121	-	0.0121	-	0.1271	-	0.0121
Uncertainty Factor	mg/Kg	3	-	-	0.0363	-	0.0363	-	0.0363	-	0.3813	-	0.0363

Notes:

* CCME Canadian Environmental Quality Guidelines for the Protection of Environmental and Human Health (2010)

NV - No Value

PEF - Potency Equivalence Factor Total Potency Equivalent -

Screening: Bold - Indicates an exceedance of CCME guidelines Red indicates value was below the reportable detection limit and half the RDL was used for the calculation.

References:

Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Soil Quality Guidelines (CEQG), Last Accessed October 2008 - Commercial land use, coarse textured soil

TableA-5: PAHs in Soil Fourchu Kurdistan Oily Waste Disposal Site

Maxxam ID				GS6087		GS6088		GS6089		GS6090		GS6091	
Sampling Date	Units	CCME Direct	CCME PEFs	26-Jul-10	Sample TPE	27-Jul-10	Sample TPE						
COC Number	Units	Contact	CCME PEFS	B 130829	Sample TPE	B 130829	Sample TPE	B 130829	Sample TPE	B 130829	Sample IPE	B 130829	Sample TPE
				F10-MW01-4		F10-MW04-2		F10-MW04-4		F10-MW03-3		F10-MW02-2	
PAHs													
1-Methylnaphthalene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
2-Methylnaphthalene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
Acenaphthene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
Acenaphthylene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
Anthracene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
Benzo(a)anthracene	mg/kg	NV	0.33	0.005	0.00165	0.005	0.00165	0.005	0.00165	0.005	0.00165	0.005	0.00165
Benzo(a)pyrene	mg/kg	NV	0.37	0.005	0.00185	0.005	0.00185	0.005	0.00185	0.12	0.0444	0.005	0.00185
Benzo(b)fluoranthene	mg/kg	NV	0.16	0.005	0.0008	0.005	0.0008	0.005	0.0008	0.005	0.0008	0.005	0.0008
Benzo(g,h,i)perylene	mg/kg	NV	6.8	0.005	0.034	0.005	0.034	0.005	0.034	0.005	0.034	0.005	0.034
Benzo(k)fluoranthene	mg/kg	NV	0.16	0.005	0.0008	0.005	0.0008	0.005	0.0008	0.005	0.0008	0.005	0.0008
Chrysene	mg/kg	NV	2.1	0.005	0.0105	0.005	0.0105	0.005	0.0105	0.005	0.0105	0.005	0.0105
Dibenzo(a,h)anthracene	mg/kg	NV	0.23	0.005	0.00115	0.005	0.00115	0.005	0.00115	0.005	0.00115	0.005	0.00115
Fluoranthene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
Fluorene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
Indeno(1,2,3-cd)pyrene	mg/kg	NV	2.7	0.005	0.0135	0.005	0.0135	0.005	0.0135	0.005	0.0135	0.005	0.0135
Naphthalene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.04	-	0.02	-
Perylene	mg/kg	NV	-	0.02	-	0.005	-	0.04	-	0.11	-	0.005	-
Phenanthrene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
Pyrene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
SQG PW IACR	mg/Kg	1	-	-	0.06425	-	0.06425	-	0.06425	-	0.1068	-	0.06425

Notes:

Notes:

All values expressed in µg/g unless otherwise indicated

NV - No Value

 $\mathsf{SQG}_{\mathsf{PW}}$ - Soil Quality Guideline for Protection of Potable Water

IACR - Index of Additive Cancer Risk

SQG_{PW} IACR - Index of Additive Cancer Risk for Protection of Potable Water - Calculated by dividing the concentration of each PAH in the sample by its SQG_{PW} and summing the results

Screening:

Bold - Indicates an exceedance of CCME guidelines Red indicates value was below the reportable detection limit and half the RDL was used for the calculation.

References:

Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Soil Quality Guidelines (CEQG), Last Accessed October 2008 - Commercial land use, coarse textured soil

Table A-6: Inorganics and metals in Water Fourchu Kurdistan Oily Waste Disposal Site

Maximum ID					Duplicate													Surface	e walei	Sunace	e Water
Maxxam ID				GZ5737	GZ5730	GZ5738	GZ5739	GZ5740	GZ5741	GZ5742	IC9905	IC9909	IC9906	IC9907	IC9908	IC9910	NS EQS:	GZ5743	GZ5744	IC9898	IC9904
Sampling Date		Units	NS EQS:	30/08/2010	30/08/2010	30/08/2010	30/08/2010	30/08/2010	30/08/2010	30/08/2010	10/12/2010	10/12/2010	10/12/2010	10/12/2010	10/12/2010	10/12/2010	Surface	30/08/2010	30/08/2010	10/12/2010	10/12/2010
COC Number		-	Groundwater	B124741 F10-MW01	B124741 F10-MW00	B124741 F10-MW02	B124741 F10-MW03	B124741 F10-MW04	B124741 F10-TR01	B124741 F10-TR03	B124764 F10-MW01	B124764 F10-MW00	B124764 F10-MW02	B124764 F10-MW03	B124764 F10-MW04	B124764 TRENCH#3	Water	B124741 F10-SW01	B124741 F10-SW02	B124764 F10-SW01	B124764 F10-SW02
RCAP CALCULAT	TIONS				F10-101000	F10-101002	F10-IWIW03	F10-1010004	FI0-IKUI	FI0-IK03		F10-1414400	F10-IVIVV02	F10-IVIV03	F10-1414404	TRENCH#3		F10-3W01	F10-3W02	F10-3W01	F10-3W02
Anion Sum		me/L	-	4.04	4.06	5.95	6.72	5.17	7.64	19.1	4.39	4.38	5.97	8.15	4.37	18.8	-	0.29	1.64	0.460	1.76
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	140	140	274	257	139	294	740			265	333	146			<1		<1	
Calculated TDS		mg/L	500	223	227	325	407	301	427	988	234	235	359	450	242	1030	-	30	90	32	10
Carb. Alkalinity (ca	alc. as CaCO3)	mg/L	-	2	2	<1	<1	2	<1	<1	2	2	<1	<1	2	<1		<1			
Cation Sum		me/L	-	4.23	4.44	6.35	8.07	5.25	8.25	18.20	4.21		7.65	8.55	4.20			0.76		0.620	
Hardness (CaCO3	/	mg/L	-	170	180	250	280	160	310	620			290	320	130			13	-	12	
lon Balance (% Dif	/	%	-	2.3	4.47	3.25	9.130	0.770	3.840	2.550	2.09	1.15	12.3	2.40	1.98			44.800		14.8	
Langelier Index (@ Langelier Index (@	/	N/A N/A	-	0.606 0.356	0.728	0.428	-0.215 -0.464	0.531 0.282	-0.062 -0.31	0.28	0.707	0.700	0.452	0.152	0.589	0.595		NC NC		NC NC	
Saturation pH (@ 2	/	N/A N/A	-	7.49	7.47	7.07	7.12	7.57	6.96	6.42	7.49		7.05	6.95	7.61	6.41	-	NC		NC	
Saturation pH (@ 4	/	N/A	-	7.74	7.72	7.32	7.36	7.82	7.21	6.67		7.75	7.30	7.20	7.86			NC		NC	
norganics					2	1102				0.01					1100	0.00			0101		0.0
Alkalinity (Total as	s CaCO3)	mg/L	-	140	140	270	260	140	290	740	140	140	270	330	150	750	-	<5	57	<5	5
Chloride (Cl)	*	mg/L	250	39	40	16	56	34	61	150	52	54	23	53	22	130	-	10	17	16	2
Colour		TCU	15	<5	<5	62	330	6	>500	>500	<5		280	31	<5		Narrative	>500		150	
Nitrate (N)		mg/L	45	<0.05	<0.05	<0.05	<0.05	<0.05	0.35	0.06		<0.06	<0.06	< 0.06	0.20		13	0.08	-	<0.06	<0.0
Nitrite + Nitrate		mg/L	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.41	0.06	· · · · ·	<0.6(1)	< 0.06	<1(1)	< 0.06		-	0.08	-	< 0.06	
Nitrite (N)	in Niture et al.	mg/L	0.6	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.05	< 0.01	<0.6		< 0.06	<1	0.20			< 0.01	<0.01	< 0.06	<0.0
Nitrogen (Ammonia Total Organic Cart	υ,	mg/L mg/L	0.19	0.33 1.6	0.34 1.6	0.05 130	1.9 32	0.15 5.5	0.53 100	3.8 55		0.40 2.5	0.18 72	1.2 28	<u>0.24</u> 5.1			<0.05 40	-	<0.05 18	
Orthophosphate (F		mg/L	-	0.07	0.08	<0.01	<0.01	<0.01	0.02	<0.01	<0.3		<0.3	<0.3	<0.3			0.01	<0.01	<0.3	
oH	F)	pH	0	8.1	8.2	7.5	6.90	8.10	6.90	6.70		8.20	7.50	7.10	8.20		6.5 to 9.0			5.60	
Silica (SiO2)		mg/L	-	10	9.9	14	15	4.9	5.8	11	9.3	9.6	17	15	5.0			2.4		2.7	
Sulphate (SO4)		mg/L	500	5	5	<2	<2	68	<2	<2		3	<4	<2	37			<2			
Furbidity		NTU	-	510	460	>1000	>1000	360	140	460	>1000	>1000	>1000	>1000	>1000	550	-	18	9.9	1.9	
Conductivity		uS/cm	-	400	400	570	650	510	730	1700	420	430	550	750	430	1700	-	56	170	69	18
Elements (ICP-MS	/																				L
Dissolved Aluminu		mg/L	0.05	0.019	0.015	0.13	0.11	0.029	0.13	0.04	0.023	0.032	0.68	0.13	0.031	0.062		0.88	-	0.37	-
Dissolved Antimon		mg/L	0.006	< 0.0004	< 0.0004	0.0011	0.00063	0.0008	< 0.0004	<0.0004 0.0056	0.0005	< 0.00040	< 0.00040	< 0.00040	0.00082	0.0011	0.02	< 0.0004		0.0024	0.0008
Dissolved Arsenic Dissolved Barium		mg/L mg/L	0.01	0.0096	0.0097 0.16	0.0093	0.011	<0.0003 0.085	0.0014	0.0056	0.0069	0.0069	0.0097	0.0065	0.0051	0.0094		0.00075	<0.0006 0.013	<0.00060 0.0062	<0.0006
Dissolved Bardin Dissolved Berylliur		mg/L	0.004	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.00050	< 0.00050	< 0.00050	<0.00050	< 0.00050	< 0.00050	0.0053	< 0.0005	< 0.0005	< 0.00050	< 0.0005
Dissolved Bismuth		mg/L	-	<0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	<0.002	<0.002	<0.002	-	< 0.002		<0.000	<0.00
Dissolved Boron (B		mg/L	5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.14	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.24	1.2	<0.1	<0.1	<0.1	<0.
Dissolved Cadmiu	um (Cd)	mg/L	0.0001	<0.000017	0.0001	<0.000017	0.00005	< 0.000017	< 0.000017	<0.000017	< 0.000017	<0.000017	< 0.000017	0.000046	< 0.000017	0.000032	0.00001	0.000034	0.000023	0.000023	< 0.00001
Dissolved Chromiu	um (Cr)	mg/L	0.05	<0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.0013	-	<0.001	<0.001	<0.001	< 0.00
Dissolved Cobalt (mg/L	0.003	<0.001	<0.001	0.0022	0.016	<0.001	<0.001	<0.001	< 0.001	< 0.001	0.0019	0.0092	< 0.001	< 0.001	0.004	0.0033	0.0013	< 0.001	0.003
Dissolved Lead (P	/	mg/L	0.01	<0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001	0.0014	< 0.001	< 0.001	< 0.00
Dissolved Lithium		mg/L	-	< 0.001	< 0.001	0.0039	0.0016	0.0041	< 0.001	0.0061	< 0.001	< 0.001	0.0032	< 0.001	0.0029	0.0094	-	<0.001	<0.001	< 0.001	< 0.00
Total Mercury (Hg)	0	mg/L	0.00026	NA 0.016	NA 0.015	NA 0.01	NA 0.006	NA 0.028	NA <0.004	NA <0.004	NA 0.014	NA 0.014	NA 0.0064	NA <0.004	NA 0.051	NA <4.0	0.000026	NA <0.004		NA < 0.004	N < 0.00
Dissolved Molybde Dissolved Nickel (I		mg/L mg/L	0.07	< 0.003	< 0.003	0.0039	0.008	<0.028	<0.004	<0.004	< 0.003	< 0.003	0.0084	< 0.004	< 0.003	< 0.003		<0.004	<0.004	< 0.004	< 0.00
Dissolved Phosph		mg/L	-	0.11	0.11	<0.1	<0.1	<0.003	<0.1	0.2			< 0.1	< 0.1	< 0.1	0.5		<0.003		< 0.1	< 0.00
Dissolved Seleniur		mg/L	0.01	<0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	-			< 0.001	< 0.001	< 0.001	< 0.001		< 0.001	-	-	-
Dissolved Silver (A		mg/L	0.001	< 0.0001	< 0.0001	0.00018	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010			< 0.0001	< 0.0001	< 0.00010	
Dissolved Strontiu	um (Sr)	mg/L	4.4	2	1.9	0.76	0.55	2.4	0.19	0.86	2.4	2.5	0.89	0.7	2.6	1.1	21	0.017	0.049	0.014	0.04
Dissolved Sulphur		mg/L	-	NA	NA	NA	NA	NA	NA				NA	NA	NA			NA			
Dissolved Thallium		mg/L	0.002	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080			<0.0008		<0.00080	<0.0008
Dissolved Tin (Sn)	/	mg/L	4.4	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02		< 0.02	< 0.02	< 0.02	< 0.02			< 0.02		< 0.02	
Dissolved Titanium		mg/L	-	< 0.003	< 0.003	0.0047	0.0036	< 0.003	0.0056	< 0.003	< 0.003	< 0.003	0.033	< 0.003	< 0.003			0.015		0.0038	0.003
Dissolved Uranium Dissolved Vanadiu		mg/L	0.02	0.00089	0.0009	0.00099	0.0011	0.0023	< 0.00015	<0.00015 <0.002		0.00041	0.00054	0.0003	0.0011	<0.00015 0.0041		<0.00015 0.0039		<0.00015 <0.002	
Elements (ICP-OE		mg/L	0.0062	<0.002	<0.002	<0.002	0.0031	<0.002	0.0055	<0.002	<0.002	<0.002	0.0041	0.0033	<0.002	0.0041	0.006	0.0039	<0.002	<0.002	<0.00
Dissolved Calcium		mg/L	-	57	60	83	85	51	110	180	57	58	92	97	42	190	-	3.3	19	2.7	
Dissolved Calcium		mg/L	0.02	0.0027	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002			0.0053	< 0.002	<0.002			< 0.002		0.0021	
Dissolved Iron (Fe		mg/L	0.3	<0.1	<0.1	3.3		<0.1	31				15	32	< 0.1			6.4			
Dissolved Magnes		mg/L	-	7.3	7.5	11	17	7.2	11		6.9	7.2	15	19	6	47		1.1			
Dissolved Mangan		mg/L	0.05	0.36	0.35	4.5		0.18	11				6.3	11	0.23			0.6	-		
Ŭ.		mg/L	-	2	2.1	3.6	1.9	9.5	2.3				3.6	1.4	5	8.2		<0.6			
Dissolved Potassi		Ň																			
Dissolved Potassiu Dissolved Sodium Dissolved Zinc (Zn	n (Na)	mg/L mg/L	200 0.3	16 0.0073	17 0.0061	25 0.0066	20 0.023	43 0.0067	20 <0.005	96 0.0087	-		28 0.0018	20 0.0093	33 0.0097			6.1 0.011			

Notes:

Guideline 1: Rationale for the Development of Environmental Quality Standards for Contaminated Sites in Nova Scotia Tier 1: Table A-3 Tier 1 Environmental Quality Standards for Surface Water, Fresh Water, January 2011

Guideline 2: Rationale for the Development of Environmental Quality Standards for Contaminated Sites in Nova Scotia Tier 1: Table A-4 Tier 1 Environmental Quality Standards for Groundwater, January 2011

 $\rm NM$ = Not measured due to insufficient water; $\rm N/A$ = Not applicable; $\rm NA$ = Not analysed

AO = Aesthetic Objective

Exceeds NS EGS Surface Water Exceeds NS EQS Groundwater

Table A-7: Hydrocarbons in Groundwater Fourchu Kurdistan Oily Waste Disposal Site

Maxxam ID			GZ5737	GZ5738	GZ5739	GZ5740	GZ5741	GZ5742	GZ5743	GZ5744	IC9898	IC9904	IC9905	IC9906	IC9907	IC9908	IC9909	IC9910
Sampling Date	Units	Guideline 1	30/08/2010	30/08/2010	30/08/2010	30/08/2010	30/08/2010	30/08/2010	30/08/2010	30/08/2010	10/12/2010	10/12/2010	10/12/2010	10/12/2010	10/12/2010	10/12/2010	10/12/2010	10/12/2010
COC Number	Units	Guidenne i	B124741	B124764														
ADI Sample ID			F10-MW01	F10-MW02	F10-MW03	F10-MW04	F10-TR01	F10-TR03	F10-SW01	F10-SW02	F10-SW01	F10-SW02	F10-MW01	F10-MW02	F10-MW03	F10-MW04	F10-MW00	TRENCH#3
Petroleum Hydrocarbons																		
Benzene	mg/L	NG	< 0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Toluene	mg/L	NG	< 0.001	<0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.002	<0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	mg/L	NG	< 0.001	<0.001	<0.001	< 0.001	0.033	0.057	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.029
Xylene (Total)	mg/L	NG	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.003	<0.002	< 0.002	< 0.002	< 0.002
C6 - C10 (less BTEX)	mg/L	NG	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.02	<0.01	<0.01	<0.01	<0.01
>C10-C16 Hydrocarbons	mg/L	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
>C16-C21 Hydrocarbons	mg/L	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
>C21- <c32 hydrocarbons<="" th=""><th>mg/L</th><th>NG</th><th><0.5</th><th><0.5</th><th><0.5</th><th><0.5</th><th><0.5</th><th><0.5</th><th><0.5</th><th><0.5</th><th><0.5</th><th><0.5</th><th><0.5</th><th><0.5</th><th><0.5</th><th><0.5</th><th><0.5</th><th><0.5</th></c32>	mg/L	NG	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Modified TPH (Tier1)	mg/L	***	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Notes: Guideline 1: Atlantic RBCA Version 2.0, Table 8 For Coarse-grained soils on Commercial receptor sites with Non-potable water use and

NG - No Guideline; ND - Not detected

*** As per laboratory identified fraction and/or Atlantic RBCA Version 2.0 Table 7, Modified TPH concentration must be compared with appropriate fraction.

Exceeds Guideline 1

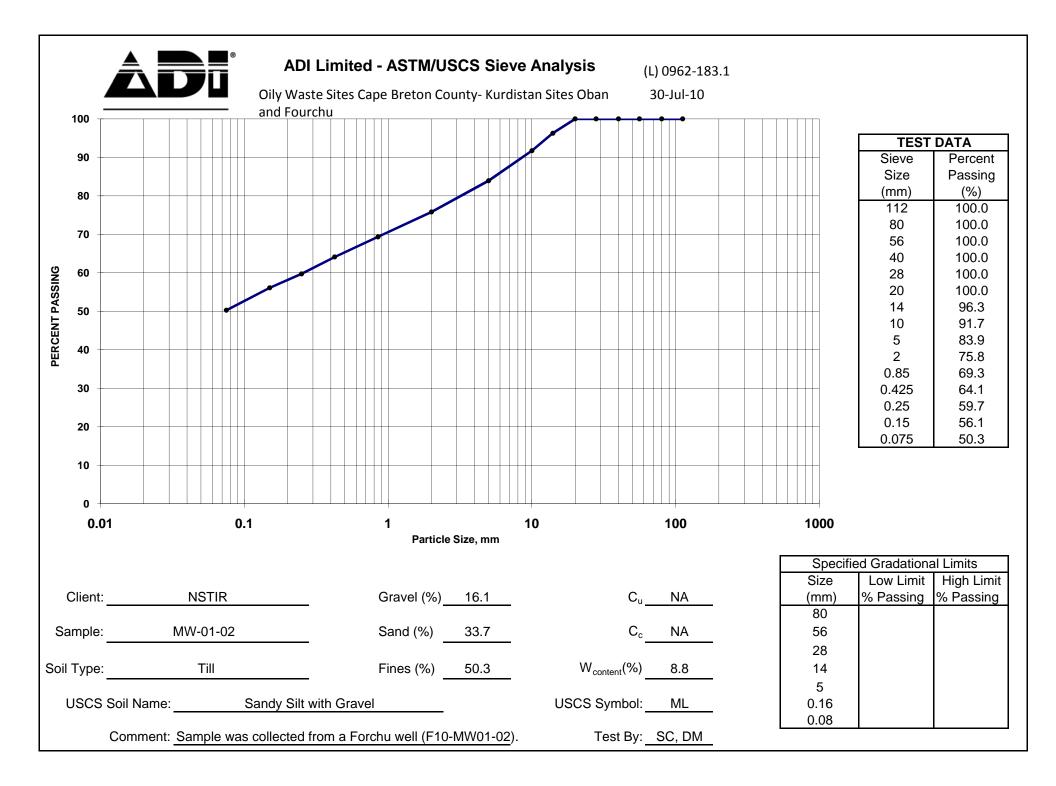
Table A-8: PAH in Groundwater Fourchu Kurdistan Oily Waste Disposal Site

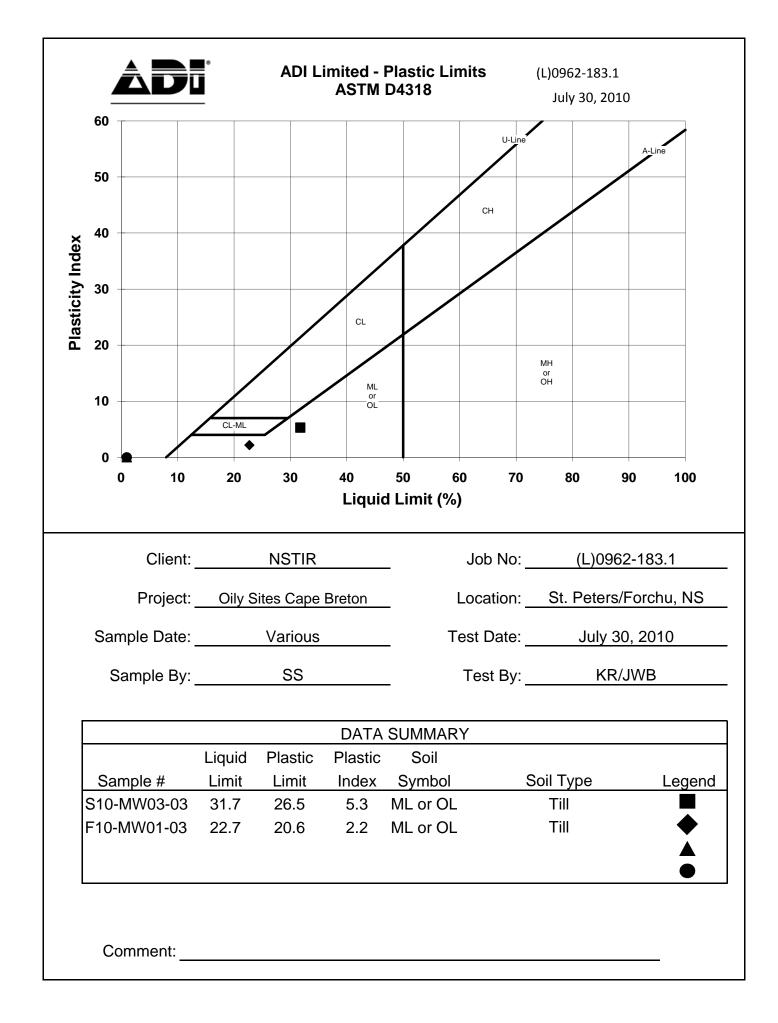
Maxxam ID			GZ5739	IC9905	IC9906	IC9907	IC9908	IC9909	IC9910	NS EQS:	IC9898	j I
Sampling Date	Units	NS EQS:	30/08/2010	10/12/2010	10/12/2010	10/12/2010	10/12/2010	10/12/2010	10/12/2010	Surface	10/12/2010	10
COC Number	Units	Groundwater	B124741	B124764	B124764	B124764	B124764	B124764	B124764		B124764	В
ADI Sample ID			F10-MW03	F10-MW01	F10-MW02	F10-MW03	F10-MW04	F10-MW00	TRENCH#3	Water	F10-SW01	F1
Polycyclic Aromatic Hydrocar	bons											
1-Methylnaphthalene	ug/L	20	<0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	0.15	2	< 0.05	
2-Methylnaphthalene	ug/L	20	<0.05	< 0.05	0.06	< 0.05	<0.05	<0.05	0.13	2	< 0.05	
Acenaphthene	ug/L	58	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.08	5.8	< 0.01	
Acenaphthylene	ug/L	0.45	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	4.6	< 0.01	
Anthracene	ug/L	0.12	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.012	< 0.01	
Benzo(a)anthracene	ug/L	0.18	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.018	<0.01	
Benzo(a)pyrene	ug/L	0.15	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.015	< 0.01	
Benzo(b)fluoranthene	ug/L	4.8	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	0.48	< 0.01	
Benzo(g,h,i)perylene	ug/L	1.7	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.17	< 0.01	
Benzo(k)fluoranthene	ug/L	4.8	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.48	< 0.01	
Chrysene	ug/L	14	<0.01	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	1.4	< 0.01	
Dibenz(a,h)anthracene	ug/L	2.6	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.26	< 0.01	
Fluoranthene	ug/L	0.4	<0.01	0.01	0.04	<0.01	<0.01	0.01	<0.01	0.04	< 0.01	
Fluorene	ug/L	30	<0.01	<0.01	0.02	<0.01	<0.01	<0.01	0.05	3	< 0.01	
Indeno(1,2,3-cd)pyrene	ug/L	2.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.21	< 0.01	
Naphthalene	ug/L	11	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	1.1	<0.2	
Perylene	ug/L	-	0.16	0.06	0.22	0.25	0.02	0.06	<0.01	-	< 0.01	1
Phenanthrene	ug/L	4	0.01	<0.01	0.03	<0.01	0.01	<0.01	0.05	0.4	<0.01	
Pyrene	ug/L	0.25	0.03	<0.01	0.03	<0.01	0.01	0.01	<0.01	0.025	<0.01	

Notes:

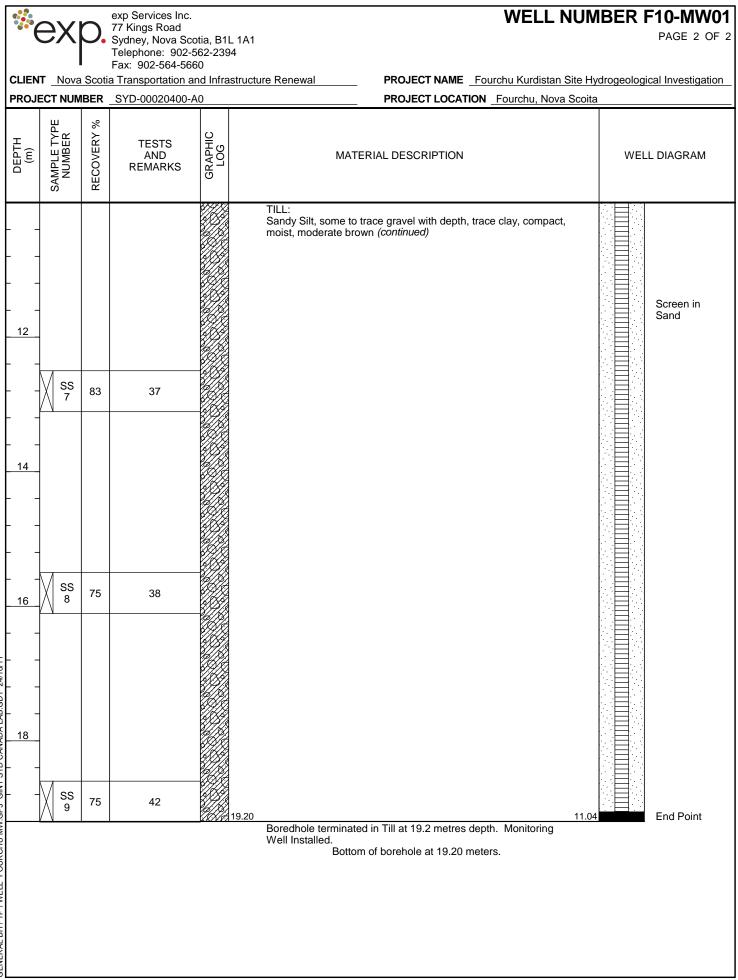
Guideline 1: Rationale for the Development of Environmental Quality Standards for Contaminated Sites in Nova Scotia Tier 1: Table A-3 Tier 1 Environmental Quality Standards for Surface Water, Fresh Water, January 2011

Guideline 2: Rationale for the Development of Environmental Quality Standards for Contaminated Sites in Nova Scotia Tier 1: Table A-4 Tier 1 Environmental Quality Standards for Groundwater, January 2011

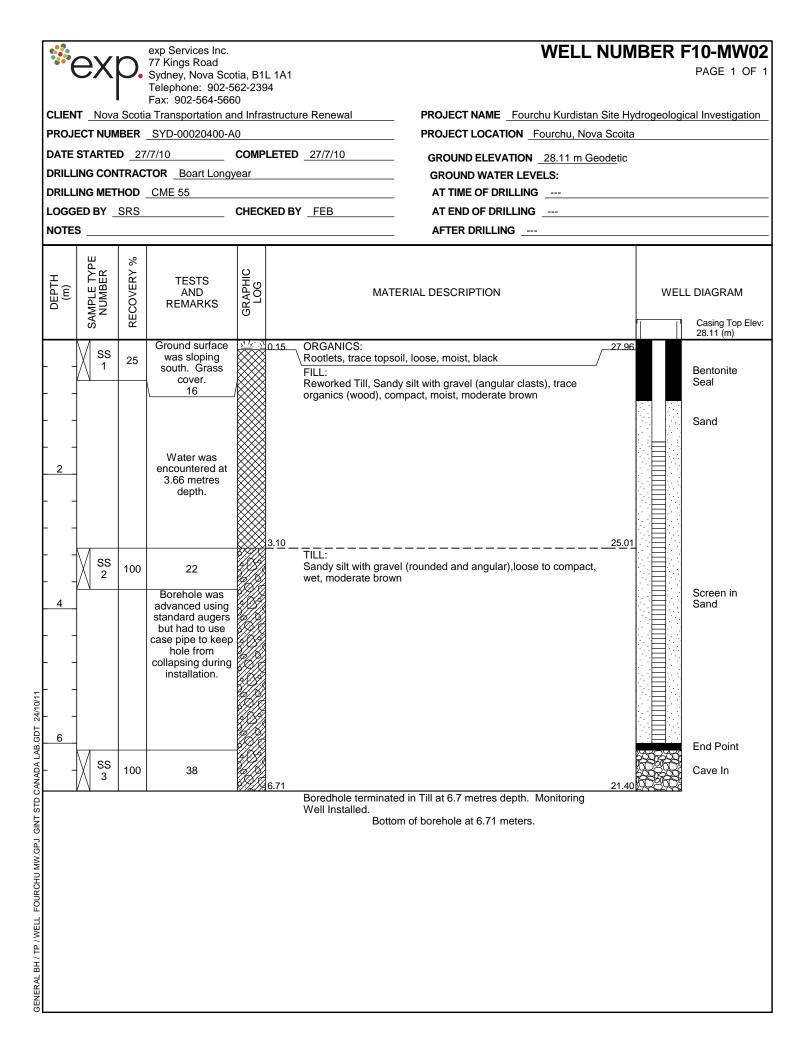

NG - No Guideline; ND - Not detected


Exceeds Guideline 1	
Exceeds Guideline 2	
Exceeds Guideline 1 and 2	

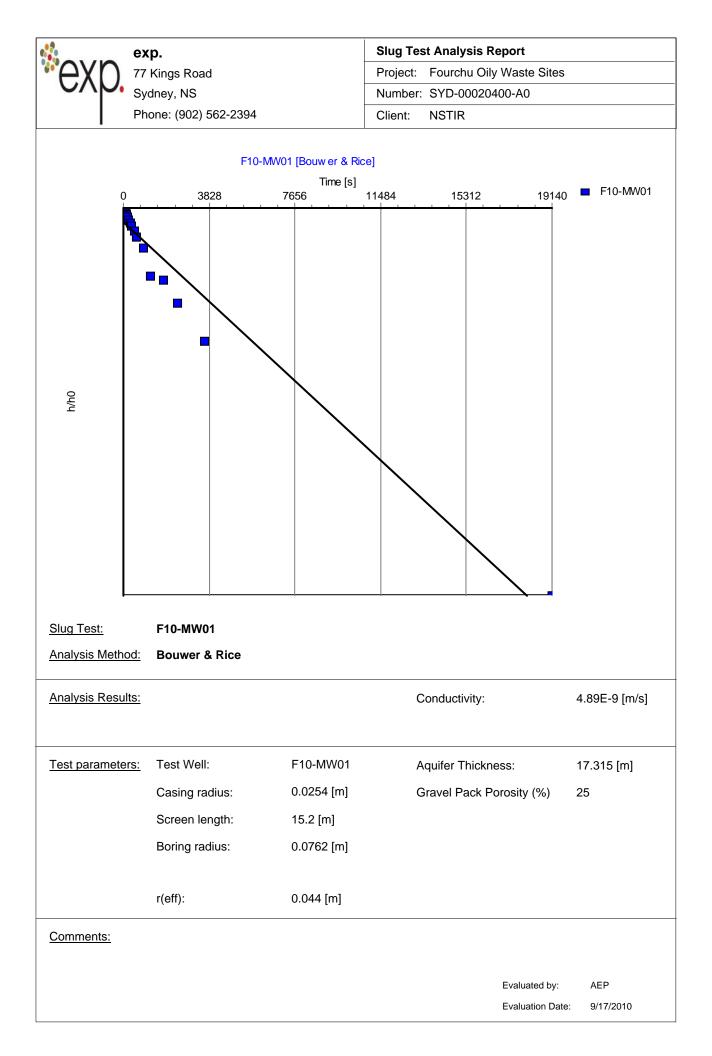
IC990	4
10/12/2	010
B1247	64
F10-SW	/02
<	0.05
<	0.05
	0.01
<	0.01
	0.01
	0.01
	0.01
	0.01
	0.01
	0.01
	0.01
	0.01
	0.01
	0.01
	0.01
	<0.2
	0.01
	0.01
<	0.01

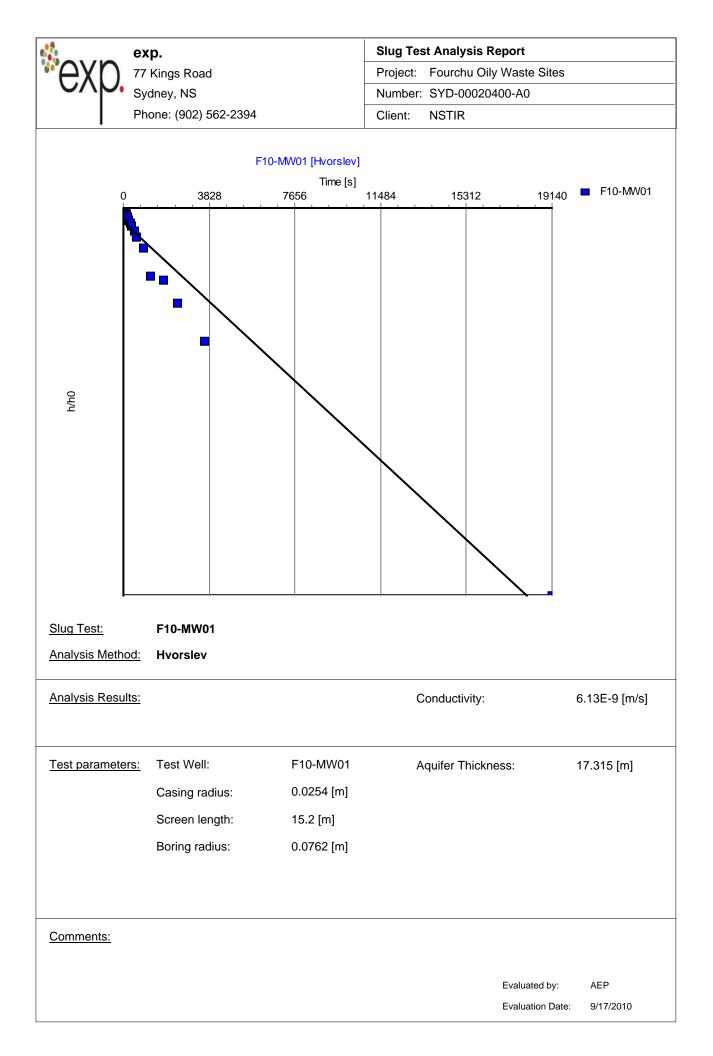

Table A-9 Fourchu groundwater elevations

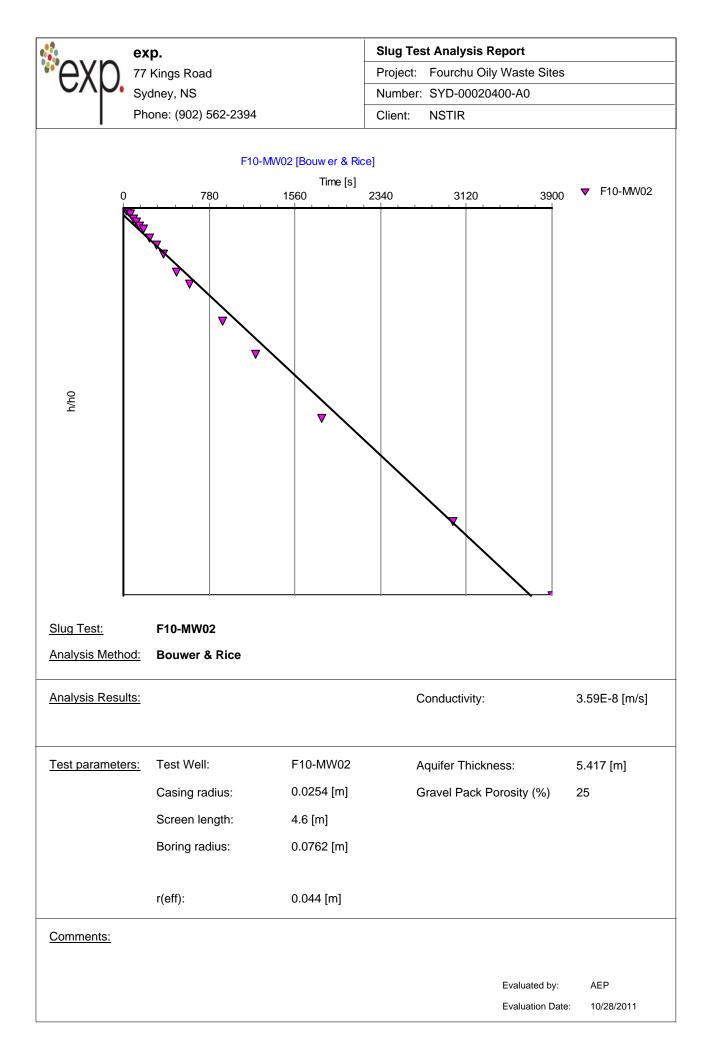
					30-A	ug-10	10-Dec-11	
				Total PVC		Water		Water
	Ground level,	PVC pipe	PVC stick up,	(well depth),		elevation,		elevation,
Monitoring Well ID	MASL	level, MASL	m	m	Water level, m	MASL	Water level, m	MASL
MW10-01 Fourchu	29.5239	30.2328	0.7089	19.3	1.885	28.3478	1.59	28.6428
MW10-02 Fourchu	27.4416	28.1079	0.6663	6	1.283	26.8249	1.205	26.9029
MW10-03 Fourchu	26.7278	27.3035	0.5757	6.76	2.005	25.2985	1.905	25.3985
MW10-04 Fourchu	26.6444	27.2666	0.6222	12.05	8.835	18.4316	2.045	25.2216

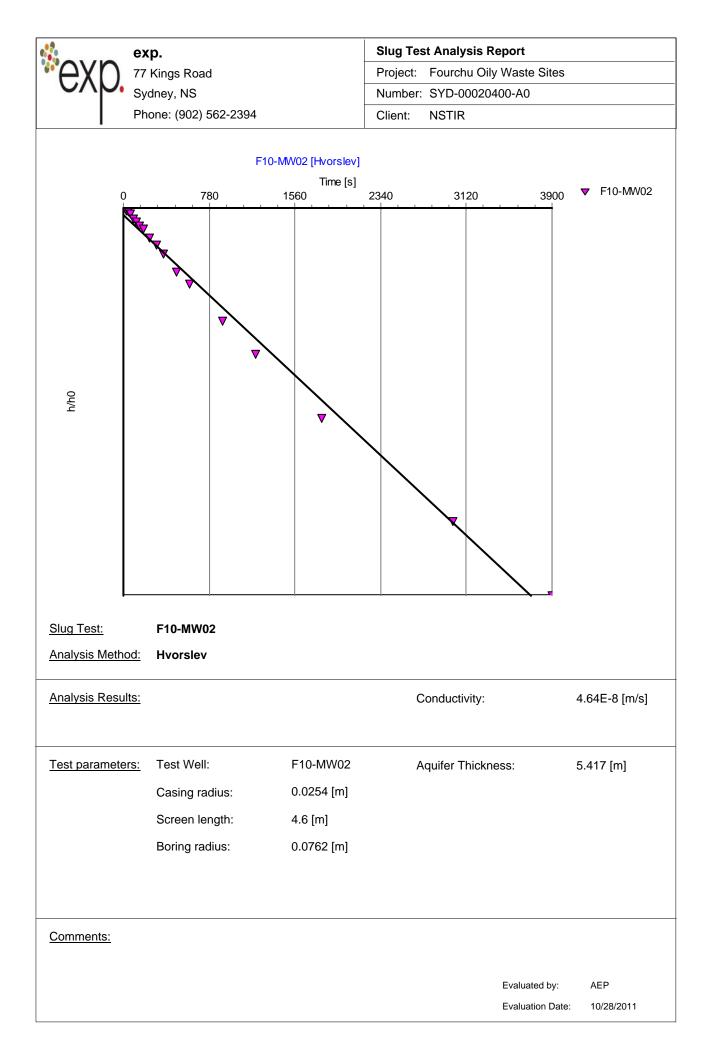


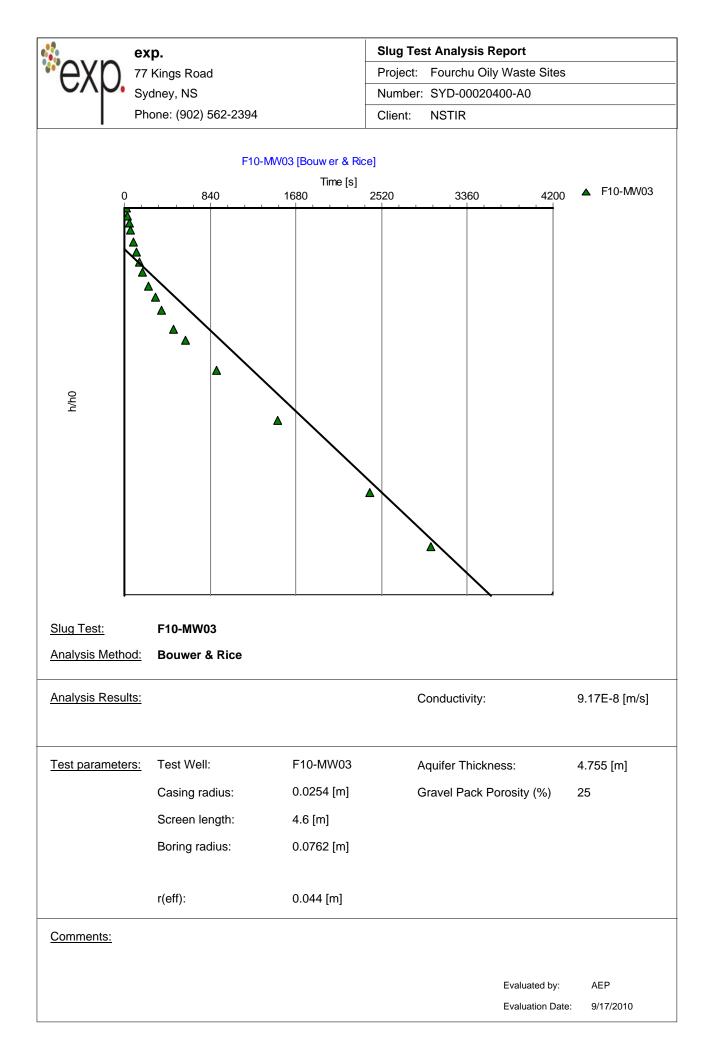
		5	exp Services Inc.			WELL N	UMBER	F10-MW01
	ex	p.	77 Kings Road Sydney, Nova Sco Telephone: 902-5	562-239	L 1A1 04			PAGE 1 OF 2
CLIE	ENT Nova	Scoti	Fax: 902-564-566		astructure Renewal	PROJECT NAME _ Fourchu Kurdistan Si	te Hvdrogeolog	ical Investigation
					LETED _ 26/7/10			
							etic	
					KED BY FEB			
					·····	AFTER DRILLING		
DEPTH (m)	Ш	RECOVERY %	TESTS AND REMARKS	GRAPHIC LOG	MAT	ERIAL DESCRIPTION		LL DIAGRAM Casing Top Elev: 30.23 (m)
	V ss		Ground Surface was flat, moss			oil, loose, moist, black	30.09	
-	-// 1	62	cover. General		FILL:			
_	_		Area is wooded.		Reworked Till, San moist, moderate bro	dy silt and gravel (angular clasts), compact,		
-	-				1 50		28.72	
-					TILL:		20.12	
2		100	21		Sandy Silt, some to moist, moderate bro	trace gravel with depth, trace clay, compact,		Bentonite
	7							Seal
-		83	41					
4 								
-	- SS 4	100	41 Water was not					
- -			Water was not encountered. An					
4/10/-			occaisional water droplet was noted					
DT 2			around the grave clasts in the till.					
9 GE	-							
		25	56					
CAN								
L STD	1							
- GINT	-							
GPJ								
MW 8								
DHO CHI	_							
HUG-	-							
L L			Used Core Barrel					
₹	L		from 9.1 metres to termination of	<u>H</u>				
GENERAL BH / TP / WELL FOURCHU MW.GPJ GINT STD CANADA LAB.GDT 24/10/11 0	-√ ss		borehole.					
RALE		42	34	<u>H</u>				
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	<u> </u>							
UU	1	1	1	<u>(15/XX)</u>	1	(Continued Next Page)		

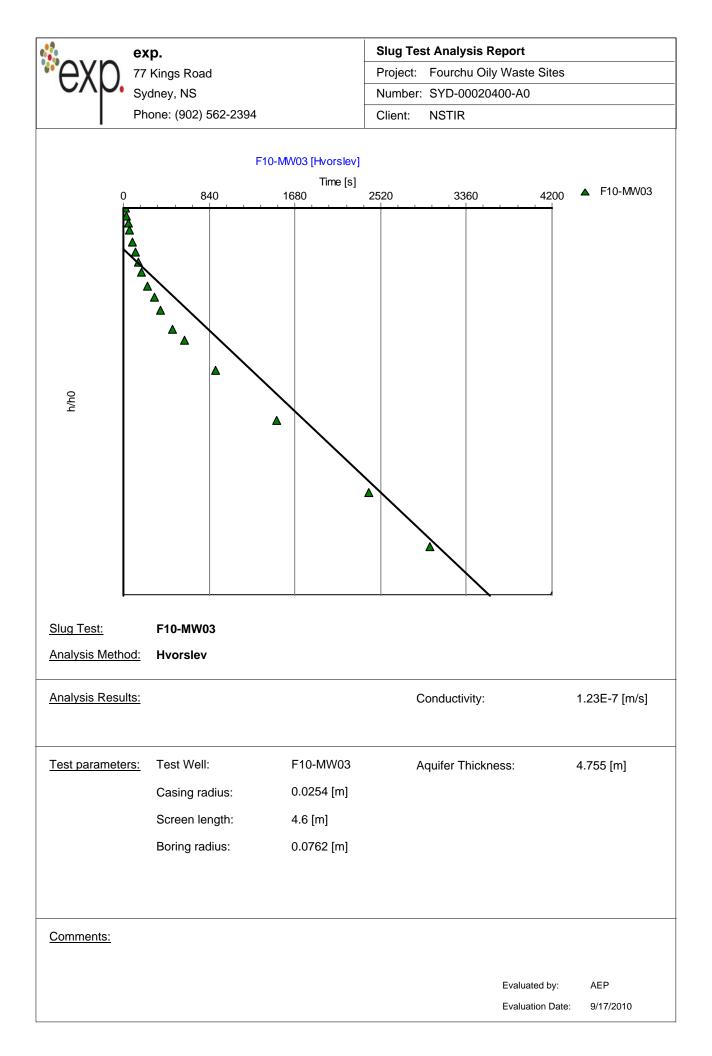

GENERAL BH / TP / WELL FOURCHU MW.GPJ GINT STD CANADA LAB.GDT 24/10/11

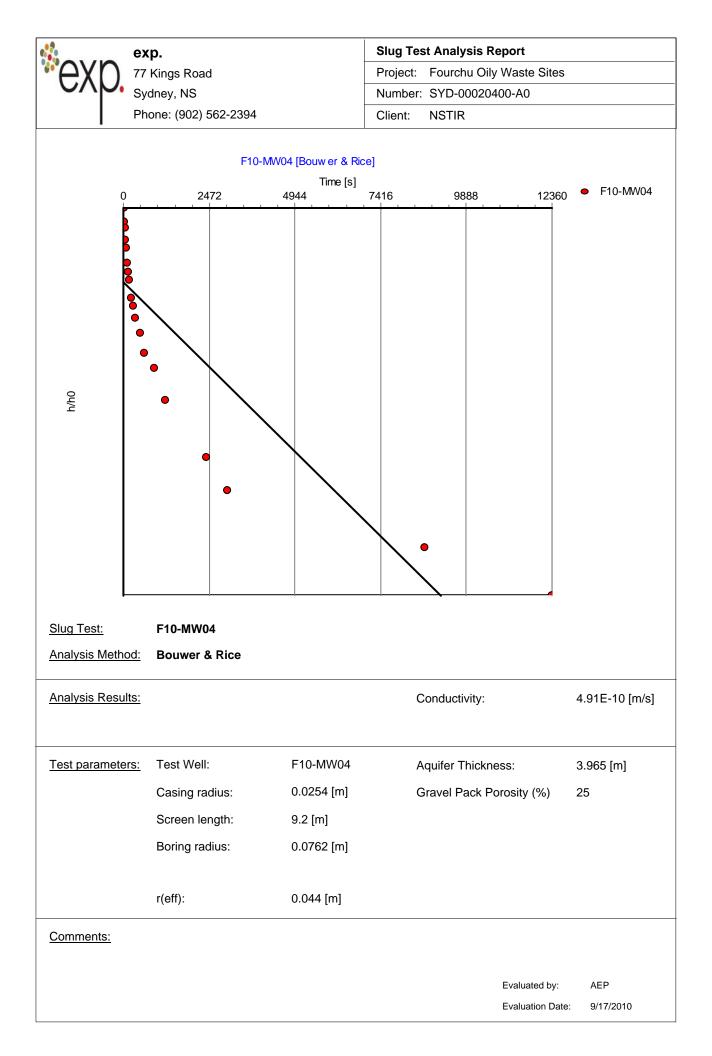


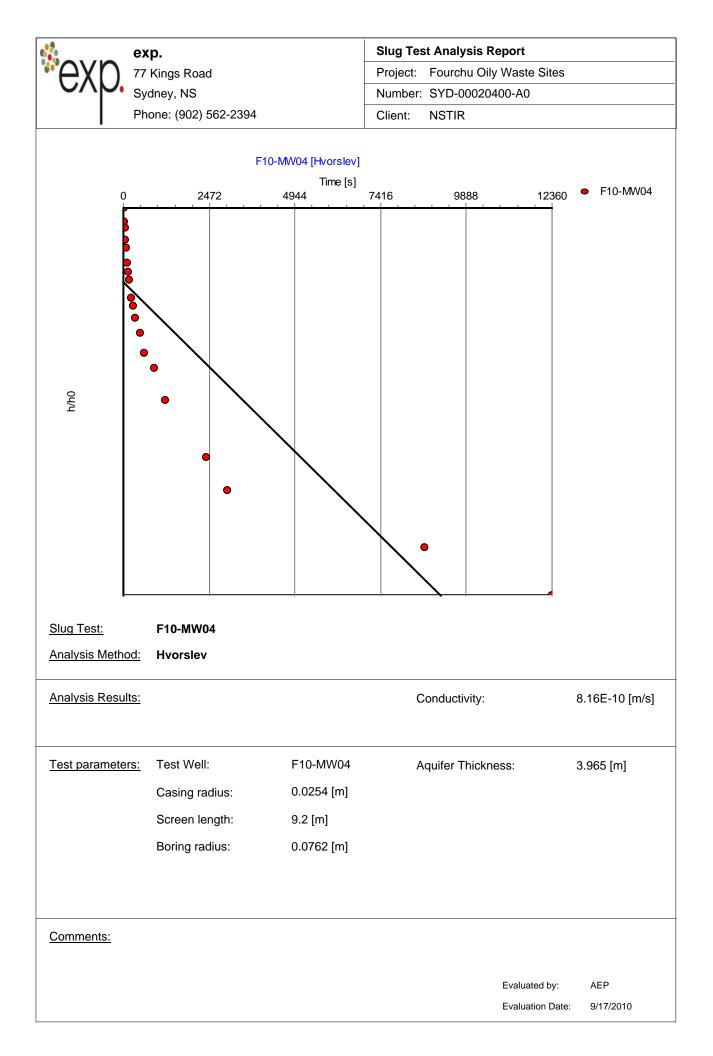



	\sim	\sim	exp Services Inc.		WELL NUM	IBER	F10-MW04
•••	JX	μ.	77 Kings Road Sydney, Nova Sco	itia, B1	L 1A1		PAGE 1 OF 2
			Telephone: 902-5 Fax: 902-564-566		4		
CLIEN	T Nova	Scoti			structure Renewal PROJECT NAME Fourchu Kurdistan Site H	ydrogeolog	ical Investigation
PROJ		IBER	SYD-00020400-A	.0	PROJECT LOCATION Fourchu, Nova Scoita	a	
DATE	STARTE	D _27	///10	COMP	LETED _27/7/10 GROUND ELEVATION _27.27 m Geodetic		
DRILL	ING CON	TRAC	TOR Boart Longy	/ear	GROUND WATER LEVELS:		
					AT TIME OF DRILLING		
					KED BY _FEB AT END OF DRILLING		
NOTE	s		1	1	AFTER DRILLING		
DEPTH (m)	SAMPLE TYPE NUMBER	RECOVERY %	TESTS AND REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION	WEI	LL DIAGRAM
		ш.	Ground Surface	1.414. 3			27.27 (m)
	SS 1	50	Ground Surface was sloped south. Grass cover. 14		Rootlets, trace topsoil, loose, moist, black / FILL: Reworked Till, Sandy silt with gravel (angular clasts), compact, moist, moderate brown 1.52 25.75		Bentonite Seal
2					TILL: Sandy silt with gravel (rounded and angular), compact, moist, moderate brown		Sand
 	SS 2	100	24 Water was not encountered. An				
			ccaisional water droplet was noted around gravel clasats in the till.				
	SS 3	100	40				Screen in
8							Sand
	1		Borehole was advanced using				
	ss 4	75	standard augers. 40				
10							
					(Continued Next Page)		


		O.	exp Services Inc. 77 Kings Road Sydney, Nova Sco Telephone: 902-5 Fax: 902-564-566 a Transportation ar	62-2394 0 1d Infras						
PROJE	CT NUM	BER	SYD-00020400-A	0	PROJECT LOCATION Fourchu, Nova Scoita	PROJECT LOCATION Fourchu, Nova Scoita				
DEPTH (m)	SAMPLE TYPE NUMBER	RECOVERY %	TESTS AND REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAGRAM				
 12	SS 5	100	48		TILL: Sandy silt with gravel (rounded and angular), compact, moist, moderate brown <i>(continued)</i> 12.80 14.47	End Point Cave In				
	<u> </u>			<u>, , , , , , , , , , , , , , , , , , , </u>	Boredhole terminated in Till at 19.2 metres depth. Monitoring Well Installed. Bottom of borehole at 12.81 meters.					







Appendix B St. Peter's-Oban

Table B-1: HYDROCARBONS IN SOIL RESULTS

St. Peter's/Oban Kurdistan Oily Waste Site

	.,									
Maxxam ID		RBCA	GR2216	GR2306	GR2307	GR2308	GR2309	HX8444	HX8445	HX8446
Sampling Date	Units	Commercial	29-Jul-10	28-Jul-10	30-Jul-10	30-Jul-10	30-Jul-10	18-Nov-10	19-Nov-10	19-Nov-10
COC Number	Units	Guideline**	B124420	B124420	B124420	B124420	B124420	B0G7898	B0G7898	B0G7898
Sample ID		Guideime	MW01-03	MW02-03	MW03-02	MW03-04	MW04-02	SPO10-MW05A-2	SPO10-MW05B-1	COOK LAKE
TPH COMPOUNDS										
Benzene	mg/kg	570	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Toluene	mg/kg	18000	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	< 0.03	< 0.03
Ethylbenzene	mg/kg	10000	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Xylene (Total)	mg/kg	180000	< 0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05
C6 - C10 (less BTEX)	mg/kg	13000	<3	<3	<3	<3	<3	<3	<3	<3
>C10-C21 Hydrocarbons	mg/kg	7700	<15	<15	<15	26	<15	26	<10	<10
>C21- <c32 hydrocarbons<="" td=""><td>mg/kg</td><td>12000</td><td><15</td><td><15</td><td><15</td><td><15</td><td><15</td><td><15</td><td><15</td><td><15</td></c32>	mg/kg	12000	<15	<15	<15	<15	<15	<15	<15	<15
Modified TPH (Tier1)	mg/kg	***	<20	<20	<20	26	<20	26	<20	<20
Product Identifiecation	na	-	na	na	na	na	na	na	na	na
NL 4										

Notes:

RDL = Reportable Detection Limit, NG = No guideline

** Atlantic RBCA Version 2.0, Table 8 For Coarse-grained soils on

Commercial receptor sites with non-potable water use, Soil

Ingestion (2003 update).

(1) Fuel oil / lube oil range.

(2) Fuel oil fraction

(3) Lube oil fraciton. TEH surrogate not within acceptable limits due to sample matrix.

(4) Lube oil fraction

(5) Fuel Oil Fraction and Lube Oil Fraction

*** As per laboratory identified fraction and/or Atlantic RBCA Version 2.0 Table 5, Modified TPH concentration must be compared with appropriate fraction. Shading indicates exceedance of Residential guideline.

TABLE B-2: METALS IN SOIL RESULTS

St. Peter's/Oban Kurdistan Oily Waste Site

Maxxam ID		CCME	GS6052	GS6053	GS6054	GS6055	GS6056	HX8444	HX8445
Sampling Date	Units	CEQG	29-Jul-10	28-Jul-10	30-Jul-10	30-Jul-10	30-Jul-10	18-Nov-10	19-Nov-10
COC Number	Units	Industrial	B124420	B124420	B124420	B124420	B124420	B0G7898	B0G7898
		Guideline*	MW01-03	MW02-03	MW03-02	MW03-04	MW04-02	SPO10-MW05A-2	SPO10-MW05B-1
Elements (ICP-MS)									
Aluminum (Al)	mg/kg	-	10000	9300	11000	4400	9100	11000	11000
Antimony (Sb)	mg/kg	40	<1	<1	<1	<1	<1	<1	<1
Arsenic (As)	mg/kg	12	8	9	11	10	8	9	9
Barium (Ba)	mg/kg	2000	100	96	60	40	88	74	180
Beryllium (Be)	mg/kg	8	<1	<1	<1	<1	<1	<1	<1
Boron (B)	mg/kg	-	<7	<7	<7	<7	<7	<7	<7
Cadmium (Cd)	mg/kg	22	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Calcium (Ca)	mg/kg	-	18000	23000	14000	48000	19000	20000	5900
Chromium (Cr)	mg/kg	87	23	20	23	7	21	23	21
Cobalt (Co)	mg/kg	300	16	15	18	14	15	17	14
Copper (Cu)	mg/kg	91	23	23	29	19	27	26	25
Iron (Fe)	mg/kg	-	35000	30000	36000	31000	32000	31000	31000
Lead (Pb)	mg/kg	600	16	17	17	21	18	18	16
Lithium (Li)	mg/kg	-	26	25	26	17	24	22	17
Magnesium (Mg)	mg/kg	-	6700	6800	5800	2900	6200	6200	4000
Manganese (Mn)	mg/kg	-	530	590	470	470	620	540	560
Mercury (Hg)	mg/kg	50	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Molybdenum (Mo)	mg/kg	40	<1	<1	<1	1	<1	<1	<1
Nickel (Ni)	mg/kg	50	34	32	38	30	33	35	29
Phosphorus (P)	mg/kg	-	340	320	260	250	290	360	270
Potassium (K)	mg/kg	-	1200	1200	1200	870	1000	1200	670
Selenium (Se)	mg/kg	2.9	0.8	1	1.2	1.1	0.6	<0.6	<0.6
Silver (Ag)	mg/kg	40	<1	<1	<1	<1	<1	<1	<1
Sodium (Na)	mg/kg	-	<400	<400	<400	<400	<400	<400	<400
Strontium (Sr)	mg/kg	-	41	53	38	42	40	50	17
Sulphur (S)	mg/kg	-	NA	NA	NA	NA	NA	NA	NA
Thallium (TI)	mg/kg	1	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7
Tin (Sn)	mg/kg	300	<10	<10	<10	<10	<10	<10	<10
Titanium (Ti)	mg/kg	-	78	71	43	6	72	66	54
Uranium (U)	mg/kg	300	<1	<1	<1	<1	<1	<1	<1
Vanadium (V)	mg/kg	130	19	19	17	4	19	20	22
Zinc (Zn)	mg/kg	360	68	100	68	<50	69	69	62

Notes:

* CCME Canadian Environmental Quality Guidelines

for Industrial site land use (September 2007

RDL = Reportable Detection Limit

Exceeds Commercial

Table B-3: PAHs IN SOIL RESULTS

St. Peter's/Oban Kurdistan Oily Waste Site

Maxxam ID		CCME	GS6052	GS6053	GS6054	GS6055	GS6056	HX8444	HX8445
Sampling Date	Units	CEQG	29-Jul-10	28-Jul-10	30-Jul-10	30-Jul-10	30-Jul-10	18-Nov-10	19-Nov-10
COC Number	Units	Industrial	B124420	B124420	B124420	B124420	B124420	B0G7898	B0G7898
		Guideline*	MW01-03	MW02-03	MW03-02	MW03-04	MW04-02	SPO10-MW05A-2	SPO10-MW05B-1
PAHs									
1-Methylnaphthalene	mg/kg	-	<0.01	<0.01	0.02	<0.01	<0.01	0.05	<0.01
2-Methylnaphthalene	mg/kg	-	<0.01	<0.01	0.01	<0.01	<0.01	0.08	<0.01
Acenaphthene	mg/kg	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	mg/kg	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene	mg/kg	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)anthracene	mg/kg	10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)pyrene	mg/kg	0.7	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(b)fluoranthene	mg/kg	10	<0.01	<0.01	<0.01	<0.01	0.01	0.02	<0.01
Benzo(g,h,i)perylene	mg/kg	-	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.01
Benzo(k)fluoranthene	mg/kg	10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	mg/kg	-	0.01	0.01	0.01	0.01	0.01	0.02	<0.01
Dibenzo(a,h)anthracene	mg/kg	10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoranthene	mg/kg	-	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.01
Fluorene	mg/kg	-	<0.01	<0.01	0.01	0.02	<0.01	0.04	<0.01
Indeno(1,2,3-cd)pyrene	mg/kg	10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Naphthalene	mg/kg	22	0.01	<0.01	0.03	<0.01	0.01	0.05	<0.01
Perylene	mg/kg	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	mg/kg	50	0.02	0.02	0.04	0.04	0.02	0.07	<0.01
Pyrene	mg/kg	100	0.01	0.01	0.01	0.01	0.01	0.03	<0.01

Notes:

* CCME Canadian Environmental Quality Guidelines for

Industrial site land use (September 2006 update)

RDL = Reportable Detection Limit

Exceeds Commercial

Table B-4: PAHs in Soil St. Peter's/Oban Kurdistan Oily Waste Site

Maxxam ID				GS6052		GS6053		GS6054		GS6055		GS6056		HX8444		HX8445	
Sampling Date	Units	CCME Direct	CCME PEFs	29-Jul-10	Sample TPE	28-Jul-10	Sample TPE	30-Jul-10	Sample TPE	30-Jul-10	Sample TPE	30-Jul-10	Sample TPE	18-Nov-10	Sample TPE	19-Nov-10	Sample TPE
COC Number	Units	Contact	COME FEFS	B124420	Sample IFE	B0G7898	Sample IFE	B0G7898	Sample IFE								
				MW01-03		MW02-03		MW03-02		MW03-04		MW04-02		SPO10-MW05A-2		SPO10-MW05B-1	
PAHs																	
1-Methylnaphthalene	mg/kg	NV	-	0.005	-	0.005	-	0.02	-	0.005	-	0.005	-	0.05	-	0.005	-
2-Methylnaphthalene	mg/kg	NV	-	0.005	-	0.005	-	0.01	-	0.005	-	0.005	-	0.08	-	0.005	-
Acenaphthene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
Acenaphthylene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
Anthracene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
Benzo(a)anthracene	mg/kg	NV	0.1	0.005	0.0005	0.005	0.0005	0.005	0.0005	0.005	0.0005	0.005	0.0005	0.005	0.0005	0.005	0.0005
Benzo(a)pyrene	mg/kg	NV	1	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Benzo(b)fluoranthene	mg/kg	NV	0.1	0.005	0.0005	0.005	0.0005	0.005	0.0005	0.005	0.0005	0.01	0.001	0.02	0.002	0.005	0.0005
Benzo(g,h,i)perylene	mg/kg	NV	0.01	0.005	0.00005	0.005	0.00005	0.005	0.00005	0.005	0.00005	0.005	0.00005	0.02	0.0002	0.005	0.00005
Benzo(k)fluoranthene	mg/kg	NV	0.1	0.005	0.0005	0.005	0.0005	0.005	0.0005	0.005	0.0005	0.005	0.0005	0.005	0.0005	0.005	0.0005
Chrysene	mg/kg	NV	0.01	0.01	0.0001	0.01	0.0001	0.01	0.0001	0.01	0.0001	0.01	0.0001	0.02	0.0002	0.005	0.00005
Dibenzo(a,h)anthracene	mg/kg	NV	1	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Fluoranthene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-	0.02	-	0.005	-
Fluorene	mg/kg	NV	-	0.005	-	0.005	-	0.01	-	0.02	-	0.005	-	0.04	-	0.005	
Indeno(1,2,3-cd)pyrene	mg/kg	NV	0.1	0.005	0.0005	0.005	0.0005	0.005	0.0005	0.005	0.0005	0.005	0.0005	0.005	0.0005	0.005	0.0005
Naphthalene	mg/kg	NV	-	0.01	-	0.005	-	0.03	-	0.005	-	0.01	-	0.05	-	0.005	-
Perylene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
Phenanthrene	mg/kg	NV	-	0.02	-	0.02	-	0.04	-	0.04	-	0.02	-	0.07	-	0.005	-
Pyrene	mg/kg	NV	-	0.01	-	0.01	-	0.01	-	0.01	-	0.01	-	0.03	-	0.005	-
B (a) P TPE	mg/Kg	5.3	-	-	0.01215	-	0.01215	-	0.01215	-	0.01215	-	0.01265		0.0139		0.0121
Uncertainty Factor	mg/Kg	3	-	-	0.03645	-	0.03645	-	0.03645	-	0.03645	-	0.03795		0.0417		0.0363

Notes:

CCME Canadian Environmental Quality Guidelines for the Protection of Environmental and Human Health (2010)

NV - No Value

PEF - Potency Equivalence Factor Potency Equivalent - Calculated

Screening: Bold - Indicates an exceedance of CCME guidelines Red indicates value was below the reportable detection limit and half the RDL was used for the calculation.

Table B-5: PAHs in Soil St. Peter's/Oban Kurdistan Oily Waste Site

Maxxam ID				GS6052		GS6053		GS6054		GS6055		GS6056		HX8444		HX8445	
Sampling Date	Units	CCME Direct	CCME PEFs	29-Jul-10	Sample TPE	28-Jul-10	Sample TPE	30-Jul-10	Sample TPE	30-Jul-10	Sample TPE	30-Jul-10	Sample TPE	18-Nov-10	Sample TPE	19-Nov-10	Sample TPE
COC Number	Units	Contact	COME FEFS	B124420	Sample IFE	B0G7898	Sample IFE	B0G7898	Sample IFE								
				MW01-03		MW02-03		MW03-02		MW03-04		MW04-02		SPO10.MWO5A-2		SPO10-MW05B-1	
PAHs																	
1-Methylnaphthalene	mg/kg	NV	-	0.005	-	0.005	-	0.02	-	0.005	-	0.005	-	0.05	-	0.005	-
2-Methylnaphthalene	mg/kg	NV	-	0.005	-	0.005	-	0.01	-	0.005	-	0.005	-	0.08	-	0.005	-
Acenaphthene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
Acenaphthylene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
Anthracene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
Benzo(a)anthracene	mg/kg	NV	0.33	0.005	0.00165	0.005	0.00165	0.005	0.00165	0.005	0.00165	0.005	0.00165	0.005	0.00165	0.005	0.00165
Benzo(a)pyrene	mg/kg	NV	0.37	0.005	0.00185	0.005	0.00185	0.005	0.00185	0.005	0.00185	0.005	0.00185	0.005	0.00185	0.005	0.00185
Benzo(b)fluoranthene	mg/kg	NV	0.16	0.005	0.0008	0.005	0.0008	0.005	0.0008	0.005	0.0008	0.01	0.0016	0.02	0.0032	0.005	0.0008
Benzo(g,h,i)perylene	mg/kg	NV	6.8	0.005	0.034	0.005	0.034	0.005	0.034	0.005	0.034	0.005	0.034	0.02	0.136	0.005	0.034
Benzo(k)fluoranthene	mg/kg	NV	0.16	0.005	0.0008	0.005	0.0008	0.005	0.0008	0.005	0.0008	0.005	0.0008	0.005	0.0008	0.005	0.0008
Chrysene	mg/kg	NV	2.1	0.01	0.021	0.01	0.021	0.01	0.021	0.01	0.021	0.01	0.021	0.02	0.042	0.005	0.0105
Dibenzo(a,h)anthracene	mg/kg	NV	0.23	0.005	0.00115	0.005	0.00115	0.005	0.00115	0.005	0.00115	0.005	0.00115	0.005	0.00115	0.005	0.00115
Fluoranthene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-	0.02	-	0.005	-
Fluorene	mg/kg	NV	-	0.005	-	0.005	-	0.01	-	0.02	-	0.005	-	0.04	-	0.005	-
Indeno(1,2,3-cd)pyrene	mg/kg	NV	2.7	0.005	0.0135	0.005	0.0135	0.005	0.0135	0.005	0.0135	0.005	0.0135	0.005	0.0135	0.005	0.0135
Naphthalene	mg/kg	NV	-	0.01	-	0.005	-	0.03	-	0.005	-	0.01	-	0.05	-	0.005	-
Perylene	mg/kg	NV	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-	0.005	-
Phenanthrene	mg/kg	NV	-	0.02	-	0.02	-	0.04	-	0.04	-	0.02	-	0.07	-	0.005	-
Pyrene	mg/kg	NV	-	0.01	-	0.01	-	0.01	-	0.01	-	0.01	-	0.03	-	0.005	-
SQG PW IACR	mg/Kg	1	-	-	0.07475	-	0.07475	-	0.07475	-	0.07475	-	0.07555		0.20015		0.06425

Notes:

Notes: Notes: All values expressed in µg/g unless otherwise indicated NV - No Value SQG_{PW} - Soil Quality Guideline for Protection of Potable Water IACR - Index of Additive Cancer Risk SQG_W IACR - Index of Additive Cancer Risk for Protection of Potable Water - Calculated by dividing the concentration of each PAH in the sample by its SQG_{PW} and summing the results

Screening: Bold - Indicates an exceedance of CCME guidelines Red indicates value was below the reportable detection limit and half the RDL was used for the calculation.

References:

Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Soil Quality Guidelines (CEQG), Last Accessed October 2008 - Commercial land use, coarse textured soil

TABLE B-6 Volatile Organics in Soil Results St. Peter's/Oban Kurdistan Oily Waste Site

	Maxxam ID			GR2216	GR2306	GR2307	GR2308	GR2309
	Sample ID		a 1	MW01-03	MW02-03	MW03-02	MW03-04	MW04-02
	Date Sampled		Guideline ¹	29-Jul-10	28-Jul-10	30-Jul-10	30-Jul-10	30-Jul-10
PARAMETER	UNITS	EQL ²	1	MW01-03	MW02-03	MW03-02	MW03-04	MW04-02
VOC's								
CHLOROBENZENES								
1.2-Dichlorobenzene	ua/ka	30	10000*	<30	<30	<30	<30	<30
1,3-Dichlorobenzene	ug/kg	30	10000*	<30	<30	<30	<30	<30
1,4-Dichlorobenzene	ug/kg	30	10000*	<30	<30	<30	<30	<30
Chlorobenzene	ug/kg	30	10000*	<30	<30	<30	<30	<30
VOLATILES								
1,1,1-Trichloroethane	ug/kg	30	50000*	<30	<30	<30	<30	<30
1,1,2,2-Tetrachloroethane	ug/kg	30	50000*	<30	<30	<30	<30	<30
1,1,2-Trichloroethane	ug/kg	30	50000*	<30	<30	<30	<30	<30
1,1-Dichloroethane	ug/kg	30	50000*	<30	<30	<30	<30	<30
1,1-Dichloroethylene	ug/kg	30	50000*	<30	<30	<30	<30	<30
1,2-Dichloroethane	ug/kg	30	50000*	<30	<30	<30	<30	<30
1,2-Dichloropropane	ug/kg	30	50000*	<30	<30	<30	<30	<30
Benzene	ug/kg	0.003	5000	<30	<30	<30	<30	<30
Bromodichloromethane	ug/kg	30	NG	<30	<30	<30	<30	<30
Bromoform	ug/kg	30	NG	<30	<30	<30	<30	<30
Bromomethane	ug/kg	200	NG	<200	<200	<200	<200	<200
Carbon Tetrachloride	ug/kg	30	50000*	<30	<30	<30	<30	<30
Chloroethane	ug/kg	200	NG	<30	<30	<30	<30	<30
Chloroform	ug/kg	30	50000*	<30	<30	<30	<30	<30
Chloromethane	ug/kg	30	NG	<30	<30	<30	<30	<30
cis-1,2-Dichloroethylene	ug/kg	30	NG	<30	<30	<30	<30	<30
cis-1,3-Dichloropropene	ug/kg	30	50000*	<30	<30	<30	<30	<30
Dibromochloromethane	ug/kg	30	NG	<30	<30	<30	<30	<30
Ethylbenzene	ug/kg	0.01	20000	<30	<30	<30	<30	<30
Ethylene Dibromide	ug/kg	30	NG	<30	<30	<30	<30	<30
Methylene Chloride(Dichloromethane)	ug/kg	30	50000*	<30	<30	<30	<30	<30
o-Xylene	ug/kg	30	20000	<30	<30	<30	<30	<30
p+m-Xylene	ug/kg	30	20000	<30	<30	<30	<30	<30
Styrene	ug/kg	30	50000*	<30	<30	<30	<30	<30
Tetrachloroethylene	ug/kg	30	600	<30	<30	<30	<30	<30
Toluene	ug/kg	0.03	800	<30	<30	<30	<30	<30
trans-1,2-Dichloroethylene	ug/kg	30	50000*	<30	<30	<30	<30	<30
trans-1,3-Dichloropropene	ug/kg	30	50000*	<30	<30	<30	<30	<30
Trichloroethylene	ug/kg	30	31000	<30	<30	<30	<30	<30
Trichlorofluoromethane (FREON 11)	ug/kg	30	NG	<30	<30	<30	<30	<30
Vinyl Chloride	ug/kg	30	NG	<30	<30	<30	<30	<30

NOTES:

Samples analyzed at Maxxam Analytics Inc. - CAEAL accredited

EPA 8260 Analytical Methodology followed

¹ - CCME Canadian Environmental Quality Guidelines for Soils on Industrial Properties (2006 Update).

² - Estimated Quantitation Limit

* - see narrative with guideline regarding use and origin of guideline Equals or Exceeds Guidelines

Table B7: HYDROCARBONS IN WATER RESULTS St. Peter's/Oban Kurdistan Oily Waste Site

Maxxam ID			GZ8391	GZ8410	GZ8411	GZ8412	GZ8417	GZ8418	GZ8419	IF3907	IF3922	IF3923	IF3924	IF3925	IF3926	IF4055
Sampling Date	Units	Guideline 1	31-Aug-10	20-Dec-10	20-Dec-10	20-Dec-10	20-Dec-10	20-Dec-10	20-Dec-10	20-Dec-10						
COC Number	Units	Guidenne i	B124742	B124763	B124763	B124763	B124763	B124763	B124763	B124763						
exp Sample ID			SP10-MW01	SP10-MW03	SP10-MW04	SP10-TR01	SP10-TR03	SP10-TR04	SP10-SW01	SP10-MW01	SP10-MW03	SP10-MW04	SP10-MW05B	SP10-MW00	SP10-SW01	TRENCH #4
Petroleum Hydrocarbons																
Benzene	mg/L	NG	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	mg/L	NG	< 0.001	< 0.001	< 0.001	0.001	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	mg/L	NG	< 0.001	< 0.001	< 0.001	0.21(1)	0.044	0.024	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	0.002
Xylene (Total)	mg/L	NG	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
C6 - C10 (less BTEX)	mg/L	NG	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01
<c10-c16 hydrocarbons<="" td=""><td>mg/L</td><td>NG</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></c10-c16>	mg/L	NG	<0.2	<0.2	<0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
>C16-C21 Hydrocarbons	mg/L	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
>C21- <c32 hydrocarbons<="" td=""><td>mg/L</td><td>NG</td><td>< 0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td></c32>	mg/L	NG	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Modified TPH (Tier1)	ma/L	***	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Notes: Guideline 1: Attantic RBCA Version 2.0, Table 8 For Coarse-grained soils on Commercial receptor sites with Non-potable water use and Ingestion

(1) VPH analisis performed on previously opened vial

(2) Fuel oil range

NG - No Guideline; ND - Not detected *** As per laboratory identified fraction and/or Atlantic RBCA Version 2.0 Table 7, Modified TPH concentration must be compared with appropriate fraction. Exceeds Guideline 1

Table B8: INORGANICS and METALS IN WATER RESULTS

St. Peter's/Oban Kurdistan Oily Was	ste Site		-					Duplicate						Duplicate				
Maxxam ID			GZ8391	GZ8410	GZ8411	GZ8412	GZ8417	GZ8420	GZ8418	IF3907	IF3922	IF3923	IF3924	IF3925	IF4055	NS EQS:	GZ8419	IF3926
Sampling Date	Units	NS EQS:	31-Aug-10	31-Aug-10	31-Aug-10	31-Aug-10	31-Aug-10	31-Aug-10	31-Aug-10	20-Dec-10	20-Dec-10	20-Dec-10	20-Dec-10	20-Dec-10	20-Dec-10	Surface	31-Aug-10	20-Dec-10
COC Number	onica	Groundwater	B124742	B124742	B124742	B124742	B124742	B124742	B124742	B124763	B124763	B124763	B124763	B124763	B124763	Water	B124742	B124763
exp Sample ID			SP10-MW01	SP10-MW03	SP10-MW04	SP10-TR01	SP10-TR03	SP10-TR00	SP10-TR04	SP10-MW01	SP10-MW03	SP10-MW04	SP10-MW05B	SP10-MW00	TRENCH #4	Water	SP10-SW01	SP10-SW01
RCAP CALCULATIONS																		1
Anion Sum	me/L	-	12.5	6.8	11.1	7.57	14.8	15.9	25	14.0	7.16	11.9	4.76	4.99	29.0	-	0.86	2.03
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	261	268	229	206	289	418	519	288	292	294	215	225	680	-	37	58
Calculated TDS	mg/L	500	716	291	631	390	768	812	1250	805	387	699	298	301	1530	-	48	114
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	3	5	2	<1	<1	8	5	2	2	3	<1	<1	3	-	<1	<1
Cation Sum	me/L	-	10.4	3	9.7	6.65	13.1	13.9	19.8	13.2	6.89		6.96	6.74	27.4	-	1.04	1.99
Hardness (CaCO3)	mg/L	-	420	94	370	68	260	280	360	580	300	510	300	290	500	-	46	86
Ion Balance (% Difference)	%	-	9.19	38.8	10	6.47	6.1	6.67	11.5	2.87	1.92	0.290	18.8	14.9	2.86	-	9.47	1.00
Langelier Index (@ 20C)	N/A	-	1.12	0.798	0.918	-0.354	-0.121	1.16	1.03	0.961	0.902	1.14	0.268	0.266	0.931	-	-1.19	-0.369
Langelier Index (@ 4C)	N/A	-	0.875	0.549	0.67	-0.603	-0.368	0.916	0.78	0.714	0.653	0.893	0.0190	0.0160	0.687	-	-1.44	-0.619
Saturation pH (@ 20C)	N/A	-	6.98	7.5	7.08	7.95	7.32	7.14	6.98	6.84	7.00	6.86	7.13	7.13	6.77	-	8.59	8.17
Saturation pH (@ 4C)	N/A	-	7.23	7.75	7.33	8.2	7.57	7.38	7.22	7.09	7.25	7.11	7.38	7.38	7.01	-	8.84	8.42
INORGANICS																		i
Alkalinity (Total as CaCO3)	mg/L	-	260	270	230	210	290	430	520	290	290	300	220	230	680	-	37	58
Chloride (CI)	mg/L	250	35	15	31	110	320	260	510	69	9	15	10	10	540	-	4	15
Colour	TCU	15	<5	<5	<5	36	18	17	20	7	6	<5	280	300	150	Narrative	230	62
Nitrate (N)	mg/L	45	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.08	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	13	0.05	< 0.06
Nitrite (N)	mg/L	0	0.01	< 0.01	0.01	< 0.01	0.01	0.01	< 0.01	<1	<0.06	< 0.06	< 0.06	< 0.06	<1	-	<0.01	< 0.06
Nitrite + Nitrate	mg/L	0.6	0.06	0.05	< 0.05	< 0.05	0.06	< 0.05	0.08	<1	<0.06	< 0.06	< 0.06	< 0.06	<1	0.06	0.05	< 0.06
Nitrogen (Ammonia Nitrogen)	mg/L	0.19	0.22	0.09	0.25	27	11	9.4	15	0.14	0.09	0.18	< 0.05	< 0.05	15	-	< 0.05	< 0.05
Total Organic Carbon (C)	mg/L	-	7	1.4	2.4	6.8	11	9.3	13	1.8	1.7	1.4	4.5	4.7	14	-	24	12
Orthophosphate (P)	mg/L	-	< 0.01	0.02	< 0.01	4.6	< 0.01	< 0.01	<0.01	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	-	< 0.01	< 0.3
pH	pH	0	8.1	8.3	8	7.60	7.2	8.3	8	7.80	7.90	8.00	7.40	7.40	7.70	6.5 to 9.0	7.4	7.80
Silica (SiO2)	mg/L	-	12	6.4	9.6	1.2	4	4.5	5.8	13	20	12	16	16	9.6	-	2.2	4.7
Sulphate (SO4)	mg/L	500	300	44	270	<2	<2	<2	<2	300	48	270	8	10	<2	100	<2	21
Turbidity	NTU	-	>1000	>1000	>1000	12	140	120	80	660	>1000	>1000	>1000	>1000	120	-	62	3.2
Conductivity	uS/cm	-	1100	610	1100	790	1800	1500	2500	1200	630	1000	440	450	3000	-	110	200
Elements (ICP-MS)																		í
Dissolved Aluminum (AI)	mg/L	0.05	0.01	0.015	0.0094	0.019	0.025	0.022	0.017	0.034	0.024	0.048	0.021	0.03	< 0.050	0.005	0.072	0.09
Dissolved Antimony (Sb)	mg/L	0.006	0.0015	0.0016	0.0011	< 0.0004	0.0015	< 0.0004	< 0.0004	0.0015	0.00074	0.0015	0.0011	0.001	< 0.004	0.02	< 0.0004	< 0.00040
Dissolved Arsenic (As)	mg/L	0.01	< 0.0006	< 0.0006	0.00063	0.0021	0.0014	0.0014	0.0012	0.0012	0.00063	0.003	0.0055	0.0054	< 0.006	0.005	< 0.0006	< 0.00060
Dissolved Barium (Ba)	mg/L	1	0.065	0.062	0.074	0.079	0.27	0.27	0.74	0.044	0.052	0.04	0.13	0.13	0.95	1	0.0083	0.0083
Dissolved Beryllium (Be)	mg/L	0.004	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	0.0053	< 0.0005	< 0.0005
Dissolved Bismuth (Bi)	mg/L	-	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.02	-	< 0.002	< 0.002
Dissolved Boron (B)	mg/L	5	< 0.1	<0.1	<0.1	0.17	0.45	0.49	0.69	< 0.1	<0.1	<0.1	< 0.1	< 0.1	1.1	1.2	< 0.1	< 0.1
Dissolved Cadmium (Cd)	mg/L	0.0001	< 0.000017	< 0.000017	0.000029	0.00013	< 0.000017	< 0.000017	< 0.000017	< 0.000017	< 0.000017	< 0.000017	< 0.000017	< 0.000017	< 0.00017	0.00001	0.000022	< 0.000017
Dissolved Chromium (Cr)	mg/L	0.05	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.01	-	< 0.001	< 0.001
Dissolved Cobalt (Co)	mg/L	0.003	0.0016	< 0.001	0.0018	< 0.001	< 0.001	< 0.001	< 0.001	0.002	< 0.001	0.0031	0.0019	0.0019	< 0.01	0.004	< 0.001	< 0.001
Dissolved Lead (Pb)	mg/L	0.01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.01	0.001	< 0.001	< 0.001
Dissolved Lithium (Li)	mg/L	-	0.023	0.01	0.023	0.002	0.01	0.01	0.0064	0.022	0.012	0.019	0.015	0.015	0.013	-	< 0.001	< 0.001
Total Mercury (Hg)	mg/L	0.00026	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.000026	NA	NA
Dissolved Molybdenum (Mo)	mg/L	0.07	0.017	0.018	0.014	< 0.004	< 0.004	< 0.004	< 0.004	0.0053	< 0.004	0.0061	0.0044	0.0044	< 0.04	0.073	< 0.004	< 0.004
Dissolved Nickel (Ni)	mg/L	0.1	0.0041	< 0.003	0.0032	< 0.003	< 0.003	< 0.003	< 0.003	0.0039	< 0.003	0.011	0.0039	0.004	< 0.03	0.025	< 0.003	< 0.003
Dissolved Phosphorus (P)	mg/L	-	<0.1	<0.1	<0.1	5.1	0.26	0.3	0.37		<0.1	<0.1	<0.1	<0.1	<1.0	-	<0.1	<0.1
Dissolved Selenium (Se)	ma/L	0.01	0.0037	< 0.001	0.0056	< 0.001	< 0.001	< 0.001	< 0.001		< 0.001	< 0.001	< 0.001	< 0.001	< 0.01	0.001	< 0.001	< 0.001
Dissolved Silver (Ag)	mg/L	0.001	0.00018	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.001	0.0001	< 0.0001	< 0.0001
Dissolved Strontium (Sr)	mg/L	4.4	1.1	0.31	1.2	0.37	0.84	0.85	1.4	1.3	0.89	1.5	0.63	0.62	2.1	21	0.03	0.048
Dissolved Sulphur (S)	mg/L	-	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	-	NA	NA
Dissolved Thallium (TI)	mg/L	0.002	<0.0008	<0.0008	< 0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.008	0.0008	<0.0008	<0.0008
Dissolved Tin (Sn)	mg/L	4.4	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.2	-	<0.02	<0.02
Dissolved Titanium (Ti)	mg/L	-	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.03	-	< 0.003	< 0.003
Dissolved Uranium (U)	mg/L	0.02	0.02	0.00072	0.018	<0.00015	<0.00015	<0.00015	<0.00015	0.007	<0.00015	0.0095	0.003	0.0029	< 0.0015	0.3	<0.00015	< 0.00015
Dissolved Vanadium (V)	mg/L	0.0062	<0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002	<0.002	< 0.002	< 0.002	< 0.002	<0.02	0.006	<0.002	< 0.002
Elements (ICP-OES)															.0.02			
Dissolved Calcium (Ca)	mg/L	-	41	29	35	78	150	160	300	170	95	150	90	86	100	-	2.6	26
Dissolved Copper (Cu)	mg/L	0.02	<0.002	<0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002	<0.002	<0.002	< 0.002	< 0.002	< 0.002	<0.02	0.002	<0.002	< 0.002
Dissolved Iron (Fe)	mg/L	0.3	<0.1	<0.1	<0.002	2.4	11	<0.002	6.5	0.13	0.51	0.17	<0.1	<0.1	6.6	0.3	0.29	<0.1
Dissolved Magnesium (Mg)	mg/L	-	26	5.3	25	8.6	29	32	48		15	33	18	18	60	-	2.6	4.9
Dissolved Magnesian (Mg)	mg/L	0.05	0.48	0.12	0.43	0.47	0.84	0.87	1.1		0.15	0.7	1.7	1.6	1.9	0.82	0.08	0.0047
Dissolved Manganese (Min) Dissolved Potassium (K)	mg/L	0.05	20	3.6	18	0.47	16	17	17		2.3	11	6.2	6.1	2.1	0.02	<0.6	0.0047
Dissolved Potassium (K) Dissolved Sodium (Na)	mg/L	200	140	35	130	15	54	58	85		2.3		18	0.1	360		<0.6	5.9
Dissolved Sodium (Na) Dissolved Zinc (Zn)	mg/L	0.3	<0.005	0.17	<0.005	0.0078	0.0061	0.011	0.0053	0.058	0.012	<0.005	<0.005	<0.005	<0.05	0.03	0.0096	< 0.005
DISSUIVED ZITIC (ZTI)	mg/L	0.3	<0.005	U.17	<0.005	0.0078	0.0061	0.011	0.0053	0.058	0.012	<0.005	<0.005	<0.005	<0.05	0.03	0.0096	<0.005

 Dissolved Zinc (Zn)
 mg/L
 0.3

 Notes:
 Guideline 1: Rationale for the Development of Environmental Quality

 Standards for Contaminated Sites in Nova Scotia Tart 1: Table A-3 Tier 1
 The Normanniat Quality Standards for Surface Water, Fresh Water, January 2011

Guideline 2: Rationale for the Development of Environmental Quality Standards for Contaminated Sites in Nova Scotia Tier 1: Table A-4 Tier 1 Environmental Quality Standards for Groundwater,

NM = Not measured due to insufficient water; N/A = Not applicable; NA = Not analysed

AO = Aesthetic Objective

Exceeds NS EQS:Surface Water Exceeds NS EQS:Groundwater Exceeds both Guidelines

Table B9: PAH IN GROUNDWATER RESULTS

St. Peter's/Oban Kurdistan Oily Waste Site

Maxxam ID		NS EQS:	GZ8410	IF3907	IF3922	IF3923	IF3924	IF3925	IF4055	NS EQS:	IF3926
Sampling Date	Units	Groundwate	31-Aug-10	20-Dec-10	20-Dec-10	20-Dec-10	20-Dec-10	20-Dec-10	20-Dec-10	NS EQS: Surface	20-Dec-10
COC Number	Units	Groundwate	B124742	B124763	B124763	B124763	B124763	B124763	B124763		B124763
exp Sample ID		r	SP10-MW03	SP10-MW01	SP10-MW03	SP10-MW04	SP10-MW05E	SP10-MW00	TRENCH #4	Water	SP10-SW01
Polycyclic Aromatic Hydroca	rbons										
1-Methylnaphthalene	ug/L	20	<0.05	<0.05	< 0.05	< 0.05	0.06	0.06	< 0.05	2	< 0.05
2-Methylnaphthalene	ug/L	20	<0.05	<0.05	< 0.05		0.10	0.10	< 0.05	2	< 0.05
Acenaphthene	ug/L	58	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	5.8	<0.01
Acenaphthylene	ug/L	0.45	<0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	4.6	<0.01
Anthracene	ug/L	0.12	<0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	0.012	<0.01
Benzo(a)anthracene	ug/L	0.18	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.018	<0.01
Benzo(a)pyrene	ug/L	0.15	<0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	0.015	<0.01
Benzo(b)fluoranthene	ug/L	4.8	<0.01	<0.01	<0.01	< 0.01	0.02	0.02	< 0.01	0.48	<0.01
Benzo(g,h,i)perylene	ug/L	1.7	<0.01	<0.01	<0.01	0.01	0.02	0.02	<0.01	0.17	<0.01
Benzo(k)fluoranthene	ug/L	4.8	<0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	0.48	<0.01
Chrysene	ug/L	14	0.01	<0.01	0.03	0.02	0.03	0.03	< 0.01	1.4	<0.01
Dibenz(a,h)anthracene	ug/L	2.6	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	0.26	<0.01
Fluoranthene	ug/L	0.4	<0.01	0.01	0.02	0.03	0.05	0.04	<0.01	0.04	<0.01
Fluorene	ug/L	30	0.02	<0.01	0.07	0.03	0.05	0.05	< 0.01	3	<0.01
Indeno(1,2,3-cd)pyrene	ug/L	2.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	0.21	<0.01
Naphthalene	ug/L	11	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	1.1	<0.2
Perylene	ug/L	-	<0.01	<0.01	<0.01	<0.01	0.01	0.01	<0.01	-	<0.01
Phenanthrene	ug/L	4	0.04	0.02		0.10				0.4	0.01
Pyrene	ug/L	0.25	0.01	0.01	0.03	0.03	0.05	0.05	<0.01	0.025	<0.01

Notes:

Guideline 1: Rationale for the Development of Environmental Quality Standards for Contaminated Sites in Nova Scotia Tier 1: Table A-3 Tier 1 Environmental Quality Standards for Surface Water, Fresh Water, January 2011

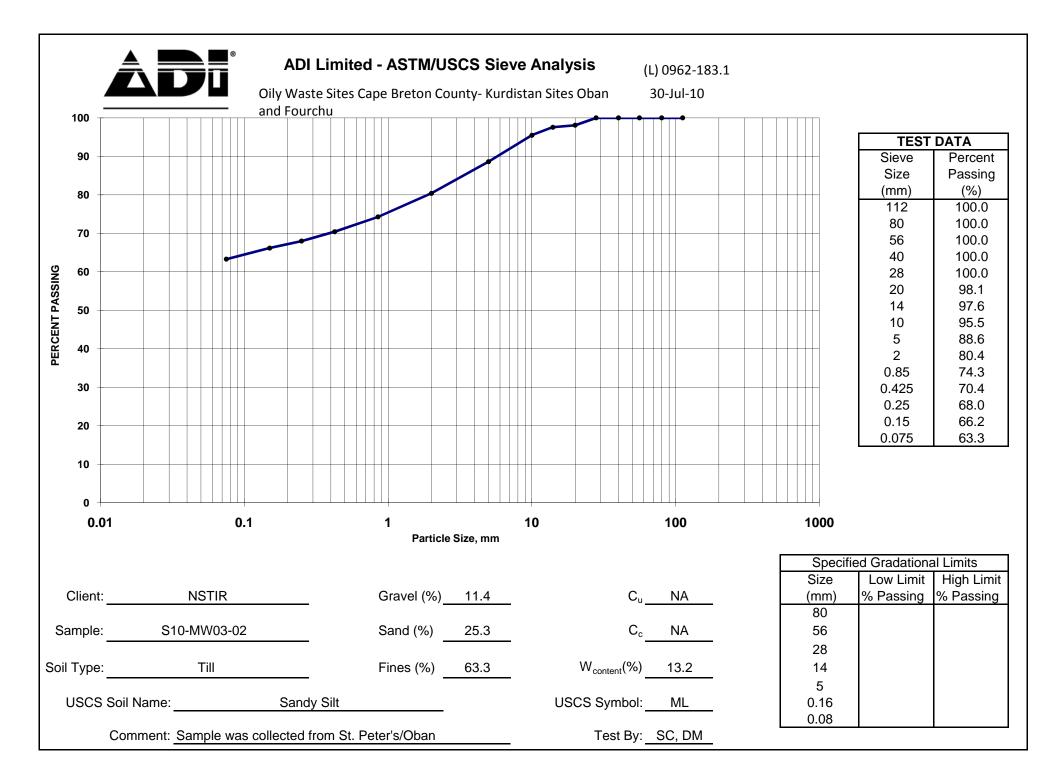
Guideline 2: Rationale for the Development of Environmental Quality Standards for Contaminated Sites in Nova Scotia Tier 1: Table A-4 Tier 1 Environmental Quality Standards for Groundwater, January 2011

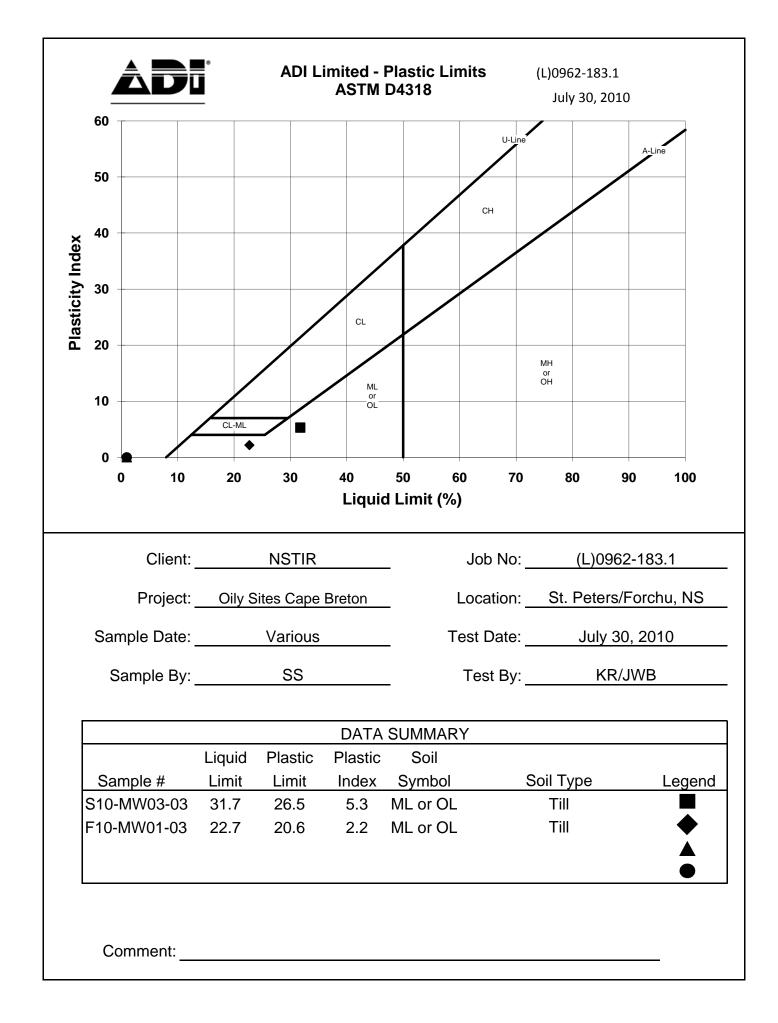
NG - No Guideline; ND - Not detected

Exceeds Guideline 1
Exceeds Guideline 2
Exceeds Guideline 1 and 2

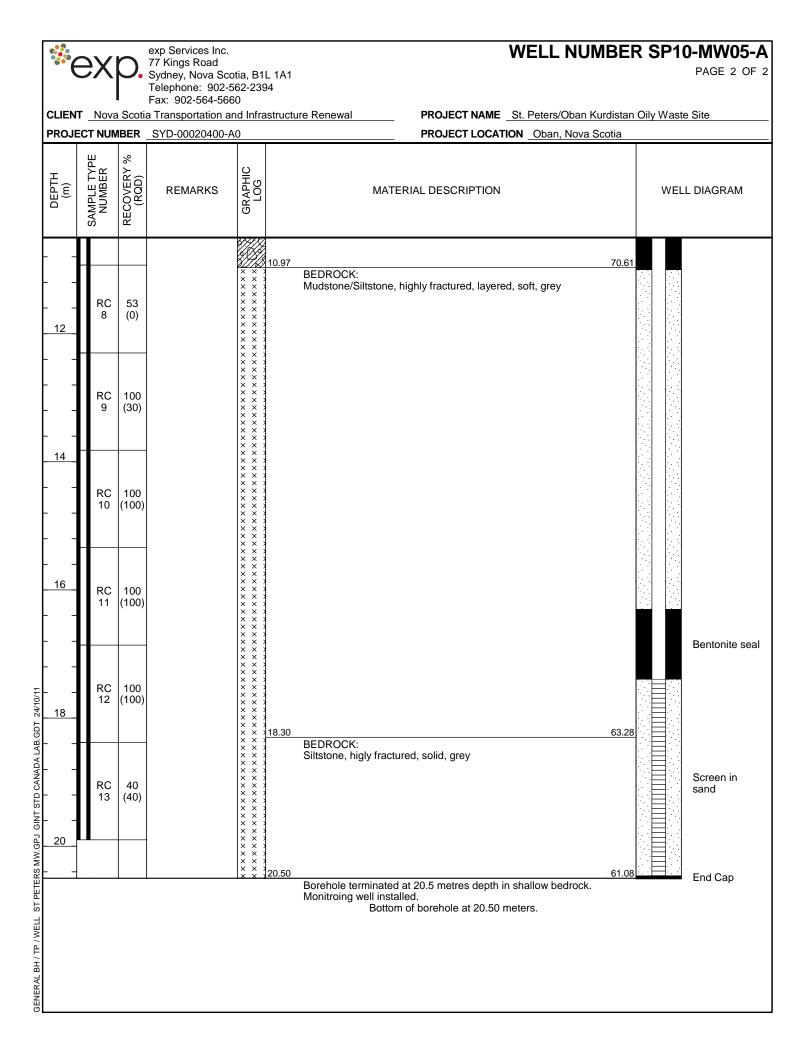
Table B10: VOC's in Water

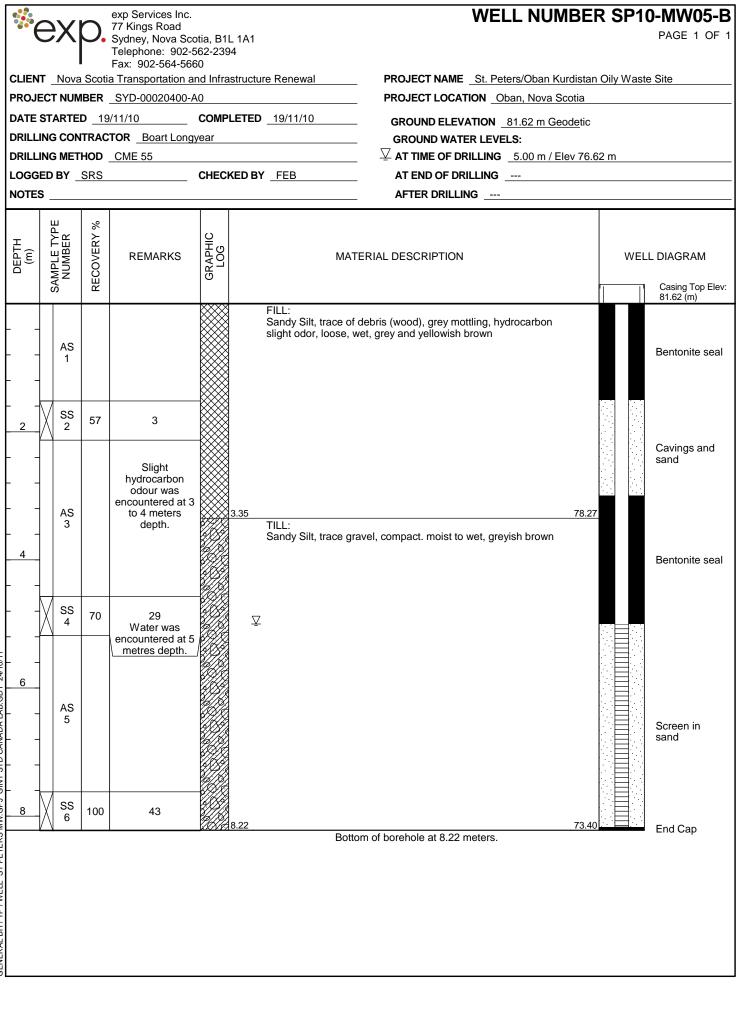
St. Peter's/Oban Kurdistan Oily Waste Site


St. Peter's/Oban Kurdistan Oily Waste	Olle														
Maxxam ID			GZ8391	GZ8410	GZ8411	GZ8412	GZ8417	GZ8418	IF3907	IF3922	IF3923	IF3924	IF3925	IF3926	IF4055
Sample ID	UNITS	NSE EQS	40421	40421	40421	40421	40421	40421	B124763						
Date Sampled		Groundwater	B124742	B124742	B124742	B124742	B124742	B124742	20-Dec-10						
exp Sample ID			SP10-MW01	SP10-MW03	SP10-MW04	SP10-TR01	SP10-TR03	SP10-TR04	SP10-MW01	SP10-MW03	SP10-MW04	SP10-TR01	SP10-TR03	SP10-TR04	SP10-TR04
PARAMETER															
VOC's															
CHLOROBENZENES															
1,2-Dichlorobenzene	ug/L	7	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-Dichlorobenzene	ug/L	59	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-Dichlorobenzene	ug/L	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzene	ug/L	13	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
VOLATILES															
1,1,1-Trichloroethane	ug/L	100	<1			<1	<1	<1	<1	<1		<1	<1	<1	<1
1,1,2,2-Tetrachloroethane	ug/L	1	<1			<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-Trichloroethane	ug/L	5	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-Dichloroethane	ug/L	5	<2	<2			<2	<2	<2			<2	<2	<2	<2
1,1-Dichloroethylene	ug/L	14	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	ug/L	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-Dichloropropane	ug/L	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Benzene	ug/L	5	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	ug/L	190	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	ug/L	25	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	ug/L	0.89	<3		<3	<3	<3	<3	N/A						
Carbon Tetrachloride	ug/L	5	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	ug/L	11000	<8			-	<8	<8	<8			<8	<8	<8	<8
Chloroform	ug/L	18	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	ug/L	38	<8			-	<8	<8	<8			<8	<8	<8	<8
cis-1,2-Dichloroethylene	ug/L	20	<2				<2	<2	<2	<2		<2	<2	<2	<2
cis-1,3-Dichloropropene	ug/L	0.5	<2		<2	<2	<2	<2	<2	<2	-	<2	<2	<2	<2
Dibromochloromethane	ug/L	190	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	ug/L	2.4	<1	<1	<1	170	47	34	<1	<1	<1	<1	<1	<1	5
Ethylene Dibromide	ug/L	0.05	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene Chloride(Dichloromethane)	ug/L	50	<3	-	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
o-Xylene	ug/L	NG	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
p+m-Xylene	ug/L	NG	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Styrene	ug/L	100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Tetrachloroethylene	ug/L	30	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toluene	ug/L	24	<1	<1	<1	1	2	1	<1	<1	<1	<1	<1	<1	<1
trans-1,2-Dichloroethylene	ug/L	20	<2		<2	<2	<2	<2	<2	<2		<2	<2	<2	<2
trans-1,3-Dichloropropene	ug/L	0.5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	ug/L	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane (FREON 11)	ug/L	NG	<8	<8	-	-	<8	<8	<8	<8	-	<8	<8	<8	<8
Vinyl Chloride	ug/L	2	< 0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5

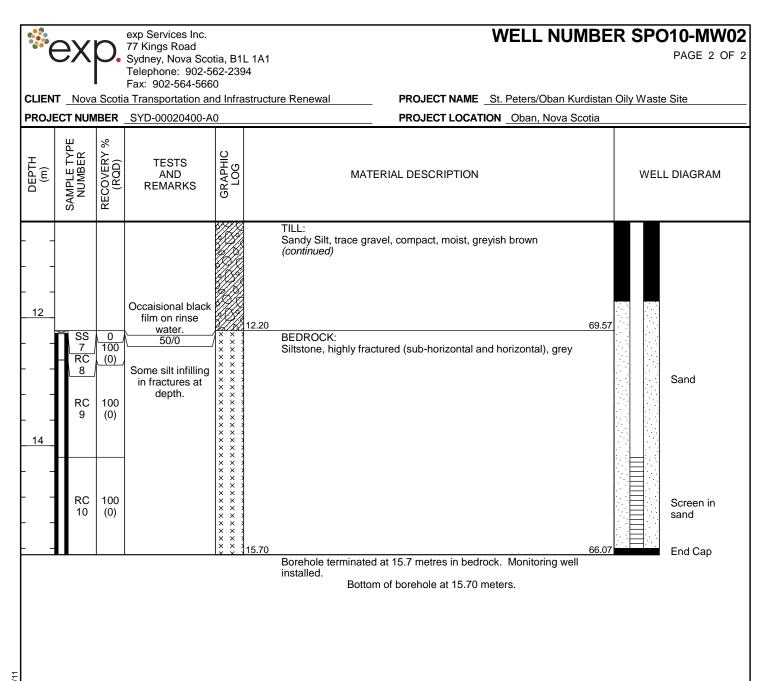

NOTES:

NOTES: Samples analyzed at Maxxam Analytics Inc. - CAEAL accredited Guideline 1: Rationale for the Development of Environmental Quality Standards for Contaminated Sites in Nova Scotia Tier 1: Table A-4 Tier 1 Environmental Quality Standards for Groundwater, January 2011 6 - Aesthetic Objective EPA 8260 Analytical Methodology followed NG - No guideline cited NA - not applicable Exceeds Guideline 1


Table B11 St. Peters groundwater elevations


					31-A	ug-10	20-D	ec-10
				Total PVC		Water		Water
	Ground	PVC pipe	PVC stick	(well depth),	Water level,	elevation,	Water level,	elevation,
Monitoring Well ID	level, MASL	level, MASL	up, m	m	m	MASL	m	MASL
SP10-MW-01	80.8208	81.446	0.6252	9.16	7.86	73.586	3.11	78.336
SP10-MW-02	81.0835	81.7668	0.6833	16.18	dry	dry	dry 16.18	dry
SP10-MW-03	78.9515	79.5729	0.6214	13.8 (23.8?)	19.403	60.1699	19.41	60.1629
SP10-MW-04	79.3882	80.0466	0.6584	9.45	7.63	72.4166	2.573	77.4736
SP10-MW-05A	80.9449	81.5768	0.6319	20.51	NM	NM	dry	dry
SP10-MW-05B	80.9571	81.6189	0.6618	9.24	NM	NM	1.51	80.1089

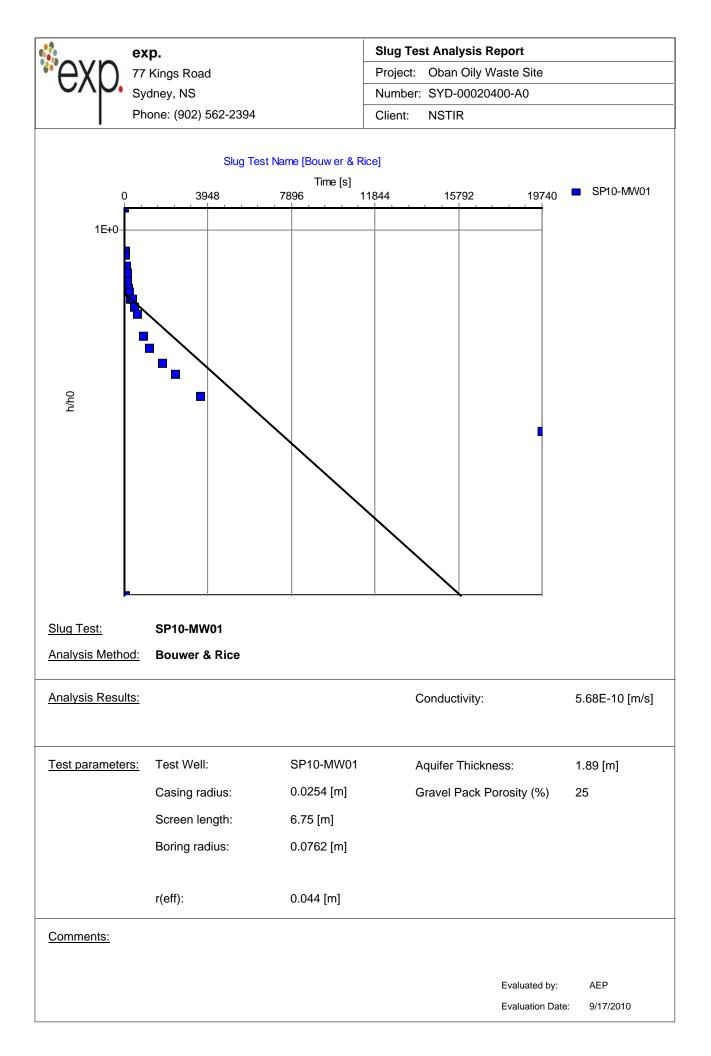
*	ex	(p.	exp Services Inc. 77 Kings Road Sydney, Nova Sco Telephone: 902-5	62-239	L 1A1 94	WELL NU	MBER SP1	0-MW05-A PAGE 1 OF 2			
CLIE	NT No	∎ va Scot	Fax: 902-564-566		astructure Renewal	PROJECT NAME St. Peters/Oban	Kurdistan Oilv Was	te Site			
					PLETED 18/11/10						
						<u> </u>	<u>Seode</u> lic				
					KED BY FEB						
DEPTH (m)	Ш			GRAPHIC LOG		ERIAL DESCRIPTION		LL DIAGRAM Casing Top Elev: 81.58 (m)			
GENERAL BH / TP / WELL ST PETERS MW.GPJ GINT STD CANADA LAB.GDT 24/10/11	- $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$	3 70 3 70 3 79 3 79	27 LNAPL sheen was noted on drill water. 32 39	2222222	3.30 TILL:	e Gravel, compact, moist to dry, greish	78.28	Bentonite seal			
GENERAL BH / TP	- 6 - R(- 7					(Continued Next Page)		Bentonite seal			

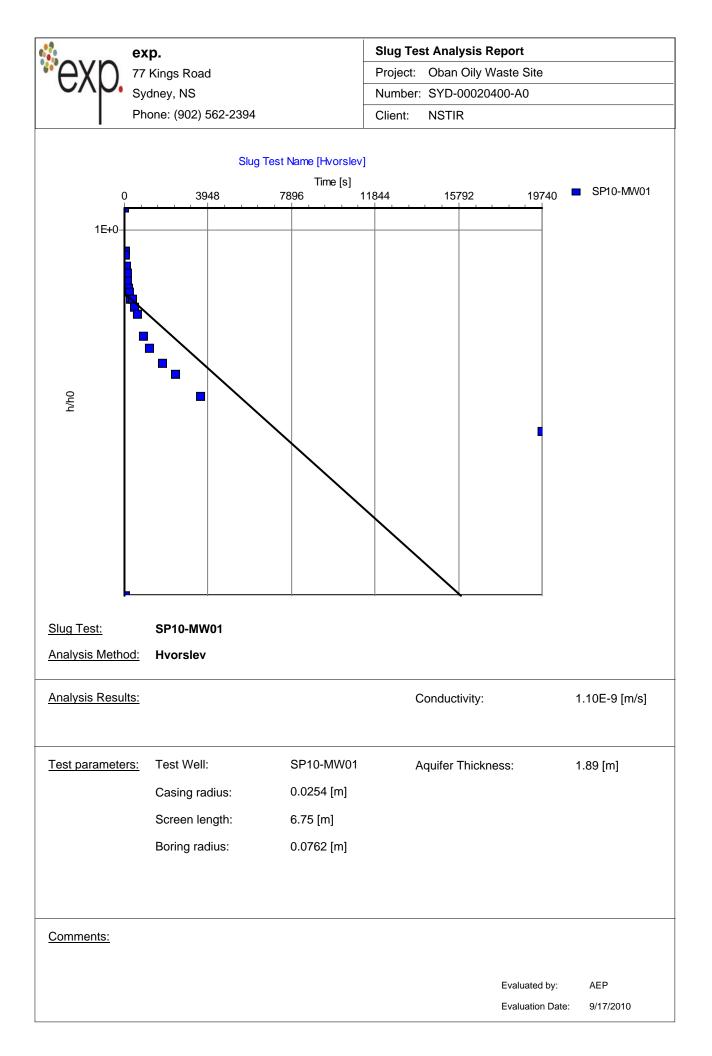


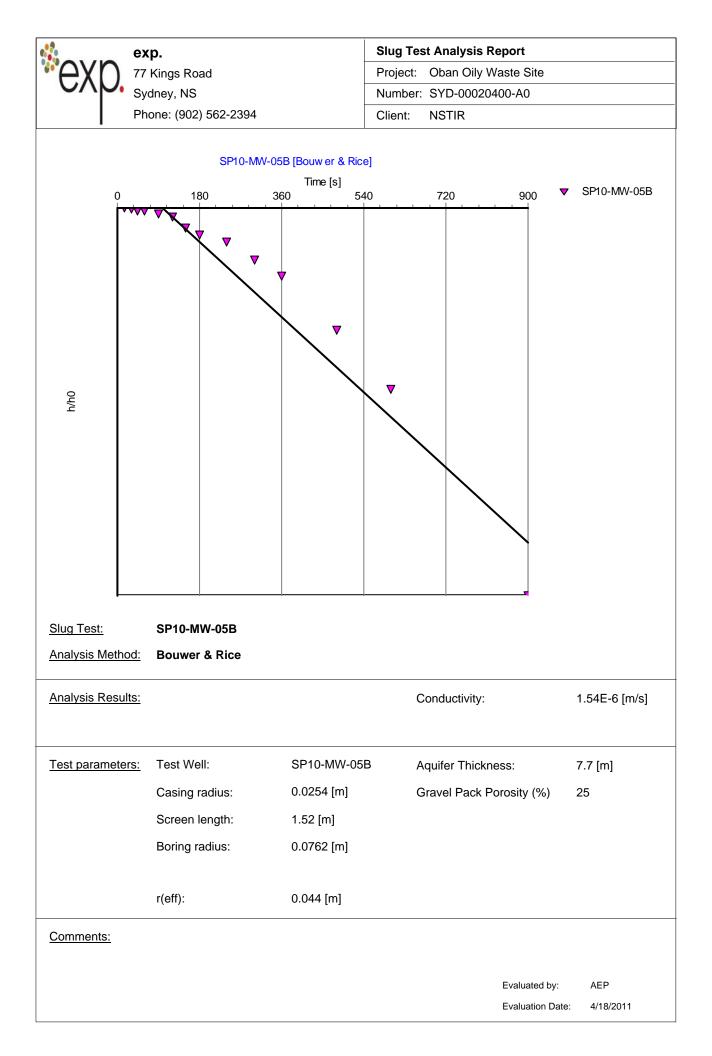
GENERAL BH / TP / WELL ST PETERS MW.GPJ GINT STD CANADA LAB.GDT 24/10/11

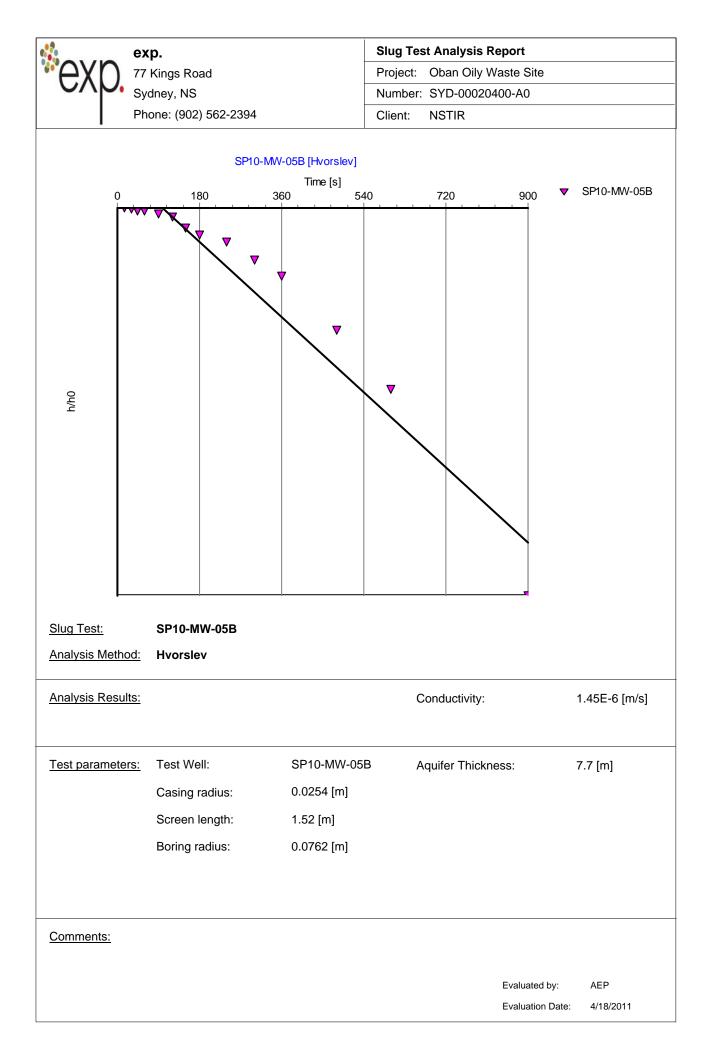
		n	exp Services Inc. 77 Kings Road				WELL NUN	BER SPC	D10-MW01 PAGE 1 OF 1
			Sydney, Nova Sco Telephone: 902-5	562-239	L 1A1 94				PAGE I OF I
CLIEN	IT Nova	Scoti	Fax: 902-564-566 a Transportation a		astruct	ure Renewal	PROJECT NAME _ St. Peters/Oban Ku	rdistan Oily Waste	e Site
DATE	STARTE	D _29)/7/10	COMP	LETE	2 29/7/10	GROUND ELEVATION _81.45 m Geo	odetic	
DRILL	ING CON	TRAC	TOR Boart Long	year					
						Y FEB			
NOTE	s	1			1		AFTER DRILLING		
DEPTH (m)	SAMPLE TYPE NUMBER	RECOVERY %	TESTS AND REMARKS	GRAPHIC LOG		MAT	ERIAL DESCRIPTION	WEL	
	S S	~	0						Casing Top Elev: 81.45 (m)
	ss 1	41	8 Ground surface was uneven, low lying vegetation cover.			FILL: Reworked till, Sano moderate brown, so	ly silt, trace gravel, loose to compact, moist, ome iron staining	Π	Bentonite seal
2		100	16		1.88	TILL: Sandy silt, trace gra	avel (increase to some with depth), compact,	79.57	
	ss 3	100	Trace weathered sandstone clasts observed in the till at 3.05 to 4.57 metres depth.			moist, greyish brow	'n		Cavings and sand
 _4	V ss		29						
- 24/10/11 	4	100	41						
STD CANADA LAB.GDT	ss 5	100	37						Screen in sand
GENERAL BH / TP / WELL ST PETERS MW.GPJ GINT STD CANADA LAB.GDT 24/10/11	SS 6	100	23 Water was not encountered during drilling.						
TP / WELL ST	SS 7	100	32		0.75				End Cap Cavinings
GENERAL BH	<u>v N</u>	I	1		9.75	installed.	d at 9.75 metres in Till. Monitoring well om of borehole at 9.75 meters.	71.70	

	ех	n	exp Services Inc. 77 Kings Road Sydney, Nova Sco Telephone: 902-5 Fax: 902-564-566	562-239	L 1A1 4	WELL NUME	BER SPO	PAGE 1 OF 2
CLIEN	NT Nova	a Scoti			structure Renewal	PROJECT NAME _St. Peters/Oban Kurdis	stan Oily Wast	e Site
PROJ	JECT NUN	IBER	SYD-00020400-A	40		PROJECT LOCATION _Oban, Nova Scoti	а	
DATE	STARTE	D _28	/7/10	COMP	LETED _ 28/7/10	GROUND ELEVATION 81.77 m Geode	etic	
							<u></u>	
					KED BY FEB			
						AFTER DRILLING		
DEPTH (m)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	TESTS AND REMARKS	GRAPHIC LOG	MAT	ERIAL DESCRIPTION	WEL	L DIAGRAM Casing Top Elev: 81.77 (m)
	SS 1	0	Ground surface was flat. Grass cover. General area was wooded. 6		FILL: Sand and gravel, so brown	ome silt, loose to compact, moist, moderate		
 		16	35		2.13 TILL: Sandy Silt, trace gra	7 avel, compact, moist, greyish brown	<u>9.64</u>	
	SS 3	100	24					
0	SS 4	100	25					Cavings and sand
IT STD CANADA LAB.GD	SS 5	100	27					
GENERAL BH / TP / WELL ST PETERS MW.GPJ GINT STD CANADA LAB.GDT 24/10/11 0 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9								
/d⊥/H		100	66					
GENERAL BI	-		Case pipe run to 12.2 metres.			(Continued Next Page)		Bentonite

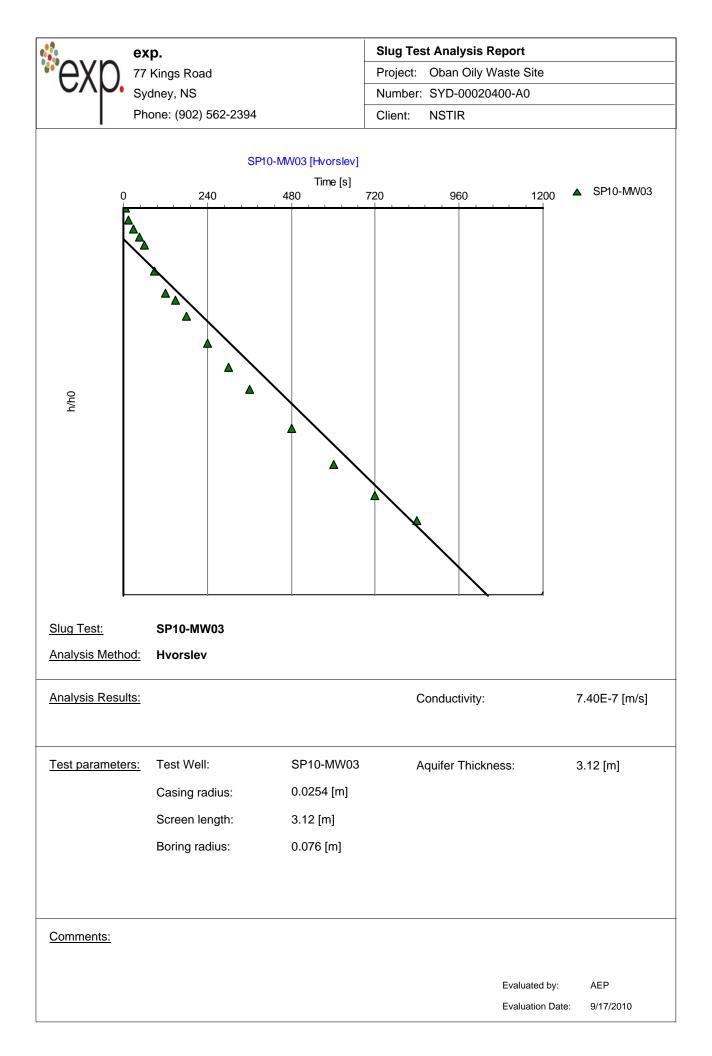


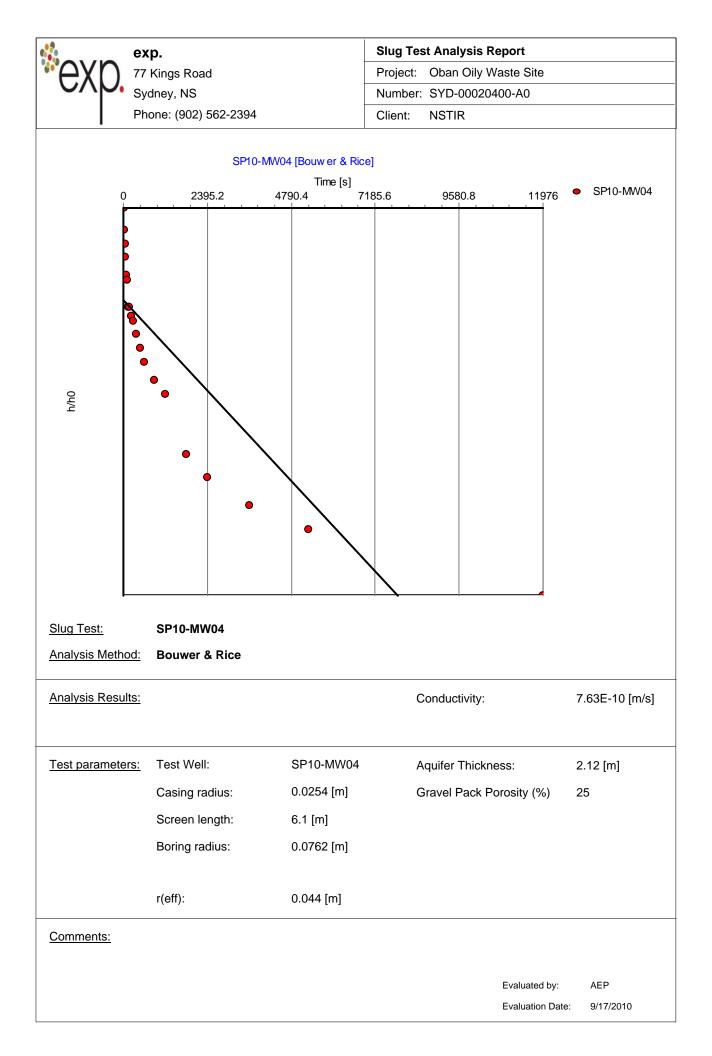

*	ex	р.	exp Services Inc. 77 Kings Road Sydney, Nova Sco Telephone: 902-5	ootia, B1L 1A1				WELL NUMBER SPO10-MW03 PAGE 1 OF 3					
		l	Fax: 902-564-566	60		_							
					astructure	e Renewal							
	PROJECT NUMBER SYD-00020400-A0							JECT LOCATIO	N Oban, Nova S	icotia			
						29/7/10	•		ION _ 79.57 m Ge	odetic			
						550			LING				
						FEB			_ING				
	.o	1			1		A						
DEPTH (m)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	TESTS AND REMARKS	GRAPHIC LOG		МАТ	FERIAL DE	SCRIPTION		ſ	WI	ELL T	DIAGRAM Casing Top Elev: 70.57 (m)
			Ground surface	<u>, 1, 1, 1</u>	0.15	ORGANICS:				79.42			79.57 (m)
		58	was uneven, low lying vegetation cover. 4		0.61	Rootlets, some tops FILL: Reworked till, Sanc moderate brown, so	ly silt, trace	e gravel, loose to	o compact, moist,	78.96			Bentonite seal
						TILL: Sandy Silt, trace gr moist, greyish brow	avel increa /n	ase to some with	n depth, compact,				
 	SS 2	100	30										
ANADA LAB.GDT	SS 3	100	31										
GENERAL BH / TP / WELL ST PETERS MW.GPJ GINT STD CANADA LAB.GDT 24/10/11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-		Water was not encountered during drilling.							70.40			
H/TP/WEL	ss 4	100	42		} ।	BEDROCK: Mudstone, grey, hiç depth	ghly fractur	ed becoming co	ompetent with	70.43			Cavings and sand
GENERAL B	RC	20											
							(Con	tinued Next Page	e)				

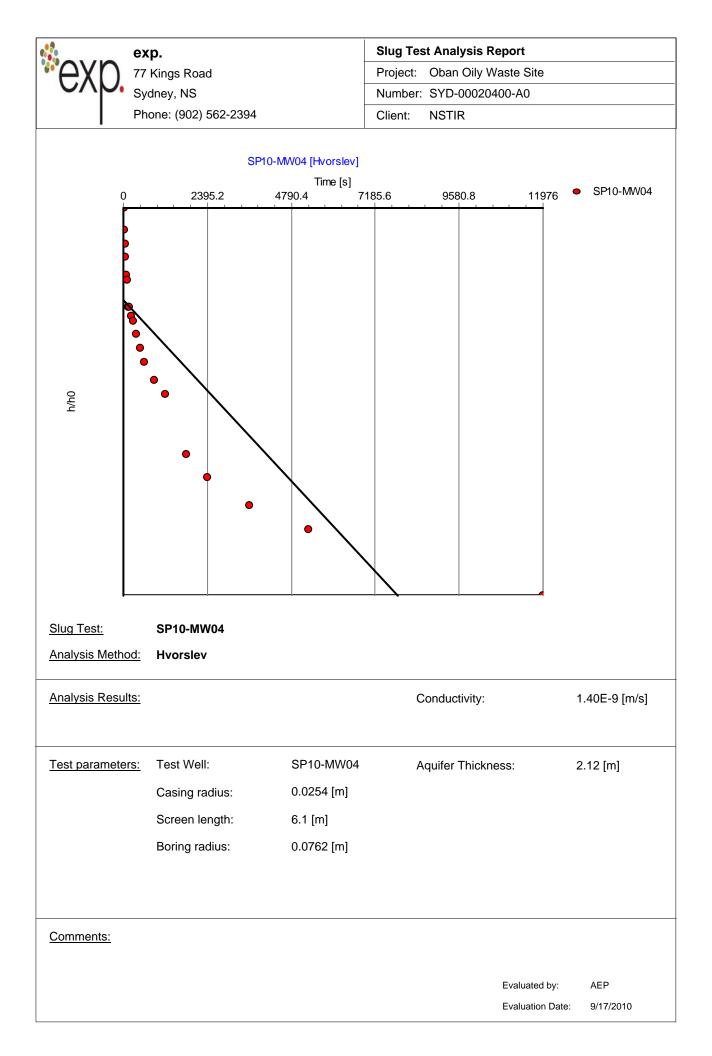

**(ЭХ	ίp.	exp Services Inc. 77 Kings Road Sydney, Nova Sco Telephone: 902-5 Fax: 902-564-566	62-2394		ER SPO10-MW(PAGE 2 OF							
			a Transportation an SYD-00020400-A		ucture Renewal PROJECT NAME _ St. Peters/Oban Kurdis PROJECT LOCATION _ Oban, Nova Scotia								
DEPTH (m)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	TESTS AND REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAGRAM							
-	5	(0)		× × × × × × × × × × × × × × ×	BEDROCK: Mudstone, grey, highly fractured becoming competent with depth (continued)								
- 12 -	RC 6	; 20 (0)		****									
- - 14_	RC 7	68 (0)									****		
-	RC 8	; 100 (0)		***************************************									
<u>16</u> –	RC 9	: 100 (0)											
- <u>18</u>	RC 10	; 100 (100)	Flecks of mica coming out in wash water.	*****		Bentonite Seal							
_ _ _20	RC 11			x x x x x x x x x x x x x x x x x x x		Sand							
-	RC 12			· · · · · · · · · · · · · · · · · · ·		Screen in							
22	RC	43		× × × × × × × × × × × × × × × × × × ×		sand							


Fax: 902-564-5660 CLIENT Nova Scotia Transportation and Infrastructure	
	Renewal PROJECT NAME St. Peters/Oban Kurdistan Oily Waste Site
PROJECT NUMBER SYD-00020400-A0	PROJECT LOCATION Oban, Nova Scotia
DEPTH (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	MATERIAL DESCRIPTION WELL DIAGRAM
13 (0) × × + E × × + N × × +	EDENCIC


*	ex	p.	exp Services Inc. 77 Kings Road Sydney, Nova Sco Telephone: 902-5 Fax: 902-564-566	62-239	L 1A1)4	WELL NUN	IBER SPO	D10-MW04 PAGE 1 OF 1			
CLIEN	IT Nova	a Scoti			structure Renewal	PROJECT NAME St. Peters/Oban Kurdistan Oily Waste Site					
PROJ	ECT NU	MBER	SYD-00020400-A	.0							
DATE	STARTE	D 30)/7/10	COMP	LETED _ 30/7/10	GROUND ELEVATION 80.05 m Geo	<u>de</u> tic				
DRILL	ING CO	NTRAC	TOR Boart Longy	/ear							
					KED BY FEB						
NOTE	s					AFTER DRILLING	1				
DEPTH (m)	SAMPLE TYPE NUMBER	RECOVERY %	TESTS AND REMARKS	GRAPHIC LOG	MAT	ERIAL DESCRIPTION	WEL	L DIAGRAM Casing Top Elev: 80.05 (m)			
	ss 1	50	Ground surface was uneven, low lying vegetation cover, DNR cleared drill area. 4		FILL:	soil, loose, moist, black	~79.95	60.05 (m)			
					1.52 TILL: Sandy silt, trace gra moist, greyish brow	avel increase to some with depth, compact, n	78.53	Bentonite seal			
	V ss							Cavings and sand			
 		92	26								
ANADA LAB.GDT 24/10/	ss 3	71	33					Screen in sand			
GENERAL BH / IP / WELL SI PETERS MW.GPJ GINI SID CANADA LAB.GDT 24/10/11	-		Water was not encountered during drilling.								
	<u> </u>							End Cap			
м М	∭ ss	25	29					Cavinings			
ц Т	4		-		9.75		70.30	Javiilliyə			
ENERALE					installed.	d at 9.75 metres in Till. Monitoring well om of borehole at 9.75 meters.					







Appendix C Janvin Island

Table C-1: HYDROCARBONS IN SOIL RESULTS

Janvrins Oily Waste Disposal Site

Maxxam ID		RBCA	IA9826	IA9833	IA9834	IA9835	IA9836
Sampling Date	Units	Commercial	2-Dec-10	2-Dec-10	2-Dec-10	2-Dec-10	2-Dec-10
COC Number	Units	Guideline**	B124761	B124761	B124761	B124761	B124761
Sample ID		Guideinie	J1A10-TP05	J1A10-TP06	J1A10-TP09	J1A10-TP13	J1A10-TP17
TPH COMPOUNDS							
Benzene	mg/kg	570	< 0.003	0.004	0.004	< 0.003	< 0.003
Toluene	mg/kg	18000	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Ethylbenzene	mg/kg	10000	<0.01	0.58	0.25	<0.01	<0.01
Xylene (Total)	mg/kg	180000	< 0.05	1.1	1.5	< 0.05	< 0.05
C6 - C10 (less BTEX)	mg/kg	13000	<3	81	63	<3	<3
>C10-C16 Hydrocarbons	mg/kg	7700	34	1500	1500	81	20
>C16-C21 Hydrocarbons	mg/kg	7700	250	3800	4200	310	160
>C21- <c32 hydrocarbons<="" td=""><td>mg/kg</td><td>12000</td><td>810</td><td>5600</td><td>5700</td><td>890</td><td>550</td></c32>	mg/kg	12000	810	5600	5700	890	550
Modified TPH (Tier1)	mg/kg	***	1100	11000	11000	1300	730
Product Identification	na		na	na	na	na	na

Notes:

RDL = Reportable Detection Limit, NG = No guideline

** Atlantic RBCA Version 2.0, Table 8 For Coarse-grained soils on Commercial receptor sites with non-potable water use, Soil Ingestion (2003 update).

- (1) Fuel oil / lube oil range.
- (2) Fuel oil fraction
- (3) Lube oil fraciton. TEH surrogate not within acceptable limits due to sample matrix.
- (4) Lube oil fraction(5) Fuel Oil Fraction and Lube Oil Fraction

*** As per laboratory identified fraction and/or Atlantic RBCA Version 2.0 Table 5, Modified TPH concentration must be compared with appropriate fraction. Shading indicates exceedance of Residential guideline.

TABLE C-2: METALS IN SOIL RESULTS Janvrins Oily Waste Disposal Site

Janvrins Oily Waste	Dispos	sal Site					
Maxxam ID		CCME	IA9826	IA9833	IA9834	IA9835	IA9836
Sampling Date	Units	CEQG	2-Dec-10	2-Dec-10	2-Dec-10	2-Dec-10	2-Dec-10
COC Number	onna	Industrial	B124761	B124761	B124761	B124761	B124761
Sample ID		Guideline*	J1A10-TP05	J1A10-TP06	J1A10-TP09	J1A10-TP13	J1A10-TP17
Elements (ICP-MS)							
Aluminum (Al)	mg/kg	-	5500	4800	5100	6500	7600
Antimony (Sb)	mg/kg	40	<1	<1	<1	<1	<1
Arsenic (As)	mg/kg	12	3	6	3	5	4
Barium (Ba)	mg/kg	2000	54	42	31	66	74
Beryllium (Be)	mg/kg	8	<1	<1	<1	<1	<1
Boron (B)	mg/kg	-	<7	<7	<7	<7	<7
Cadmium (Cd)	mg/kg	22	<0.2	<0.2	<0.2	<0.2	<0.2
Calcium (Ca)	mg/kg	-	4700	7500	7900	2900	2200
Chromium (Cr)	mg/kg	87	10	8	9	12	14
Cobalt (Co)	mg/kg	300	6	5	6	7	9
Copper (Cu)	mg/kg	91	<10	46	<10	13	13
Iron (Fe)	mg/kg	-	15000	25000	14000	18000	18000
Lead (Pb)	mg/kg	600	9	11	8	12	9
Lithium (Li)	mg/kg	-	11	12	11	13	16
Magnesium (Mg)	mg/kg	-	3700	3000	4000	3500	4200
Manganese (Mn)	mg/kg	-	390	1000	470	750	990
Mercury (Hg)	mg/kg	50	<0.1	<0.1	<0.1	<0.1	<0.1
Molybdenum (Mo)	mg/kg	40	<1	1	<1	<1	<1
Nickel (Ni)	mg/kg	50	12	16	12	14	18
Phosphorus (P)	mg/kg	-	250	450	270	280	310
Potassium (K)	mg/kg	-	<400	<400	<400	<400	420
Selenium (Se)	mg/kg	2.9	<0.6	<0.6	<0.6	<0.6	<0.6
Silver (Ag)	mg/kg	40	<1	<1	<1	<1	<1
Sodium (Na)	mg/kg	-	<400	<400	<400	<400	<400
Strontium (Sr)	mg/kg	-	8	16	13	7	7
Sulphur (S)	mg/kg	-	N/A	N/A	N/A	N/A	N/A
Thallium (TI)	mg/kg	1	<0.7	<0.7	<0.7	<0.7	<0.7
Tin (Sn)	mg/kg	300	<10	<10	<10	<10	<10
Titanium (Ti)	mg/kg	-	72	37	44	66	75
Uranium (U)	mg/kg	300	<1	<1	<1	<1	<1
Vanadium (V)	mg/kg	130	20	24	32	21	29
Zinc (Zn)	mg/kg	360	<50	59	59	57	56

Notes: * CCME Canadian Environmental Quality Guidelines for Industrial site land use (September

RDL = Reportable Detection Limit Exceeds Industrial

Table C-3: PAHs IN SOIL RESULTS Janvrins Oily Waste Disposal Site

Maxxam ID		CCME	IA9826	IA9833	IA9834	IA9835	IA9836
Sampling Date	Units	CEQG	2-Dec-10	2-Dec-10	2-Dec-10	2-Dec-10	2-Dec-10
COC Number	Units	Industrial	B124761	B124761	B124761	B124761	B124761
Sample ID		Guideline*	J1A10-TP05	J1A10-TP06	J1A10-TP09	J1A10-TP13	J1A10-TP17
PAHs							
1-Methylnaphthalene	mg/kg	-	<0.1	7.3	9.2	<0.1	<0.1
2-Methylnaphthalene	mg/kg	-	<0.1	8.3	12	<0.1	<0.1
Acenaphthene	mg/kg	-	<0.1	0.5	0.7	<0.1	<0.1
Acenaphthylene	mg/kg	-	<0.1	0.1	0.2	<0.1	<0.1
Anthracene	mg/kg	-	<0.1	0.2	0.3	<0.1	<0.1
Benzo(a)anthracene	mg/kg	10	<0.1	0.5	0.7	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.7	<0.1	0.2	0.3	<0.1	<0.1
Benzo(b)fluoranthene	mg/kg	10	<0.1	0.3	0.5	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	-	0.1	0.2	0.3	<0.1	0.1
Benzo(k)fluoranthene	mg/kg	10	<0.1	<0.1	0.1	<0.1	<0.1
Chrysene	mg/kg	-	<0.1	1.8	2.6	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	10	<0.1	<0.1	0.2	<0.1	<0.1
Fluoranthene	mg/kg	-	<0.1	0.3	0.2	<0.1	<0.1
Fluorene	mg/kg	-	<0.1	2.1	2.5	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	10	<0.1	<0.1	0.1	<0.1	<0.1
Naphthalene	mg/kg	22	<0.1	1.9	1.9	<0.1	<0.1
Perylene	mg/kg	-	<0.1	0.2	0.3	<0.1	<0.1
Phenanthrene	mg/kg	50	<0.1	6.1	8.3	<0.1	<0.1
Pyrene	mg/kg	100	<0.1	0.9	1.3	<0.1	<0.1
Notes:							

* CCME Canadian Environmental Quality Guidelines for Industrial site land use (September 2006 update) RDL = Reportable Detection Limit Exceeds Industrial

Table C-4: PAHs in Soil Janvrins Oily Waste Disposal Site

Maxxam ID				IA9826		IA9833		IA9834		IA9835		IA9836	
Sampling Date	Units	CCME Direct	CCME PEFs	2-Dec-10	Sample TPE								
COC Number	Units	Contact	COME FEFS	B124761	Sample IFE	B124761	Sample IFE	B124761	Sample IFE	B124761		B124761	Sample IFE
				J1A10-TP05	1	J1A10-TP06		J1A10-TP09		J1A10-TP13		J1A10-TP17	
PAHs													
1-Methylnaphthalene	mg/kg	NV	-	0.05	-	7.3	-	9.2	-	0.05	-	0.05	-
2-Methylnaphthalene	mg/kg	NV	-	0.05	-	8.3	-	12	-	0.05	-	0.05	-
Acenaphthene	mg/kg	NV	-	0.05	-	0.5	-	0.7	-	0.05	-	0.05	-
Acenaphthylene	mg/kg	NV	-	0.05	-	0.1	-	0.2	-	0.05	-	0.05	-
Anthracene	mg/kg	NV	-	0.05	-	0.2	-	0.3	-	0.05	-	0.05	-
Benzo(a)anthracene	mg/kg	NV	0.1	0.05	0.005	0.5	0.05	0.7	0.07	0.05	0.005	0.05	0.005
Benzo(a)pyrene	mg/kg	NV	1	0.05	0.05	0.2	0.2	0.3	0.3	0.05	0.05	0.05	0.05
Benzo(b)fluoranthene	mg/kg	NV	0.1	0.05	0.005	0.3	0.03	0.5	0.05	0.05	0.005	0.05	0.005
Benzo(g,h,i)perylene	mg/kg	NV	0.01	0.1	0.001	0.2	0.002	0.3	0.003	0.05	0.0005	0.1	0.001
Benzo(k)fluoranthene	mg/kg	NV	0.1	0.05	0.005	0.05	0.005	0.1	0.01	0.05	0.005	0.05	0.005
Chrysene	mg/kg	NV	0.01	0.05	0.0005	1.8	0.018	2.6	0.026	0.05	0.0005	0.05	0.0005
Dibenzo(a,h)anthracene	mg/kg	NV	1	0.05	0.05	0.05	0.05	0.2	0.2	0.05	0.05	0.05	0.05
Fluoranthene	mg/kg	NV	-	0.05	-	0.3	-	0.2	-	0.05	-	0.05	-
Fluorene	mg/kg	NV	-	0.05	-	2.1	-	2.5	-	0.05	-	0.05	-
Indeno(1,2,3-cd)pyrene	mg/kg	NV	0.1	0.05	0.005	0.05	0.005	0.1	0.01	0.05	0.005	0.05	0.005
Naphthalene	mg/kg	NV	-	0.05	-	1.9	-	1.9	-	0.05	-	0.05	-
Perylene	mg/kg	NV	-	0.05	-	0.2	-	0.3	-	0.05	-	0.05	-
Phenanthrene	mg/kg	NV	-	0.05	-	6.1	-	8.3	-	0.05	-	0.05	-
Pyrene	mg/kg	NV	-	0.05	-	0.9	-	1.3	-	0.05	-	0.05	-
B (a) P TPE	mg/Kg	5.3	-	-	0.1215	-	0.36	-	0.669	-	0.121	-	0.1215
Uncertainty Factor	mg/Kg	3	-	-	0.3645	-	1.08	-	2.007	-	0.363	-	0.3645

Notes:

* CCME Canadian Environmental Quality Guidelines for the Protection of Environmental and Human Health (2010)

NV - No Value

PEF - Potency Equivalence Factor Total Potency Equivalent -

Screening:

Bold - Indicates an exceedance of CCME guidelines

Red indicates value was below the reportable detection limit and half the RDL was used for the calculation.

Table C-5: PAHs in Soil Janvrins Oily Waste Disposal Site

Maxxam ID				IA9826		IA9833		IA9834		IA9835		IA9836	
Sampling Date	Units	CCME Direct	CCME PEFs	2-Dec-10	Sample TPE								
COC Number	Units	Contact	COME FEFS	B124761	Sample IFE	B124761	Sample IFE	B124761	Sample IFE	B124761		B124761	
				J1A10-TP05		J1A10-TP06		J1A10-TP09		J1A10-TP13		J1A10-TP17	
PAHs													
1-Methylnaphthalene	mg/kg	NV	-	0.05	-	7.3	-	9.2	-	0.05	-	0.05	-
2-Methylnaphthalene	mg/kg	NV	-	0.05	-	8.3	-	12	-	0.05	-	0.05	-
Acenaphthene	mg/kg	NV	-	0.05	-	0.5	-	0.7	-	0.05	-	0.05	-
Acenaphthylene	mg/kg	NV	-	0.05	-	0.1	-	0.2	-	0.05	-	0.05	-
Anthracene	mg/kg	NV	-	0.05	-	0.2	-	0.3	-	0.05	-	0.05	-
Benzo(a)anthracene	mg/kg	NV	0.33	0.05	0.0165	0.5	0.165	0.7	0.231	0.05	0.0165	0.05	0.0165
Benzo(a)pyrene	mg/kg	NV	0.37	0.05	0.0185	0.2	0.074	0.3	0.111	0.05	0.0185	0.05	0.0185
Benzo(b)fluoranthene	mg/kg	NV	0.16	0.05	0.008	0.3	0.048	0.5	0.08	0.05	0.008	0.05	0.008
Benzo(g,h,i)perylene	mg/kg	NV	6.8	0.1	0.68	0.2	1.36	0.3	2.04	0.05	0.34	0.1	0.68
Benzo(k)fluoranthene	mg/kg	NV	0.16	0.05	0.008	0.05	0.008	0.1	0.016	0.05	0.008	0.05	0.008
Chrysene	mg/kg	NV	2.1	0.05	0.105	1.8	3.78	2.6	5.46	0.05	0.105	0.05	0.105
Dibenzo(a,h)anthracene	mg/kg	NV	0.23	0.05	0.0115	0.05	0.0115	0.2	0.046	0.05	0.0115	0.05	0.0115
Fluoranthene	mg/kg	NV	-	0.05	-	0.3	-	0.2	-	0.05	-	0.05	-
Fluorene	mg/kg	NV	-	0.05	-	2.1	-	2.5	-	0.05	-	0.05	-
Indeno(1,2,3-cd)pyrene	mg/kg	NV	2.7	0.05	0.135	0.05	0.135	0.1	0.27	0.05	0.135	0.05	0.135
Naphthalene	mg/kg	NV	-	0.05	-	1.9	-	1.9	-	0.05	-	0.05	-
Perylene	mg/kg	NV	-	0.05	-	0.2	-	0.3	-	0.05	-	0.05	-
Phenanthrene	mg/kg	NV	-	0.05	-	6.1	-	8.3	-	0.05	-	0.05	-
Pyrene	mg/kg	NV	-	0.05	-	0.9	-	1.3	-	0.05	-	0.05	-
SQG PW IACR	mg/Kg	1	-	-	0.9825	-	5.5815	-	8.254	-	0.6425	-	0.9825

Notes:

Notes:

All values expressed in µg/g unless otherwise indicated

NV - No Value

 $\mathsf{SQG}_{\mathsf{PW}}$ - Soil Quality Guideline for Protection of Potable Water

IACR - Index of Additive Cancer Risk

SQG_{PW} IACR - Index of Additive Cancer Risk for Protection of Potable Water - Calculated by dividing the concentration of each PAH in the sample by its SQC_{PW} and summing the results

Screening:

Bold - Indicates an exceedance of CCME guidelines

Red indicates value was below the reportable detection limit and half the RDL was used for the calculation.

References:

Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Soil Quality Guidelines (CEQG), Last Accessed October 2008 - Commercial land use, coarse textured soil

TABLE C-6 Volatile Organics in Soil Results Janvrins Oily Waste Disposal Site

Maxxam ID				IA9826	IA9834	
Sample ID		2		J1A10-TP05	J1A10-TP09	
Date Sampled	UNITS	EQL ²	Guideline ¹	2-Dec-10	2-Dec-10	
Sample Depth (m)				JIA10-TP05	JIA10-TP09	
PARAMETER			1			
VOC's						
CHLOROBENZENES						
1,2-Dichlorobenzene	ug/kg	30	10000*	<30	<3	
1,3-Dichlorobenzene	ug/kg	30	10000*	<30	<3	
1,4-Dichlorobenzene	ug/kg	30	10000*	<30	<3	
Chlorobenzene	ug/kg	30	10000*	<30	<3	
VOLATILES						
1,1,1-Trichloroethane	ug/kg	30	50000*	<30	<3	
1,1,2,2-Tetrachloroethane	ug/kg	30	50000*	<30	<3	
1,1,2-Trichloroethane	ug/kg	30	50000*	<30	<3	
1,1-Dichloroethane	ug/kg	30	50000*	<30	<3	
1,1-Dichloroethylene	ug/kg	30	50000*	<30	<3	
1,2-Dichloroethane	ug/kg	30	50000*	<30	<3	
1,2-Dichloropropane	ug/kg	30	50000*	<30	<3	
Benzene	ug/kg	0.003	5000	<30	<3	
Bromodichloromethane	ug/kg	30	NG	<30	<3	
Bromoform	ug/kg	30	NG	<30	<30	
Bromomethane	ug/kg	200	NG	N/A	N//	
Carbon Tetrachloride	ug/kg	30	50000*	<30	<3	
Chloroethane	ug/kg	200	NG	<30	<3	
Chloroform	ug/kg	30	50000*	<30	<3	
Chloromethane	ug/kg	30	NG	<30	<3	
cis-1,2-Dichloroethylene	ug/kg	30		<30	<3	
cis-1,3-Dichloropropene	ug/kg	30	50000*	<30	<3	
Dibromochloromethane	ug/kg	30	NG	<30	<3	
Ethylbenzene	ug/kg	0.01	20000	<30	19	
Ethylene Dibromide	ug/kg	30		<30	<3	
Methylene Chloride(Dichloromethane)	ug/kg	30	50000*	<30	<3	
o-Xylene	ug/kg	30	20000	<30	31	
p+m-Xylene	ug/kg	30	20000	<30	51	
Styrene	ug/kg	30	50000*	<30	<3	
Tetrachloroethylene	ug/kg	30	600	<30	<3	
Toluene	ug/kg	0.03	800	<30	5	
trans-1,2-Dichloroethylene	ug/kg	30	50000*	<30	<3	
trans-1,3-Dichloropropene	ug/kg	30	50000*	<30	<3	
Trichloroethylene	ug/kg	30	31000	<30	<3	
Trichlorofluoromethane (FREON 11)	ug/kg	30	NG	<30	<3	
Vinyl Chloride	ug/kg	30	NG	<30	<3	

NOTES:

NOTES: Samples analyzed at Maxxam Analytics Inc. - CAEAL accredited EPA 8260 Analytical Methodology followed

- CCME Canadian Environmental Quality Guidelines for Soils on Industrial Properties (2006 Update).
 - Estimated Quantitation Limit
 - see narrative with guideline regarding use and origin of guideline
 Equals or Exceeds Guidelines

•e	X	exp Services 77 Kings Ros Sydney, Nov Telephone: Fax: 902-56	ad a Scotia, B1L 1A1 902-562-2394	TEST PIT NUMBER TP	JI10-TP01 PAGE 1 OF 1
	Nova	Scotia Transportat	ion and Infrastructure	re Renewal PROJECT NAME _ Janvrins Island Oily Waste Site	
PROJEC1	T NUM	BER SYD-00020	400-A0	PROJECT LOCATION _ Janvrins Island	
DATE ST	ARTE	2/12/10	COMPLETED	_2/12/10 GROUND ELEVATION	
EXCAVA			orvon Construction	GROUND WATER LEVELS:	
			IC		
				FEB AT END OF EXCAVATION	
NOTES _	Locate	ed via hand held G	armin e-trex Summit	t GPS AFTER EXCAVATION	
DEPTH (m) SAMPLE TVDE	SAMPLE IYPE NUMBER	REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION	
		Ground surface was flat, test pit		ANICS: nat, trace sand, loose, moist, brown	_
		oriented east to west, sod cover.	TILL:		/
			Silt, tra	ace sand and gravel, loose, moist, reddish brown	
		No water was encountered.			
0.5		No oily waste was encountered.			
		chebanterea.			
				Bottom of test pit at 0.76 meters.	

	e	ex	exp Services 77 Kings Ros Sydney, Nov Telephone: Fax: 902-56	ad a Scotia 902-562		TEST PIT NUMBER TP	JI10-TP02 PAGE 1 OF 1
CLI	IENT	Nova			Infrastructure Renewal	PROJECT NAME _ Janvrins Island Oily Waste Site	
PR	OJE	CT NUM	BER _ SYD-00020	400-A0		PROJECT LOCATION Janvrins Island	
DA	TE S	TARTE	D <u>2/12/10</u>	c	OMPLETED _2/12/10	GROUND ELEVATION	
EX	CAV	ATION C		orvon C	onstruction		
EX	CAV		METHOD CAT 31	1C		AT TIME OF EXCAVATION	
					HECKED BY FEB		
NO	TES	Locat	ed via hand held G	armin e	-trex Summit GPS	AFTER EXCAVATION	
DEPTH	(m)	SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG		MATERIAL DESCRIPTION	
			Ground surface was flat, test pit	<u>x 1/ x</u>	0.08 ORGANICS:	as maint brown	
F	-		oriented north to south, field grass		Rootmat, trace sand, loos TILL:		/
F	-		cover, just south of foundation.		Silt, trace sand and grave	el, compact, moist, reddish brown	
F	-		or foundation.				
\mathbf{F}	-						
0.	5		No water was encountered.				
\mathbf{F}	-						
+	-		No oily waste was encountered.				
ŀ	4		choodinered.				
_ 1.	0						
Γ	7						
F	1						
F	-						
<u> </u>	_ +						
	5				.55		
97 10					Test pit terminated at 1.5	5 metres depth on Bedrock refusal. Test pit was backfilled. Bottom of test pit at 1.55 meters.	
AB.GI							
ADAL							
CAN							
S I D							
GB							
PITS							
TEST							
RINS							
VNAL							
GENERAL BH / TP / WELL JANVRINS TEST PITS.GPJ GINT STD CANADA LAB.GDT 25/10/11							
≷ 4							
BH/							
ERAL							
GEN							

**(ех	exp Services 77 Kings Ro Sydney, Nov Telephone: Fax: 902-56	ad ⁄a Scotia, B1 902-562-239	L 1A1 94	TEST PIT NUMBER TP	JI10-TP03 PAGE 1 OF 1
CLIEN	IT Nova			astructure Renewal	PROJECT NAME _ Janvrins Island Oily Waste Site	
PROJ	ECT NUN	BER SYD-00020	400-A0		PROJECT LOCATION _ Janvrins Island	
DATE	STARTE	D <u>2/12/10</u>	COMP	LETED 2/12/10	GROUND ELEVATION	
				ruction		
				KED BY FEB		
NOTE	1	ted via hand held G	armin e-trex	Summit GPS	_ AFTER EXCAVATION	
DEPTH (m)	SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG		MATERIAL DESCRIPTION	
		Ground surface was flat, test pit	<u><u>x 1/</u> <u>x</u> 0.08</u>	ORGANICS:		
	1	oriented north to south, field grass,		<u>Rootmat, trace sand, loos</u> TILL:		/
		root and bark cover.		Silt, trace sand and grave	el, compact, moist, reddish brown	
	-	cover.				
	-					
_ 0.5	-	No oily waste was encountered.				
	-					
	-	No water was encountered.				
	-					
	-					
1.0	-					
	-					
	-					
	-					
	-		1.42			
0/11		•		Test pit terminated at 1.4	2 metres depth on Bedrock refusal. Test pit was backfilled. Bottom of test pit at 1.42 meters.	
25/1						
3.GD1						
ANAD						
GPJ (
PITS.						
TEST						
RINS						
VNAL						
VELL						
GENERAL BH / TP / WELL JANVRINS TEST PITS.GPJ GINT STD CANADA LAB.GDT 26/10/1						
BH						
VERA						
B 5						

**	ЭХ	 exp Services 77 Kings Ro Sydney, Nov Telephone: 	ad /a Scotia 902-562	a, B1L 1A1 2-2394		TEST PIT NUMBER TP	JI10-TP04 PAGE 1 OF 1
	T Neve	Fax: 902-56		lafaa atuu atuu	Deneural	DDO IFOT NAME	
		Scotia Transporta			Renewal		
					0/40/40	PROJECT LOCATION Janvrins Island	
		D <u>2/12/10</u>					
		CONTRACTOR <u>N</u>					
		SRS				AT TIME OF EXCAVATION AT END OF EXCAVATION	
		ed via hand held G					
DEPTH (m)	SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG			MATERIAL DESCRIPTION	
		Ground surface was flat, test pit	<u>x, 1</u> X - 77	ORGA			
		oriented north to	<u>// \'//</u> 0	.15	at, trace sand, loos	e, moist, brown	
		south, dead foliage cover,		TILL: Silt. tra	ce sand and grave	I, compact, moist, reddish brown	
		surrounded by spruce.		,	j		
		No oily waste was encountered.					
0.5		encountered.					
		No water was					
		encountered.					
			0.	.76			
				l est pr	t terminated at 0.76	6 metres depth on Bedrock refusal. Test pit was backfilled. Bottom of test pit at 0.76 meters.	

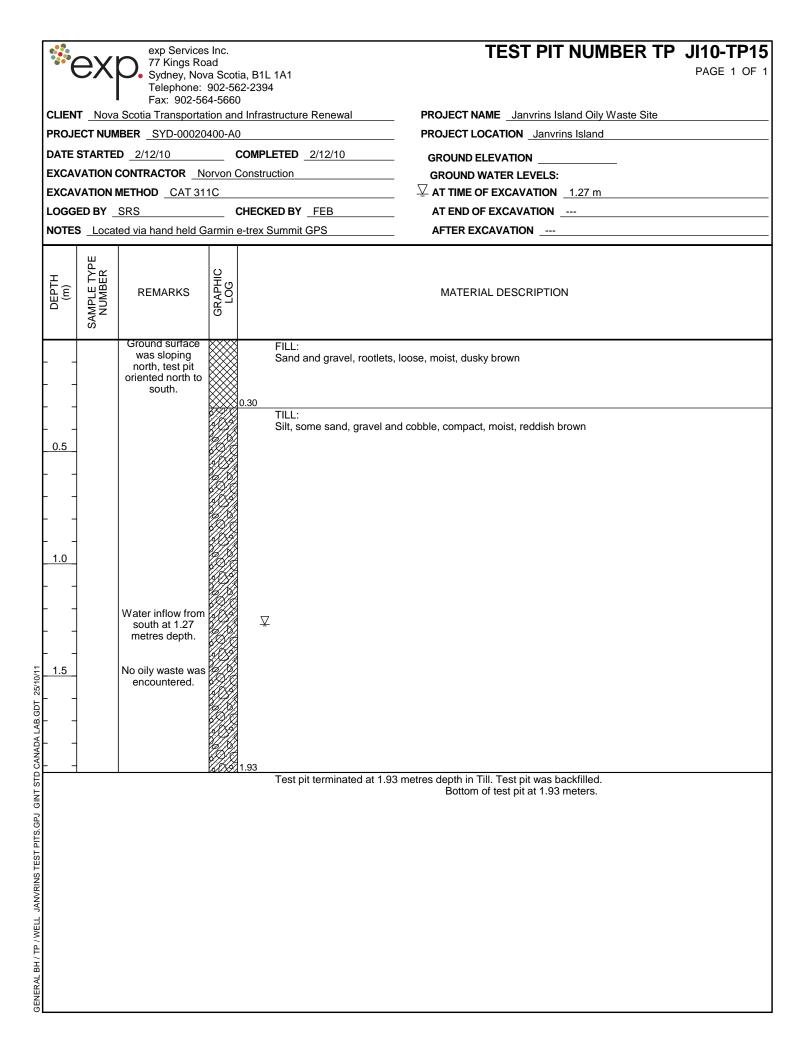
[%] exp.	exp Services 77 Kings Ro Sydney, Nov Telephone: Fax: 902-56	ad va Scotia, B1L 1A1 902-562-2394	TEST PIT NUMBER TP	JI10-TP05 PAGE 1 OF 1
CLIENT Nova Scot		tion and Infrastructure Renewal	PROJECT NAME _ Janvrins Island Oily Waste Site	
)400-A0	PROJECT LOCATION Janvrins Island	
		COMPLETED _2/12/10		
		orvon Construction 1C		
		CHECKED BY FEB		
		Garmin e-trex Summit GPS		
DE SAMPI	REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION	
slop pit c	bing west, test priented north	0.15	ł, loose, moist, brown	
	south, field rass cover.		ace sand and gravel, loose, reddish brown	
odo end	ydrocarbon Jur, oily waste countered at 1.25 to 0.69 etres depth.	FILL: Sand and Gravel, lo	ose, moist, dusky brown	
er	o water was ncountered.	TILL: Silt, trace sand and	gravel, loose, compact, moist, reddish brown	
GENERAL BH / TP / WELL JANVRINS TEST PITS.GPJ GINT STD CANADA LAB.GDT 25/10/11			at 1.63 metres depth on Bedrock refusal. Test pit was backfilled. Bottom of test pit at 1.63 meters.	

*	ЭХ	exp Services 77 Kings Ro. Sydney, Nov Telephone: Fax: 902-56	ad ⁄a Scotia, B′ 902-562-23		TEST PIT NUMBER TP	JI10-TP06 PAGE 1 OF 1		
CLIEN	T Nova			astructure Renewal	PROJECT NAME Janvrins Island Oily Waste Site			
PROJI	ECT NUN	IBER SYD-00020	400-A0		PROJECT LOCATION _ Janvrins Island			
				PLETED _2/12/10				
				ruction				
				KED BY FEB				
				Summit GPS				
DEPTH (m)	SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG		MATERIAL DESCRIPTION			
		Ground surface	<u>x¹ 1_x x¹</u>	ORGANICS:				
		was level, test pit oriented	<u>1, 1,</u> 0.15	Rootmat				
 0.5		northeast to southwest, sod cover.		FILL: Reworked till, Silt, trace	sand and gravel, loose, reddish brown			
		Oily waste, some tar, strong hydrocarbon						
		odour encountered at	0.74	FILL:				
		0.74 to 1.09 metres depth.		Sand and Gravel, loose,	moist, dusky brown			
			1.09	TILL: Silt, trace sand and grav	el, loose, moist, reddish brown			
		No water was encountered.	1.85					
n CA				Test pit terminated at 1.8	5 metres depth on Bedrock refusal. Test pit was backfilled. Bottom of test pit at 1.85 meters.			

*e	exp Service 77 Kings Rc Sydney, Nov Telephone: Fax: 902-56	oad va Scotia, B1L 1/ 902-562-2394	A1	TEST PIT NUMBER TP JI10-TP07 PAGE 1 OF		
PROJECT DATE STA EXCAVATI EXCAVATI LOGGED I	Nova Scotia Transporta NUMBER _SYD-00020 RTED _2/12/10 NON CONTRACTOR _N NON METHOD _CAT 31 BY _SRS	tion and Infrastru 1400-A0 COMPLET orvon Constructi 1C CHECKEE	ucture Renewal FED _2/12/10 ion DBY _FEB mmit GPS	PROJECT LOCATION _Janvrins Island GROUND ELEVATION GROUND WATER LEVELS: ✓ AT TIME OF EXCAVATION _1.25 m AT END OF EXCAVATION		
DEPTH (m) SAMPLE TYPE	REMARKS	GRAPHIC LOG		MATERIAL DESCRIPTION		
	Ground surface sloping west, test pit oriented east to west, moss and alder cover. No oily waste was encountered. Water slowly trickling into test pit at depth, slight manganese precipitate on surface	0.10 R T S		e, moist, brown I, loose to compact, moist, reddish brown		

*ех	exp Services 77 Kings Ro Sydney, Nov Telephone:	s Inc. ad a Scotia, B1I 902-562-239	- 1A1 4	TEST PIT NUMBER TP	JI10-TP08 PAGE 1 OF 1
PROJECT NU DATE STARTI EXCAVATION EXCAVATION LOGGED BY	Fax: 902-56 a Scotia Transportat MBER SYD-00020 ED 2/12/10 CONTRACTOR No METHOD CAT 31 SRS	i4-5660 ition and Infra 400-A0 COMP Drvon Constru- 1C CHECH	LETED _2/12/10 uction KED BY _FEB Summit GPS	PROJECT LOCATION GROUND ELEVATION GROUND WATER LEVELS: AT TIME OF EXCAVATION AT END OF EXCAVATION	
DEPTH (m) SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG		MATERIAL DESCRIPTION	
	Ground surface flat, test pit oriented east to west, middle of clearing, sod cover. Oily waste, no tar, strong hydrocarbon odour encountered at 0.28 to 0.81 metres depth. No water was encountered.	0.08	FILL: Sand and Gravel, loose, n TILL: Silt, some sand and grave	, trace sand and gravel, loose, moist, reddish brown	

PROJECT DATE ST/ EXCAVAT EXCAVAT LOGGED	T NUM ARTEI TION C TION N O BY	Telephone: Fax: 902-56 Scotia Transportat BER _SYD-00020 D _2/12/10 CONTRACTOR _No METHOD _CAT 317 SRS	ad a Scotia, B1L 902-562-2394 4-5660 tion and Infras 400-A0 COMPL COMPL Drvon Constru 1C CHECK		TEST PIT NUMBER TP PROJECT NAME Janvrins Island Oily Waste Site PROJECT LOCATION Janvrins Island GROUND ELEVATION Janvrins Island GROUND WATER LEVELS: AT TIME OF EXCAVATION AT END OF EXCAVATION AFTER EXCAVATION	PAGE 1 OF 1
DEPTH (m) same e Type	SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG		MATERIAL DESCRIPTION	
		Ground surface was sloped west, test pit oriented east to west. Oily waste, strong hydrocarbon odour	<u>16 10.05</u> 0.36	FILL:	, moist, brown nd and gravel, loose, moist, reddish brown loose, moist, dusky brown and black	
<u>0.5</u> 		encountered at 0.36 to 0.84 metres depth.	0.84			
 <u>1.0</u> 		Sample Collected		TILL: Silt, trace sand and gravel,	some cobbles at depth, compact, moist, reddish brown	
		No water was encountered.	1.40	Test pit terminated at 1.40	metres depth in Till. Test pit was backfilled.	
					Bottom of test pit at 1.40 meters.	


	*(ЭХ	exp Services 77 Kings Ro Sydney, Nov Telephone: Fax: 902-56	ad /a Scotia, B1 902-562-239	L 1A1 94	TEST PIT NUMBER TP	JI10-TP10 PAGE 1 OF 1
	CLIEN	T <u>Nova</u>			astructure Renewal	PROJECT NAME _ Janvrins Island Oily Waste Site	
	PROJE		IBER SYD-00020	400-A0		PROJECT LOCATION _ Janvrins Island	
	DATE	STARTE	D 2/12/10		LETED 2/12/10	GROUND ELEVATION	
	EXCA\	ATION (orvon Const	ruction		
	EXCA\	ATION N	METHOD CAT 31	1C		AT TIME OF EXCAVATION	
	LOGG	ED BY	SRS	CHEC	KED BY FEB	AT END OF EXCAVATION	
	NOTES	Locat	ed via hand held G	armin e-trex	Summit GPS	AFTER EXCAVATION	
	DEPTH (m)	SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG		MATERIAL DESCRIPTION	
Ī			Ground surface was flat, test pit	<u>x¹/2 x¹0.05</u>	ORGANICS: ∖Rootmat, some sand, loo	as maint brown	
ŀ	• -		oriented east to west.		FILL:		/
┢	· -		west.		Reworked till, Silt, trace of	obble and boulders, loose, moist, moderate brown	
┟	· -						
┟	. –		No water was				
╞	0.5		encountered.				
╞			No oily waste was				
			encountered.				
				0.84	TILL:		
ŀ	· _					el, some cobble at depth, compact, moist, moderate brown	
┢	1.0						
┢	. –						
11	1.5						
25/10/				9/1.52	Test pit terminated at 1.5	2 metres depth on Bedrock. Test pit was backfilled.	
TO						Bottom of test pit at 1.52 meters.	
LAB.0							
ADA							
CAN							
T STD							
<u>.</u> ND							
GPJ							
PITS							
TEST							
GENERAL BH / TP / WELL JANVRINS TEST PITS.GPJ GINT STD CANADA LAB.GDT 25/10/11							
JANV							
ĒĽ							
М / М							
JH/T							
RALE							
ENE							
٥L							

*6	EX		ad a Scotia, B1L 902-562-239		TEST PIT NUMBER TP	JI10-TP11 PAGE 1 OF 1	
PROJEC	CT NUM	BER SYD-00020	ion and Infra 400-A0	ETED 2/12/10			
EXCAV		METHOD CAT 31	1C	ICTION	GROUND WATER LEVELS:		
NOTES	Locat	ed via hand held G	armin e-trex	Summit GPS			
DEPTH (m)	SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG		MATERIAL DESCRIPTION		
		Cut transect line in north to south, test pit oriented north to south, dead vegetation (leaves) on surface.	0.08	ORGANICS: Rootmat, trace sand, loos TILL: Silt, trace gravel and cobt	e, moist, brown ble, loose, moist, reddish brown	/	
 1.0		No oily waste was encountered. Slight water seepage at 0.76 metres oriented North to South in a 0.31 meter diameter area.					
			1.40	Test pit terminated at 1.40) metres depth in till. Test pit was backfilled.		
ההאבר בהרי ודי ושבוב שמועימוש ובאו דיווא.סרט כאואשם באביסטר באוטידו					Bottom of test pit at 1.40 meters.		

**(exp	exp Services 77 Kings Roa Sydney, Nov Telephone: Fax: 902-56	ad a Scot 902-56	2-2394	TEST PIT NUMBER TP	JI10-TP12 PAGE 1 OF 1	
CLIEN	T Nova				PROJECT NAME _ Janvrins Island Oily Waste Site		
PROJ		BER _ SYD-000204	400-A0)	PROJECT LOCATION _ Janvrins Island		
DATE	DATE STARTED 2/12/10 COMPLETED 2/12/10 EXCAVATION CONTRACTOR Norvon Construction				_ GROUND ELEVATION		
EXCA	VATION M	ETHOD CAT 31	1C		AT TIME OF EXCAVATION		
LOGG	LOGGED BY SRS CHECKED BY FEB				AT END OF EXCAVATION		
NOTE	S Locate	ed via hand held G	armin e	e-trex Summit GPS	AFTER EXCAVATION		
DEPTH (m)	SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG		MATERIAL DESCRIPTION		
 0.5		Ground surface slopes north, test pit oriented north to south, ground surface was moss covered with alders.		FILL:	se, moist, brown gravel and cobbles, trace boulder, loose, moist, reddish browr	<i>(</i>	
 		No water was encountered.		1.09 TILL: Silt, some gravel and col	obles, loose to compact, moist, reddish brown		
		No oily waste was encountered.		2.03			
PITS.GPJ GIN			<u> </u>		32 metres depth on friable mudstone bedrock. Test pit was ba Bottom of test pit at 2.03 meters.	ackfilled.	
GENERAL BH / TP / WELL JANVRINS TEST PITS.GPJ GINT STD CANADA LAB.GDT 25/10/11							

*	ЭX	exp Services 77 Kings Ro. Sydney, Nov Telephone: Fax: 902-56	ad a Scot 902-56	62-239	_ 1A1 4	TEST PIT NUMBER TP JI10-TP13 PAGE 1 OF		
CLIEN	T Nova				structure Renewal	PROJECT NAME _ Janvrins Island Oily Waste Site		
PROJE	ECT NUN	IBER SYD-00020	400-A0)		PROJECT LOCATION Janvrins Island		
					LETED _ 2/12/10			
					uction			
					(ED BY <u>FEB</u>			
NOTE		ied via nand heid G		e-trex	Summit GPS	AFTER EXCAVATION		
DEPTH (m)	SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG			MATERIAL DESCRIPTION		
		Ground surface uneven, located	XXXX	0.05	ORGANICS:	a maiat brown		
		north of road 3.05 metres inside the			Rootmat, trace sand, loos FILL:		/	
		tree line, test pit		0.25		and and gravel, loost, moist, reddish brown		
		oriented north to south, sod cover.			FILL: Sand and Gravel, loose, moist, dusky brown			
<u>0.5</u> 		Oily waste, slight hydrocarbon odour						
 <u>1.0</u> 1.5		Water inflow at fill/till interface.		1.37	TILL: Silt, trace sand, gravel and	d cobbles, compact, moist, reddish brown		
		Sample collected.		1.80				
				1.83	Test pit terminated at 1.83	B metres depth in Till. Test pit was backfilled. Bottom of test pit at 1.80 meters.		

*(ЭX	exp Services 77 Kings Ro Sydney, Nov Telephone: Fax: 902-56	ad /a Scotia, B 902-562-23	1L 1A1 394	TEST PIT NUMBER TP JI10-TP14 PAGE 1 OF 7		
CLIEN	T Nova			rastructure Renewal	PROJECT NAME Janvrins Island Oily Waste Site		
PROJE		BER SYD-00020	400-A0		PROJECT LOCATION Janvrins Island		
DATE	STARTE	D <u>2/12/10</u>	COM	PLETED 2/12/10	GROUND ELEVATION		
EXCA	VATION		orvon Cons	truction	GROUND WATER LEVELS:		
				CKED BY FEB			
NOTES	S Locat	ted via hand held G	armin e-tre	x Summit GPS	AFTER EXCAVATION		
DEPTH (m)	SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG		MATERIAL DESCRIPTION		
		Ground surface was uneven,	<u>1.1.1</u> 0.05			<i>_</i>	
		located in ditch		\Rootmat, some sand, loos FILL:	e, moist, brown	/	
		for road, oriented north to south.		Reworked till, Silt, some c	obble and roots, loose, moist, reddish brown		
		O'huwanta an					
		Oily waste on north face from					
0.5		0.43 to 0.56 metres depth.	***	FILL: Sand and Gravel, loose, n	noist dusky brown		
			0.86				
				TILL: Silt, loost to compact, mois	st raddish brown		
1.0				Sin, ioost to compact, moi			
L _		Water was not					
		encountered.					
		1	<u> // X/77</u> 1.22	Test pit terminated at 1.22	metres depth in Till. Test pit was backfilled.		
					Bottom of test pit at 1.22 meters.		

**	ЭХ	exp Services 77 Kings Ro Sydney, Nov Telephone: Fax: 902-56	ad ⁄a Scotia, B1 902-562-239	L 1A1 14	TEST PIT NUMBER TP	JI10-TP16 PAGE 1 OF 1	
CLIEN	T Nova			structure Renewal	PROJECT NAME Janvrins Island Oily Waste Site		
PROJE	ECT NUN	BER SYD-00020	400-A0		PROJECT LOCATION _ Janvrins Island		
				LETED 2/12/10			
				uction			
				KED BY FEB			
NOTES	S Loca	ted via hand held G	armin e-trex	Summit GPS	AFTER EXCAVATION		
DEPTH (m)	SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG		MATERIAL DESCRIPTION		
		Ground surface	<u>x¹ /_x x¹ 0.05</u>	ORGANICS:			
		was uneven, moss cover,		Rootmat, trace sand, loos FILL:	se, moist, brown	/	
		located north of road and south of berm.			cobble and boulder, loose, moist, reddish brown		
_ 0.5 _		No oily waste was encountered.					
		Water inflow at					
		0.70 metres	0.69	TILL:			
		depth.		Silt, trace sand and grave	el, compact, moist, reddish brown		
1 25/			1.63				
LAB.GI				I est pit terminated at 1.6	3 metres depth. Test pit was backfilled. Bottom of test pit at 1.63 meters.		
GENERAL BH / IP / WELL JANVKINS TEST PTIS.GPJ GINT STD CANADA LAB.GDT							

PROJECT NUMBE DATE STARTED EXCAVATION CON	Telephone: S Fax: 902-56 cotia Transportat R SYD-000204 2/12/10 2/12/10 NTRACTOR No THOD CAT 312	ad a Scotia, B1L 902-562-2394 4-5660 ion and Infras 400-A0 COMPL prvon Constru- 1C	TTED 2/12/10	TEST PIT NUMBER TP PROJECT NAME	PAGE 1 OF 1
			ED BY FEB		
NOTES Located	via hand held G	armin e-trex S	ummit GPS	AFTER EXCAVATION	
DEPTH (m) SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG		MATERIAL DESCRIPTION	
ber te g C Sa 	At request of NSDNR, dug through m/embankment, est pit oriented north to south, ground surface was flat. bily Waste from 0.41 to 0.61 metres. ample collected. Vater inflow at 0.99 metres depth	<u>1 1</u> 10.05 0.41 0.61	FILL: Sand and gravel, loose, mo TILL: Silt, trace sand and gravel,	otlets, loose, moist, reddish brown	

**	ЭХ	exp Service: 77 Kings Ro Sydney, Nov Telephone: Fax: 902-56	ad /a Scot 902-56 64-5660	52-2394)	TEST PIT NUMBER TP	JI10-TP18 PAGE 1 OF 1
PROJI DATE EXCA EXCA	ECT NUM STARTEI /ATION C /ATION N	BER <u>SYD-00020</u> D <u>2/12/10</u> CONTRACTOR <u>N</u> METHOD <u>CAT 31</u>	0400-A(d Infrastructure Renewal COMPLETED 2/12/10 Construction CHECKED BY FEB	PROJECT LOCATION _Janvrins Island GROUND ELEVATION GROUND WATER LEVELS: AT TIME OF EXCAVATION	
DEPTH (m)	SAMPLE TYPE NUMBER	<u>ed via hand held G</u> REMARKS	GRAPHIC LOG	e-trex Summit GPS	AFTER EXCAVATION	
 - 0.5 		Ground surface was mounded, test pit oriented north to south. Oily waste on west face only at 0.15 to 0.36 metres depth.			boulders, loose, moist, reddish brown moist, dusky brown	ſ
		No water was encountered.		1.02 Test pit terminated at 1.0	02 metres depth in Till. Test pit was backfilled. Bottom of test pit at 1.02 meters.	

*	ex	exp Services 77 Kings Ro Sydney, Nov Telephone:	ad /a Scotia, E 902-562-2	31L 1A1 394	TEST PIT NUMBER TP JI10-TP19 PAGE 1 OF			
CLIE	NT No	Fax: 902-56 va Scotia Transportat		rastructure Renewal	PROJECT NAME _ Janvrins Island Oily Waste Site			
DATI	E START	ED 2/12/10	CON	IPLETED 2/12/10	GROUND ELEVATION			
EXC	AVATIO		orvon Con	struction	GROUND WATER LEVELS:			
	LOGGED BY SRS CHECKED BY FEB NOTES Located via hand held Garmin e-trex Summit GPS							
NOT	ES Loc	cated via hand held G	armin e-tre	ex Summit GPS	AFTER EXCAVATION			
DEPTH (m)	SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG		MATERIAL DESCRIPTION			
		Ground surface was uneven, test	<u>x1/2 x10.05</u> XXXX	ORGANICS: \Rootmat, trace sand, loos	a moist brown	Γ		
F	-	pit oriented east to west, located in		FILL:		/		
F	1	a ditch north of the road.		Reworked till, Silt, compa	ict, moist, reddish brown			
F	-	the load.						
F	-							
_ 0.5	-							
-	-	No water was encountered.						
+	-							
Ļ	_	Black staining	0.81					
- 1.0	-	around one cobble but no odour, possible organics.		TILL: Silt, compact, trace cobbl	e and gravel, moist, reddish brown			
-	-		1.40					
111				Test pit terminated at 1.4	0 metres depth in Till. Test pit was backfilled. Bottom of test pit at 1.40 meters.			
25/10								
CGDT								
A LAE								
ANAD								
10 0								
NTN								
6								
OTS.								
ESTF								
GENERAL BH / TP / WELL JANVRINS TEST PITS.GPJ GINT STD CANADA LAB.GDT 25/10/11								
ANVF								
P/W								
H/H								
RALE								
GENE								